
IPsec and IKE Administration
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–2694–10
December 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Sun Crypto Accelerator 1000, Sun Crypto Accelerator 4000 and
Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Sun Crypto Accelerator 1000, Sun Crypto Accelerator 4000 et Solaris
sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

030930@6671

Contents

Preface 7

1 IP Security Architecture (Overview) 11

Introduction to IPsec 11
IPsec Security Associations 15

Key Management 15
Protection Mechanisms 16

Authentication Header 16
Encapsulating Security Payload 16
Authentication and Encryption Algorithms 17

Protection Policy and Enforcement Mechanisms 18
Transport and Tunnel Modes 19

Trusted Tunnels 20
Virtual Private Networks 21
IPsec Utilities and Files 21

IPsec Policy Command 22
IPsec Policy File 23
Security Associations Database for IPsec 24
Keying Utilities 25
IPsec Extensions to Other Utilities 26

2 Administering IPsec (Tasks) 29

Implementing IPsec (Task Map) 29
IPsec Tasks 30

� How to Secure Traffic Between Two Systems 31

3

� How to Secure a Web Server 33

� How to Set Up a Virtual Private Network (VPN) 35

� How to Generate Random Numbers 42

� How to Manually Create IPsec Security Associations 43

� How to Verify That Packets Are Protected 47

3 Internet Key Exchange (Overview) 49

IKE Overview 50

Phase 1 Exchange 50

Phase 2 Exchange 50

IKE Configuration Choices 51

IKE With Preshared Keys 51

IKE With Public Key Certificates 51

IKE and Hardware Acceleration 52

IKE and Hardware Storage 53

IKE Utilities and Files 53

IKE Daemon 54

IKE Policy File 55

IKE Administration Command 55

Preshared Keys Files 56

IKE Public Key Databases and Commands 56

4 Administering IKE (Tasks) 61

Configuring IKE (Task Map) 61

Configuring IKE With Preshared Keys (Task Map) 62

� How to Configure IKE With Preshared Keys 63

� How to Refresh Existing Preshared Keys 65

� How to Add a New Preshared Key 66

� How to Verify That the Preshared Keys Are Identical 70

Configuring IKE With Public Key Certificates (Task Map) 71

� How to Configure IKE With Self-Signed Public Key Certificates 71

� How to Configure IKE With Certificates Signed by a CA 75

� How to Generate and Store Public Key Certificates on Hardware 80

� How to Handle a Certificate Revocation List 84

Using Hardware With IKE (Task Map) 86

� How to Use the Sun Crypto Accelerator 1000 Board With IKE 86

� How to Use the Sun Crypto Accelerator 4000 Board With IKE 87

4 IPsec and IKE Administration Guide • December 2003

A IPsec and IKE Administration Guide Updates 89

Solaris 9 4/03 Updates 89

Solaris 9 12/03 Updates 89

Glossary 91

Index 95

Contents 5

6 IPsec and IKE Administration Guide • December 2003

Preface

The IPsec and IKE Administration Guide updates Chapters 19, 20, and 21 of the System
Administration Guide: IP Services. This book assumes the following:

� You have already installed the SunOS™ 5.9 operating environment.

� You have updated the SunOS 5.9 operating environment with the Solaris 9 12/03
release.

� You have set up any networking software that you plan to use.

The SunOS 5.9 operating environment is part of the Solaris™ product family, which
also includes the Solaris Common Desktop Environment (CDE). The SunOS 5.9
operating environment is compliant with AT&T’s System V, Release 4 operating
system.

Note – The Solaris operating environment runs on two types of hardware, or
platforms—SPARC® and x86. The Solaris operating environment runs on both 64-bit
address spaces and 32-bit address spaces. The information in this document pertains
to both platforms and both address spaces. Exceptions are called out in a special
chapter, section, note, bullet, figure, table, example, or code example.

Who Should Use This Book
This book is intended for anyone responsible for administering one or more systems
that run the Solaris 9 release. To use this book, you should have one year or two years
of UNIX® system administration experience. A UNIX system administration training
course might be helpful.

7

How This Book Is Organized
Chapter 1 provides an overview of IP Security Architecture (IPsec). IPsec provides
protection for IP datagrams.

Chapter 2 provides procedures for implementing IPsec on your network.

Chapter 3 provides an overview of Internet Key Exchange (IKE) for use with IPsec.

Chapter 4 provides procedures for implementing IKE.

Appendix A provides a list of changes between the Solaris 9 release and the Solaris 9
12/03 release.

The Glossary provides definitions of key IP security terms.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

8 IPsec and IKE Administration Guide • December 2003

http://docs.sun.com

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 9

10 IPsec and IKE Administration Guide • December 2003

CHAPTER 1

IP Security Architecture (Overview)

The IP security architecture (IPsec) provides cryptographic protection for IP datagrams
in IPv4 and IPv6 network packets. This protection can include confidentiality, strong
integrity of the data, data authentication, and partial sequence integrity. Partial
sequence integrity is also known as replay protection.

IPsec is performed inside the IP module. IPsec can be applied with or without the
knowledge of an Internet application. When used properly, IPsec is an effective tool in
securing network traffic.

This chapter contains the following information:

� “Introduction to IPsec” on page 11
� “IPsec Security Associations” on page 15
� “Protection Mechanisms” on page 16
� “Protection Policy and Enforcement Mechanisms” on page 18
� “Transport and Tunnel Modes” on page 19
� “Virtual Private Networks” on page 21
� “IPsec Utilities and Files” on page 21

For instructions on implementing IPsec on your network, see Chapter 2.

Introduction to IPsec
IPsec provides security mechanisms that include secure datagram authentication and
encryption mechanisms within IP. When you invoke IPsec, IPsec applies the security
mechanisms to IP datagrams that you have enabled in the IPsec global policy file.
Applications can invoke IPsec to apply security mechanisms to IP datagrams on a
per-socket level.

11

Figure 1–1 shows how an IP addressed packet, as part of an IP datagram, proceeds
when IPsec has been invoked on an outbound packet. As you can see from the flow
diagram, authentication header (AH) and encapsulating security payload (ESP)
entities can be applied to the packet. Subsequent sections describe how you apply
these entities, as well as authentication and encryption algorithms.

12 IPsec and IKE Administration Guide • December 2003

YesIs ESP
needed?

YesIs AH
needed?

IP routing decision

IP source
address selection

Transmit to
destination

TCP, UDP, others

No

No

Yes

Self-
encapsulate

ESP tunnel-mode
(rarely done)

No

IP

Source
(Application)

Destination

Physical interface

le0, any normal device

Tunnel interface:
Encapsulate IP
datagram, then

reprocess through IP

Tunnel device

Duplicate IP header,
then protect inner
packet with ESP

Protect packet
with AH

Protect packet
with ESP

FIGURE 1–1 IPsec Applied to Outbound Packet Process

Chapter 1 • IP Security Architecture (Overview) 13

Figure 1–2 shows the IPsec inbound process.

IP

Success

Success

Fail

Fail
Yes

Yes

No
Was this
packet

protected
enough?

Determine recipient
of the datagram

TCP, UDP,
tunnel driver, others

Incoming packet

No

No

Yes

Yes

No

(TCP, UDP, others)

Process ESP, and if
processing is successful,

mark datagram as
ESP protected.

Process AH, and if
processing is successful,

mark datagram as
AH protected.

Drop
packet

ICMP processing
Is this

an ICMP
packet?

Is
next header

ESP?

Is
next header

AH?

FIGURE 1–2 IPsec Applied to Inbound Packet Process

14 IPsec and IKE Administration Guide • December 2003

IPsec Security Associations
An IPsec security association (SA) specifies security properties that are recognized by
communicating hosts. These hosts typically require two SAs to communicate securely.
A single SA protects data in one direction. The protection is either to a single host or a
group (multicast) address. Because most communication is peer-to-peer or
client-to-server, two SAs must be present to secure traffic in both directions.

The security protocol (AH or ESP), destination IP address, and security parameter
index (SPI) identify an IPsec SA. The SPI, an arbitrary 32-bit value, is transmitted with
an AH or ESP packet. The ipsecah(7P) and ipsecesp(7P) man pages explain the
extent of protection that is provided by AH and ESP. An integrity checksum value is
used to authenticate a packet. If the authentication fails, the packet is dropped.

Security associations are stored in a security associations database. A socket-based
administration engine, the pf_key interface, enables privileged applications to
manage the database. The in.iked daemon provides automatic key management.
See the pf_key(7P) and in.iked(1M) man pages.

Key Management
A security association contains the following information:

� Material for keys for encryption and authentication
� The algorithms that can be used
� The identities of the endpoints
� Other parameters that are used by the system

SAs require keying material for authentication and encryption. The managing of
keying material that SAs require is called key management. The Internet Key
Exchange (IKE) protocol handles key management automatically. You can also manage
keys manually with the ipseckey command. SAs on IPv4 and IPv6 packets can use
automatic key management.

See “IKE Overview” on page 50, for how IKE manages cryptographic keys
automatically. See “Keying Utilities” on page 25, for how you can manually manage
the cryptographic keys by using the ipseckey command. The ipseckey(1M) man
page provides a detailed description of the command options.

Chapter 1 • IP Security Architecture (Overview) 15

Protection Mechanisms
IPsec provides two mechanisms for protecting data:

� Authentication Header (AH)
� Encapsulating Security Payload (ESP)

Both mechanisms have their own Security Association Database (SADB).

Authentication Header
The authentication header provides data authentication, strong integrity, and replay
protection to IP datagrams. AH protects the greater part of the IP datagram. AH
cannot protect fields that change nondeterministically between sender and receiver.
For example, the IP TTL field is not a predictable field and, consequently, not protected
by AH. AH is inserted between the IP header and the transport header. The transport
header can be TCP, UDP, ICMP, or another IP header when tunnels are being used. See
the tun(7M) man page for details on tunneling.

Authentication Algorithms and the AH Module
IPsec implements AH as a module that is automatically pushed on top of IP. The
/dev/ipsecah entry tunes AH with the ndd command. Future authentication
algorithms can be loaded on top of AH. Current authentication algorithms include
HMAC-MD5 and HMAC-SHA-1. Each authentication algorithm has its own key size
and key format properties. See the authmd5h(7M) and authsha1(7M) man pages for
details. For tuning IP configuration parameters, see the ndd(1M) man page.

Security Considerations for AH
Replay attacks threaten an AH when an AH does not enable replay protection. An AH
does not protect against eavesdropping. Adversaries can still see data that is protected
with AH.

Encapsulating Security Payload
The encapsulating security payload (ESP) header provides confidentiality over what
the ESP encapsulates, as well as the services that AH provides. However, ESP only
provides its protections over the part of the datagram that ESP encapsulates. ESP’s
authentication services are optional. These services enable you to use ESP and AH
together on the same datagram without redundancy. Because ESP uses
encryption-enabling technology, ESP must conform to U.S. export control laws.

16 IPsec and IKE Administration Guide • December 2003

ESP encapsulates its data, so ESP only protects the data that follows its beginning in
the datagram. In a TCP packet, ESP encapsulates only the TCP header and its data. If
the packet is an IP-in-IP datagram, ESP protects the inner IP datagram. Per-socket
policy allows self-encapsulation, so ESP can encapsulate IP options when ESP needs to.
Unlike the authentication header (AH), ESP allows multiple kinds of datagram
protection. Using only a single form of datagram protection can make the datagram
vulnerable. For example, if you use ESP to provide confidentiality only, the datagram
is still vulnerable to replay attacks and cut-and-paste attacks. Similarly, if ESP protects
only integrity, ESP could provide weaker protection than AH. The datagram would be
vulnerable to eavesdropping.

Algorithms and the ESP Module
IPsec ESP implements ESP as a module that is automatically pushed on top of IP. The
/dev/ipsecesp entry tunes ESP with the ndd command. ESP allows encryption
algorithms to be pushed on top of ESP, in addition to the authentication algorithms
that are used in AH. Encryption algorithms include Data Encryption Standard (DES),
Triple-DES (3DES), Blowfish, and AES. Each encryption algorithm has its own key size
and key format properties. Because of export laws in the United States and import
laws in other countries, not all encryption algorithms are available outside of the
United States. For tuning IP configuration parameters, see the ndd(1M) man page.

Security Considerations for ESP
An ESP without authentication is vulnerable to cut-and-paste cryptographic attacks
and to replay attacks. When you use ESP without confidentiality, ESP is as vulnerable
to eavesdropping as AH is.

Authentication and Encryption Algorithms
IPsec uses two types of algorithms, authentication and encryption. The authentication
algorithms and the DES encryption algorithms are part of core Solaris installation. If
you plan to use other algorithms that are supported for IPsec, you must install the
Solaris Encryption Kit. The Solaris Encryption Kit is provided on a separate CD.

Authentication Algorithms
Authentication algorithms produce an integrity checksum value or digest that is based
on the data and a key. The man pages for authentication algorithms describe the size
of both the digest and key. The following table lists the authentication algorithms that
are supported in the Solaris operating environment. The table also lists the format of
the algorithms when the algorithms are used as security options to the IPsec utilities
and their man page names.

Chapter 1 • IP Security Architecture (Overview) 17

TABLE 1–1 Supported Authentication Algorithms

Algorithm Name Security Option Format Man Page

HMAC-MD5 md5, hmac-md5 authmd5h(7M)

HMAC-SHA-1 sha, sha1, hmac-sha, hmac-sha1 authsha1(7M)

Encryption Algorithms
Encryption algorithms encrypt data with a key. The algorithms operate on data in
units of a block size. The man pages for encryption algorithms describe the block size
and the key size for each algorithm. By default, the DES–CBC and 3DES-CBC
algorithms are installed.

The AES and Blowfish algorithms are available to IPsec when you install the Solaris
Encryption Kit. The kit is available on a separate CD that is not part of the Solaris 9
installation box. The Solaris 9 Encryption Kit Installation Guide describes how to install
the Solaris Encryption Kit.

The following table lists the encryption algorithms that are supported in the Solaris
operating environment. The table lists the format of the algorithms when the
algorithms are used as security options to the IPsec utilities. The table also lists their
man page names, and lists the package that contains the algorithm.

TABLE 1–2 Supported Encryption Algorithms

Algorithm Name Security Option Format Man Page Package

DES-CBC des, des-cbc encrdes(7M) SUNWcsr,
SUNWcarx.u

3DES–CBC or
Triple-DES

3des, 3des-cbc encr3des(7M) SUNWcsr,
SUNWcarx.u

Blowfish blowfish, blowfish-cbc encrbfsh(7M) SUNWcryr,
SUNWcryrx

AES-CBC aes, aes-cbc encraes(7M) SUNWcryr,
SUNWcryrx

Protection Policy and Enforcement
Mechanisms
IPsec separates its protection policy from its enforcement mechanisms. You can enforce
IPsec policies in the following places:

18 IPsec and IKE Administration Guide • December 2003

� On a system-wide level
� On a per-socket level

You use the ipsecconf command to configure the system-wide policy. See the
ipsecconf(1M) man page.

IPsec applies the system-wide policy to incoming datagrams and outgoing datagrams.
You can apply some additional rules to outgoing datagrams, because of the additional
data that is known by the system. Inbound datagrams can be either accepted or
dropped. The decision to drop or accept an inbound datagram is based on several
criteria, which sometimes overlap or conflict. Conflicts are resolved by determining
which rule is parsed first. Except when a policy entry states that traffic should bypass
all other policy, the traffic is automatically accepted. Outbound datagrams are either
sent with protection or without protection. If protection is applied, the algorithms are
either specific or non-specific.

The policy that normally protects a datagram can be bypassed. You can either specify
an exception in the system-wide policy, or you can request a bypass in the per-socket
policy. For intra-system traffic, policies are enforced, but actual security mechanisms
are not applied. Instead, the outbound policy on an intra-system packet translates into
an inbound packet that has had those mechanisms applied.

Transport and Tunnel Modes
When you invoke ESP or AH after the IP header to protect a datagram, you are using
transport mode. An example follows. A packet starts off with the following header:

IP Hdr TCP Hdr

ESP, in transport mode, protects the data as follows:

IP Hdr

Encrypted

ESP TCP Hdr

AH, in transport mode, protects the data as follows:

Chapter 1 • IP Security Architecture (Overview) 19

IP Hdr AH TCP Hdr

AH actually covers the data before the data appears in the datagram. Consequently,
the protection that is provided by AH, even in transport mode, covers some of the IP
header.

When an entire datagram is inside the protection of an IPsec header, IPsec is protecting
the datagram in tunnel mode. Because AH covers most of its preceding IP header,
tunnel mode is usually performed only on ESP. The previous example datagram
would be protected in tunnel mode as follows:

IP Hdr

Encrypted

ESP IP Hdr TCP Hdr

In tunnel mode, the inner header is protected, while the outer IP header is
unprotected. Often, the outer IP header has different source and different destination
addresses from the inner IP header. The inner and outer IP headers can match if, for
example, an IPsec-aware network program uses self-encapsulation with ESP.
Self-encapsulation with ESP protects an IP header option.

The Solaris implementation of IPsec is primarily an implementation of IPsec in
transport mode. Tunnel mode is implemented as a special instance of the transport
mode. The implementation treats IP-in-IP tunnels as a special transport provider. The
ifconfig configuration options to set tunnels are nearly identical to the options that
are available to socket programmers when enabling per-socket IPsec. Also, tunnel
mode can be enabled in per-socket IPsec. In per-socket tunnel mode, the inner packet
IP header has the same addresses as the outer IP header. For details on per-socket
policy, see the ipsec(7P) man page. For configuring tunnels, see the ifconfig(1M)
man page.

Trusted Tunnels
A configured tunnel is a point-to-point interface. The tunnel enables an IP packet to be
encapsulated within an IP packet. A correctly configured tunnel requires both a tunnel
source and a tunnel destination. For more information, see the tun(7M) man page and
“Solaris Tunneling Interfaces for IPv6” in System Administration Guide: IP Services.

