
Administrator’s Guide
Sun™ ONE Application Server

Version7

817-3652-10
September 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

__

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à
celles-ci. Distribué par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations (“U.S. Commerce
Department’s Table of Denial Orders”) et la liste de ressortissants spécifiquement désignés (“U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons”), sont rigoureusement interdites.

3

Contents

About This Guide . 17

What’s In This Guide? . 17
How This Guide Is Organized . 18

Part I: Server Basics and Administering Global Settings . 18
Part II: Managing an Individual Server Instance . 18
Part III: Managing HTTP Server Features and Virtual Servers . 19
Part IV: Appendixes . 20

Documentation Conventions . 20
General Conventions . 20
Conventions Referring to Directories . 21

Product Line Overview . 22
Platform Edition . 23
Standard Edition . 23
Enterprise Edition . 23

Using the Documentation . 24
Product Support . 26

Part 1 Server Basics and Administering Global Settings . 29

Chapter 1 Getting Started with Sun ONE Application Server Administration 31
About Sun ONE Application Server . 31
Configuring the Bundled Solaris Version . 33

Creating an Administrative Domain . 33
Starting the Administration Server . 34
Creating an Application Server Instance . 34

4 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Deploying Applications . 35
Using the Administration Interface . 35

Accessing the Administration Interface . 35
Using Tabs . 38
Using Buttons . 38
Accessing Online Help . 39
Exiting the Administration Interface . 41

Using the Command-line Interface . 41
Accessing the Administration Server . 41
Accessing Application Server Instances . 42
Using Sun ONE Studio . 42
About Configuration Files . 42
Using the License Commands . 43

Chapter 2 Setting Administration Server Preferences . 45
About the Administration Server . 46
Starting the Administration Server . 47

Using the startserv Script . 47
Using the Command-Line Interface . 48
Using the Services Window (Windows) . 48
Using the Start Menu (Windows) . 48

Shutting Down the Administration Server . 49
Shutting Down Using the Administration Interface . 49
Shutting Down Using the stopserv Script . 50
Shutting Down Using the Command-Line Interface . 50
Shutting Down Using the Services Window (Windows) . 51

Accessing the Administration Server Settings . 51
Viewing Administration Server Control Settings . 53
Applying Changes to the Administration Server . 53
Editing HTTP Listener Settings for the Administration Server . 54
Setting SNMP, Logging, and Security Preferences . 55

Chapter 3 Configuring Administrative Domains . 57
About Administrative Domains . 57

Implementing Administrative Domains . 58
Directory Structure . 58
Process/Port Structure . 58

Configuring Domains . 58
Creating Domains . 59

Example: creating a domain in the default location . 59
Example: creating a domain somewhere other than the default location 60
Example: creating a domain for another user (UNIX only) . 60

5

User Permissions on UNIX Platforms . 60
Deleting Domains . 61

Example: deleting a domain . 61
Listing Domains . 61

Example: listing the domains on a local machine . 62
Example: listing the domains on the local machine using the remote option: 62

Starting Domains . 62
Example: starting the only domain on a machine: . 62

Stopping Domains . 62
Example: Stopping all instances in a domain except for the admin server instance. 63

Recreating the Domain Registry . 63

Part 2 Managing an Individual Server Instance . 65

Chapter 4 Using Application Server Instances . 67
About Application Server Instances . 68
Starting and Stopping an Application Server Instance . 69

Using the Start and Stop Buttons in the Administration Interface . 70
Using the start-instance and stop-instance Commands . 70
Using the Windows Services (Windows) . 70
Using the startserv and stopserv Scripts . 71

Starting the Application Server Instance in Debug Mode . 72
Setting the Termination Timeout . 73
Restarting an Application Server Instance Automatically (UNIX) . 73

About Restarting Automatically . 74
Restarting Automatically with /etc/inittab (UNIX) . 74
Restarting Automatically with the System RC Scripts (UNIX) . 75

Restarting an Application Server Instance Manually (UNIX) . 75
Restarting the Server Instance Using the Restart Button (UNIX) . 76
Restarting the Server Instance Using the restart-instance Command (UNIX) 76
Restarting the Server Instance Using the restartserv Script (UNIX) . 76

About the Watchdog . 77
Adding an Application Server Instance . 78
Deleting an Application Server Instance . 78
Applying Changes to an Application Server Instance . 79
Viewing Application Server Instance Status . 81
Configuring JVM Settings . 82

Configuring General Settings . 82
Configuring Path Settings . 83
Configuring JVM Options . 83
Configuring the JVM Profiler . 84

6 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring JVM Settings Using the Command-Line Interface . 84
Configuring Logging Setting and Monitoring Settings . 85
Changing Application Server Instance Advanced Settings . 86

Chapter 5 Using Logging . 89
About Logging . 90
Logging on the UNIX and Windows Platform . 90

Default Logging in server.log . 91
Example of server.log . 91

Logging Using syslog . 92
Configuring syslog . 93
To configure syslog: . 93
Example of syslog messages . 96

Logging Using the Windows eventlog . 96
Using Log Levels . 97

About Log Levels . 97
Log Levels Used for syslog Configuration . 99

About Virtual Servers and Logging . 100
About Loggers . 101
About Client Side Logging . 103
Redirecting Application and Server Log Output . 104
Log File Management . 104

Internal-daemon Log Rotation . 105
Scheduler Based Log Rotation . 106
Rotation Using Solaris logadm Utility . 107
Rotation Using Solaris “cron” Utility . 109

About the crontab Entry Format . 110
Using the Solaris cron Utility to Schedule Execution of logadm . 111

Configuring Logging Through the Command-line Interface . 111
Configuring Logging Through the Administration Interface . 112

Configuring the Log Service . 113
Configuring Logging for Application Server Components and Subsystems 115

To Specify a Log Level . 116
To Specify a Log File: (Virtual Server) . 116
To Specify a Transaction Log Location: (Java Transaction Service) . 116

Configuring the Directives for Error Logging . 117
Viewing the Access Log File . 117
Viewing the Event Log File . 119
Setting Log Preferences . 121
Running the Log Analyzer . 122
Viewing Events (Windows 2000 Pro) . 124

7

Chapter 6 Monitoring the Sun ONE Application Server . 127
About Monitoring the Sun ONE Application Server . 127

Statistics . 128
SNMP . 128
HTTP Server Monitoring . 129
Application Components and Subsystems Monitoring . 129

Monitoring for Container Subsystems . 130
Monitoring for the ORB Service . 131
Monitoring for the Transaction Service . 131

Quality of Service (QOS) . 131
Extracting Monitoring Data Using the CLI . 132

The list --monitor Command . 132
The get --monitor Command . 133
CLI Name Mapping . 134

Petstore Example . 135
Monitorable Object Types . 137
Monitorable Attribute Names . 139

HTTP Server Monitorable Objects . 144
Monitorable HTTP Server Elements . 144
Monitorable HTTP Server Attributes . 145

Administering the Transaction Service Using the CLI . 153
Using HTTP Quality of Service . 154

Quality of Service Example . 154
Configuring Quality of Service (QOS) . 155
Required Changes to the obj.conf File . 158
Known Limitations to Quality of Service . 158

About SNMP . 160
Network Management Station (NMS) . 161
Management Information Base (MIB) Objects . 162
SNMP Messages . 166
SNMP Trap Destinations . 167
SNMP Agent Community . 167

Setting Up SNMP . 168
Using a Proxy SNMP Agent (UNIX/Linux) . 170

Installing the Proxy SNMP Agent . 170
Starting the Proxy SNMP Agent . 171
Restarting the Native SNMP Daemon . 171

Installing the SNMP Master Agent . 171
Enabling and Starting the SNMP Master Agent . 174

Starting the Master Agent on Another Port . 174
Manually Configuring the SNMP Master Agent . 175
Editing the Master Agent CONFIG File . 175
Defining sysContact and sysLocation Variables . 176

8 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring the SNMP Subagent . 176
Starting the SNMP Master Agent . 178

Manually Starting the SNMP Master Agent . 178
Starting the SNMP Master Agent Using the Admin Server . 178

Enabling the Subagent . 180

Chapter 7 Configuring the Web Server Plugin . 183
About the Web Server Plugin . 183
Handling Client Requests . 184

HTTP Basics . 184
Steps in the Request Handling Process . 186

Web Server Plugin Configuration . 187
The Web Server Plugin SAF Reference . 188

init-passthrough . 188
auth-passthrough . 188
service-passthrough . 189
check-passthrough . 190

Using the Web Server Plugin . 191
Configuring Microsoft IIS To Use the Web Server Plugin . 192

Configuring the Web Server Plugin for IIS . 193
Configuring IIS to Use the Web Server Plugin . 194
Configuring Multiple Server Pools . 195
Sample sun-passthrough.properties File . 196

Configuring the Web Server Plugin to Use With Apache Server . 197

Chapter 8 Configuring J2EE Containers . 201
About the Web Container . 201

Understanding the Web Container’s Role . 203
Web Application Configuration . 203

Virtual Server Attributes . 203
Web-module Attributes . 204

Web Application Deployment . 205
Dynamic Re-deployment and Hot Deployment . 205

Single Sign-on Facility . 206
Logging the Web Container . 206

About the EJB Container . 208
Understanding the EJB Container’s Role . 208

Types of Enterprise Java Beans . 210
About Message-driven Beans . 213

Configuring the EJB Container . 214
Performing General Configuration . 214
Configuring EJB Settings . 216

9

Configuring MDB Pool Settings . 219

Chapter 9 Using Transaction Services . 221
What Is a Transaction? . 221
Transactions in J2EE . 222
Transactional Resource Managers . 223

Databases . 223
JMS Providers . 224
J2EE Connectors . 224

Local and Distributed Transactions . 225
Container-Managed Transactions . 227

Transaction Attributes . 228
Required . 229
RequiresNew . 229
Mandatory . 229
NotSupported . 229
Supports . 230
Never . 230
Attribute Summary . 230

Setting Transaction Attributes . 231
Rolling Back a Container-Managed Transaction . 231
Synchronizing a Session Bean’s Instance Variables . 233
Methods Not Allowed in Container-Managed Transactions . 234

Bean-Managed Transactions . 234
Transaction Service Administration . 235

Administering Transactions Using the Administration Interface . 235
Administering Transactions Using the Command-Line Interface . 238

Listing In-Flight Transactions . 238
Managing Transactions . 239
Freezing the Transaction Service . 239
Monitoring Transactions . 239

Chapter 10 Configuring Naming and Resources . 241
About J2EE Naming Services and Resources . 241

JDBC Datasources . 242
Java Mail Sessions . 242
JMS Destinations . 243

About Java Naming and Directory Interface (JNDI) . 243
JNDI Architecture . 243
J2EE Naming Services . 244
Naming References and Binding Information . 245
Naming References in J2EE Standard Deployment Descriptor . 246

10 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Application Environment Entries . 247
EJB References . 247
References to Resource Manager Connection Factories . 248
Resource Environment References . 249
UserTransaction References . 250
Initial Naming Context . 250
COSNaming Service . 250

JNDI Connection Factories . 252
To Create a Custom Resource . 253
To Create an External JNDI Resource . 255
Accessing External JNDI Repositories . 256
Mapping Application Resource References . 257
About URL Connection Factory Resources . 257
Mapping Application Resource Environment References . 258
Mapping EJB References . 258

About Persistence Manager Resources . 259
What is Persistence? . 259
The Role of the Persistence Manager . 260
Pre-Deployment Bean Configuration . 261
Creating a New Persistence Manager . 263

About JDBC Resources . 264
About the JDBC API . 265

What Does The JDBC API Do? . 265
About Database Access Models . 266
About JDBC Datasources . 267

Properties Of a DataSource Object . 267
Registering a JDBC Resource . 269

About JDBC Connections . 271
About JDBC URLs . 272
Configuring JDBC Connection Pools . 273
About Connection Pooling . 282
Monitoring JDBC Connection Pooling . 284
About Connection Sharing . 284

About JDBC Transactions . 284
About Java Mail Resources . 286

About the JavaMail Message-handling Process . 287
About the Architectural Components of JavaMail . 288

The Message Class . 288
Message Storage and Retrieval . 289
Message Composition and Transport . 289

About JavaBeans Activation Framework (JAF) . 290
About JavaMail Configuration Parameters . 291
J2EE Deployment Descriptor for JavaMail Session References . 293

11

Entries in Sun ONE Application Server Deployment Descriptor . 293
Creating a New JavaMail Session . 294
Configuring Advanced Resource Properties . 295

Chapter 11 Using the JMS Service . 299
About JMS . 300

Basic Messaging System Concepts . 300
Message . 301
Message Service Architecture . 301
Message Delivery Models . 301

The JMS Specification . 302
JMS Message Structure . 302
JMS Programming Model . 302
Administered Objects: Provider Independence . 304

Message-driven Beans . 304
The Built-in JMS Service . 306

About Sun ONE Message Queue (MQ) . 307
MQ Message Server . 307
MQ Client Runtime . 309
MQ Administered Objects . 310
MQ Administration Tools . 310

Integration of MQ with Sun ONE Application Server . 311
Architecture of the Built-in JMS Service . 311
Disabling the Built-in JMS Service . 313

Administration of the Built-in JMS Service . 314
Configuring the JMS Service . 315
Managing Physical Destinations . 318

Create a Queue or Topic Destination . 319
List Physical Destinations . 320
Delete a Physical Destination . 320

Managing Administered Object Resources . 321
Administered Object Attributes . 322
Administered Object Resource Management Tasks . 322

Administering the Built-in JMS Service Using the Command-Line Interface 327

Chapter 12 Configuring the Server For CORBA/IIOP Clients . 329
About Support for CORBA/IIOP Clients . 329

About Interoperabillity . 330
About the ORB . 330
About the RMI/IIOP Functionality . 330
About the Authentication Process . 331

Configuring the ORB . 332

12 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To Perform General ORB Configuration . 332
To Configure IIOP Listener For the ORB . 335

Chapter 13 Deploying Applications . 339
About J2EE Modules . 340
About J2EE Applications . 341
J2EE Standard Descriptors . 341
Sun ONE Application Server Descriptors . 342
Naming Standards . 343
Deployment Directory Structure . 344
Runtime Environments . 346

Module Runtime Environment . 346
Application Runtime Environment . 347
Configuring server.xml To Use FastJavac Compiler . 348

About Classloaders . 348
Deploying Modules and Applications . 349

Deployment Names and Errors . 349
The Deployment Life Cycle . 349

Dynamic Deployment . 350
Disabling a Deployed Application or Module . 350
Dynamic Reloading . 350

Tools for Deployment . 351
The asadmin Utility . 352
The Administration Interface . 353
Sun ONE Studio . 353

Deployment of Module or Application . 354
Deploying a WAR Module . 354
Deploying an EJB JAR Module . 355
Deploying a Lifecycle Module . 355

The asadmin Utility . 355
The Administration Interface . 356

Deploying an RMI/IIOP Client . 357
Deploying a J2EE CA Resource Adapter . 357
Deploying Static Content . 358
Access to Shared Frameworks . 358

The Application Deployment Descriptor Files . 358

Part 3 Managing HTTP Server Features and Virtual Servers . 359

Chapter 14 Configuring HTTP Features . 361
About the HTTP Features . 361

13

Configuring the File Cache . 362
Tuning Your Server for Performance . 362
Configuring HTTP Quality of Service . 363
Adding and Using Thread Pools . 365
Editing Advanced Settings . 366
Configuring MIME Types . 367

Chapter 15 Using Virtual Servers . 369
Virtual Servers Overview . 369

HTTP Listeners . 370
Virtual Servers . 371

Types of Virtual Servers . 372
IP-Address-Based Virtual Servers . 372
URL-Host-Based Virtual Servers . 372
Default Virtual Server . 373

The obj.conf File . 373
Virtual Server Selection for Request Processing . 374
Document Root . 374

Using Sun ONE Application Server Features with Virtual Servers . 375
Using SSL with Virtual Servers . 375
Using Access Log Files and Server Log Files . 376
Using Access Control with Virtual Servers . 376
Using CGIs with Virtual Servers . 377

Creating and Configuring HTTP Listeners . 377
Creating an HTTP Listener . 377
Editing HTTP Listener Settings . 379
Deleting an HTTP Listener . 379