20 IPsec and IKE Administration Guide • December 2003

A tunnel creates an apparent physical interface to IP. The physical link’s integrity
depends on the underlying security protocols. If you set up the security associations
securely, then you can trust the tunnel. Packets that exit the tunnel must have
originated from the peer that was specified in the tunnel destination. If this trust
exists, you can use per-interface IP forwarding to create a virtual private network.

Virtual Private Networks
You can use IPsec to construct a virtual private network (VPN). You use IPsec by
constructing an Intranet that uses the Internet infrastructure. For example, an
organization that uses VPN technology to connect offices with separate networks, can
deploy IPsec to secure traffic between the two offices.

The following figure illustrates how two offices use the Internet to form their VPN
with IPsec deployed on their network systems.

VPN

Intranet
Network 1

System1

hme1 hme0

Intranet
Network 2

System2

hme1hme0
InternetRouter Router

FIGURE 1–3 Virtual Private Network

See “How to Set Up a Virtual Private Network (VPN)” on page 35 for a description of
the setup procedure.

IPsec Utilities and Files
This section describes the configuration file that initializes IPsec. This section also
describes various commands that enable you to manage IPsec within your network.
For instructions about how to implement IPsec within your network, see
“Implementing IPsec (Task Map)” on page 29.

Chapter 1 • IP Security Architecture (Overview) 21

TABLE 1–3 List of Selected IPsec Files and Commands

IPsec File or Command Description

/etc/inet/ipsecinit.conf file IPsec policy file. If this file exists, IPsec is activated at
boot time.

ipsecconf command IPsec policy command. The boot scripts use ipsecconf
to read the /etc/inet/ipsecinit.conf file and
activate IPsec. Useful for viewing and modifying the
current IPsec policy, and for testing.

PF_KEY socket interface Interface for security association database. Handles
manual and automatic key management.

ipseckey command IPsec SA maintenance and keying command. ipseckey
is a command-line front end to the PF_KEY interface.
ipseckey can create, destroy, or modify security
associations.

/etc/inet/secret/ipseckeys
file

Keys for IPsec security associations. If the
ipsecinit.conf exists, the ipseckeys file is
automatically read at boot time.

/etc/inet/ike/config file IKE configuration and policy file. If this file exists, the
IKE daemon, in.iked, provides automatic key
management. The management is based on rules and
global parameters in the /etc/inet/ike/config file.
See “IKE Utilities and Files” on page 53.

IPsec Policy Command
You use the ipsecconf command to configure the IPsec policy for a host. When you
run the command to configure the policy, the system creates a temporary file that is
named ipsecpolicy.conf. This file holds the IPsec policy entries that were set in
the kernel by the ipsecconf command. The system uses the in-kernel IPsec policy
entries to check all outbound and inbound IP datagrams for policy. Forwarded
datagrams are not subjected to policy checks that are added by using this command.
For information on how to protect forwarded packets, see the ifconfig(1M) and
tun(7M) man pages. For IPsec policy options, see the ipsecconf(1M) man page.

You must become superuser or assume an equivalent role to invoke the ipsecconf
command. The command accepts entries that protect traffic in both directions, and
entries that protect traffic in only one direction.

Policy entries with a format of local address and remote address can protect traffic in
both directions with a single policy entry. For example, entries that contain the
patterns laddr host1 and raddr host2, protect traffic in both directions if no
direction is specified for the named host. Thus, you need only one policy entry for
each host. Policy entries with a format of source address to destination address protect
traffic in only one direction. For example, a policy entry of the pattern saddr host1

22 IPsec and IKE Administration Guide • December 2003

daddr host2 protects inbound traffic or outbound traffic, not both directions. Thus,
to protect traffic in both directions, you need to pass the ipsecconf command
another entry, as in saddr host2 daddr host1.

You can see the policies that are configured in the system when you issue the
ipsecconf command without any arguments. The command displays each entry
with an index followed by a number. You can use the -d option with the index to
delete a particular policy in the system. The command displays the entries in the order
that the entries were added, which is not necessarily the order in which the traffic
match occurs. To view the order in which the traffic match occurs, use the -l option.

The ipsecpolicy.conf file is deleted when the system shuts down. To ensure that
the IPsec policy is active when the machine boots, you can create an IPsec policy file,
/etc/inet/ipsecinit.conf, that the inetinit script reads during startup.

IPsec Policy File
To invoke IPsec security policies when you start the Solaris operating environment,
you create a configuration file to initialize IPsec with your specific IPsec policy entries.
You should name the file /etc/inet/ipsecinit.conf. See the ipsecconf(1M)
man page for details about policy entries and their format. After policies are
configured, you can use the ipsecconf command to delete a policy temporarily, or to
view the existing configuration.

Example—ipsecinit.conf File
The Solaris software includes an IPsec policy file as a sample. This sample file is
named ipsecinit.sample. You can use the file as a template to create your own
ipsecinit.conf file. The ipsecinit.sample file contains the following
examples:

#
For example,
#
{rport 23} ipsec {encr_algs des encr_auth_algs md5}
#
will protect the telnet traffic originating from the host with ESP using
DES and MD5. Also:
#
{raddr 10.5.5.0/24} ipsec {auth_algs any}
#
will protect traffic to or from the 10.5.5.0 subnet with AH
using any available algorithm.
#
#
To do basic filtering, a drop rule may be used. For example:
#
{lport 23 dir in} drop {}

Chapter 1 • IP Security Architecture (Overview) 23

{lport 23 dir out} drop {}
#

will disallow any remote system from telnetting in.

Security Considerations for ipsecinit.conf and
ipsecconf

If, for example, the /etc/inet/ipsecinit.conf file is sent from an NFS-mounted
file system, an adversary can modify the data contained in the file. The outcome
would be a change to the configured policy. Consequently, you should use extreme
caution if transmitting a copy of the ipsecinit.conf file over a network.

The policy cannot be changed for TCP sockets or UDP sockets on which a connect()
or accept() function call has been issued. A socket whose policy cannot be changed
is called a latched socket. New policy entries do not protect sockets that are already
latched. See the connect(3SOCKET) and accept(3SOCKET) man pages.

Ensure that you set up the policies before starting any communications, because
existing connections might be affected by the addition of new policy entries. Similarly,
do not change policies in the middle of a communication.

Protect your naming system. If the following two conditions are met, then your host
names are no longer trustworthy:

� Your source address is a host that can be looked up over the network
� Your naming system is compromised

Security weaknesses often lie in misapplication of tools, not the actual tools. You
should be cautious when using the ipsecconf command. Use a console or other
hard-connected TTY for the safest mode of operation.

Security Associations Database for IPsec
Information on keying material for IPsec security services is maintained in a security
association database (SADB). Security associations protect both inbound packets and
outbound packets. A user process, or possibly multiple cooperating processes,
maintains SADBs by sending messages over a special kind of socket. This method of
maintaining SADBs is analogous to the method that is described in the route(7P)
man page. Only a superuser or someone who has assumed an equivalent role can
access an SADB.

The operating system might spontaneously emit messages in response to external
events. For example, the system might request for a new SA for an outbound
datagram, or the system might report the expiration of an existing SA. You open the
channel for passing SADB control messages by using the socket call that is mentioned
in the previous section. More than one key socket can be open per system.

24 IPsec and IKE Administration Guide • December 2003

Messages include a small base header, followed by a number of extension messages.
The number of messages might be zero or more. Some messages require additional
data. The base message and all extensions must be 8-byte aligned. The GET message
serves as an example. This message requires the base header, the SA extension, and the
ADDRESS_DST extension. See the pf_key(7P) man page for details.

Keying Utilities
The IKE protocol is the automatic keying utility for IPv4 and IPv6 addresses. See
Chapter 4 for how to set up IKE. The manual keying utility is the ipseckey
command. See the ipseckey(1M) man page.

You use the ipseckey command to manually manipulate the security association
databases with the ipsecah and ipsecesp protection mechanisms. You can also use
the ipseckey command to set up security associations between communicating
parties when automated key management is not used.

While the ipseckey command has only a limited number of general options, the
command supports a rich command language. You can specify that requests should be
delivered by means of a programmatic interface specific for manual keying. See the
pf_key(7P) man page for additional information. When you invoke the ipseckey
command with no arguments, the command enters an interactive mode that displays a
prompt that enables you to make entries. Some commands require an explicit security
association (SA) type, while others permit you to specify the SA type and act on all SA
types.

Security Considerations for ipseckey
The ipseckey command enables a privileged user to enter sensitive cryptographic
keying information. If an adversary gains access to this information, the adversary can
compromise the security of IPsec traffic. You should consider the following issues
when you handle keying material and use the ipseckey command:

1. Have you refreshed the keying material? Periodic key refreshment is a
fundamental security practice. Key refreshment guards against potential
weaknesses of the algorithm and keys, and limits the damage of an exposed key.

2. Is the TTY going over a network? Is the ipseckey command in interactive mode?

� In interactive mode, the security of the keying material is the security of the
network path for this TTY’s traffic. You should avoid using the ipseckey
command over a clear-text telnet or rlogin session.

� Even local windows might be vulnerable to attacks by a concealed program that
reads window events.

3. Is the file being accessed over the network? Can the file be read by the world?
Have you used the -f option?

Chapter 1 • IP Security Architecture (Overview) 25

� An adversary can read a network-mounted file as the file is being read. You
should avoid using a world-readable file that contains keying material.

� Protect your naming system. If the following two conditions are met, then your
host names are no longer trustworthy:

� Your source address is a host that can be looked up over the network
� Your naming system is compromised

Security weaknesses often lie in misapplication of tools, not the actual tools. You
should be cautious when using the ipseckey command. Use a console or other
hard-connected TTY for the safest mode of operation.

IPsec Extensions to Other Utilities
The ifconfig command has options to manage the IPsec policy on a tunnel
interface. The snoop command can parse AH and ESP headers.

ifconfig Command
To support IPsec, the following security options have been added to the ifconfig
command:

� auth_algs
� encr_auth_algs
� encr_algs

You must specify all IPsec security options for a tunnel in one invocation. For
example, if you are using only ESP to protect traffic, you would configure the tunnel,
ip.tun0, once with both security options, as in:

ifconfig ip.tun0 ... encr_algs 3DES encr_auth_algs MD5

Similarly, an ipsecinit.conf entry would configure the tunnel once with both
security options, as in:

WAN traffic uses ESP with 3DES and MD5.

{} ipsec {encr_algs 3des encr_auth_algs md5}

auth_algs Security Option

This option enables IPsec AH for a tunnel with a specified authentication algorithm.
The auth_algs option has the following format:

auth_algs authentication-algorithm

For the algorithm, you can specify either a number or an algorithm name, including
the parameter any, to express no specific algorithm preference. To disable tunnel
security, specify the following option:

26 IPsec and IKE Administration Guide • December 2003

auth_algs none

See Table 1–1 for a list of available authentication algorithms and for pointers to the
algorithm man pages.

encr_auth_algs Security Option

This option enables IPsec ESP for a tunnel with a specified authentication algorithm.
The encr_auth_algs option has the following format:

encr_auth_algs authentication-algorithm

For the algorithm, you can specify either a number or an algorithm name, including
the parameter any, to express no specific algorithm preference. If you specify an ESP
encryption algorithm, but you do not specify the authentication algorithm, the ESP
authentication algorithm value defaults to the parameter any.

See Table 1–1 for a list of available authentication algorithms and for pointers to the
algorithm man pages.

encr_algs Security Option

This option enables IPsec ESP for a tunnel with a specified encryption algorithm. The
encr_algs option has the following format:

encr_algs encryption-algorithm

For the algorithm, you can specify either a number or an algorithm name. To disable
tunnel security, specify the following option:

encr_algs none

If you specify an ESP authentication algorithm, but not an encryption algorithm, ESP’s
encryption value defaults to the parameter null.

For a list of available encryption algorithms and for pointers to the algorithm man
pages, see the ipsecesp(7P) man page or Table 1–2.

snoop Command
The snoop command can now parse AH and ESP headers. Because ESP encrypts its
data, the snoop command cannot see encrypted headers that are protected by ESP.
AH does not encrypt data, so traffic can still be inspected with this command. The
snoop -V option shows when AH is in use on a packet. See the snoop(1M) man page
for more details.

For a sample of verbose snoop output on a protected packet, see “How to Verify That
Packets Are Protected” on page 47.

Chapter 1 • IP Security Architecture (Overview) 27

28 IPsec and IKE Administration Guide • December 2003

CHAPTER 2

Administering IPsec (Tasks)

This chapter provides procedures for implementing IPsec on your network. The
procedures are described in “Implementing IPsec (Task Map)” on page 29.

For overview information about IPsec, see Chapter 1. The ipsecconf(1M),
ipseckey(1M), and ifconfig(1M) man pages also describe useful procedures in
their respective Examples sections.

Implementing IPsec (Task Map)

Task Description For Instructions

Secure traffic between
two systems

Involves:
� Adding addresses to the

/etc/inet/ipnodes file
� Entering the IPsec policy in the

/etc/inet/ipsecinit.conf
file

� Setting up key exchange
� Activating the

ipsecinit.conf file

“How to Secure Traffic
Between Two Systems”
on page 31

Secure a web server by
using IPsec policy

Involves enabling only secure
traffic by entering different security
requirements for different ports in
the ipsecinit.conf file. Also
involves activating the file.

“How to Secure a Web Server”
on page 33

29

Task Description For Instructions

Set up a virtual private
network (VPN)

Involves:
� Turning off IP forwarding
� Turning on IP strict destination

multihoming
� Disabling most network and

Internet services
� Adding security associations
� Configuring the IPsec policy
� Configuring a secure tunnel
� Turning on IP forwarding
� Configuring a default route
� Running the routing protocol

“How to Set Up a Virtual
Private Network (VPN)”
on page 35

Generate random
numbers

Involves using the od command to
generate random numbers for
keying material when you
manually create SAs.

“How to Generate Random
Numbers” on page 42

Create or replace
security associations
(SAs) manually

Involves using the ipseckey
command to create SAs. Also
involves creating an ipseckeys
file to hold the keying material.

“How to Manually Create
IPsec Security Associations”
on page 43

Check that IPsec is
protecting the packets

Involves examining snoop output
for specific headers that indicate
how the IP datagrams are
protected.

“How to Verify That Packets
Are Protected” on page 47

IPsec Tasks
This section provides procedures that enable you to secure traffic between two
systems, secure a web server, and set up a virtual private network (VPN). Additional
procedures provide keying material, provide SAs, and check that IPsec is working as
configured.

Some examples in these procedures use the system names enigma and partym.
Substitute the names of your systems for the names enigma and partym.

For information on how to use roles to administer IPsec, see “Role-Based Access
Control (Tasks)” in System Administration Guide: Security Services.

30 IPsec and IKE Administration Guide • December 2003

� How to Secure Traffic Between Two Systems
This procedure assumes the following setup:

� The two systems are named enigma and partym. Substitute the names of your
systems when following this procedure.

� Each system has two addresses, an IPv4 address and an IPv6 address.
� Each system invokes AH protection with the MD5 algorithm, which requires a key

of 128 bits.
� Each system invokes ESP protections with the 3DES algorithm, which requires a

key of 192 bits.
� IPsec uses shared security associations (SAs).

With shared SAs, only one pair of SAs is needed to protect the two systems.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. On each system, add the addresses and host name for the other system in the
/etc/inet/ipnodes file. The entries for one system must be contiguous in the
file.

If you are connecting systems with IPv4 addresses only, you modify the
/etc/inet/hosts file.

a. On a system that is named partym, type the following in the ipnodes file:

Secure communication with enigma
192.168.116.16 enigma

fec0::10:20ff:fea0:21f6 enigma

b. On a system that is named enigma, type the following in the ipnodes file:

Secure communication with partym
192.168.13.213 partym

fec0::9:a00:20ff:fe7b:b373 partym

This step enables the boot scripts to use the system names without depending on
nonexistent naming services.

3. On each system, create the file /etc/inet/ipsecinit.conf.

You can copy the file /etc/inet/ipsecinit.sample to the file
/etc/inet/ipsecinit.conf.

4. Add the IPsec policy entry to the ipsecinit.conf file.

Chapter 2 • Administering IPsec (Tasks) 31

a. On the enigma system, add the following policy to the ipsecinit.conf
file:

{laddr enigma raddr partym} ipsec {auth_algs any encr_algs any sa shared}

b. On the partym system, add the same policy to its ipsecinit.conf file:

{laddr partym raddr enigma} ipsec {auth_algs any encr_algs any sa shared}

For the syntax of IPsec policy entries, see the ipsecconf(1M) man page.

5. On each system, add a pair of IPsec SAs between the two systems.

You can configure Internet Key Exchange (IKE) to create the SAs automatically. You
can also add the SAs manually.

Note – You should use IKE unless you have good reason to generate and maintain
your keys manually. IKE key management is more secure than manual key
management.

� Configure IKE by following one of the configuration procedures in
“Configuring IKE (Task Map)” on page 61. For the syntax of the IKE
configuration file, see the ike.config(4) man page.

� If you are going to add the SAs manually, see “How to Manually Create IPsec
Security Associations” on page 43.

6. Reboot each system.

/usr/sbin/reboot

7. Verify that packets are being protected. See “How to Verify That Packets Are
Protected” on page 47.

Example—Securing Traffic Between Systems Without
Rebooting
The following example describes how to test that the traffic between two systems is
secure. In a production environment, it is safer to reboot than to run the ipsecconf
command.

Instead of rebooting at Step 5 of “How to Secure Traffic Between Two Systems”
on page 31, do one of the following options.

� If you used IKE to create keying material, stop and then restart the in.iked
daemon.

pkill in.iked

/usr/lib/inet/in.iked

� If you added keys manually, use the ipseckey command to add the SAs to the
database. Then activate the IPsec policy with the ipsecconf command.

32 IPsec and IKE Administration Guide • December 2003

ipseckey -f /etc/inet/secret/ipseckeys

ipsecconf -a /etc/inet/ipsecinit.conf

Caution – Read the warning when you execute the ipsecconf command. A socket
that is already latched, that is, the socket is in use, provides an unsecured back door
into the system. For more extensive discussion, see “Security Considerations for
ipsecinit.conf and ipsecconf” on page 24.

� How to Secure a Web Server
A secure web server allows web clients to talk to the web service. On a secure web
server, traffic that is not web traffic must pass security checks. The following procedure
includes bypasses for web traffic. In addition, this web server can make nonsecured
DNS client requests. All other traffic requires ESP with Blowfish and SHA algorithms.
Other traffic also uses a shared SA for outbound traffic. Shared SAs reduce the number
of SAs that must be generated.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Determine which services need to bypass security policy checks.

For a web server, these services include TCP ports 80 (HTTP) and 443 (Secure
HTTP). If the web server provides DNS name lookups, the server might also need
to include port 53 for both TCP and UDP.

3. Create a file in the /etc/inet directory for the web server policy. Give the file a
name that indicates its purpose, for example IPsecWebInitFile. Type the
following lines in this file:

Web traffic that web server should bypass.
{lport 80 ulp tcp dir both} bypass {}
{lport 443 ulp tcp dir both} bypass {}

Outbound DNS lookups should also be bypassed.
{rport 53 dir both} bypass {}

Require all other traffic to use ESP with Blowfish and SHA-1.
Use a shared SA for outbound traffic, in order to avoid a
large supply of security associations.
{} permit {encr_algs blowfish encr_auth_algs sha}

{} apply {encr_algs blowfish encr_auth_algs sha sa shared}

Chapter 2 • Administering IPsec (Tasks) 33

This configuration enables only secure traffic to access the system, with the bypass
exceptions that are described in Step 2.

4. Read the file that you created in Step 3 into the /etc/inet/ipsecinit.conf
file.

vi /etc/inet/ipsecinit.conf
:r IPsecWebInitFile

:wq!

5. Protect the IPsecWebInitFile file with read-only permissions.

chmod 400 IPsecWebInitFile

6. Secure the web server without rebooting. Choose one of the following options.

� If you are using IKE for key management, stop and restart the in.iked
daemon.

pkill in.iked

/usr/lib/inet/in.iked

� If you are manually managing keys, use the ipseckey and ipsecconf
commands.

ipseckey -f /etc/inet/secret/ipseckeys

ipsecconf -a /etc/inet/IPsecWebInitFile

If you have existing entries in the ipsecinit.conf file, the file generates
errors when read again.

Caution – Read the warning when you execute the ipsecconf command. A socket
that is already latched, that is, the socket is in use, provides an unsecured back
door into the system. For more extensive discussion, see “Security Considerations
for ipsecinit.conf and ipsecconf” on page 24. The same warning applies to
restarting the in.iked daemon.

You can also reboot. Rebooting ensures that the IPsec policy is in effect on all TCP
connections. At reboot, the TCP connections use the policy in the IPsec policy file.
The web server now allows only web-server traffic, as well as outbound DNS
requests and replies. No other services work without enabling IPsec on a remote
system.

7. (Optional) To enable a remote system to communicate with the web server for
nonweb traffic, put the following policy in a remote system’s ipsecinit.conf
file.

A remote system can communicate securely with the web server for nonweb traffic
only when their IPsec policies match.

34 IPsec and IKE Administration Guide • December 2003

Communicate with web server about nonweb stuff
#
{saddr webserver} permit {encr_algs blowfish encr_auth_algs sha}

{saddr webserver} apply {encr_algs blowfish encr_auth_algs sha sa shared}

� How to Set Up a Virtual Private Network (VPN)
This procedure shows you how to set up a VPN by using the Internet to connect two
networks within an organization. The procedure then shows you how to secure the
traffic between the networks with IPsec.

This procedure extends the procedure, “How to Secure Traffic Between Two Systems”
on page 31. In addition to connecting two systems, you are connecting two intranets
that connect to these two systems. The systems in this procedure function as gateways.

This procedure assumes the following setup:

� Each system is using an IPv4 address space. This procedure also works with IPv6
addresses.

� Each system has two interfaces. The hme0 interface connects to the Internet. In this
example, Internet IP addresses begin with 192.168. The hme1 interface connects
to the company’s local area network (LAN), its intranet. In this example, intranet IP
addresses begin with the number 10.

� Each system invokes AH protection with the MD5 algorithm. The MD5 algorithm
requires a 128-bit key.

� Each system invokes ESP protection with the 3DES algorithm. The 3DES algorithm
requires a 192-bit key.

� Each system can connect to a router that has direct access to the Internet.

� IPsec uses shared security associations (SAs).

For a description of VPNs, see “Virtual Private Networks” on page 21. The following
figure describes the VPN that this procedure configures.

Chapter 2 • Administering IPsec (Tasks) 35

Intranet

LAN

Calif-vpn

Euro-vpn

hme1
10.1.3.3

hme1
10.16.16.6

Router C
192.168.13.5

Router E
192.168.116.4

hme0
192.168.13.213

Internet

IPsec

IPsec

hme0
192.168.116.16

ip.tun0

10.1.3.3
(unnumbered,

as shown by
interface flags)

10.16.16.6
(unnumbered)

hme0 = Turn off IP forwarding

hme1 = Turn on IP forwarding

ip.tun = Turn on IP forwarding

Router C — /etc/defaultrouter for Calif-vpn

Router E — /etc/defaultrouter for Euro-vpn

Intranet

LAN

This procedure uses the following configuration parameters.

Parameter Europe California

System name enigma partym

System intranet interface hme1 hme1

System Internet interface hme0 hme0

System intranet address, also the -point address in Step 8 10.16.16.6 10.1.3.3

36 IPsec and IKE Administration Guide • December 2003

Parameter Europe California

System Internet address, also the -taddr address in Step 8 192.168.116.16 192.168.13.213

Name of Internet router router-E router-C

Address of Internet router 192.168.116.4 192.168.13.5

Tunnel name ip.tun0 ip.tun0

1. On the system console on one of the systems, become superuser or assume an
equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Turn off IP forwarding. Choose one of the following options:

� On IPv4 networks, use this syntax:

ndd -set /dev/ip ip_forwarding 0

� On IPv6 networks, use this syntax:

ndd -set /dev/ip6 ip6_forwarding 0

Turning off IP forwarding prevents packets from being forwarded from one
network to another network through this system. For a description of the ndd
command, see the ndd(1M) man page.

3. Turn on IP strict destination multihoming. Choose one of the following options:

� On IPv4 networks, use this syntax:

ndd -set /dev/ip ip_strict_dst_multihoming 1

� On IPv6 networks, use this syntax:

ndd -set /dev/ip6 ip6_strict_dst_multihoming 1

Turning on IP strict destination multihoming ensures that packets for one of the
system’s destination addresses arrive at the correct destination address.

When you use the ndd command to turn off IP forwarding and turn on IP strict
destination multihoming, fewer packets flow all the way through the system. When
strict destination multihoming is enabled, packets that arrive on a particular
interface must be addressed to one of the local IP addresses of that interface. All
other packets, even ones addressed to other local addresses of the system, are
dropped.

4. Disable most network services, and possibly all network services, by doing the
following substeps, as needed:

Chapter 2 • Administering IPsec (Tasks) 37

a. Edit the inetd.conf file to remove all but essential services. Then, force the
inetd daemon to reread the inetd.conf file.

pkill -HUP inetd

Note – The VPN router should allow very few incoming requests. You need to
disable all processes that accept incoming traffic. For example, you might
comment out lines in the inetd.conf file, you might kill SNMP, and so on.
Alternatively, you can use techniques that are similar to the techniques in “How
to Secure a Web Server” on page 33.

b. If the inetd.conf file has not been edited to remove all but essential
services, kill the the inetd daemon.

pkill inetd

c. Disable other Internet services, such as SNMP, NFS, and so on, by typing the
appropriate commands. For example, the following commands kill the NFS
service and the mail service:

/etc/init.d/nfs.server stop

/etc/init.d/sendmail stop

The disabling of network services prevents IP packets from doing any harm to
the system. For example, an SNMP daemon, a telnet connection, or an
rlogin connection could be exploited.

5. On each system, add a pair of SAs between the two systems.

Configure IKE to manage the keys for the SAs. Use one of the procedures in
“Configuring IKE (Task Map)” on page 61 to configure IKE for the VPN.

If you have an overriding reason to manually manage the keys, see “How to
Manually Create IPsec Security Associations” on page 43.

6. On each system, edit the /etc/inet/ipsecinit.conf file to add the VPN
policy.

a. For example, on the enigma system, type the following entries into the
ipsecinit.conf file:

LAN traffic can bypass IPsec.
{laddr 10.16.16.6 dir both} bypass {}

WAN traffic uses ESP with 3DES and MD5.

{} ipsec {encr_algs 3des encr_auth_algs md5}

b. On the partym system, type the following entries into the ipsecinit.conf
file:

LAN traffic can bypass IPsec.
{laddr 10.1.3.3 dir both} bypass {}

38 IPsec and IKE Administration Guide • December 2003

WAN traffic uses ESP with 3DES and MD5.

{} ipsec {encr_algs 3des encr_auth_algs md5}

The ipsec entry prevents remote systems from sending clear packets. The bypass
entry allows nodes that are part of the LAN to treat the VPN router as if the router
were part of the LAN.

7. (Optional) For a higher level of security, remove the LAN bypass entry.

The entry in the ipsecinit.conf file would appear similar to the following:

All traffic uses ESP with 3DES and MD5.

{} ipsec {encr_algs 3des encr_auth_algs md5}

Each system on the LAN would then need to activate IPsec to communicate with
the VPN router.

8. On each system, configure a secure tunnel, ip.tun0.

The tunnel adds another physical interface from the IP perspective. Type the
following three ifconfig commands to create the point-to-point interface:

ifconfig ip.tun0 plumb

ifconfig ip.tun0 system1-point system2-point \
tsrc system1-taddr tdst system2-taddr encr_algs 3DES encr_auth_algs MD5

ifconfig ip.tun0 up

a. For example, on the enigma system, type the following commands:

ifconfig ip.tun0 plumb

ifconfig ip.tun0 10.16.16.6 10.1.3.3 \
tsrc 192.168.116.16 tdst 192.168.13.213 \
encr_algs 3DES encr_auth_algs MD5

ifconfig ip.tun0 up

b. On the partym system, type the following commands:

ifconfig ip.tun0 plumb

ifconfig ip.tun0 10.1.3.3 10.16.16.6 \
tsrc 192.168.13.213 tdst 192.168.116.16 \
encr_algs 3DES encr_auth_algs MD5

ifconfig ip.tun0 up

The policy that is passed to the ifconfig commands must be the same as the
policy in the ipsecinit.conf file. Upon reboot, each system uses the policy in its
ipsecinit.conf file.

9. On each system, turn on IP forwarding for the hme1 and ip.tun0 interfaces.
Choose one of the following options:

� On IPv4 networks, use this syntax:

Chapter 2 • Administering IPsec (Tasks) 39

ndd -set /dev/ip hme1:ip_forwarding 1

ndd -set /dev/ip ip.tun0:ip_forwarding 1

� On IPv6 networks, use this syntax:

ndd -set /dev/ip6 hme1:ip6_forwarding 1

ndd -set /dev/ip6 ip.tun0:ip6_forwarding 1

IP forwarding means that packets that arrive from somewhere else can be
forwarded. IP forwarding also means that packets that leave this interface might
have originated somewhere else. To successfully forward a packet, both the
receiving interface and the transmitting interface must have IP forwarding turned
on.

Because the hme1 interface is inside the intranet, IP forwarding must be turned on
for hme1. Because ip.tun0 connects the two systems through the Internet, IP
forwarding must be turned on for ip.tun0.

The hme0 interface has its IP forwarding turned off to prevent an outside adversary
from injecting packets into the protected intranet. The outside refers to the Internet.

10. On each system, ensure that routing protocols do not advertise the default route
within the intranet.

ifconfig hme0 private

Even if hme0 has IP forwarding turned off, a routing protocol implementation
might still advertise the interface. For example, the in.routed protocol might still
advertise that hme0 is available to forward packets to its peers inside the intranet.
Setting the interface’s private flag prevents these advertisements.

11. Manually, add a default route over hme0.

The default route should be a router with direct access to the Internet.

pkill in.rdisc

route add default router-on-hme0-subnet

a. For example, on the enigma system, add the following route:

pkill in.rdisc

route add default 192.168.116.4

b. On the partym system, add the following route:

pkill in.rdisc

route add default 192.168.13.5

Even though the hme0 interface is not part of the intranet, hme0 does need to
reach across the Internet to its peer system. To find its peer, hme0 needs
information about Internet routing. The VPN system appears to be a host, rather
than a router, to the rest of the Internet. Therefore, you can use a default router
or run the router discovery protocol to find a peer system. For more
information, see the route(1M) and in.routed(1M) man pages.

12. Ensure that hme0 uses the default route after a reboot by creating a
defaultrouter file.

40 IPsec and IKE Administration Guide • December 2003

Put the IP address of hme0’s default router in the /etc/defaultrouter file. This
step prevents the in.rdisc daemon from being started at reboot.

a. For example, on the enigma system, add the Internet router for enigma in the
/etc/defaultrouter file.

vi /etc/defaultrouter

192.168.116.4 router-E

b. Add the partym system’s Internet router in partym’s /etc/defaultrouter
file.

vi /etc/defaultrouter

192.168.13.5 router-C

13. On each system, prevent routing from occurring early in the boot sequence, thus
reducing vulnerability.

touch /etc/notrouter

14. Ensure that the VPN starts after a reboot by editing the
/etc/hostname.ip.tun0 file.

system1-point system2-point tsrc system1-taddr \

tdst system2-taddr encr_algs 3des encr_auth_algs md5 up

a. For example, on the enigma system, add the following lines to the
hostname.ip.tun0 file:

10.16.16.6 10.1.3.3 tsrc 192.168.116.16 \

tdst 192.168.13.213 encr_algs 3DES encr_auth_algs MD5 up

b. On the partym system, add the following lines to the hostname.ip.tun0
file:

10.1.3.3 10.16.16.6 tsrc 192.168.13.213 \

tdst 192.168.116.16 encr_algs 3DES encr_auth_algs MD5 up

15. On each system, create a file that configures some VPN parameters at boot time.
Name the file /etc/rc3.d/S99vpn_setup.

On each system, turn on IP forwarding for the hme1 and ip.tun0 interfaces.
Choose one of the following options:

� On an IPv4 network, type the following lines in the file:

ndd -set /dev/ip hme1:ip_forwarding 1
ndd -set /dev/ip ip.tun0:ip_forwarding 1
ifconfig hme0 private

in.routed

� On an IPv6 network, type the following lines in the file:

Chapter 2 • Administering IPsec (Tasks) 41

ndd -set /dev/ip6 hme1:ip6_forwarding 1
ndd -set /dev/ip6 ip.tun0:ip6_forwarding 1
ifconfig hme0 private

in.routed

You can also manually add routes in the /etc/rc3.d/S99vpn_setup file,
instead of using the in.routed protocol.

16. On each system, run a routing protocol.

in.routed

� How to Generate Random Numbers
If you are entering keys manually, the keying material should be random. The format
for keying material is hexadecimal.

If your site has a random number generator, use that generator. Otherwise, you can
use the od command with the /dev/random Solaris device as input. For more
information, see the od(1) man page.

1. Generate random numbers in hexadecimal format.

% od -x|-X -A n file

-x Displays the octal dump in hexadecimal format. Hexadecimal format is
useful for keying material. The hexadecimal is printed in 4-character
chunks.

-X Displays the octal dump in hexadecimal format. The hexadecimal is
printed in 8-character chunks.

-A n Removes the input offset base from the display.

file Serves as a source for random numbers.

For example, the following commands print hexadecimal numbers.

% od -X -A n /dev/random | head -2
d54d1536 4a3e0352 0faf93bd 24fd6cad
8ecc2670 f3447465 20db0b0c c83f5a4b

% od -x -A n /dev/random | head -2
34ce 56b2 8b1b 3677 9231 42e9 80b0 c673

2f74 2817 8026 df68 12f4 905a db3d ef27

2. Combine the output to create a key of the appropriate length.

Remove the spaces between the numbers on one line to create a 32-character key. A
32-character key is 128 bits. For a security parameter index (SPI), you can use an
8-character key.

42 IPsec and IKE Administration Guide • December 2003

� How to Manually Create IPsec Security
Associations
Although manual management of IPsec security associations (SAs) is not
recommended for security reasons, you can do so. The following procedure works
with the procedure, “How to Secure Traffic Between Two Systems” on page 31. You
first create SAs with the ipseckey command. You then place the keying material in
the ipseckeys file.

1. Generate the keying material for the SAs.

You need three hexadecimal random numbers for outbound traffic, and three
hexadecimal random numbers for inbound traffic. Therefore, one system needs to
generate the following numbers:

� Two hexadecimal random numbers as the value for the spi keyword. One
number is for outbound traffic. One number is for inbound traffic. Each number
can be up to eight characters long.

� Two hexadecimal random numbers for the MD5 algorithm for AH. Each
number must be 32 characters long. One number is for dst enigma. One
number is for dst partym.

� Two hexadecimal random numbers for the 3DES algorithm for ESP. For a
192-bit key, each number must be 48 characters long. One number is for dst
enigma. One number is for dst partym.

If you have a random number generator at your site, use the generator. You can
also use the od command. See “How to Generate Random Numbers” on page 42
for the procedure.

2. On the system console on one of the systems, become superuser or assume an
equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

3. Enable the ipseckey command mode:

ipseckey

>

The > prompt indicates that you are in ipseckey command mode.

4. If you are replacing existing SAs, flush the current SAs.

> flush

>

Chapter 2 • Administering IPsec (Tasks) 43

To prevent an adversary from having time to break your SAs, you need to replace
the keying material.

Note – You must coordinate key replacement on communicating systems. When
you replace the SAs on one system, the SAs must also be replaced on the remote
system.

5. To create SAs, type the following command.

You also use this syntax to replace SAs that you have just flushed.