Creating and Configuring Virtual Servers . 380
Creating a Virtual Server . 380

Required Settings . 381
Optional General Settings . 381
Web Application Settings . 383
CGI Settings . 383
HTTP Quality of Service Settings . 383

Editing Virtual Server Settings . 384
Editing General Settings Using the Administration Interface . 384
Editing General Settings Using the Command-Line Interface . 385
Editing CGI Settings . 386
Editing Document Handling Settings, Document Directories Settings, and HTTP/HTML
Settings . 386

Deleting a Virtual Server . 386
Deploying Virtual Servers . 387

Example 1: Default Configuration . 387

14 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Example 2: Secure Server . 388
Example 3: Intranet Hosting . 390
Example 4: Mass Hosting . 392

Chapter 16 Managing Virtual Server Content . 395
Changing the Document Root . 396
Setting Additional Document Directories . 396
Enabling Remote File Manipulation . 397
Using htaccess . 398
Restricting Symbolic Links (UNIX) . 398
Customizing User Public Information Directories (UNIX) . 399

Configuring Public Information Directories . 400
Restricting Content Publication . 401
Loading the Entire Password File on Startup . 401

Setting the Document Preferences . 401
Entering an Index Filename . 402
Selecting Directory Indexing . 402
Specifying a Server Home Page . 403
Specifying a Default MIME Type . 403

Customizing Error Responses . 403
Changing the International Character Set . 404
Setting the Document Footer . 406
Configuring URL Forwarding . 406
Setting up Server-Parsed HTML . 407
Setting Cache Control Directives . 408
Using Stronger Ciphers . 409

Part 4 Appendixes . 411

Appendix A Using the Command Line Interface . 413
About the Command Line Interface . 413

About the asadmin Utility . 414
About Ant Tasks . 414
About Other Command Line Utilities . 414

Using asadmin . 415
Understanding the Command Syntax . 416

Command . 416
Options . 416
Boolean Options . 416
Operands . 417
Syntax Example . 417

15

Using Singlemode and Multimode . 417
Singlemode . 418
Multimode . 418
Multiple Multimode . 418

Using Interactive and Non-Interactive Options . 419
Using the Environment Commands . 419
Using the Password File Option . 421
Running asadmin Locally or Remotely . 422
Using Command Line Invocations . 423

Using asadmin from the Command Line . 423
Using asadmin with Input from a File (Script) . 424
Using asadmin with Standard Input (Pipe) . 424

Using Escape Characters . 424
Escape Characters on UNIX in Singlemode . 425
Escape Characters on Windows in Singlemode . 425
Escape Characters on All Platforms in Singlemode . 426
Escape Characters on All Platforms in Multimode . 426

Using get and set Commands . 426
get and set Command Examples . 428
Getting and Setting Multiple Values Examples . 429
Monitoring Using get and set Commands . 429

Using Help . 429
Viewing Output and Errors . 430

Viewing the Exit Status . 430
Viewing Usage . 431

Security Considerations . 432
Concurrent Access Considerations . 432
Command Reference . 433

List of Commands . 433
List of Dotted Names and Attributes . 437
Dotted Names Used in asadmin . 438

Service Names . 438
Resource Names . 439
Application Names . 439
Other Names . 440

Attributes . 440
jms-service . 440
transaction-service . 441
mdb-container . 442
ejb-container . 442
web-container . 443
java-config . 444
orb or iiop-service . 445

16 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

orblistener or iiop-listener . 446
log-service . 447
security-service . 448
http-service . 448
jdbc-resource . 449
jndi-resource . 450
jdbc-connection-pool . 450
custom-resource . 451
jms-resource . 452
persistence-manager-factory-resource . 452
mail-resource . 453
application . 454
ejb-module . 455
web-module . 456
connector-module . 457
http-listener or http-server.http-listener . 457
mime . 459
acl . 459
virtual-server . 460
auth-db . 461
authrealm . 462
lifecycle-module . 462
profiler . 463
server configuration (name of server instance) . 464

Long and Short Option Formats, Default Values, and Environment Variable Equivalents 464

Appendix B Third Party Copyright Notices . 469

Glossary . 471

Index .497

17

About This Guide

This guide describes how to configure and administer Sun™ ONE Application
Server 7. It is intended for information technology administrators in the corporate
enterprise who want to extend client-server applications to a broader audience
through the World Wide Web.

This preface includes the following sections:

• What’s In This Guide?

• How This Guide Is Organized

• Documentation Conventions

• Product Line Overview

• Using the Documentation

• Product Support

What’s In This Guide?
This guide explains how to configure and administer the Sun ONE Application
Server. After configuring your server, use this guide to help maintain your server.

How This Guide Is Organized

18 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

How This Guide Is Organized
This guide is divided into four parts, plus a comprehensive index. Begin with
“Part 1, “Server Basics and Administering Global Settings,” for an overview of the
product. “Part 2, “Managing an Individual Server Instance,” introduces you to
using the Administration Server, and to using other server functions that affect all
server instances.

Once you are familiar with the fundamentals of using the Administration Server,
you can refer to “Part 3, “Managing HTTP Server Features and Virtual Servers,”
which provides information for using programs and configuration styles.

Finally, Appendixes addresses specific reference topics that describe the various
topics, including internationalization issues, server extensions, and the Sun ONE
Application Server command line interface documentation.

Part I: Server Basics and Administering Global
Settings
This part provides an overview of the Sun ONE Application Server. The following
chapters are included:

• Chapter 1, “Getting Started with Sun ONE Application Server
Administration,” provides an overview of Sun ONE Application Server.

• Chapter 2, “Setting Administration Server Preferences,” describes how to
manage your Administration Server.

• Chapter 3, “Configuring Administrative Domains,” describes how to use
multiple domains.

Part II: Managing an Individual Server Instance
This part provides conceptual and procedural details about configuring,
managing, and using server instances. The following chapters are included:

• Chapter 4, “Using Application Server Instances,” describes how to configure
server preferences for your Sun ONE Application Server.

• Chapter 5, “Using Logging,” describes the foundation for logging, and the
logging features and functions within Sun ONE Application Server.

How This Guide Is Organized

About This Guide 19

• Chapter 6, “Monitoring the Sun ONE Application Server,” contains
information about the monitoring and Simple Network Management Protocol
(SNMP) features and functions available within Sun ONE Application Server.

• Chapter 7, “Configuring the Web Server Plugin,” explains how Sun ONE
Application Server processes HTTP requests, and how to configure and use the
web server plugin with Sun ONE Application Server.

• Chapter 8, “Configuring J2EE Containers,” explains how to configure and use
the container that provide runtime support for J2EE application components
such as Enterprise Java Beans (EJBs) and Message Driven Beans (MDBs).

• Chapter 9, “Using Transaction Services,” explains database transactions and
how to use manage them.

• Chapter 10, “Configuring Naming and Resources,” explains how to configure
J2EE resources.

• Chapter 11, “Using the JMS Service,” provides information needed to
understand and administer the built-in JMS Service provided through Sun
ONE Message Queue, the native JMS provider.

• Chapter 12, “Configuring the Server For CORBA/IIOP Clients,” explains how
to configure support for CORBA-based clients, using the RMI/IIOP protocol
within an Sun ONE Application Server environment.

• Chapter 13, “Deploying Applications,” describes how to deploy applications to
the Sun ONE Application Server.

Part III: Managing HTTP Server Features and
Virtual Servers
This part provides information for using the Administration interface to programs
and configuration styles. The following chapters are included:

• Chapter 14, “Configuring HTTP Features,” describes how to configure
preferences for your HTTP-related features of your Sun ONE Application
Server.

• Chapter 15, “Using Virtual Servers,” describes how to set up and administer
virtual servers using your Sun ONE Application Server.

• Chapter 16, “Managing Virtual Server Content,” describes how you can
configure and manage your server’s content.

Documentation Conventions

20 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Part IV: Appendixes
This section includes various appendixes with reference material that you may
wish to review. This section includes the following appendixes:

• Appendix A, “Using the Command Line Interface,” provides instructions for
using command line utilities in place of the user interface screens.

• Appendix B, “Third Party Copyright Notices,” contains additional copyright
information.

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

Documentation Conventions

About This Guide 21

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 21.

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 21
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

Product Line Overview

22 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Line Overview
Sun ONE Application Server 7 is a J2EE 1.3 specification-compatible application
server which also supports emerging Java Web Services standards as well as
standard HTTP server programming facilities. Three editions of the application
server are offered to suit a variety of needs for both production and development
environments:

• Platform Edition

• Standard Edition

• Enterprise Edition

Product Line Overview

About This Guide 23

Platform Edition
Platform Edition forms the core of the Sun ONE Application Server 7 product line.
This free-for-production-use product offers a high-performance, small-footprint
J2EE 1.3 specification-compatible runtime environment that is ideally suited for
basic operational deployments, as well as for embedding in third-party
applications. Web-services ready, the Platform Edition includes built-in
technologies proven by the Sun ONE Web Server and Sun ONE Message Queue
products.

Platform Edition deployments are limited to single application server instances (i.e.
single virtual machines for the Java platform (“Java virtual machine” or “JVM™”)).
Multi-tier deployment topologies are supported by the Platform edition, but the
web server tier proxy does not perform load balancing. In Platform Edition,
administrative utilities are limited to local clients only.

Platform Edition is integrated into Solaris 9.

Standard Edition
This is the edition that is the focus of this Administrator’s Guide. The Standard
Edition layers enhanced, remote-management capabilities on top of the Platform
Edition. Enhanced management capabilities, remote command-line, and
web-based administration are all included as part of the Standard Edition. This
edition also includes the ability to partition web application traffic through a web
server tier proxy. Standard Edition supports configuration of multiple application
server instances (JVMs) per machine.

Enterprise Edition
Enterprise Edition enhances the core application server platform with greater high
availability, load balancing and clustering capabilities suited for the most
demanding J2EE-based application deployments. The management capabilities of
the Standard Edition are extended in Enterprise Edition to account for
multi-instance and multi-machine deployments.

Using the Documentation

24 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Clustering support includes easy-to-configure groups of cloned application server
instances to which client requests can be load balanced. Both external load
balancers and load balancing web tier-based proxies are supported by this edition.
HTTP session, stateful session bean instance and Java Message Service (JMS)
resource failover are included in the Enterprise Edition. The patented “Always On”
highly available database technology forms the basis for the HA persistence store
in the Enterprise Edition.

For more product information, see the Sun ONE Application Server page on the
Sun Microsystems web site.

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, evaluation installation information, and
architectural overview.

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration
interface, Sun ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Sun ONE
Application Server 7. Includes general information about
application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules.

Developer’s Guide

Using the Documentation

About This Guide 25

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Sun ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the
Sun ONE Application Server 7. Discusses EJB
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

Creating clients that access J2EE applications on the Sun
ONE Application Server 7

Developer’s Guide to Clients

Creating web services Developer’s Guide to Web
Services

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plugins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command
line interface

• Configuring server preferences

• Using administrative domains

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plugin

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Table 1 Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Product Support

26 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

Editing server configuration files Administrator’s Configuration
File Reference

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. HTTP server-based security is also addressed.

Administrator’s Guide to
Security

Configuring and administering service provider
implementation for J2EE CA connectors for the Sun ONE
Application Server 7. Includes information about the
Administration Tool, DTDs and provides sample XML
files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Migrating your applications to the new Sun ONE
Application Server 7 programming model from the
Netscape Application Server version 2.1, including a
sample migration of an Online Bank application provided
with Sun ONE Application Server

Migrating and Redeploying
Server Applications Guide

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at:

http://docs.sun.com/

Table 1 Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Product Support

About This Guide 27

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

Product Support

28 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

29

Part 1

Server Basics and Administering
Global Settings

Chapter 1, “Getting Started with Sun ONE Application Server
Administration”

Chapter 2, “Setting Administration Server Preferences”

Chapter 3, “Configuring Administrative Domains”

30 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

31

Chapter 1

Getting Started with Sun ONE
Application Server Administration

This chapter describes the basics of administering Sun ONE Application Server:
where to find general information about the server, how to access the server’s user
interfaces, and how to access online help.

This chapter includes the following sections:

• About Sun ONE Application Server

• Configuring the Bundled Solaris Version

• Using the Administration Interface

• Using the Command-line Interface

• Accessing the Administration Server

• Accessing Application Server Instances

• Using Sun ONE Studio

• About Configuration Files

• Using the License Commands

About Sun ONE Application Server
The Sun ONE Application Server provides a robust J2EE platform for the
development, deployment, and management of e-commerce application services to
a broad range of servers, clients, and devices. Key features include transaction
management, performance, scalability, security, and enterprise application
integration.

About Sun ONE Application Server

32 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Sun ONE Application Server supports services from web publishing to
enterprise-scale transaction processing, while enabling developers to build
applications based on JavaServer Pages (JSP™), Java Servlet and Enterprise
JavaBeans™ (EJB™) technology.

It contains the following basic tools for administrators:

• Multiple administrative domains that allow different administrators to create
and manage their own set of application server instances.

• An Administration Server that provides administration facilities (one
Administration Server per domain)

• A graphical user interface for server administration (the Administration
interface)

• A command-line interface you can use to perform the same tasks as the
Administration interface

Use these tools to perform all administrative functions, including:

• Administering domains

• Managing server instances

• Deploying applications

• Monitoring the server

• Using log files

• Administering resources

• Administering a Message Queue server

• Using transaction services

• Using Corba/IIOP clients

• Configuring the web server plug-in

• Configuring J2EE containers

• Administering HTTP server features

For more information about the Sun ONE Application Server architecture and
features, and for initial steps to take with your Sun ONE Application Server, see
the Sun ONE Application Server Getting Started Guide.

Configuring the Bundled Solaris Version

Chapter 1 Getting Started with Sun ONE Application Server Administration 33

Configuring the Bundled Solaris Version
This guide refers to two kinds of Sun ONE Application Server installations for
Solaris: Solaris 9 bundled and unbundled. If you received your copy of the Sun
ONE Application Server as part of the Solaris 9 installation, you have the Solaris
bundled version. If you have a standalone copy of the Sun ONE Application
Server, you have the unbundled version.

If you are using the version of the Sun ONE Application Server bundled with
Solaris 9, you need to perform some extra configuration steps before you can start
using the server.

When you install an unbundled version of the Sun ONE Application Server, as part
of the installation process a domain, an Administration Server, and a server
instance are automatically created.

When you use the Solaris 9 bundled version, you have to create these items
manually, as well as perform other steps. Once you have performed these initial
steps, you can take advantage of all Sun ONE Application server features,
including adding additional administrative domains and server instances.

The following topics are discussed in this section:

• Creating an Administrative Domain

• Starting the Administration Server

• Creating an Application Server Instance

• Deploying Applications

Creating an Administrative Domain
Multiple administrative domains allow different administrative users to create and
manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system. Each domain has one
Administration Server.

When you create a new domain, you specify:

NOTE If you are using the unbundled Solaris version of the Sun ONE
Application Server, or if you are using the Windows version, please
skip this section and move on to “Using the Administration
Interface” on page 35.

Configuring the Bundled Solaris Version

34 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• A port number for the Administration Server. The default when you install an
unbundled version is 4848.

• An administration username and password. These passwords are required
when you access the Administration Server, either when you access the
Administration interface or when you run the command-line interface.

• The domain location.

You must create a domain using the command-line interface’s asadmin utility’s
create-domain command. For more information on creating an administrative
domain, see Chapter 3, “Configuring Administrative Domains.”

Starting the Administration Server
When you create an administrative domain, you create an Administration Server.
The Administration Server is a special instance of the Sun ONE Application Server
that serves the Administration interface and provides administrative facilities for
the command-line interface.

In order to use the Administration interface or to use many of the commands in the
command-line interface, you must have a running Administration Server. For
information on starting the Administration Server, see “Starting the
Administration Server” on page 47.

Creating an Application Server Instance
Once you have created a domain and started the Administration Server, you need
to create an application server instance. Each application server instance has its
own J2EE configuration, J2EE resources, application deployment areas, and server
configuration settings.

You can create an application server instance through the Administration interface
or through the command-line interface. The server instance is created in a folder
within the domain.

On the unbundled version, the server instance created at installation is called
server1. You will often see server1 used in examples throughout the
documentation.

For more information about creating an application server instance, see “Adding
an Application Server Instance” on page 78.

Using the Administration Interface

Chapter 1 Getting Started with Sun ONE Application Server Administration 35

Deploying Applications
Once you have created a domain, started the Administration Server, and added an
application server instance, you can deploy applications to that instance. For more
information, see Chapter 13, “Deploying Applications”.