> add protocol spi random-hex-string \
src addr dst addr2 \
protocol-prefix_alg protocol-algorithm \

protocol-prefixkey random-hex-string-of-algorithm-specified-length

random-hex-string
Specifies a random number of up to eight characters in hexadecimal format.
Precede the characters with 0x. If you enter more numbers than the security
parameter index (SPI) accepts, the system ignores the extra numbers. If you
enter fewer numbers than the SPI accepts, the system pads your entry.

protocol
Specifies either esp or ah.

addr
Specifies the IP address of one system.

addr2
Specifies the IP address of the peer system of addr.

protocol-prefix
Specifies one of encr or auth. The encr prefix is used with the esp protocol.
The auth prefix is used with the ah protocol. The option encr_auth_alg is
used with the esp protocol.

protocol-algorithm
Specifies an algorithm for ESP or AH. Each algorithm requires a key of a specific
length.

Authentication algorithms include MD5 and SHA. Encryption algorithms
include 3DES and AES.

random-hex-string-of-algorithm-specified-length
Specifies a random hexadecimal number of the length that is required by the
algorithm. For example, the MD5 algorithm requires a 32-character string for its
128-bit key. The 3DES algorithm requires a 48-character string for its 192-bit key.

a. For example, on the enigma system, type the following commands to protect
outbound packets. Use the random numbers that you generated in Step 1.

44 IPsec and IKE Administration Guide • December 2003

> add esp spi 0x8bcd1407 \
src 192.168.116.16 dst 192.168.13.213 \
encr_alg 3DES \
encrkey d41fb74470271826a8e7a80d343cc5aae9e2a7f05f13730d

> add ah spi 0x18907dae \
src 192.168.116.16 dst 192.168.13.213 \
auth_alg MD5 \
authkey e896f8df7f78d6cab36c94ccf293f031

>

Note – The peer system must use the same keying material.

b. Still in ipseckey command mode on the enigma system, type the following
commands to protect inbound packets:

> add esp spi 0x122a43e4 \
src 192.168.13.213 dst 192.168.116.16 \
encr_alg 3des \
encrkey dd325c5c137fb4739a55c9b3a1747baa06359826a5e4358e

> add ah spi 0x91825a77 \
src 192.168.13.213 dst 192.168.116.16 \
auth_alg md5 \
authkey ad9ced7ad5f255c9a8605fba5eb4d2fd

>

Note – The keys and SPI can be different for each SA. You should assign different
keys and a different SPI for each SA.

6. To exit ipseckey command mode, press Control-D or type quit.

7. To ensure that the keying material is available to IPsec at reboot, add the keying
material to the /etc/inet/secret/ipseckeys file.

The lines of the /etc/inet/secret/ipseckeys file are identical to the
command line language.

a. For example, the /etc/inet/secret/ipseckeys file on the enigma system
would appear similar to the following:

ipseckeys - This file takes the file format documented in
ipseckey(1m).
Note that naming services might not be available when this file
loads, just like ipsecinit.conf.
#
for outbound packets on enigma

Chapter 2 • Administering IPsec (Tasks) 45

add esp spi 0x8bcd1407 \
src 192.168.116.16 dst 192.168.13.213 \
encr_alg 3DES \
encrkey d41fb74470271826a8e7a80d343cc5aae9e2a7f05f13730d

#
add ah spi 0x18907dae \

src 192.168.116.16 dst 192.168.13.213 \
auth_alg MD5 \
authkey e896f8df7f78d6cab36c94ccf293f031

#
for inbound packets
add esp spi 0x122a43e4 \

src 192.168.13.213 dst 192.168.116.16 \
encr_alg 3DES \
encrkey dd325c5c137fb4739a55c9b3a1747baa06359826a5e4358e

#
add ah spi 0x91825a77 \

src 192.168.13.213 dst 192.168.116.16 \
auth_alg MD5 \

authkey ad9ced7ad5f255c9a8605fba5eb4d2fd

b. Protect the file with read-only permissions.

chmod 400 /etc/inet/secret/ipseckeys

8. Repeat Step 2 through Step 7 on the partym system. Use the same keying
material that was used on enigma.

The keying material on the two systems must be identical. As shown in the
following example, only the comments in the ipseckeys file differ. The comments
differ because dst enigma is inbound on the enigma system, and outbound on
the partym system.

partym ipseckeys file
#
#for inbound packets
add esp spi 0x8bcd1407 \

src 192.168.116.16 dst 192.168.13.213 \
encr_alg 3DES \
encrkey d41fb74470271826a8e7a80d343cc5aae9e2a7f05f13730d

#
add ah spi 0x18907dae \

src 192.168.116.16 dst 192.168.13.213 \
auth_alg MD5 \
authkey e896f8df7f78d6cab36c94ccf293f031

#
for outbound packets
add esp spi 0x122a43e4 \

src 192.168.13.213 dst 192.168.116.16 \
encr_alg 3DES \
encrkey dd325c5c137fb4739a55c9b3a1747baa06359826a5e4358e

#
add ah spi 0x91825a77 \

src 192.168.13.213 dst 192.168.116.16 \
auth_alg MD5 \

46 IPsec and IKE Administration Guide • December 2003

authkey ad9ced7ad5f255c9a8605fba5eb4d2fd

� How to Verify That Packets Are Protected
To verify that packets are protected, test the connection with the snoop command.
The following prefixes can appear in the snoop output:

� AH: Prefix indicates that AH is protecting the headers. You see AH: if you used
auth_alg to protect the traffic.

� ESP: Prefix indicates that encrypted data is being sent. You see ESP: if you used
encr_auth_alg or encr_alg to protect the traffic.

Note – You must be superuser or have assumed an equivalent role to read the snoop
output. You must have access to both systems to test the connection.

1. On one system, such as partym, become superuser.

% su
Password: Type root password
#

2. In a terminal window, begin to snoop the packets from a remote system, such as
the enigma system.

snoop -v enigma

Using device /dev/hme (promiscuous mode)

3. In another terminal window, remotely log in to the enigma system. Provide your
password. Then, become superuser, and send a packet from the enigma system
to the partym system.

% rlogin enigma
Password: Type your password
% su
Password: Type root password
ping partym

4. In the snoop window on the partym system, you should see output that is
similar to the following:

IP: Time to live = 64 seconds/hops
IP: Protocol = 51 (AH)
IP: Header checksum = 4e0e
IP: Source address = 192.168.116.16, enigma
IP: Destination address = 192.168.13.213, partym
IP: No options
IP:
AH: ----- Authentication Header -----

Chapter 2 • Administering IPsec (Tasks) 47

AH:
AH: Next header = 50 (ESP)
AH: AH length = 4 (24 bytes)
AH: <Reserved field = 0x0>
AH: SPI = 0xb3a8d714
AH: Replay = 52
AH: ICV = c653901433ef5a7d77c76eaa
AH:
ESP: ----- Encapsulating Security Payload -----
ESP:
ESP: SPI = 0xd4f40a61
ESP: Replay = 52
ESP:ENCRYPTED DATA....

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 20 arrived at 9:44:36.59
ETHER: Packet size = 98 bytes
ETHER: Destination = 8:0:27:aa:11:11, Sun
ETHER: Source = 8:0:22:aa:22:2, Sun
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP:0.. = normal reliability
IP:0. = not ECN capable transport
IP:0 = no ECN congestion experienced
IP: Total length = 84 bytes
IP: Identification = 40933
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 60 seconds/hops
IP: Protocol = 51 (AH)
IP: Header checksum = 22cc

...

48 IPsec and IKE Administration Guide • December 2003

CHAPTER 3

Internet Key Exchange (Overview)

The management of keying material that IPsec security associations (SAs) require for
secure transmission of IP datagrams is called key management. Automatic key
management requires a secure channel of communication for the creation,
authentication, and exchange of keys. The Solaris operating environment uses Internet
Key Exchange (IKE) to automate key management. IKE easily scales to provide a
secure channel for a large volume of traffic. IPsec SAs on IPv4 and IPv6 packets can
take advantage of IKE.

When IKE is used on a system with a Sun™ Crypto Accelerator 1000 board or a Sun
Crypto Accelerator 4000 board, the public key operations are off-loaded to the
accelerator. Operating system resources are not used for publickey operations. When
IKE is used on a system with a Sun Crypto Accelerator 4000 board, the certificates,
public keys, and private keys can be stored on the board. Key storage off the system
provides an additional layer of protection.

This chapter contains the following information:

� “IKE Overview” on page 50
� “IKE Configuration Choices” on page 51
� “IKE and Hardware Acceleration” on page 52
� “IKE and Hardware Storage” on page 53
� “IKE Utilities and Files” on page 53

For instructions on implementing IKE, see Chapter 4.

49

IKE Overview
The IKE daemon, in.iked, negotiates and authenticates keying material for SAs in a
protected manner. The daemon uses random seeds for keys from internal functions
provided by the Solaris operating environment. IKE provides perfect forward secrecy
(PFS). In PFS, the keys that protect data transmission are not used to derive additional
keys. Also, seeds used to create data transmission keys are not reused. See the
in.iked(1M) man page.

When the IKE daemon discovers a remote system’s public encryption key, the local
system can then use that key. The system encrypts messages by using the remote
system’s public key. The messages can be read only by that remote system. The IKE
daemon performs its job in two phases. The phases are called exchanges.

Phase 1 Exchange
The Phase 1 exchange is known as Main Mode. In the Phase 1 exchange, IKE uses
public key encryption methods to authenticate itself with peer IKE entities. The result
is an ISAKMP (Internet Security Association and Key Management Protocol) security
association (SA). An ISAKMP SA is a secure channel for IKE to negotiate keying
material for the IP datagrams. Unlike IPsec SAs, the ISAKMP SAs are bidirectional, so
only one security association is needed.

How IKE negotiates keying material in the Phase 1 exchange is configurable. IKE
reads the configuration information from the /etc/inet/ike/config file.
Configuration information includes the following:

� Global parameters, such as the names of public key certificates
� If perfect forward secrecy (PFS) is used
� The interfaces that are affected
� The algorithms that are used
� The authentication method

The two authentication methods are preshared keys and public key certificates. The
public key certificates can be self-signed, or the certificates can be issued by a
certificate authority (CA) from a PKI (public key infrastructure) organization.
Organizations include Baltimore Technologies, Entrust, GeoTrust, RSA Security, Sun
Open Net Environment (Sun ONE) Certificate Server, and Verisign.

Phase 2 Exchange
The Phase 2 exchange is known as Quick Mode. In the Phase 2 exchange, IKE creates
and manages the IPsec SAs between systems that are running the IKE daemon. IKE
uses the secure channel that was created in the Phase 1 exchange to protect the

50 IPsec and IKE Administration Guide • December 2003

transmission of keying material. The IKE daemon creates the keys from a random
number generator by using the /dev/random device. The daemon refreshes the keys
at a configurable rate. The keying material is available to algorithms that are specified
in the configuration file for IPsec policy, ipsecinit.conf.

IKE Configuration Choices
The /etc/inet/ike/config configuration file contains IKE policy entries. For two
IKE daemons to authenticate each other, the configuration file must be valid. Also,
keying material must be available. The entries in the configuration file determine the
method for using the keying material to authenticate the Phase 1 exchange. The
choices are preshared keys or public key certificates.

The entry auth_method preshared indicates that preshared keys are used. Values
for auth_method other than preshared indicate that public key certificates are to be
used. Public key certificates can be self-signed, or the certificates can be installed from
a PKI organization. See the ike.config(4) man page.

IKE With Preshared Keys
Preshared keys are created by an administrator on one system, and are shared out of
band with administrators of remote systems. You should take care to create large
random keys and to protect the file and the out-of-band transmission. The keys are
placed in the /etc/inet/secret/ike.preshared file on each system. The
ike.preshared file is for IKE as the ipseckeys file is for IPsec. Any compromise of
the keys in the ike.preshared file compromises all keys that are derived from the
keys in the file.

One system’s preshared key must be identical to its remote system’s key. The keys are
tied to a particular IP address. They are most secure when one administrator controls
the communicating systems. See the ike.preshared(4) man page.

IKE With Public Key Certificates
Public key certificates eliminate the need for communicating systems to share secret
keying material out of band. Public keys use the Diffie-Hellman protocol for
authenticating and negotiating keys. Public key certificates come in two flavors. The
certificates can be self-signed, or the certificates can be certified by a certificate
authority (CA).

Chapter 3 • Internet Key Exchange (Overview) 51

Self-signed public key certificates are created by an administrator. The ikecert
certlocal -ks command creates the private part of the public-private key pair for
the system. The administrator then gets the self-signed certificate output in X.509
format from the remote system. The remote system’s certificate is input to the
ikecert certdb command for the public part of the key pair. The self-signed
certificates reside in the /etc/inet/ike/publickeys directory on the
communicating systems. When you use the -T option, the certificates reside on
attached hardware.

Self-signed certificates are a halfway point between preshared keys and CAs. Unlike
preshared keys, a self-signed certificate can be used on a mobile machine, or on a
system that might be renumbered. To self-sign a certificate for a system without a
fixed number, use a DNS (www.example.org) or EMAIL (root@domain.org)
alternative name.

Public keys can be delivered by a PKI or a CA organization. You install the public keys
and their accompanying CAs in the /etc/inet/ike/publickeys directory. When
you use the -T option, the certificates reside on attached hardware. Vendors also issue
certificate revocation lists (CRLs). Along with installing the keys and CAs, you are
responsible for installing the CRLs in the /etc/inet/ike/crls directory.

CAs have the advantage of being certified by an outside organization, rather than by
the administrator of the site. In a sense, CAs are notarized certificates. As with
self-signed certificates, CAs can be used on a mobile machine, or on a system that
might be renumbered. Unlike self-signed certificates, CAs can very easily scale to
protect a large number of communicating systems.

IKE and Hardware Acceleration
IKE algorithms are computationally expensive, particularly in the Phase 1 exchange.
Systems that handle a large number of exchanges can use a Sun Crypto Accelerator
1000 board to handle the public key operations. The Sun Crypto Accelerator 4000
board can also be used to handle expensive Phase 1 computations.

For information on how to configure IKE to off-load its computations to the accelerator
board, see “How to Use the Sun Crypto Accelerator 1000 Board With IKE”
on page 86. For information on how to store keys, see “How to Use the Sun Crypto
Accelerator 4000 Board With IKE” on page 87.

52 IPsec and IKE Administration Guide • December 2003

IKE and Hardware Storage
Public key certificates, private keys, and public keys can be stored on a Sun Crypto
Accelerator 4000 board. For RSA, the board supports keys up to 2048 bits. For DSA,
the board supports keys up to 1024 bits.

For information on how to configure IKE to access the board, see “How to Use the Sun
Crypto Accelerator 1000 Board With IKE” on page 86. For information on how to add
certificates and public keys to the board, see “How to Generate and Store Public Key
Certificates on Hardware” on page 80.

IKE Utilities and Files
This section describes the configuration files for IKE policy, and the various
commands that implement IKE. For instructions about how to implement IKE for your
network, see “Configuring IKE (Task Map)” on page 61.

TABLE 3–1 IKE Configuration Files and Commands

File or Command Description

in.iked daemon Internet Key Exchange (IKE) daemon. Activates
automated key management.

ikeadm command IKE administration command for viewing and
modifying the IKE policy.

ikecert command Certificate database management command for
manipulating local publickey certificate databases.
The databases can also be stored on an attached
Sun Crypto Accelerator 4000 board.

/etc/inet/ike/config file Configuration file for the IKE policy. Contains the
site’s rules for matching inbound IKE requests and
preparing outbound IKE requests. If this file exists,
the in.iked daemon starts automatically at boot
time.

/etc/inet/secret/ike.preshared
file

Preshared keys file. Contains secret keying
material for authentication in the Phase 1
exchange. Used when configuring IKE with
preshared keys.

Chapter 3 • Internet Key Exchange (Overview) 53

TABLE 3–1 IKE Configuration Files and Commands (Continued)
File or Command Description

/etc/inet/secret/ike.privatekeys
file

Private keys directory. Contains the private keys
that are part of a public-private key pair.

/etc/inet/ike/publickeys directory Directory that holds public keys and certificate
files. Contains the public key part of a
public-private key pair.

/etc/inet/ike/crls directory Directory that holds revocation lists for public
keys and certificate files.

Sun Crypto Accelerator 1000 board Hardware that accelerates public key operations
by off-loading the operations from the operating
system.

Sun Crypto Accelerator 4000 board Hardware that accelerates public key operations
by off-loading the operations from the operating
system. The board also stores public keys, private
keys, and public key certificates.

IKE Daemon
The in.iked daemon automates the management of cryptographic keys for IPsec on
a Solaris system. The daemon negotiates with a remote system that is running the
same protocol to provide authenticated keying materials for security associations in a
protected manner. The daemon must be running on all systems that plan to
communicate securely.

The IKE daemon is automatically loaded at boot time if the configuration file for the
IKE policy, /etc/inet/ike/config, exists. The daemon checks the syntax of the
configuration file.

When the IKE daemon runs, the system authenticates itself to its peer IKE entity in the
Phase 1 exchange. The peer is defined in the IKE policy file, as are the authentication
methods. The daemon then establishes the keys for the Phase 2 exchange. At an
interval specified in the policy file, the IKE keys are refreshed automatically. The
in.iked daemon listens for incoming IKE requests from the network and for requests
for outbound traffic through the PF_KEY socket. See the pf_key(7P) man page for
more information.

Two commands support the IKE daemon. The ikeadm command enables you to view
and modify the IKE policy. The ikecert command enables you to view and manage
the publickey databases. This command manages the local databases,
ike.privatekeys and publickeys. This command also manages public key
operations and the storage of public keys on hardware.

54 IPsec and IKE Administration Guide • December 2003

IKE Policy File
The configuration file for the IKE policy, /etc/inet/ike/config, provides the
keying rules and global parameters for the IKE daemon itself, and for the IPsec SAs
that the file manages. The IKE daemon itself requires keying material in the Phase 1
exchange. Rules in the ike/config file establish the keying material. A valid rule in
the policy file contains a label. The rule identifies the systems or networks that the
keying material secures, and specifies the authentication method. See “Configuring
IKE With Preshared Keys (Task Map)” on page 62 for examples of valid policy files.
For examples and descriptions of its entries, see the ike.config(4) man page.

The IPsec SAs are used on the IP datagrams that are protected according to policies
that are set up in the configuration file for the IPsec policy,
/etc/inet/ipsecinit.conf. The IKE policy file determines if PFS is used when
creating the IPsec SAs.

The ike/config file can include the path to a library that is implemented according
to the following standard: RSA Security Inc. PKCS #11 Cryptographic Token Interface
(Cryptoki). IKE uses this PKCS #11 library to access hardware for key acceleration and
key storage.

The security considerations for the ike/config file are similar to the considerations
for the ipsecinit.conf file. See “Security Considerations for ipsecinit.conf
and ipsecconf” on page 24 for details.

IKE Administration Command
You can use the ikeadm command to do the following:

� View aspects of the IKE daemon process
� Change the parameters that are passed to the IKE daemon
� Display statistics on SA creation during the Phase 1 exchange
� Debug IKE processes

See the ikeadm(1M) man page for examples and a full description of this command’s
options. The privilege level of the running IKE daemon determines which aspects of
the IKE daemon can be viewed and modified. You can choose from three levels of
privilege.

0x0, or base level At the base level of privilege, you cannot view or modify
keying material. The base level is the default level at which
the in.iked daemon runs.

0x1, or modkeys level At the modkeys level of privilege, you can remove, change,
and add preshared keys.

0x2, or keymat level At the keymat level of privilege, you can view the actual
keying material with the ikeadm command.

Chapter 3 • Internet Key Exchange (Overview) 55

The security considerations for the ikeadm command are similar to the considerations
for the ipseckey command. See “Security Considerations for ipseckey” on page 25
for details.

Preshared Keys Files
The /etc/inet/secret directory contains the preshared keys for ISAKMP SAs and
IPsec SAs. When you create preshared keys manually, the ike.preshared file
contains the preshared keys for ISAKMP SAs, and the ipseckeys file contains the
preshared keys for IPsec SAs. The secret directory is protected at 0700. The files in
the secret directory are protected at 0600.

� You create an ike.preshared file when you configure the ike/config file to
require preshared keys. You enter keying material for ISAKMP SAs, that is, for IKE
authentication, in the ike.preshared file. Because the preshared keys are used to
authenticate the Phase 1 exchange, the file must be valid before the in.iked
daemon starts.

� The ipseckeys file contains keying material for IPsec SAs. See “How to Manually
Create IPsec Security Associations” on page 43 for examples of manually managing
the file. The IKE daemon does not use this file. The keying material that IKE
generates for IPsec SAs is stored in the kernel.

Note – Preshared keys cannot take advantage of hardware storage. Preshared keys are
generated and stored on the system.

IKE Public Key Databases and Commands
The ikecert command manipulates the local system’s publickey databases. You use
this command when the ike/config file requires public key certificates. Because IKE
uses these databases to authenticate the Phase 1 exchange, the databases must be
populated before activating the in.iked daemon. Three subcommands handle each
of the three databases: certlocal, certdb, and certrldb.

The ikecert command also handles key storage on the Sun Crypto Accelerator 4000
board. The tokens argument to the ikecert command lists the token IDs that are
available on the board. The command finds the board through the PKCS #11 library
that is specified in the /etc/inet/ike/config file. The PKCS #11 entry must be
present. Otherwise, the -T option to the ikecert commands cannot work. The entry
appears similar to the following:

pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so"

For more information, see the ikecert(1M) man page.

56 IPsec and IKE Administration Guide • December 2003

ikecert tokens Command
The tokens argument lists the token IDs that are available on the Sun Crypto
Accelerator 4000 board. Token IDs enable the ikecert certlocal and ikecert
certdb commands to generate public key certificates and certificate requests on the
board.

ikecert certlocal Command
The certlocal subcommand manages the private-key database. Options to this
subcommand enable you to add, view, and remove private keys. This subcommand
also creates either a self-signed certificate or a certificate request. The -ks option
creates a self-signed certificate. The -kc option creates a certificate request. Keys are
stored on the system in the /etc/inet/secret/ike.privatekeys directory, or on
attached hardware with the -T option..

When you create a private key, the ikecert command relies on entries in the
ike/config file. The correspondences between ikecert options and ike/config
entries are shown in the following table.

TABLE 3–2 Correspondences Between ikecert Options and ike/config Entries

ikecert Options ike/config Entry Notes

-A
subject-alternate-name

cert_trust
subject-alternate-name

A nickname that uniquely identifies the
certificate. Possible values are an IP
address, an email address, or a domain
name.

-D
X.509-distinguished-
name

X.509-distinguished-name The full name of the certificate authority
that includes the Country, Organization
name, Organizational Unit, and Common
Name.

-t dsa-sha1 auth_method dss_sig An authentication method that is slightly
slower than RSA. Is not patented.

-t rsa-md5, and

-t rsa-sha1

auth_method rsa_sig An authentication method that is slightly
faster than DSA. Patent expired in
September 2000.

The RSA public key must be large enough
to encrypt the biggest payload. Typically,
an identity payload, such as the X.509
distinguished name, is the biggest
payload.

-t rsa-md5, and

-t rsa-sha1

auth_method
rsa_encrypt

RSA encryption hides identities in IKE
from eavesdroppers, but requires that the
IKE peers know each other’s public keys.

Chapter 3 • Internet Key Exchange (Overview) 57

TABLE 3–2 Correspondences Between ikecert Options and ike/config Entries
(Continued)
ikecert Options ike/config Entry Notes

-T pkcs11_path The PKCS #11 library handles key
acceleration on the Sun Crypto Accelerator
1000 board and the Sun Crypto Accelerator
4000 board. The library also provides the
tokens that handle key storage on the Sun
Crypto Accelerator 4000 board.

If you issue a certificate request with the ikecert certlocal –kc command, you
send the output of the command to a PKI organization or a certificate authority (CA).
If your company runs its own PKI, you send the output to your PKI administrator.
The PKI organization, the CA, or your PKI administrator then creates certificates. The
certificates that the PKI or CA returns to you are input to the certdb subcommand.
The CRL that the PKI returns to you is input for the certrldb subcommand.

ikecert certdb Command
The certdb subcommand manages the publickey database. Options to the
subcommand enable you to add, view, and remove certificates and public keys. The
command accepts, as input, certificates that were generated by the ikecert
certlocal –ks command on a remote system. See “How to Configure IKE With
Self-Signed Public Key Certificates” on page 71 for the procedure. This command also
accepts the certificate that you receive from a PKI or CA as input. See “How to
Configure IKE With Certificates Signed by a CA” on page 75 for the procedure.

On the system, the certificates and public keys are stored in the
/etc/inet/ike/publickeys directory. The -T option stores the certificates,
private keys, and public keys on attached hardware.

ikecert certrldb Command
The certrldb subcommand manages the certificate revocation list (CRL) database,
/etc/inet/ike/crls. The crls database maintains the revocation lists for public
keys. Certificates that are no longer valid are on this list. When PKIs provide you with
CRLs, you install the CRLs in the CRL database with the ikecert certrldb
command. See “How to Handle a Certificate Revocation List” on page 84 for the
procedure.

58 IPsec and IKE Administration Guide • December 2003

/etc/inet/ike/publickeys Directory
The /etc/inet/ike/publickeys directory contains the public part of a
public-private key pair and its certificate in files, or slots. The /etc/inet/ike
directory is protected at 0755. The ikecert certdb command populates the
directory. The -T option stores the keys on the Sun Crypto Accelerator 4000 board
rather than in the publickeys directory.

The slots contain, in encoded form, the X.509 distinguished name of a certificate that
was generated on another system. If you are using self-signed certificates, you use the
certificate that you receive from the administrator of the remote system as input to the
command. If you are using certificates from a PKI, you install two pieces of keying
material from the PKI into this database. You install a certificate that is based on
material that you sent to the PKI. You also install a CA from the PKI.

/etc/inet/secret/ike.privatekeys Directory
The /etc/inet/secret/ike.privatekeys directory holds private key files that
are part of a public-private key pair, which is keying material for ISAKMP SAs. The
directory is protected at 0700. The ikecert certlocal command populates the
ike.privatekeys directory. Private keys are not effective until their public key
counterparts, self-signed certificates or CAs, are installed. The public key counterparts
are stored in the /etc/inet/ike/publickeys directory or on a Sun Crypto
Accelerator 4000 board.

/etc/inet/ike/crls Directory
The /etc/inet/ike/crls directory contains certificate revocation list (CRL) files.
Each file corresponds to a public certificate file in the /etc/inet/ike/publickeys
directory. PKI organizations provide the CRLs for their certificates. You use the
ikecert certrldb command to populate the database.

Chapter 3 • Internet Key Exchange (Overview) 59

60 IPsec and IKE Administration Guide • December 2003

CHAPTER 4

Administering IKE (Tasks)

This chapter describes how to configure IKE for your systems. After IKE is configured,
it automatically generates keying material for IPsec on your network. “Configuring
IKE (Task Map)” on page 61 lists the tasks in this chapter.

For overview information about IKE, see Chapter 3. The ikeadm(1M), ikecert(1M),
and ike.config(4) man pages contain useful procedures in their respective
Examples sections.

Configuring IKE (Task Map)

Task Description For Instructions

Configure IKE with preshared
keys

Protects communications
between two systems by
having them share a secret
key.

“Configuring IKE With
Preshared Keys (Task Map)”
on page 62

Configure IKE with public key
certificates

Protects communications with
public key certificates. The
certificates can be self-signed,
or they can be vouched for by
a PKI organization.

“Configuring IKE With Public
Key Certificates (Task Map)”
on page 71

61

Task Description For Instructions

Configure IKE to generate and
store public key certificates on
attached hardware

Enables a Sun Crypto
Accelerator 1000 board or a
Sun Crypto Accelerator 4000
board to accelerate IKE
operations. Also enables the
Sun Crypto Accelerator 4000
board to store public key
certificates.

“Using Hardware With IKE
(Task Map)” on page 86

For information on how to use roles to configure IKE, see “Role-Based Access Control
(Tasks)” in System Administration Guide: Security Services.

Configuring IKE With Preshared Keys
(Task Map)

Task Description For Instructions

Configure IKE with preshared
keys

Involves creating a valid IKE
policy file and
ike.preshared file. IPsec
files are also set up before
booting the system to use the
IKE-generated keys.

“How to Configure IKE With
Preshared Keys” on page 63

Refresh preshared keys on a
running IKE system

Involves checking the IKE
privilege level and adding
fresh keying material to the
ipseckeys file on
communicating systems.

“How to Refresh Existing
Preshared Keys” on page 65

Add preshared keys to a
running IKE system

Involves checking the IKE
privilege level and running
the ikeadm command with
fresh keying material on
communicating systems.

“How to Add a New
Preshared Key” on page 66

Check that preshared keys are
identical

Involves dumping the
preshared keys on both
systems.

“How to Verify That the
Preshared Keys Are Identical”
on page 70

62 IPsec and IKE Administration Guide • December 2003

� How to Configure IKE With Preshared Keys
The IKE implementation offers algorithms whose keys vary in length. The key length
that you choose is determined by site security. In general, longer keys provide more
security than shorter keys.

These procedures use the system names enigma and partym. Substitute the names of
your systems for the names enigma and partym.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. On each system, copy the file /etc/inet/ike/config.sample to the file
/etc/inet/ike/config.

3. Enter rules and global parameters in the ike/config file on each system.

The rules and global parameters in this file should permit the IPsec policy in the
system’s ipsecinit.conf file to succeed. The following ike/config examples
work with the ipsecinit.conf examples in “How to Secure Traffic Between Two
Systems” on page 31.

a. For example, modify the /etc/inet/ike/config file on the enigma
system:

ike/config file on enigma, 192.168.116.16

Global parameters
#
Phase 1 transform defaults
p1_lifetime_secs 14400
p1_nonce_len 40
#
Defaults that individual rules can override.
p1_xform
{ auth_method preshared oakley_group 5 auth_alg sha encr_alg des }

p2_pfs 2
#
The rule to communicate with partym

{ label "enigma-partym" Label must be unique
local_addr 192.168.116.16
remote_addr 192.168.13.213
p1_xform
{ auth_method preshared oakley_group 5 auth_alg md5 encr_alg 3des }
p2_pfs 5

}

Chapter 4 • Administering IKE (Tasks) 63

Note – All arguments to the auth_method parameter must be on the same line.

b. Modify the /etc/inet/ike/config file on the partym system:

ike/config file on partym, 192.168.13.213
Global Parameters
#
p1_lifetime_secs 14400
p1_nonce_len 40
#
p1_xform
{ auth_method preshared oakley_group 5 auth_alg sha encr_alg des }

p2_pfs 2

The rule to communicate with enigma

{ label "partym-enigma" Label must be unique
local_addr 192.168.13.213
remote_addr 192.168.116.16
p1_xform
{ auth_method preshared oakley_group 5 auth_alg md5 encr_alg 3des }
p2_pfs 5

}

4. On each system, check the validity of the file.

/usr/lib/inet/in.iked -c -f /etc/inet/ike/config

5. Generate random numbers for use as keying material.

If your site has a random number generator, use that generator. On a Solaris
system, you can use the od command. For example, the following command prints
two lines of hexadecimal numbers:

% od -X -A n /dev/random | head -2
f47cb0f4 32e14480 951095f8 2b735ba8

0a9467d0 8f92c880 68b6a40e 0efe067d

For an explanation of the od command, see “How to Generate Random Numbers”
on page 42 and the od(1) man page.

6. From the output of Step 5, construct one key.

f47cb0f432e14480951095f82b735ba80a9467d08f92c88068b6a40e

The authentication algorithm in this procedure is MD5, as shown in Step 3. The
size of the hash, that is, the size of the authentication algorithm’s output,
determines the minimum recommended size of a preshared key. The output of the
MD5 algorithm is 128 bits, or 32 characters. The example key is 56 characters long,
which is longer than the recommended minimum.

7. Create the file /etc/inet/secret/ike.preshared on each system. Put the
preshared key in each file.

64 IPsec and IKE Administration Guide • December 2003

a. For example, on the enigma system, the ike.preshared file would appear
similar to the following:

ike.preshared on enigma, 192.168.116.16
#...
{ localidtype IP

localid 192.168.116.16
remoteidtype IP
remoteid 192.168.13.213
enigma and partym’s shared key in hex (192 bits)
key f47cb0f432e14480951095f82b735ba80a9467d08f92c88068b6a40e

}

b. On the partym system, the ike.preshared file would appear similar to the
following:

ike.preshared on partym, 192.168.13.213
#...
{ localidtype IP

localid 192.168.13.213
remoteidtype IP
remoteid 192.168.116.16
partym and enigma’s shared key in hex (192 bits)
key f47cb0f432e14480951095f82b735ba80a9467d08f92c88068b6a40e

}

Note – The preshared keys on each system must be identical.

� How to Refresh Existing Preshared Keys
This procedure assumes that you want to replace an existing preshared key at regular
intervals without rebooting. If you use a strong encryption algorithm, such 3DES or
Blowfish, you might want to schedule key replacement for when you reboot both
machines.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Generate random numbers and construct a key of the appropriate length.

For details, see “How to Generate Random Numbers” on page 42.

3. Edit the /etc/inet/secret/ike.preshared file on each system, and replace
the current key with a new key.

Chapter 4 • Administering IKE (Tasks) 65

For example, on the hosts enigma and partym, you would replace the value of
key with a new number of the same length.

4. Check that the in.iked daemon permits you to change keying material.

/usr/sbin/ikeadm get priv

Current privilege level is 0x2, access to keying material enabled

You can change keying material if the command returns a privilege level of 0x1 or
0x2. Level 0x0 does not permit keying material operations. By default, the
in.iked daemon runs at the 0x0 level of privilege.

5. If the in.iked daemon permits you to change keying material, read in the new
version of the ike.preshared file.

ikeadm read preshared

6. If the in.iked daemon does not permit you to change keying material, kill the
daemon and then restart the daemon.

pkill in.iked

/usr/lib/inet/in.iked

When the daemon restarts, the daemon reads the new version of the
ike.preshared file.

� How to Add a New Preshared Key
You must have one preshared key for every policy entry in the ipsecinit.conf file.
If you add a new policy entry while IPsec and IKE are running, the in.iked daemon
can read in new keys. This procedure assumes the following:

� The systems are named enigma and ada. Substitute your system names for these
names.

� The in.iked daemon is running on both systems.
� The interface that you want to protect with IPsec is included as an entry in the

/etc/hosts file on both systems. The following entry is an example.

192.168.15.7 ada

This procedure also works with an IPv6 address in the /etc/inet/ipnodes file.
� You have added a new policy entry to the /etc/inet/ipsecinit.conf file on

both systems. For example, the new entry on the enigma system appears similar to
the following:

{laddr enigma raddr ada} ipsec {auth_algs any encr_algs any sa shared}

The entry on the ada system appears similar to the following:

{laddr ada raddr enigma} ipsec {auth_algs any encr_algs any sa shared}

66 IPsec and IKE Administration Guide • December 2003

� You have created a rule for the enigma and ada systems to communicate securely
in the /etc/inet/ike/config file on both systems. For example, the rule on the
enigma system appears similar to the following:

ike/config file on enigma, 192.168.116.16
...
The rule to communicate with ada

{ label "enigma-to-ada"
local_addr 192.168.116.16
remote_addr 192.168.15.7
p1_xform
{ auth_method preshared oakley_group 5 auth_alg md5 encr_alg blowfish }
p2_pfs 5

}

The rule on the ada system appears similar to the following:

ike/config file on ada, 192.168.15.7
...
The rule to communicate with enigma

{ label "ada-to-enigma"
local_addr 192.168.15.7
remote_addr 192.168.116.16
p1_xform
{ auth_method preshared oakley_group 5 auth_alg md5 encr_alg blowfish }
p2_pfs 5

}

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Check that the in.iked daemon permits you to change keying material.

/usr/sbin/ikeadm get priv

Current privilege level is 0x0, base privileges enabled

You can change keying material if the command returns a privilege level of 0x1 or
0x2. Level 0x0 does not permit keying material operations. By default, the
in.iked daemon runs at the 0x0 level of privilege.