Using the Administration Interface
Use the Administration interface to configure all aspects of your server. This
section contains the following topics:

• Accessing the Administration Interface

• Using Tabs

• Using Buttons

• Accessing Online Help

• Exiting the Administration Interface

Accessing the Administration Interface
The Administration interface for Sun ONE Application Server runs on an HTTP
server called the Administration Server. The Administration Server is installed
when you install Sun ONE Application Server if you are using an unbundled
version. You have to create an administrative domain and Administration Server if
you are installing the bundled version. For more information, see “Configuring the
Bundled Solaris Version” on page 33.

The Administration Server must be running in order for you to use the
Administration interface. For information on starting the Administration Server,
see “Starting the Administration Server” on page 47.

NOTE Some aspects of server configuration and corresponding
Administrative interfaces are still undergoing change. An unstable
interface may be removed and replaced with a cleaner and more
stable version in a subsequent product release. Most server
configuration and administrative interfaces will remain the same or
change in a compatible manner; however some aspects may change
incompatibly. Product documentation for future releases will clearly
describe incompatible when they do occur.

Using the Administration Interface

36 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

When you installed the Sun ONE Application Server or created a domain, you
chose a port number for the Administration Server, or used the default port of
4848. To access the Administration interface, in a web browser type:

http://hostname.domain:port/

For example:

http://austen.sun.com:4848/

If you are accessing the Administration Server from the same machine you
installed Sun ONE Application Server on, you can use:

http://localhost:4848

You are prompted for a user name and password, which the installing user set
during installation or when you created the domain and Administration Server.

You can access the Administration interface from a remote location as long as you
have access to a browser. You can access it from any machine that can reach the
server over the network.

On Windows, you can access the Administration interface from the Start menu by
choosing Programs, then Sun Microsystems, then Sun ONE Application Server 7,
then Start Admin Console.

The following figure shows the Administration interface.

Using the Administration Interface

Chapter 1 Getting Started with Sun ONE Application Server Administration 37

Figure 1-1 The Sun ONE Application Server Administration Interface

The left pane is a tree view of all items you can configure in the Sun ONE
Application Server. To use the Administration interface, click an item in the left
pane. The right pane displays the page associated with that item.

If an item in the left pane has an open/close symbol next to it, you can expand that
item to subitems by clicking on the open/close symbol. When the tree item is not
expanded, the symbol looks like this:

Figure 1-2 Closed Symbol

When the tree item is expanded, the symbol looks like this:

Figure 1-3 Open Symbol

Using the Administration Interface

38 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using Tabs
Some portions of the Administration interface contain tabs which you use to
navigate to other pages. These tabs appear in a separate pane at the top of the right
pane.

To use the tabs, click the tab name. Some tabs take you directly to a page, while
others have a list of pages available from the tab which appear below the tab
names. Click a page name to go to that page.

The following figure shows the Administration interface with tabs:

Figure 1-4 Administration Interface With Tabs

Using Buttons
The following standard buttons are available in the Administration interface.

Using the Administration Interface

Chapter 1 Getting Started with Sun ONE Application Server Administration 39

Other buttons are available depending upon the needs of a particular screen.

Accessing Online Help
You can access help for any page in the Administration interface by clicking the
Help button in the banner at the top of the Administration interface. The online
help describes the use of the page you are accessing and gives information about
what to enter in the fields on the page.

Table 1-1 Standard Administration interface Buttons

Button Action Performed

Cancel Cancels without saving your changes and returns to previous page.

Delete Deletes an item. Often you click Select next to an item to indicate what to
delete when you click Delete.

New Displays a page for creating a new item. For example, clicking New on the
Application Server Instances page displays the Create New Instance page.

OK Saves your entries. If you’ve made configuration changes to a Sun ONE
Application Server instance, you must apply your changes in order for
them to take effect.

For more information, see “Applying Changes to an Application Server
Instance” on page 79.

Reset Resets the values on the page to the default values.

Save Saves your entries. If you’ve made configuration changes to a Sun ONE
Application Server instance, you must apply your changes in order for
them to take effect.

For more information, see “Applying Changes to an Application Server
Instance” on page 79.

Using the Administration Interface

40 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 1-5 Online Help

You can navigate to help for other pages using the table of contents in the left pane
of the help window. For help on using help, see the first topic, Using Help, in the
online help table of contents.

Using the Command-line Interface

Chapter 1 Getting Started with Sun ONE Application Server Administration 41

Exiting the Administration Interface
There is no explicit exit or logout button in the Administration interface. To exit,
close the browser you are using to access the Administration interface. Also, close
other instances of the same browser that may be running on your machine.

Using the Command-line Interface
Sun ONE Application Server contains a command-line interface. You can use the
asadmin utility and the commands associated with it to perform the same set of
tasks as you can perform in the Administration interface. For example, you can
start and stop application server instances, configure the server, and deploy
applications.

You can use these commands either from a command prompt in the shell, or you
can call them from other scripts and programs. You can use these commands to
automate repetitive administration tasks.

For more information about using the command-line interface, and for a list of
commands, see Appendix A, “Using the Command Line Interface.”

Accessing the Administration Server
The Administration Server is a special instance of the Sun ONE Application Server
that serves the Administration interface and provides administrative facilities for
the Administration interface and the command-line interface. It manages the
configuration, deployment, and monitoring facilities for these interfaces and tools,
and so must be running for them to work.

To configure Administration Server properties, access the Administration
interface. Click Admin Server in the left pane to display configuration settings for
the Administration Server.

For more information on the Administration Server, see Chapter 2, “Setting
Administration Server Preferences.”

Accessing Application Server Instances

42 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Accessing Application Server Instances
You can have multiple Sun ONE Application Server instances. Each application
server instance has its own configuration, resources, and application deployment
areas that are independent of other application server instances. If you change the
configuration for one application server instance, you do not change the
configurations of other application server instances. The Administration interface
contains an item for every application server instance you create. One application
server instance is created at installation time if you are using the unbundled
version of the software. You can create others if you like.

If you are using Solaris 9 bundled version, the application server instance is not
automatically created. For more information, see “Configuring the Bundled Solaris
Version” on page 33.

For more information on application server instances, see Chapter 4, “Using
Application Server Instances.”

Using Sun ONE Studio
To deploy applications, in addition to using the Administration interface and the
command-line interface, you can also use Sun ONE Studio 4. For more information
about Sun ONE Studio, see the Sun ONE Studio 4, Enterprise Edition for Java with
Application Server 7 Tutorial at http://docs.sun.com

About Configuration Files
When you make a change to the server settings through the Administration
interface or command-line interface, the Administration Server changes the
underlying configuration files. These files contain setting for the Administration
Server and for individual application server instances.

For more information on the files and what settings they contain, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

Using the License Commands

Chapter 1 Getting Started with Sun ONE Application Server Administration 43

Using the License Commands
When you purchase Sun ONE Application Server, a license of the appropriate type
is installed automatically during installation. For more information on the types of
licenses and their restrictions, see the Sun ONE Application Server Installation Guide.

Sun ONE Application Server contains command-line utilities for managing your
licenses after installation.

To upgrade your license after installation, you can use the asadmin utility’s
install-license command for Windows machines. This command must be run
locally on the machine on which you have installed the Sun ONE Application
Server. You must stop any running application server before installing a license.

It has the following syntax:

asadmin install-license

For unbundled Solaris package-based installations, the following syntax is used for
license installation:

pkgadd -d full_path SUNWaslco

For example,

pkgadd -d /install_dir/pkg SUNWaslco

For Solaris 9 bundled license installation, the following syntax is used for license
installation:

pkgadd -d full_path SUNWaslc

To get information on your license, use the display-license command, which
has the following syntax:

asadmin display-license [--user admin_user] [--password admin_password]
[--passwordfile password_file][--host localhost] [--port admin_port]
[--local=true/false]

This command can be run locally or remotely, depending on the value of the local
option. For example, to run the command from the local machine, taking the
defaults for the host and the port number, the syntax is:

asadmin display-license --local

The output describes the type of license currently installed (for example,
evaluation) the expiration date, if it has one, the number of instances per
Administration Sever your license allows, and whether remote administration is
allowed or not.