3. If the in.iked daemon does not permit you to change keying material, kill the
daemon. Then, restart the daemon with the correct privilege level.

pkill in.iked
/usr/lib/inet/in.iked -p 2

Setting privilege level to 2!

Chapter 4 • Administering IKE (Tasks) 67

4. Generate random numbers and construct a key of 64 to 448 bits.

For details, see “How to Generate Random Numbers” on page 42.

5. By some means, send the key to the administrator of the remote system.

You both need to add the same preshared key at the same time.

6. Add the new keying material with the add preshared subcommand in ikeadm
command mode.

ikeadm> add preshared { localidtype id-type localid id
remoteidtype id-type remoteid id ike_mode mode key key }

id-type Specifies the type of the id.

id Specifies the IP address when id-type is IP.

mode Specifies the IKE mode. The only accepted value is main.

key Specifies the preshared key in hexadecimal format.

a. For example, on host enigma, you would add the key for the new interface,
ada.

ikeadm
ikeadm> add preshared { localidtype ip localid 192.168.116.16
remoteidtype ip remoteid 192.168.15.7 ike_mode main
key 8d1fb4ee500e2bea071deb2e781cb48374411af5a9671714672bb1749ad9364d }

ikeadm: Successfully created new preshared key.

b. On host ada, you would add the identical key.

ikeadm
ikeadm> add preshared { localidtype ip localid 192.168.15.7
remoteidtype ip remoteid 192.168.116.16 ike_mode main
key 8d1fb4ee500e2bea071deb2e781cb48374411af5a9671714672bb1749ad9364d }

ikeadm: Successfully created new preshared key.

7. Exit the ikeadm command mode.

ikeadm> exit

#

8. On each system, lower the privilege level of the in.iked daemon.

ikeadm set priv base

9. On each system, activate the ipsecinit.conf file to secure the added interface.

ipsecconf -a /etc/inet/ipsecinit.conf

68 IPsec and IKE Administration Guide • December 2003

Caution – Read the warning when you execute the ipsecconf command. The
same warning applies to restarting the in.iked daemon. A socket that is already
latched, that is, the socket is in use, provides an unsecured back door into the
system. For more extensive discussion, see “Security Considerations for
ipsecinit.conf and ipsecconf” on page 24.

10. On each system, read in the new rules by using the ikeadm command.

ikeadm read rules

A sample of the new rules for the ada and enigma systems is available at the start
of the procedure. Because the rules are in the /etc/inet/ike/config file, the
name of the file does not have to be specified to the ikeadm command.

11. To ensure that IKE preshared keys are available at reboot, add the keys to the
/etc/inet/secret/ike.preshared file.

a. For example, on the enigma system, you would add the following keying
information to the ike.preshared file:

ike.preshared on enigma for the ada interface
#...
{ localidtype IP
localid 192.168.116.16
remoteidtype IP
remoteid 192.168.15.7
enigma and ada’s shared key in hex (32 - 448 bits required)
key 8d1fb4ee500e2bea071deb2e781cb48374411af5a9671714672bb1749ad9364d

}

b. On the ada system, you would add the following keying information to the
ike.preshared file:

ike.preshared on ada for the enigma interface
#...
{ localidtype IP
localid 192.168.15.7
remoteidtype IP
remoteid 192.168.116.16
ada and enigma’s shared key in hex (32 - 448 bits required)
key 8d1fb4ee500e2bea071deb2e781cb48374411af5a9671714672bb1749ad9364d

}

12. Verify that the systems can communicate. See “How to Verify That the Preshared
Keys Are Identical” on page 70.

Chapter 4 • Administering IKE (Tasks) 69

� How to Verify That the Preshared Keys Are
Identical
If the preshared keys on the communicating systems are not identical, you see the
following error message:

rup system2
system2: RPC: Rpcbind failure

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Check that the in.iked daemon permits you to change keying material.

/usr/sbin/ikeadm get priv

Current privilege level is 0x0, base privileges enabled

You can view keying material if the command returns a privilege level of 0x2.
Level 0x0 does not permit keying material operations. By default, the in.iked
daemon runs at the 0x0 level of privilege.

3. If the in.iked daemon does not permit you to view keying material, kill the
daemon. Then, restart the daemon with the correct privilege level.

pkill in.iked
/usr/lib/inet/in.iked -p 2

Setting privilege level to 2!

4. On each system, view the preshared key information.

ikeadm dump preshared
PSKEY: Preshared key (24 bytes): f47cb.../192
LOCIP: AF_INET: port 0, 192.168.116.16 (enigma).

REMIP: AF_INET: port 0, 192.168.13.213 (partym).

5. Compare the two dumps.

If the preshared keys are not identical, replace one key with the other key in the
/etc/inet/secret/ike.preshared file.

6. When the verification is complete, lower the privilege level of the in.iked
daemon.

ikeadm set priv base

70 IPsec and IKE Administration Guide • December 2003

Configuring IKE With Public Key
Certificates (Task Map)

Task Description For Instructions

Configure IKE with
self-signed public key
certificates

Involves creating self–signed
certificates with the ikecert
certlocal -ks command, and
adding the public key from a
remote system with the ikecert
certdb command.

“How to Configure IKE With
Self-Signed Public Key
Certificates” on page 71

Configure IKE with a
PKI Certificate Authority

Involves sending output from the
ikecert certlocal –kc
command to a PKI organization,
and adding the public key, CA, and
CRL from the organization.

“How to Configure IKE With
Certificates Signed by a CA”
on page 75

Configure public key
certificates on local
hardware

Involves one of:
� Generating a self-signed

certificate on the local
hardware, and adding the
public key from a remote
system to the hardware.

� Generating a certificate request
on the local hardware, and
adding the public key
certificates from the PKI
organization to the hardware.

“How to Generate and Store
Public Key Certificates on
Hardware” on page 80

Update the certificate
revocation list (CRL)
from the PKI
organization

Involves accessing the CRL from a
central distribution point.

“How to Handle a Certificate
Revocation List” on page 84

� How to Configure IKE With Self-Signed Public Key
Certificates
1. On the system console, become superuser or assume an equivalent role.

Chapter 4 • Administering IKE (Tasks) 71

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Add a self-signed certificate to the ike.privatekeys database.

ikecert certlocal -ks|-kc -m keysize -t keytype \

-D dname -A altname

-ks Creates a self-signed certificate.

-kc Creates a certificate request. For the procedure, see “How to Configure
IKE With Certificates Signed by a CA” on page 75.

keysize Is the size of the key. The keysize can be 512, 1024, 2048, 3072, or 4096.

keytype Specifies the type of algorithm to use. The keytype can be rsa-sha1,
rsa-md5, or dsa-sha1.

dname Is the X.509 distinguished name for the certificate subject. The dname
typically has the form: C=country, O=organization, OU=organizational
unit, CN=common name. Valid tags are C, O, OU, and CN.

altname Is the alternate name for the certificate. The altname is in the form of
tag=value. Valid tags are IP, DNS, EMAIL, URI, DN, and RID.

a. For example, the command on the partym system would appear similar to
the following:

ikecert certlocal -ks -m 1024 -t rsa-md5 \
> -D "C=US, O=PartyCompany, OU=US-Partym, CN=Partym" \
> -A IP=192.168.13.213
Creating software private keys.
Writing private key to file /etc/inet/secret/ike.privatekeys/0.

Enabling external key providers - done.
Acquiring private keys for signing - done.
Certificate:
Proceeding with the signing operation.
Certificate generated successfully (.../publickeys/0)
Finished successfully.
Certificate added to database.
-----BEGIN X509 CERTIFICATE-----
MIICLTCCAZagAwIBAgIBATANBgkqhkiG9w0BAQQFADBNMQswCQYDVQQGEwJVUzEX
...
6sKTxpg4GP3GkQGcd0r1rhW/3yaWBkDwOdFCqEUyffzU

-----END X509 CERTIFICATE-----

b. The command on the enigma system would appear similar to the following:

ikecert certlocal -ks -m 1024 -t rsa-md5 \
> -D "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax" \
> -A IP=192.168.116.16

72 IPsec and IKE Administration Guide • December 2003

Creating software private keys.
...

Certificate added to database.
-----BEGIN X509 CERTIFICATE-----
MIICKDCCAZGgAwIBAgIBATANBgkqhkiG9w0BAQQFADBJMQswCQYDVQQGEwJVUzEV
...
jpxfLM98xyFVyLCbkr3dZ3Tvxvi732BXePKF2A==

-----END X509 CERTIFICATE-----

3. Save the certificate, and send it to the remote system.

You can paste the certificate into an email.

a. For example, you would send the following partym certificate to the enigma
administrator:

To: admin@ja.enigmaexample.com
From: admin@us.partyexample.com
Message: -----BEGIN X509 CERTIFICATE-----
MIICLTCCAZagAwIBAgIBATANBgkqhkiG9w0BAQQFADBNMQswCQYDVQQGEwJVUzEX
...
6sKTxpg4GP3GkQGcd0r1rhW/3yaWBkDwOdFCqEUyffzU

-----END X509 CERTIFICATE-----

b. The enigma administrator would send you the following enigma certificate:

To: admin@us.partyexample.com
From: admin@ja.enigmaexample.com
Message: -----BEGIN X509 CERTIFICATE-----
MIICKDCCAZGgAwIBAgIBATANBgkqhkiG9w0BAQQFADBJMQswCQYDVQQGEwJVUzEV
...
jpxfLM98xyFVyLCbkr3dZ3Tvxvi732BXePKF2A==

-----END X509 CERTIFICATE-----

4. On each system, edit the /etc/inet/ike/config file to recognize the
certificates.

The administrator of the remote system provides the values for the cert_trust,
remote_addr, and remote_id parameters.

a. For example, on the partym system, the ike/config file would appear
similar to the following:

Explicitly trust the following self-signed certs
Use the Subject Alternate Name to identify the cert

cert_trust "192.168.13.213"
cert_trust "192.168.116.16"

Parameters that may also show up in rules.

p1_xform
{ auth_method preshared oakley_group 5 auth_alg sha encr_alg des }

p2_pfs 5

Chapter 4 • Administering IKE (Tasks) 73

{
label "US-partym to JA-enigmax"
local_id_type dn
local_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"
remote_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"

local_addr 192.168.13.213
remote_addr 192.168.116.16

p1_xform
{auth_method rsa_encrypt oakley_group 2 auth_alg md5 encr_alg 3des}

}

b. On the enigma system, add enigma values for local parameters in the
ike/config file.

For the remote parameters, use partym values. Ensure that the value for the
label keyword is unique. The value must be different from the remote
system’s label value.

...
{
label "JA-enigmax to US-partym"
local_id_type dn
local_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"
remote_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"

local_addr 192.168.116.16
remote_addr 192.168.13.213

...

5. On each system, add the certificate that you received.

a. Copy the public key from the administrator’s email.

b. Type the ikecert certdb –a command and press the Return key.

No prompts display when you press the Return key.

ikecert certdb -a

Press the Return key

c. Paste the public key. Then press the Return key. To end the entry, press
Control-D.

-----BEGIN X509 CERTIFICATE-----
MIIC...
...
----END X509 CERTIFICATE-----

Press the Return key
<Control>-D

6. Verify with the other administrator that the keys have not been tampered with.

74 IPsec and IKE Administration Guide • December 2003

For example, you can phone the other administrator to compare the values of the
public key hash. The public key hash for the shared certificate should be identical
on the two systems.

a. For example, on the partym system, list the stored certificates.

partym # ikecert certdb -l
Certificate Slot Name: 0 Type: rsa-md5

Subject Name: <C=US, O=PartyCompany, OU=US-Partym, CN=Partym>
Key Size: 1024
Public key hash: B2BD13FCE95FD27ECE6D2DCD0DE760E2

Certificate Slot Name: 1 Type: rsa-md5
(Private key in certlocal slot 0)
Subject Name: <C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax>
Key Size: 1024

Public key hash: 2239A6A127F88EE0CB40F7C24A65B818

b. On the enigma system, list the stored certificates.

enigma # ikecert certdb -l
Certificate Slot Name: 4 Type: rsa-md5

Subject Name: <C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax>
Key Size: 1024
Public key hash: DF3F108F6AC669C88C6BD026B0FCE3A0

Certificate Slot Name: 5 Type: rsa-md5
(Private key in certlocal slot 4)
Subject Name: <C=US, O=PartyCompany, OU=US-Partym, CN=Partym>
Key Size: 1024

Public key hash: 2239A6A127F88EE0CB40F7C24A65B818

Note – In this example, the public key hash is different from the public key hash
that your systems generate.

� How to Configure IKE With Certificates Signed by
a CA
1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Use the ikecert certlocal -kc command to create a certificate request.

Chapter 4 • Administering IKE (Tasks) 75

For a description of the arguments to the command, see Step 2 in “How to
Configure IKE With Self-Signed Public Key Certificates” on page 71.

ikecert certlocal -kc -m keysize -t keytype \

-D dname -A altname

a. For example, the following command creates a certificate request on the
partym system:

ikecert certlocal -kc -m 1024 -t rsa-md5 \
> -D "C=US, O=PartyCompany\, Inc., OU=US-Partym, CN=Partym" \
> -A "DN=C=US, O=PartyCompany\, Inc., OU=US-Partym"
Creating software private keys.
Writing private key to file /etc/inet/secret/ike.privatekeys/2.

Enabling external key providers - done.
Certificate Request:
Proceeding with the signing operation.
Certificate request generated successfully (.../publickeys/0)

Finished successfully.
-----BEGIN CERTIFICATE REQUEST-----
MIIByjCCATMCAQAwUzELMAkGA1UEBhMCVVMxHTAbBgNVBAoTFEV4YW1wbGVDb21w
...
lcM+tw0ThRrfuJX9t/Qa1R/KxRlMA3zckO80mO9X

-----END CERTIFICATE REQUEST-----

b. The following command creates a certificate request on the enigma system:

ikecert certlocal -kc -m 1024 -t rsa-md5 \
> -D "C=JA, O=EnigmaCo\, Inc., OU=JA-Enigmax, CN=Enigmax" \
> -A "DN=C=JA, O=EnigmaCo\, Inc., OU=JA-Enigmax"
Creating software private keys.
...
Finished successfully.
-----BEGIN CERTIFICATE REQUEST-----
MIIBuDCCASECAQAwSTELMAkGA1UEBhMCVVMxFTATBgNVBAoTDFBhcnR5Q29tcGFu
...
8qlqdjaStLGfhDOO

-----END CERTIFICATE REQUEST-----

3. Submit the certificate request to a PKI organization.

The PKI organization can tell you how to submit the certificate request. Most
organizations have a web site with a submission form. The form requires proof that
the submission is legitimate. Typically, you paste your certificate request into the
form. When your request has been checked by the organization, the organization
issues you the following two certificate objects and a list of revoked certificates:

� Your public key certificate – This certificate is based on the request that you
submitted to the organization. The request that you submitted is part of this
public key certificate. The certificate uniquely identifies you.

� A Certificate Authority – The organization’s signature. The CA verifies that
your public key certificate is legitimate.

76 IPsec and IKE Administration Guide • December 2003

� A Certificate Revocation List (CRL) – The latest list of certificates that the
organization has revoked. The CRL is not sent separately as a certificate object if
access to the CRL is embedded in the public key certificate.

When a URI for the CRL is embedded in the public key certificate, IKE can
automatically retrieve the CRL for you. Similarly, when a DN (directory name
on an LDAP server) entry is embedded in the public key certificate, IKE can
retrieve and cache the CRL from an LDAP server that you specify.

See “How to Handle a Certificate Revocation List” on page 84 for an example
of an embedded URI and an embedded DN entry in a public key certificate.

4. Add each certificate to your system by using the ikecert certdb -a
command.

The -a option adds the pasted object to the appropriate certificate database on
your system. For more information, see “IKE With Public Key Certificates”
on page 51.

a. On the system console, become superuser or assume an equivalent role.

b. Add the public key certificate that you received from the PKI organization.

ikecert certdb -a
Press the Return key
Paste the certificate:

-----BEGIN X509 CERTIFICATE-----
...
-----END X509 CERTIFICATE----

Press the Return key
<Control>-D

c. Add the CA from the PKI organization.

ikecert certdb -a
Press the Return key
Paste the CA:

-----BEGIN X509 CERTIFICATE-----
...
-----END X509 CERTIFICATE----

Press the Return key
<Control>-D

d. If the PKI organization has sent a list of revoked certificates, add the CRL to
the certrldb database:

ikecert certrldb -a
Press the Return key
Paste the CRL:

-----BEGIN CRL-----
...
-----END CRL----

Press the Return key
<Control>-D

Chapter 4 • Administering IKE (Tasks) 77

5. Edit the /etc/inet/ike/config file to recognize the PKI organization.

Use the name that the PKI organization provides.

a. For example, the ike/config file on the partym system might appear
similar to the following:

Trusted root cert
This certificate is from Example PKI
This is the X.509 distinguished name for the CA that it issues.

cert_root "C=US, O=ExamplePKI\, Inc., OU=PKI-Example, CN=Example PKI"

Parameters that may also show up in rules.

p1_xform
{ auth_method rsa_sig oakley_group 1 auth_alg sha1 encr_alg des }
p2_pfs 2

{
label "US-partym to JA-enigmax - Example PKI"
local_id_type dn
local_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"
remote_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"

local_addr 192.168.13.213
remote_addr 192.168.116.16

p1_xform
{auth_method rsa_encrypt oakley_group 2 auth_alg md5 encr_alg 3des}

}

Note – All arguments to the auth_method parameter must be on the same line.

b. On the enigma system, use enigma values for local parameters and partym
values for remote parameters.

Ensure that the value for the label keyword is unique. The value must be
different from the remote system’s label value.

...
{
label "JA-enigmax to US-partym - Example PKI"
local_id_type dn
local_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"
remote_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"

local_addr 192.168.116.16
remote_addr 192.168.13.213

...

78 IPsec and IKE Administration Guide • December 2003

6. If the PKI organization does not provide a CRL, add the keyword ignore_crls
to the ike/config file.

Trusted root cert
...
cert_root "C=US, O=ExamplePKI\, Inc., OU=PKI-Example, CN=Example PKI"
ignore_crls

...