Using the License Commands

44 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

45

Chapter 2

Setting Administration Server
Preferences

The Administration Server is a special instance of the Sun ONE Application Server
that serves the Administration interface and provides administrative facilities for
the Administration interface and the command-line interface. It manages the
configuration, deployment, and monitoring facilities for the Sun ONE Application
Server. This chapter explains how to configure the Administration Server.

This chapter includes the following topics:

• About the Administration Server

• Starting the Administration Server

• Shutting Down the Administration Server

• Accessing the Administration Server Settings

• Viewing Administration Server Control Settings

• Applying Changes to the Administration Server

• Editing HTTP Listener Settings for the Administration Server

• Setting SNMP, Logging, and Security Preferences

About the Administration Server

46 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About the Administration Server
The Administration Server is a special instance of the Sun ONE Application Server
that provides administrative facilities for the Administration interface and the
command-line interface. It manages the configuration, deployment, and
monitoring facilities for these interfaces. It serves the Administration interface
pages. It must be running in order for you to use the Administration interface and
to run most commands in the command-line interface.

An Administration Server is installed when you install the Sun ONE Application
Server (unbundled version) or create a new domain. You can only have one
Administration Server per domain, though you may create multiple Sun ONE
Application Server instances that are managed by an Administration Server. You
can access configuration settings, deployed applications, and other server features
for each application server instance by using the Administration Server.

For more information on administrative domains, see Chapter 3, “Configuring
Administrative Domains.”

If you are using the unbundled Sun ONE Application Server, when you installed
the Sun ONE Application Server you chose a port number for the Administration
Server, or used the default port of 4848.

If you are using the Solaris 9 bundled Sun ONE Application Server, you must
create a domain and an Administration Server manually. For more information on
configuring the Solaris 9 bundled version, see “Configuring the Bundled Solaris
Version” on page 33.

To access the Administration interface, in a web browser type:

http://hostname.domain:port/

Note that domain here is not your Sun ONE Application Server administrative
domain, but your domain name.

For example:

http://austen.sun.com:4848/

If you are accessing the Administration Server from the same machine you
installed Sun ONE Application Server on, you can use:

http://localhost:4848

You are prompted for a user name and password.

Starting the Administration Server

Chapter 2 Setting Administration Server Preferences 47

Starting the Administration Server
To start or restart the Administration Server, use one of the methods described in
the following topics:

• Using the startserv Script

• Using the Command-Line Interface

• Using the Services Window (Windows)

• Using the Start Menu (Windows)

Using the startserv Script
To start the Administration Server using the start script, log in as root if the server
runs on ports with numbers lower than 1024 (UNIX); otherwise, log in as root or
with the server’s user account. At the command-line prompt go to the directory:

install_dir/domains/domain_dir/admin-server/bin

where install_dir is the directory where you installed the server, and domain_dir is
the administrative domain directory.

For UNIX, type:

./startserv

You can use the optional parameter -i at the end of the line. The server normally
runs as a background process. The -i option prevents the server from putting itself
in the background. This option is useful if you are running the server using
/etc/inittab.

For Windows, run the startserv.bat file.

NOTE If the server is already running, the startserv command will fail. You
must stop the server first, then use the startserv command. Also, if the
server startup fails, you should kill the process before trying to restart it.

Starting the Administration Server

48 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using the Command-Line Interface
The command-line interface’s asadmin utility has a command start-domain that
you can use to start your Application Server and all associated Sun ONE
Application Server instances. You can only run this command locally, that is, from
the machine where your Sun ONE Application Server is installed. This command
requires no arguments.

You can also use the command start-domain to start all instances within an
administrative domain. It uses the syntax:

asadmin start-domain [--domain domain-name]

For more information on using the command-line interface, see the online help for
the command-line interface and Appendix A, “Using the Command Line
Interface.”

Using the Services Window (Windows)
To start the server by using the Services Control Panel in Windows, follow these
steps:

1. In the Control Panel click Administrative Tools.

2. Click Services.

3. Scroll through the list of services and double-click the Application Server 7.0
Administration Server service.

Select the Administration Server for the given domain. The Name column in
the Services window displays the name of an Administration Server as Sun
App Server Admin Server (your_domain_name:admin-server).

4. Click Start.

5. Click OK.

The Application Server 7.0 Administration Server service starts automatically
when you start your computer.

Using the Start Menu (Windows)
To start the server by using the Windows Start menu, follow these steps:

1. From the Start menu, choose Programs.

Shutting Down the Administration Server

Chapter 2 Setting Administration Server Preferences 49

2. Choose Sun Microsystems.

3. Choose Sun ONE Application Server 7

4. Click Start Application Server.

Shutting Down the Administration Server
Once the Administration Server is started it runs constantly, listening for and
accepting requests. You might want to stop and restart your server if, for instance,
you change the Administration Server logging preferences or the port that the
Administration Server’s HTTP Listener listens on.

When you stop the Administration Server, it stops accepting new connections.
Then it waits for all outstanding connections to complete. While the
Administration Server is stopped, you cannot use the Administration interface or
command-line interface.

You can stop the server using one the methods described in the following topics:

• Shutting Down Using the Administration Interface

• Shutting Down Using the stopserv Script

• Shutting Down Using the Command-Line Interface

• Shutting Down Using the Services Window (Windows)

After you shut down the server, it may take a few seconds for the server to
complete its shut-down process.

Shutting Down Using the Administration
Interface
To shut down the Administration Server using the Administration interface, follow
these steps:

1. In the left pane, click Admin Server.

2. Click the Control tab.

3. Click Stop.

The Administration Server shuts down immediately when you click this link.
There is no additional screen.

Shutting Down the Administration Server

50 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Shutting Down Using the stopserv Script
To stop the Administration Server manually, at the command prompt go to the
directory:

install_dir/domains/domain_dir/admin-server/bin

where install_dir is the directory where you installed the server and domain_dir is
the domain directory.

For UNIX, type:

./stopserv

You must run this command as the user that is running the server.

If you used the */etc*/inittab file to restart the server you must remove the line
starting the server from */etc*/inittab and type kill -1 before you try to stop
the server. Otherwise, the server restarts automatically after it is stopped.

For Windows, run the stopserv.bat file.

Shutting Down Using the Command-Line
Interface
You can stop the Administration Server using the command-line interface asadmin
utility’s shutdown command. This command requires no arguments and can be run
either locally or remotely.

You can also stop the Administration Server and all the associated Sun ONE
Application Server instances using the command-line interface asadmin utility’s
stop-appserv command. You can only run this command locally, that is, from the
machine where your Sun ONE Application Server is installed. This command
requires no arguments.

You can also shut down the Administration Server by shutting down the domain
using the stop-domain command. This command shuts down all instances in the
domain, including the Administration Server, by default. You can also configure it
to shut down all instances in the domain except the Administration Server. This
command has the following syntax:

asadmin stop-domain [--user admin_user] [--password admin_password]
[--host admin_host] [--port admin_port] [--local=true/false] [--domain
domain_name] [--adminserv=true/false] [--passwordfile file_name] [--secure |
-s]

Accessing the Administration Server Settings

Chapter 2 Setting Administration Server Preferences 51

If you use the local option, the command runs locally. If you use the
--adminserv=false option, the command will not stop the Administration Server.
However, --adminserv is set to true by default, so the Administration Server is
stopped by default.

For more information on using the command-line interface, see the online help for
the command-line interface and Appendix A, “Using the Command Line
Interface.”

Shutting Down Using the Services Window
(Windows)
To shut down the Administration Server using the Services window, follow these
steps:

1. In the Control Panel click Administrative Tools.

2. Click Services.

3. Scroll through the list of services and double-click the Sun Application Server 7
Admin Server service.

4. Click Stop.

5. Click OK.

Accessing the Administration Server Settings
To access the Administration Server settings, in the left pane of the Administration
interface click Admin Server. The settings for the Administration Server appear in
the right pane, organized by a set of tabs.

Accessing the Administration Server Settings

52 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 2-1 Administration Server User Interface

Click a tab to access the settings for a particular functional area. Sometimes clicking
a tab takes you directly to a page, and sometimes clicking a tab gives you a list of
pages to choose from.

This chapter covers the Control and HTTP Listener tabs. For information on
Monitoring and SNMP settings, see Chapter 6, “Monitoring the Sun ONE
Application Server.” For information on logging, see Chapter 5, “Using Logging.”

Viewing Administration Server Control Settings

Chapter 2 Setting Administration Server Preferences 53

Viewing Administration Server Control Settings
The Administration Server control settings show the instance name (Admin
Server), what port your Administration Server runs on, what directory contains the
configuration files, and what version of the Sun ONE Application Server software
you are running.

To view these settings:

1. In the left pane, click Admin Server.

2. Click the Control tab.

Applying Changes to the Administration Server
When you change the Administration Server’s configuration information using the
Administration interface or the command line interface you may need to apply
your changes in order for your changes to take effect. This is also called
reconfiguring the server. When you apply your changes, all changes made to the
configuration since the last time you applied changes take effect.

If you’ve made changes to the Administration Server’s configuration that require
you to apply changes, a yellow icon appears next to the Admin Server in the left
pane’s tree view.

Figure 2-2 Warning Icon

To apply configuration changes:

1. In the left pane, click Admin Server.

2. Click the Control tab.

3. Click Apply Changes.

When the changes are applied, the screen displays a message.

Editing HTTP Listener Settings for the Administration Server

54 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Editing HTTP Listener Settings for the
Administration Server

Before the server can process a request, it must accept the request via an HTTP
listener.

With the unbundled version of the Sun ONE Application Server, an HTTP listener
for the Administration Server, http-listener-1, is created automatically when
you install. This HTTP listener uses the IP address 0.0.0.0 and the port number you
specified as your Administration Server port number during installation. The
default is 4848. You cannot delete the default HTTP listener.

For an administrative server instance (in a domain), only the HTTP listener has the
http-listener-1 id. Another words, if you create an administration server
instance, only one HTTP listener can act in either HTTP or HTTPS protocol at any
point in time. (It also means that you cannot have both HTTP and HTTPS
connections to an administration server simultaneously.) For more information
about configuring the Solaris 9 bundled version, see “Configuring the Bundled
Solaris Version” on page 33.

The HTTP listener is where you activate and configure SSL/TLS security settings
for your Administration Server.

In addition, you specify the number of acceptor threads (sometimes called accept
threads) in the HTTP listener. Accept threads are threads that wait for connections.
The threads accept connections and put them in a queue where they are then
picked up by worker threads. Ideally, you want to have enough accept threads so
that there is always one available when a new request comes in, but few enough so
that they do not provide too much of a burden on the system. The default is 1. A
good rule is to have one accept thread per CPU on your system. You can adjust this
value if you find performance suffering. For more information on performance, see
the Sun ONE Application Server Performance Tuning and Sizing Guide.

To edit your Administration Server’s HTTP listener settings:

1. In the left pane, click Admin Server.

2. Click the HTTP Listeners tab.

3. Make the desired changes and click OK.

For more information on HTTP listeners, see the online help.

Setting SNMP, Logging, and Security Preferences

Chapter 2 Setting Administration Server Preferences 55

Setting SNMP, Logging, and Security
Preferences

For information on SNMP settings, see Chapter 6, “Monitoring the Sun ONE
Application Server.” For information on logging, see Chapter 5, “Using Logging.”
For information on security settings, see the Sun ONE Application Server
Administrator’s Guide to Security.

Setting SNMP, Logging, and Security Preferences

56 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

57

Chapter 3

Configuring Administrative Domains

This chapter explains how to set up and administer administrative domains with
your Sun ONE Application Server.

This chapter includes the following topics:

• About Administrative Domains

• Configuring Domains

• Recreating the Domain Registry

About Administrative Domains
Administrative domains provide a basic security structure whereby different
administrators can administer specific groups (domains) of application server
instances on a machine. By dividing the application server instances up like this it
is possible to share a single machine between disparate organizations, each with
their own administrator.

Within the Sun One Application Server every application server instance is a
member of one domain. It is not required that there be any more than one domain,
however, multiple domains are supported as a useful feature if so desired.

Administrative security is established for local commands using the underlying
operating system’s security mechanisms (that is, via file permissions). Remote
command security is established using a username/password pair to communicate
with a specific admin server. Administrative domains don’t utilize any other
security constructs.

This section describes the following topics:

• Implementing Administrative Domains

Configuring Domains

58 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Directory Structure

• Process/Port Structure

Implementing Administrative Domains
A domain is implemented using files, operating system processes and ports. Each
domain has a unique name.

Directory Structure
There are files (configuration, executables, and so on) that are shared by all
domains within an installation. What is important for this discussion are those files
which are specific to a domain.

The files specific to a domain all share a common root directory known as the
domain directory, and whose name is the name of the domain. Under the domain
directory is one directory per instance, each named after the instance, and under
each of those instance directories are instance-specific files.

A domain directory can be constructed anywhere in the file system (in accordance
with security permissions and other operating system level constraints). Unless a
user chooses otherwise, domain directories are constructed under a default
directory (known as the domains directory). However a user can choose to create a
domain directory anywhere.

Process/Port Structure
When a domain is running it consumes operating system processes and ports.
Specifically, for each instance running within a domain (including the domain’s
admin server) there is a process and a port.

Configuring Domains
Domains can be created, deleted, listed, started and stopped using commands
specifically designed for that purpose.

Creation, deletion and starting of domains can only be done locally, whereas listing
and stopping can be done both locally and remotely.

Configuring Domains

Chapter 3 Configuring Administrative Domains 59

The deletion, starting and stopping commands all take a domain name. This name
is optional if there is only one domain. The command will give an error if no
domain was given but there are multiple domains configured.

This section contains the following topics:

• Creating Domains

• Deleting Domains

• Listing Domains

• Starting Domains

• Stopping Domains

Creating Domains
Domains are created using the create-domain command. This command is local
only.

Synopsis:

asadmin create-domain [--path domain_path] [--sysuser sys_user]
[--passwordfile file_name] --adminport port_number --adminuser admin_user
--adminpassword password domain_name

Example: creating a domain in the default location
$ asadmin create-domain --adminport 123 --adminuser MyAdmin
--adminpassword MyPassword MyDomain

This example creates a domain called MyDomain in the default location (that is, the
domains directory). The administration server will listen on port 123, the admin
user name will be MyAdmin and the password will be MyPassword. The domain
directory and files underneath it will be owned by the operating system user who
executed this command. In addition, the operating system processes will run as the
user who executed this command.

If there’s already a domain called MyDomain then an error message is returned.

(Note that instead of using the password on the command line, which could be a
security issue, you can put the password in a file and pass it through in using the
--passwordfile option).

Configuring Domains

60 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Example: creating a domain somewhere other than the default
location
$ asadmin create-domain --path $HOME --adminport 123 --adminuser
MyAdmin --adminpassword MyPassword MyDomain

This example is similar to the first, except that the domain directory will now be
located underneath the user’s $HOME directory rather than under the default
domains directory.

Example: creating a domain for another user (UNIX only)
asadmin create-domain --user AnotherUser --adminport 123
--adminuser MyAdmin --adminpassword MyPassword MyDomain

This example is similar to the first, except that the domain and its files will be
owned by the user AnotherUser, as will the operating system processes

Using the --sysuser option provides the ability for one user to construct domains
that other users can subsequently administer. This option requires that the user
running the create-domain command be root.

User Permissions on UNIX Platforms
In order for a non-root user to create and delete administrative domains, you must
add the user ID to a UNIX group that has write permissions to the domain
configuration files:

1. Create a UNIX group that will be the group which is applied to the
installation-wide domain configuration files. For example, a UNIX group
named asadmin.

2. Set the installation-wide domain configuration files located under
/etc/appserver to be owned by the newly created UNIX group.

The files are named domains.bin and domains.lck. For example, after
changing the group assigned to these files:

-rw-r--r-- 1 root asadmin 0 Sep 18 14:34 domains.bin

-rw-r--r-- 1 root asadmin 0 Sep 18 14:34 domains.lck

3. Enable write access to these files by the newly created UNIX group. In this
example, the resulting permissions would look like the following:

-rw-rw-r-- 1 root asadmin 0 Sep 18 14:34 domains.bin

-rw-rw-r-- 1 root asadmin 0 Sep 18 14:34 domains.lck

4. Add the user ID to the UNIX group.

Configuring Domains

Chapter 3 Configuring Administrative Domains 61

Alternatively, if you do not want to provide non-root users with write access to the
installation-wide configuration files, you can create an administrative domain on
behalf of a user. During creation of a new administrative domain, specify the
--sysuser and --path options to identify the UNIX user ID that will own the
domain's directories and files and the location under which the administrative
domain will be created. For an example, see “Example: creating a domain for
another user (UNIX only)” on page 60.