The ignore_crls keyword tells IKE not to search for CRLs.

7. If the PKI organization provides a central distribution point for CRLs, you can
modify the ike/config file to point to that location.

See “How to Handle a Certificate Revocation List” on page 84 for examples.

Note – The following steps are necessary only if rsa_encrypt is the
auth_method in the /etc/inet/ike/config file.

8. Because the auth_method parameter is set to rsa_encrypt, add the peer’s
certificate to the publickeys database.

a. Send the certificate to the remote system’s administrator.

You can paste the certificate into an email.

i. For example, the partym administrator would send the following email:

To: admin@ja.enigmaexample.com
From: admin@us.partyexample.com
Message: -----BEGIN X509 CERTIFICATE-----
MII...

----END X509 CERTIFICATE-----

ii. The enigma administrator would send the following email:

To: admin@us.partyexample.com
From: admin@ja.enigmaexample.com
Message: -----BEGIN X509 CERTIFICATE-----
MII
...

-----END X509 CERTIFICATE-----

b. On each system, add the emailed certificate to the local publickeys
database.

ikecert certdb -a
Press the Return key

-----BEGIN X509 CERTIFICATE-----
MII...
-----END X509 CERTIFICATE-----

Press the Return key

Chapter 4 • Administering IKE (Tasks) 79

<Control>-D

The authentication method for RSA encryption hides identities in IKE from
eavesdroppers. Because the rsa_encrypt method hides identities, IKE does not
know the peer. Therefore, IKE cannot retrieve the peer’s certificate. As a result, this
method requires that the IKE peers know each other’s public keys. Therefore, when
you use an auth_method of rsa_encrypt in the /etc/inet/ike/config file,
you must add the peer’s certificate to the publickeys database. So, the
publickeys database then holds three certificates for each communicating pair of
systems:

� Your public key certificate
� The CA certificate
� The peer’s public key certificate

� How to Generate and Store Public Key Certificates
on Hardware
Prerequisites for generating and storing public keys and public key certificates on
hardware include the following:

� The hardware must be configured.

� The /etc/inet/ike/config file must point to a library that is implemented
according to the following standard: RSA Security Inc. PKCS #11 Cryptographic
Token Interface (Cryptoki), that is, a PKCS #11 library.

See “How to Use the Sun Crypto Accelerator 4000 Board With IKE” on page 87 for
setup instructions.

Generating and storing public key certificates on hardware is similar to generating and
storing public key certificates on your system. There are two differences:

� The ikecert certlocal and ikecert certdb commands must identify the
hardware. The -T option with the token ID identifies the hardware to the
commands.

� The /etc/inet/ike/config file must point to the hardware with the
pkcs11_path keyword.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

80 IPsec and IKE Administration Guide • December 2003

2. Generate a self-signed certificate or a certificate request, and specify the token
ID. Choose one of the following options:

Note – The Sun Crypto Accelerator 4000 board supports keys up to 2048 bits for
RSA. For DSA, this board supports keys up to 1024 bits.

� For a self-signed certificate, use this syntax.

ikecert certlocal -ks -m 1024 -t rsa-md5 \
> -D "C=US, O=PartyCompany, OU=US-Partym, CN=Partym" \
> -a -T SUN-4000-stor IP=192.168.116.16
Creating hardware private keys.
Enter PIN for PKCS#11 token: Type user:password
-----BEGIN X509 CERTIFICATE-----
MIIBwjCCASsCBD9bz5swDQYJKoZIhvcNAQEEBQAwKDELMAkGA1UEBhMCVVMxGTAX
...
PiktCuvURc1TXswaFyftzmLKWafUOQ==

-----END X509 CERTIFICATE-----

The argument to the -T option is the token ID from the attached Sun Crypto
Accelerator 4000 board.

� For a certificate request, use this syntax.

ikecert certlocal -kc -m 1024 -t rsa-md5 \
> -D "C=US, O=PartyCompany, OU=US-Partym, CN=Partym" \
> -a -T SUN-4000-stor IP=192.168.116.16
Creating hardware private keys.
Enter PIN for PKCS#11 token: Type user:password
-----BEGIN X509 CERTIFICATE-----
MIIBuDCCASECAQAwSTELMAkGA1UEBhMCVVMxFTATBgNVBAoTDFBhcnR5Q29tcGFu
...
oKUDBbZ9O/pLWYGr

-----END X509 CERTIFICATE-----

For a description of the arguments to the ikecert command, see the
ikecert(1M) man page

3. At the prompt for a PIN, type the Sun Crypto Accelerator 4000 user, a colon, and
the user’s password.

If the Sun Crypto Accelerator 4000 board has a user ikemgr whose password is
rgm4tigt, you would type the following:

Enter PIN for PKCS#11 token: ikemgr:rgm4tigt

Note – The PIN response is stored on disk as clear text.

4. Send your certificate for use by the other party. Choose one of the following
options:

Chapter 4 • Administering IKE (Tasks) 81

� Send the self-signed certificate to the remote system. You can paste the
certificate into an email.

� Send the certificate request to an organization that handles PKI. Follow the
instructions of the PKI organization to submit the certificate request. For a more
detailed discussion, see Step 3 of “How to Configure IKE With Certificates
Signed by a CA” on page 75.

5. On your system, edit the /etc/inet/ike/config file to recognize the
certificates. Choose one of the following options.

� For a self-signed certificate, use the values that the administrator of the remote
system provides for the cert_trust, remote_id, and remote_addr
parameters.

For example, on the enigma system, the ike/config file would appear
similar to the following:

Explicitly trust the following self-signed certs
Use the Subject Alternate Name to identify the cert

cert_trust "192.168.116.16" Local system’s certificate
cert_trust "192.168.13.213" Remote system’s certificate

pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so" Hardware connection
...
{
label "JA-enigmax to US-partym"
local_id_type dn
local_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"
remote_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"

local_addr 192.168.116.16
remote_addr 192.168.13.213

p1_xform
{auth_method rsa_encrypt oakley_group 2 auth_alg md5 encr_alg 3des}

}

� For a certificate request, enter the name that the PKI organization provides as
the value for the cert_root keyword.

For example, the ike/config file on the enigma system might appear similar
to the following:

Trusted root cert
This certificate is from Example PKI
This is the X.509 distinguished name for the CA that it issues.

cert_root "C=US, O=ExamplePKI\, Inc., OU=PKI-Example, CN=Example PKI"

pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so" Hardware connection
...
{
label "JA-enigmax to US-partym - Example PKI"

82 IPsec and IKE Administration Guide • December 2003

local_id_type dn
local_id "C=JA, O=EnigmaCo, OU=JA-Enigmax, CN=Enigmax"
remote_id "C=US, O=PartyCompany, OU=US-Partym, CN=Partym"

local_addr 192.168.116.16
remote_addr 192.168.13.213

p1_xform
{auth_method rsa_encrypt oakley_group 2 auth_alg md5 encr_alg 3des}

}

6. Place the certificates from the other party in the hardware.

Respond to the PIN request as you responded in Step 3.

Note – You must add the public key certificates to the same attached hardware that
generated your private key.

� For a self-signed certificate, add the remote system’s self-signed certificate.

ikecert certdb -a -T SUN-4000-stor
Press the Return key
Paste the self-signed certificate

<Control>-D

Enter PIN for PKCS#11 token: Type user:password

If you used rsa_encrypt as the value for the auth_method parameter for a
self-signed certificate, add the peer’s certificate to the hardware store.

ikecert certdb -a -T SUN-4000-stor
Press the Return key
Paste the peer’s certificate

<Control>-D

Enter PIN for PKCS#11 token: Type user:password

� For certificates from a PKI organization, add the certificate that the organization
generated from your certificate request, and add the certificate authority (CA).

ikecert certdb -a -T SUN-4000-stor
Press the Return key
Paste the returned certificate

<Control>-D

Enter PIN for PKCS#11 token: Type user:password

ikecert certdb -a -T SUN-4000-stor
Press the Return key
Paste the CA certificate

<Control>-D

Enter PIN for PKCS#11 token: Type user:password

To add a certificate revocation list (CRL) from the PKI organization, see “How
to Handle a Certificate Revocation List” on page 84.

Chapter 4 • Administering IKE (Tasks) 83

� How to Handle a Certificate Revocation List
A certificate revocation list (CRL) contains outdated or compromised certificates from
a Certificate Authority. You have four ways to handle CRLs.

� If your CA organization does not issue CRLs, you can instruct IKE to ignore CRLs
in your /etc/inet/ike/config file. This option is shown in Step 6 in “How to
Configure IKE With Certificates Signed by a CA” on page 75.

� IKE can access the CRLs from a URI (uniform resource indicator) whose address is
embedded in the public key certificate from the CA.

� IKE can access the CRLs from an LDAP server whose DN (directory name) entry is
embedded in the public key certificate from the CA.

� You can provide the CRL as an argument to the ikecert certrldb command.

The following procedure describes how to instruct IKE to use CRLs from a central
distribution point.

1. Display the certificate that you received from the CA.

ikecert certdb -lv certspec

-l Lists certificates in the IKE certificate database.

-v Lists the certificates in verbose mode. Use this option with care.

certspec Is a pattern that matches a certificate in the IKE certificate database.

For example, the following certificate was issued by Sun Microsystems. Details
have been altered.

ikecert certdb -lv example-protect.sun.com
Certificate Slot Name: 0 Type: dsa-sha1

(Private key in certlocal slot 0)
Subject Name: <O=Sun Microsystems Inc, CN=example-protect.sun.com>
Issuer Name: <CN=Sun Microsystems Inc CA (Cl B), O=Sun Microsystems Inc>
SerialNumber: 14000D93
Validity:

Not Valid Before: 2002 Jul 19th, 21:11:11 GMT
Not Valid After: 2005 Jul 18th, 21:11:11 GMT

Public Key Info:
Public Modulus (n) (2048 bits): C575A...A5
Public Exponent (e) (24 bits): 010001

Extensions:
Subject Alternative Names:

DNS = example-protect.sun.com
Key Usage: DigitalSignature KeyEncipherment
[CRITICAL]

CRL Distribution Points:
Full Name:

URI = #Ihttp://www.sun.com/pki/pkismica.crl#i
DN = <CN=Sun Microsystems Inc CA (Cl B), O=Sun Microsystems Inc>

CRL Issuer:
Authority Key ID:

84 IPsec and IKE Administration Guide • December 2003

Key ID: 4F ... 6B
SubjectKeyID: A5 ... FD
Certificate Policies

Authority Information Access

Notice the CRL Distribution Points data. The URI entry indicates that this
organization’s CRL is available on the web. The DN entry indicates that the CRL is
also available on an LDAP server. You can use one of these two options.

2. To use the URI, add the keyword use_http to the host’s
/etc/inet/ike/config file.

For example, the ike/config file would appear similar to the following:

Use CRL from organization’s URI
use_http

...

You can also use a web proxy by adding the keyword proxy in the ike/config
file. The proxy keyword takes a URL as an argument, as in the following:

proxy "http://proxy1:8080"

IKE retrieves the CRL and caches the CRL until the certificate expires.

3. To use LDAP, use the LDAP server as an argument to the ldap-list keyword in
the host’s /etc/inet/ike/config file.

Your organization provides the name of the LDAP server. The entry in the
ike/config file would appear similar to the following:

Use CRL from organization’s LDAP
ldap-list "ldap1.sun.com:389,ldap2.sun.com"

...

IKE retrieves the CRL and caches the CRL until the certificate expires.

Example—Pasting a CRL Into the Local certrldb
Database
If the PKI organization’s CRL is not available from a central distribution point, you
can add the PKI organization’s CRL manually to the local certrldb database. Follow
the PKI organization’s instructions for extracting the CRL, then add the CRL to the
database with the ikecert certrldb –a command.

ikecert certrldb -a
Press the Return key
Paste the CRL from the PKI organization
Press the Return key
Press <Control>-D to enter the CRL into the database

Chapter 4 • Administering IKE (Tasks) 85

Using Hardware With IKE (Task Map)

Task Description For Instructions

Off-load IKE key operations to
the Sun Crypto Accelerator
1000 board

Involves setting the path to
the PKCS#11 library.

“How to Use the Sun Crypto
Accelerator 1000 Board With
IKE” on page 86

Off-load IKE key operations
and store the keys on the Sun
Crypto Accelerator 4000 board

Involves setting the path to
the PKCS#11 library, and
listing the available token IDs.

“How to Use the Sun Crypto
Accelerator 4000 Board With
IKE” on page 87

� How to Use the Sun Crypto Accelerator 1000 Board
With IKE

Note – The following procedure assumes that a Sun Crypto Accelerator 1000 board is
attached to the system. The procedure also assumes that the software for the board has
been installed and that the software has been configured. For instructions, see the Sun
Crypto Accelerator 1000 Board Version 1.1 Installation and User’s Guide.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Add the PKCS #11 library path to the /etc/inet/ike/config file.

pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so"

The path name must point to a 32-bit PKCS #11 library. If the library is present, IKE
uses the library’s routines to accelerate IKE public key operations on the Sun
Crypto Accelerator 1000 board. When the board handles these expensive
operations, operating system resources are free for other operations.

3. Close the file and reboot.

4. After rebooting, check that the library has been linked. Type the following
command to determine whether a PKCS #11 library has been linked:

86 IPsec and IKE Administration Guide • December 2003

ikeadm get stats
Phase 1 SA counts:
Current: initiator: 0 responder: 0
Total: initiator: 0 responder: 0
Attempted: initiator: 0 responder: 0
Failed: initiator: 0 responder: 0

initiator fails include 0 time-out(s)
PKCS#11 library linked in from /opt/SUNWconn/lib/libpkcs11.so

#

Unlike other parameters in the /etc/inet/ike/config file, the pkcs11_path
keyword is read only when IKE is started. If you use the ikeadm command to add
or reload a new /etc/inet/ike/config file, the pkcs11_path persists. The
path persists because the IKE daemon does not clobber data from the Phase 1
exchange. Keys that are accelerated by PKCS #11 are part of Phase 1 data.

� How to Use the Sun Crypto Accelerator 4000 Board
With IKE

Note – The following procedure assumes that a Sun Crypto Accelerator 4000 board is
attached to the system. The procedure also assumes that the software for the board has
been installed and that the software has been configured. For instructions, see the Sun
Crypto Accelerator 4000 Board Installation and User’s Guide. The guide is available from
the Sun Hardware Documentation web site, under Network and Security Products.

1. On the system console, become superuser or assume an equivalent role.

Note – Logging in remotely exposes security-critical traffic to eavesdropping. Even
if you somehow protect the remote login, the security of the system is reduced to
the security of the remote login session.

2. Add the PKCS #11 library path to the /etc/inet/ike/config file.

pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so"

The path name must point to a 32-bit PKCS #11 library. If the library is present, IKE
uses the library’s routines to handle key generation and key storage on the Sun
Crypto Accelerator 4000 board.

3. Close the file and reboot.

4. After rebooting, check that the library has been linked. Type the following
command to determine whether a PKCS #11 library has been linked:

Chapter 4 • Administering IKE (Tasks) 87

http://www.sun.com/products-n-solutions/hardware/docs

$ ikeadm get stats
...
PKCS#11 library linked in from /opt/SUNWconn/lib/libpkcs11.so

$

Unlike other parameters in the /etc/inet/ike/config file, the pkcs11_path
keyword is read only when IKE is started. If you use the ikeadm command to add
or reload a new /etc/inet/ike/config file, the pkcs11_path persists. The
path persists because the IKE daemon does not clobber Phase 1 data.

Note – The Sun Crypto Accelerator 4000 board supports keys up to 2048 bits for
RSA. For DSA, this board supports keys up to 1024 bits.

5. Find the token ID for the attached Sun Crypto Accelerator 4000 board.

$ ikecert tokens
Available tokens with library "/opt/SUNWconn/lib/libpkcs11.so":

"SUN-1000-accel "

"SUN-4000-stor "

The library returns a token ID, also called a keystore name, of 32 characters. In this
example, you could use the SUN-4000-stor token with the ikecert commands
to store IKE keys

For instructions on how to use the token, see “How to Generate and Store Public
Key Certificates on Hardware” on page 80.

The trailing spaces are automatically padded by the ikecert command.

88 IPsec and IKE Administration Guide • December 2003

APPENDIX A

IPsec and IKE Administration Guide
Updates

The following sections list the updates to Solaris 9 operating environment features that
are described in this book.

Solaris 9 4/03 Updates
IKE encryption can be accelerated with hardware. See “How to Use the Sun Crypto
Accelerator 1000 Board With IKE” on page 86.

Solaris 9 12/03 Updates
� IKE runs over IPv6 networks as well as over IPv4 networks.

� IKE public keys, private keys, and certificates can be stored on a Sun Crypto
Accelerator 4000 board. The board can also accelerate IKE encryption. See the
following sections for more information:

� “IKE and Hardware Storage” on page 53
� “How to Generate and Store Public Key Certificates on Hardware” on page 80
� “How to Use the Sun Crypto Accelerator 4000 Board With IKE” on page 87

89

90 IPsec and IKE Administration Guide • December 2003

Glossary

This glossary contains definitions of network security terms.

3DES See Triple-DES.

AES Advanced Encryption Standard. A symmetric 128-bit block data
encryption technique. The U.S. government adopted the Rijndael
variant of the algorithm as its encryption standard in October 2000.
AES replaces DES encryption as the government standard.

asymmetric key
cryptography

An encryption system in which the sender and receiver of a message
use different keys to encrypt and decrypt the message. Asymmetric
keys are used to establish a secure channel for symmetric key
encryption. Diffie-Hellman is an example of an asymmetric key
protocol. Contrast with symmetric key cryptography.

authentication header An extension header that provides authentication and integrity,
without confidentiality, to IP datagrams.

bidirectional tunnel A tunnel that can transmit datagrams in both directions.

Blowfish A symmetric block cipher algorithm that takes a variable-length key
from 32 bits to 448 bits. Its author, Bruce Schneier, claims that Blowfish
is optimized for applications where the key does not change often.

CA See certificate authority (CA).

certificate authority (CA) A trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key
pairs. The CA guarantees the identity of the individual who is granted
the unique certificate.

certificate revocation list
(CRL)

A list of public key certificates that have been revoked by a CA.

DES Data Encryption Standard. A symmetric-key encryption method
developed in 1975 and standardized by ANSI in 1981 as ANSI X.3.92.
DES uses a 56-bit key.

91

digital signature A digital code that is attached to an electronically transmitted message
that uniquely identifies the sender.

DSA Digital Signature Algorithm. A public key algorithm with a variable
key size from 512 to 4096 bits. The U.S. Government standard, DSS,
goes up to 1024 bits. DSA relies on SHA-1 for input.

Diffie-Hellman protocol Also known as public key cryptography. An asymmetric cryptographic
key agreement protocol that was developed by Diffie and Hellman in
1976. The protocol enables two users to exchange a secret key over an
insecure medium without any prior secrets. Diffie-Hellman is used by
the IKE protocol.

encapsulating security
payload (ESP)

An extension header that provides integrity and confidentiality to
datagrams.

encapsulation The process of a header and a payload being placed in the first packet,
which is subsequently placed in the second packet’s payload.

firewall Any device or software that protects an organization’s private network
or intranet from intrusion by external networks such as the Internet.

hash value A number that is generated from a string of text. Hash functions are
used to ensure that transmitted messages have not been tampered
with. MD5 and SHA-1 are examples of one-way hash functions.

HMAC Keyed hashing method for message authentication. HMAC is a secret
key authentication algorithm. HMAC is used with an iterative
cryptographic hash function, such as MD5 or SHA-1, in combination
with a secret shared key. The cryptographic strength of HMAC
depends on the properties of the underlying hash function.

IKE Internet Key Exchange. IKE automates the provision of authenticated
keying material for IPsec security association (SA)s.

IP datagram A packet of information that is carried over IP. An IP datagram
contains a header and data. The header includes the addresses of the
source and the destination of the datagram. Other fields in the header
help identify and recombine the data with accompanying datagrams at
the destination.

IP in IP encapsulation The mechanism for tunneling IP packets within IP packets.

IPsec The IP security architecture (IPsec) that provides protection for IP
datagrams.

IPv4 Internet Protocol, version 4. IPv4 is sometimes referred to as IP. This
version supports a 32-bit address space.

IPv6 Internet Protocol, version 6. This version supports a 128-bit address
space.

key management The way in which you manage security association (SA)s.

92 IPsec and IKE Administration Guide • December 2003

keystore name The name that an administrator gives to the storage area, or keystore,
on a network interface card (NIC). The keystore name is also called the
token or the token ID.

message authentication
code (MAC)

MAC provides assurance of data integrity and authenticates data
origin. MAC does not protect against eavesdropping.

MD5 An iterative cryptographic hash function that is used for message
authentication, including digital signatures. The function was
developed in 1991 by Rivest.

multicast address An IP address that identifies a group of interfaces in a particular way.
A packet that is sent to a multicast address is delivered to all of the
interfaces in the group.

network interface card
(NIC)

Network adapter that is either internal or a separate card that serves as
an interface to a link. The Sun Crypto Accelerator 4000 board is an
NIC.

node A host or a router.

packet A group of information that is transmitted as a unit over
communications lines. Contains a header plus a payload.

payload The data that is carried in a packet. The payload does not include the
header information that is required to get the packet to its destination.

physical interface A node’s attachment to a link. This attachment is often implemented as
a device driver plus a network adapter. Some network adapters can
have multiple points of attachment, for example, qfe. The usage of
network adapter in this document refers to a “single point of
attachment.”

PKI Public key infrastructure. A system of digital certificates, Certificate
Authorities, and other registration authorities that verify and
authenticate the validity of each party involved in an Internet
transaction.

private address An IP address that is not routable through the Internet.

public key cryptography A cryptographic system that uses two different keys. The public key is
known to everyone. The private key is known only to the recipient of
the message. IKE provides public keys for IPsec.

RSA A method for obtaining digital signatures and public key
cryptosystems. The method was first described in 1978 by its
developers, Rivest, Shamir, and Adleman.

SA See security association (SA).

SADB Security Associations Database. A table that specifies cryptographic
keys and cryptographic algorithms. The keys and algorithms are used
in the secure transmission of data.

Glossary 93

security association (SA) An association that specifies security properties from one host to a
second host.

security parameter index
(SPI)

An integer that specifies the row in the security associations database
(SADB) that a receiver should use to decrypt a received packet.

SHA-1 Secure Hashing Algorithm. The algorithm operates on any input
length less than 264 to produce a message digest. The SHA-1 algorithm
is input to DSA.

SPI See security parameter index (SPI).

symmetric key
cryptography

An encryption system in which the sender and receiver of a message
share a single, common key. This common key is used to encrypt and
decrypt the message. Symmetric keys are used to encrypt the bulk of
data transmission in IPsec. DES is one example of a symmetric key
system.

Triple-DES Triple-Data Encryption Standard. A symmetric-key encryption
method. Triple-DES requires a key length of 168 bits. Triple-DES is also
written as 3DES.

tunnel The path that is followed by a datagram while it is encapsulated.

virtual private network
(VPN)

A single, secure, logical network that uses tunnels across a public
network such as the Internet.

94 IPsec and IKE Administration Guide • December 2003

Index

Numbers and Symbols
> prompt

ikeadm command mode, 68
ipseckey command mode, 43

3DES encryption algorithm
and IPsec, 18
key length, 44

A
-a option

ikecert certdb command, 77
ikecert certrldb command, 85

-A option, ikecert command, 57
-a option

ikecert command, 81
ipsecconf command, 32, 68

accelerating
IKE computations, 52, 86

AES encryption algorithm, and IPsec, 18
AH, See authentication header (AH)
auth_algs security option, ifconfig

command, 26
authentication algorithms

IKE, 57
IPsec

MD5, 17
SHA, 17

specifying for IPsec, 26
authentication header (AH)

IPsec protection mechanism, 16
module in IPsec, 16

authentication header (AH) (Continued)
protecting IP datagram, 16
protecting IP packets, 11

B
Blowfish encryption algorithm, and IPsec, 18
bypassing

IPsec on LAN, 39
IPsec policy, 19

C
-c option, in.iked daemon, 64
cert_root keyword, 78
cert_trust keyword, 73
certificate revocation lists, See CRLs
certificates

adding to database, 77
description, 51, 76
from CA, 77
from CA on hardware, 83
hardware storage, 80
ignoring CRLs, 79
in ike/config file, 82
listing, 75
request, 58, 75
request on hardware, 81
self-signed, 71
self-signed on hardware, 80
signed by CA, 75

95

certificates (Continued)
storing on hardware, 53, 80

commands
IKE

ikeadm command, 53, 54, 55, 68
ikecert command, 53, 54, 56
in.iked daemon, 54

IPsec
ipsecconf command, 19, 22, 32
ipseckey command, 15, 22, 25, 43
list, 21
security considerations, 25
snoop command, 27, 47

computations
accelerating IKE in hardware, 52, 86, 87

configuring
IKE, 61
ike/config file, 55
IPsec, 22
ipsecinit.conf file, 23

CRLs
accessing from central location, 84
crls database, 59
ignoring, 79
ikecert certrldb command, 58
listing, 84

D
-D option, ikecert command, 57
daemons

in.iked daemon, 50, 53, 54
datagrams, IP, 11
DES encryption algorithm, and IPsec, 18
/dev/ipsecah file, 16
/dev/ipsecesp file, 17
/dev/random device, 42
digital signatures

DSA, 57
RSA, 57, 80

directory name (DN), for accessing CRLs, 84
DSS authentication algorithm, 57

E
encapsulating security payload (ESP)

description, 16
IPsec protection mechanism, 16
protecting IP packets, 11
tuning with ndd command, 17

encr_algs security option, ifconfig
command, 27

encr_auth_algs security option, ifconfig
command, 27

encryption algorithms
IPsec, 17

3DES, 18
AES, 18
Blowfish, 18
DES, 18

specifying for IPsec, 26
ESP, See encapsulating security payload (ESP)
/etc/inet/ike/config file

and CRLs, 84
and ikecert command, 57
cert_root keyword, 78
cert_trust keyword, 73
description, 51, 55
ignore_crls keyword, 79
ldap-list keyword, 85
PKCS #11 library entry, 56
pkcs11_path keyword, 56, 80, 86, 87
proxy keyword, 85
public key certificates, 78
putting certificates on hardware, 82
rsa_encrypt authentication method, 79
sample, 63
security considerations, 55
self-signed certificates, 73
summary, 53
use_http keyword, 85
with preshared keys, 63

/etc/inet/ike/crls directory, 59
/etc/inet/ike/publickeys directory, 59
/etc/inet/hosts file, 31
/etc/inet/ipnodes file, 31
/etc/inet/ipsecinit.conf file, 23, 31, 34
/etc/inet/ipsecpolicy.conf file, 22
/etc/inet/secret/ike.privatekeys

directory, 59
/etc/init.d/inetinit script, 23

96 IPsec and IKE Administration Guide • December 2003

F
-f option, ipseckey command, 32
files

IKE
crls directory, 54, 59
ike/config file, 22, 51, 53, 55
ike.preshared file, 53, 56, 65
ike.privatekeys directory, 59
ike.privatekeys file, 54
publickeys directory, 54, 59

IPsec
/etc/inet/ipsecpolicy.conf

file, 22
/etc/init.d/inetinit file, 23
ipsecinit.conf file, 22, 23
ipseckeys file, 22

ipsecinit.conf file, 22

H
hardware

accelerating IKE computations, 52, 86, 87
storing IKE keys, 53, 87

HMAC-MD5 authentication algorithm, and
IPsec, 18

HMAC-SHA authentication algorithm, and
IPsec, 18

hosts file, 31

I
ifconfig command

auth_algs security option, 26
encr_algs security option, 27
encr_auth_algs security option, 27
IPsec security options, 26
setting tunnels, 20

ignore_crls keyword, 79
IKE

changing privilege level, 68
checking if valid policy, 64
checking privilege level, 66
configuring, 53, 62
crls database, 59
/etc/inet/ike/config file, 86, 87
handling CRLs, 84

IKE (Continued)
hardware acceleration, 52
hardware storage of keys, 53
ike.preshared file, 56
ike.privatekeys database, 59
ikeadm command, 55, 65
ikecert certdb command, 77
ikecert certlocal command, 75
ikecert certrldb command, 85
ikecert command, 56
ikecert tokens command, 88
implementing, 61, 71
in.iked daemon, 54
Internet Key Exchange, 50
ISAKMP SAs, 50
overview, 49
perfect forward secrecy, 50
Phase 1 exchange, 50
Phase 2 exchange, 50
PKCS #11 library, 58, 87
publickeys database, 59
refreshing preshared keys, 65, 66
RSA encryption algorithm, 80
security associations, 50, 54
with certificates, 51
with hardware, 86
with preshared keys, 62

ike/config file, See
/etc/inet/ike/config file

ike_mode keyword, 68
ike.preshared file, 56, 64

sample, 69
ike.privatekeys database, 59
ikeadm command

changing privilege level, 68
checking privilege level, 66
description, 54, 55
interactive mode, 68

ikecert certdb command, 74
ikecert certlocal command, 72
ikecert certrldb command, 85
ikecert command

description, 54, 56
ikecert tokens command, 88
in.iked daemon

activating, 54
changing privilege level, 68
checking privilege level, 66

Index 97

in.iked daemon (Continued)
description, 50
stop and start, 32, 66, 70

inetd.conf file, IPsec, 38
inetinit script, 23
interactive mode

ikeadm command, 68
ipseckey command, 43

IP datagrams, protecting with IPsec, 11
IP forwarding

in VPNs, 21, 37, 39
IP security architecture, See IPsec
ipnodes file, 31
IPsec

activating, 22
adding security associations, 32
authentication algorithms, 17
authentication headers, 16
bypassing, 19, 33
configuring, 19, 21, 22
creating security associations, 43
/dev/ipsecah file, 16
/dev/ipsecesp file, 17
encapsulating data, 17
encapsulating security payload, 16
encryption algorithms, 17, 18
enforcement mechanisms, 18
/etc/hosts file, 31
/etc/inet/ipnodes file, 31
/etc/inet/ipsecinit.conf file, 31, 34
/etc/inet/ipsecpolicy.conf file, 22
/etc/init.d/inetinit script, 23
extensions to utilities

ifconfig command, 26
snoop command, 27

ifconfig command, 39
configuring VPN, 39
security options, 26
setting policy, 22

implementing, 29
in.iked daemon, 15
inbound packet process, 14
inetd.conf file, 38
ipsecconf command, 19, 22
ipsecinit.conf file, 23
ipseckey command, 15, 25
key management, 15

IPsec (Continued)
keying utilities

IKE, 50
ipseckey command, 25

ndd command, 16
outbound packet process, 12
overview, 11
policy command, 22
policy files, 23
protecting packets, 11
protection mechanisms, 16
protection policy, 18
replacing security associations, 44
route command, 40
securing a web server, 33
securing traffic, 31
security associations, 15
security associations database, 24
security parameter index (SPI), 15
security protocols, 15
setting policy permanently, 23
setting policy temporarily, 22
snoop command, 27
specifying authentication algorithms, 26
specifying encryption algorithms, 26
transport mode, 19
tunnel mode, 19
tunnels, 20
virtual private networks (VPN), 21

ipsecconf command
-a option, 32, 68
activating IPsec, 22
configuring IPsec policy, 19, 22
security considerations, 33

ipsecconf command, security
considerations, 24

ipsecinit.conf file
sample, 23
security considerations, 24

ipseckey command, 43
description, 15, 25
managing IPsec keys, 22
security considerations, 25

ipseckeys file, storing IPsec keys, 22
ipsecpolicy.conf file, 22
ISAKMP SAs, 50

98 IPsec and IKE Administration Guide • December 2003

K
-kc option

ikecert certlocal command, 57, 75
key management

automatic, 50
IKE, 50
IPsec, 15
manual, 25

keying utilities
IKE protocol, 49
ipseckey command, 15

keys
automatic management, 50
generating random numbers for, 42
ike.privatekeys database, 59
ike/publickeys database, 59
managing IPsec, 15
manual management, 25
preshared, 51
storing on hardware, 53

keystore name, See token ID
-ks option, ikecert certlocal

command, 57

L
ldap-list keyword, ike/config file, 85
libraries

PKCS #11, 58, 87
local file name services

/etc/inet/hosts file, 31
/etc/inet/ipnodes file, 31

M
machines, protecting communication, 31
MD5 authentication algorithm

and IPsec, 18
key length, 44

N
ndd command

configuring VPN, 41
IP forwarding, 37

ndd command (Continued)
tuning IPsec, 17

O
od command, 42, 64
/opt/SUNWconn/lib/libpkcs11.so entry,

in ike/config file, 56

P
-p option, in.iked daemon, 67
packets

protecting with IKE, 50
protecting with IPsec, 16

inbound, 14
outbound, 12

verifying IPsec protection, 47
perfect forward secrecy, IKE, 50
PF_KEY socket interface

IPsec, 15, 22
PKCS #11 library, 58, 87

in ike/config file, 56
pkcs11_path keyword, 56, 80, 86, 87
policy files

ike/config file, 22, 53, 55
ipsecinit.conf file, 23
ipsecpolicy.conf temporary file, 22
security considerations, 24

preshared keys, task map, 62
privilege level

checking in IKE, 66
setting in IKE, 67

protecting
packets between two intranets, 35
packets between two systems, 31
web server with IPsec, 33

protection mechanisms, IPsec, 16
proxy keyword, ike/config file, 85
public key certificates, See certificates
publickeys database, 59

Index 99

R
random numbers

/dev/random device, 42
generating with od command, 42, 64

route command, IPsec, 40
rsa_encrypt authentication method,

ike/config file, 79
RSA encryption algorithm, 57, 80

S
security

IKE, 54
IPsec, 11

security associations (SAs)
adding IPsec, 32
creating IPsec SAs, 43
flushing IPsec SAs, 43
IKE, 54
IPsec, 15, 32
IPsec database, 24
ISAKMP, 50
random number generation, 50
replacing IPsec SAs, 44
replacing ISAKMP SAs, 65

security associations database (SADB), 24
security considerations

authentication header, 16
configuring IKE, 63
configuring IPsec, 31
encapsulating security payload, 17
ike/config file, 55
ipsecconf command, 24
ipsecinit.conf file, 24
ipseckey command, 25
ipseckeys file, 46
key length, 63
latched sockets, 24
preshared keys, 51

security parameter index (SPI)
description, 15
key size, 42

SHA authentication algorithm, and IPsec, 18
slots, in hardware, 59
snoop command

viewing protected packets, 27, 47

sockets
IPsec security, 24
security considerations, 33

storing
IKE keys on disk, 58, 59, 77
IKE keys on hardware, 53, 87

Sun Crypto Accelerator 1000 board, 52, 86
Sun Crypto Accelerator 4000 board, 87

accelerating IKE computations, 52
storing IKE keys, 53

systems, protecting communication, 31

T
-T option

ikecert command, 58, 81
-t option, ikecert command, 57
task maps

accelerating IKE keys on hardware, 86
IKE, 61
IKE with hardware, 86
IKE with preshared keys, 62
IKE with public key certificates, 71
IPsec, 29
storing IKE keys on hardware, 86

token ID, in hardware, 59
tokens argument, ikecert command, 57
transport mode, IPsec, 19
Triple-DES encryption algorithm, and IPsec, 18
tunnel mode, IPsec, 19
tunnels

ifconfig security options, 26
IPsec, 20
protecting packets, 20

U
uniform resource indicator (URI), for accessing

CRLs, 84
use_http keyword, ike/config file, 85

V
-V option, snoop command, 27

100 IPsec and IKE Administration Guide • December 2003

virtual private networks (VPN)
configuring with ndd command, 37, 41
constructed with IPsec, 21
example, 35
setting up, 35

W
web servers, securing with IPsec, 33

Index 101

102 IPsec and IKE Administration Guide • December 2003