Once an administrative domain is created under a user ID, the user may create new
application server instances and perform a wide variety of administrative
operations on the application server instances. The user ID does not need to belong
to the UNIX group that has write privileges for the administrative domain
configuration file. Membership in the UNIX group is required only to create and
delete administrative domains.

Deleting Domains
Domains are deleted using the delete-domain command. Only the operating
system user (or root) who can administer the domain can execute this command
successfully. This command is local only.

Synopsis:

asadmin delete-domain [domain_name]

Example: deleting a domain
$ asadmin delete-domain MyDomain

This example deletes the domain called MyDomain on the local machine.

Listing Domains
The domains created on a machine can be found using the list-domains
command.

This command can operate both locally and remotely.

Synopsis:

asadmin list-domains [--host host] [--port port] [--password password]
[--user user]

Configuring Domains

62 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Example: listing the domains on a local machine
$ asadmin list-domains

domain1 [/opt/ias/build/domains/domain1]

Example: listing the domains on the local machine using the remote
option:
$ asadmin list-domains --user admin --password password --host
localhost --port 4848

domain1 [/opt/ias/build/domains/domain1]

Starting Domains
Domains can be started using the start-domain command. This starts up the
domain's admin server and all other instances in the domain.

This command can only be run locally.

Synopsis:

asadmin start-domain [--domain domain_name]

Example: starting the only domain on a machine:
$ start-domain

Instance domain1:admin-server started

Instance domain1:server1 started

Domain domain1 Started.

Stopping Domains
Domains can be stopped using the stop-domain command. The user can choose to
stop every instance within a domain, or all the instances except the admin server,
thus leaving the domain able to be remotely administered.

This command can be run both locally and remotely.

Synopsis:

Recreating the Domain Registry

Chapter 3 Configuring Administrative Domains 63

asadmin stop-domain [--user admin_user] [--password admin_password]
[--host host_name] [--port port_name] [-- local=false] [--domain
domain_name] [--adminserv=true] [--passwordfile file_name] [--secure |
-s]

Example: Stopping all instances in a domain except for the admin
server instance.
$ asadmin asadmin stop-domain --user admin --password password
--host localhost --port 4848 --adminserv=false --domain domain1

DomainStoppedRemotely

Recreating the Domain Registry
For implementation purposes the details of each domain (its name, location, ports
used, and so on) are recorded in a file known as the domain registry.

Under normal operating conditions you should not have to do anything with the
domain registry directly, since any modification or use of the domain registry is
entirely encapsulated by the commands used to administer the system. However,
because the domain registry is a file, it can become corrupted (for example, when a
script goes wrong, or when someone inadvertently deletes the registry, and so on),
and in those cases you may have to recreate the file.

If the registry becomes corrupted, perform the following procedure to recreate the
registry:

1. Get a list of all the domains, and the directory (default or non-default) that
they’re located in.

2. Rename each directory (for example, append each directory name with the
suffix “.bak”)

3. Create each domain again in its original location, using default values for
ports, passwords, and so on.

4. Delete each new domain directory and replace it with the original directory.

NOTE You can access the domain registry through the command line
interface by using the asadmin command.

Recreating the Domain Registry

64 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

5. For each domain execute the reconfig command. This will cause the domain
registry to be updated with the values from the old domain.

65

Part 2

Managing an Individual Server
Instance

Chapter 4, “Using Application Server Instances”

Chapter 5, “Using Logging”

Chapter 6, “Monitoring the Sun ONE Application Server”

Chapter 7, “Configuring the Web Server Plugin”

Chapter 8, “Configuring J2EE Containers”

Chapter 9, “Using Transaction Services”

Chapter 10, “Configuring Naming and Resources”

Chapter 11, “Using the JMS Service”

Chapter 12, “Configuring the Server For CORBA/IIOP Clients”

Chapter 13, “Deploying Applications”

66 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

67

Chapter 4

Using Application Server Instances

This chapter describes how to create, delete, configure, start, and stop Sun ONE
Application Server instances.

This chapter includes the following topics:

• About Application Server Instances

• Starting and Stopping an Application Server Instance

• Starting the Application Server Instance in Debug Mode

• Setting the Termination Timeout

• Restarting an Application Server Instance Automatically (UNIX)

• Restarting an Application Server Instance Manually (UNIX)

• About the Watchdog

• Adding an Application Server Instance

• Deleting an Application Server Instance

• Applying Changes to an Application Server Instance

• Viewing Application Server Instance Status

• Configuring JVM Settings

• Configuring Logging Setting and Monitoring Settings

• Changing Application Server Instance Advanced Settings

About Application Server Instances

68 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Application Server Instances
Sun ONE Application Server creates one application server instance, called
server1, when you install the unbundled version of the software. You can delete
the server1 instance and create a new instance with a different name if you prefer.

If you are using the Solaris 9 bundled version of the software, you must create your
own server instance. For more information, see “Configuring the Bundled Solaris
Version” on page 33.

Each application server instance has its own J2EE configuration, J2EE resources,
application deployment areas, and server configuration settings. Changes to one
application server instance have no effect on other application server instances.
You can have many application server instances within one administrative
domain. Within a domain, all the server instances have the same Administration
Server. For more information on domains, see Chapter 3, “Configuring
Administrative Domains.”

For many users, one application server instance meets their needs. However,
depending upon your environment, you might want to create one or more
additional application server instances. For example, in a development
environment you can use different application server instances to test different Sun
ONE Application Server configurations, or to compare and test different
application deployments. Because you can easily add or delete an application
server instance, you can use them to create temporary “sandbox” areas to
experiment with while developing.

In addition, for each application server instance you can also create virtual servers.
Within a single installed application server instance you can offer companies or
individuals domain names, IP Addresses, and some administration capabilities.
For the users, it is almost as if they have their own web server, without the
hardware and basic server maintenance. These virtual servers do not span
application server instances. For more information about virtual servers, see
Chapter 15, “Using Virtual Servers.”

In operational deployments, for many purposes you can use virtual servers instead
of multiple application server instances. However, if virtual servers don’t meet
your needs, you can also use multiple application server instances.

Starting and Stopping an Application Server Instance

Chapter 4 Using Application Server Instances 69

Starting and Stopping an Application Server
Instance

A Sun ONE Application Server instance is not started automatically. Once you
start an instance, it the instance runs until you stop it. When you stop an
application server instance, it stops accepting new connections, then waits for all
outstanding connections to complete. If your machine crashes or is taken offline,
the server quits and any requests it was servicing may be lost.

You can start and stop the application server instance using one of several
methods, covered in the following topics:

• Using the Start and Stop Buttons in the Administration Interface

• Using the start-instance and stop-instance Commands

• Using the Windows Services (Windows)

• Using the startserv and stopserv Scripts

If you have a server certificate installed, the Sun ONE Application Server prompts
the administrator for the key database password before starting up. If you want to
be able to restart an unattended Sun ONE Application Server, you need to save the
password in a password.conf file. Only do this if your system is adequately
protected so that this file and the key databases are not compromised. For more
information on creating and using password.conf, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

NOTE If you have a security module installed with your server, you will
be required to enter the appropriate passwords before starting or
stopping the server.

NOTE On UNIX, some Sun ONE Application Server installations may
require access to more memory and/or file descriptors than your
operating system allows by default. If you are unable to start the
server, check the resource limits imposed by your operating system
using the ulimit command. Your operating system’s ulimit man
page should provide more information.

Starting and Stopping an Application Server Instance

70 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using the Start and Stop Buttons in the
Administration Interface
To start and stop the server using the Administration interface:

1. In the left pane, under App Server Instances, click the name of the instance to
start or stop.

2. In the right pane, click Start or Stop; or in the General Tab, click Start or Stop.

3. You see a message when the application server instance is started or stopped
successfully.

Using the start-instance and stop-instance
Commands
Using the command-line interface utility asadmin, you can start and stop your
application server instances either from the command prompt or from a script. Use
the commands start-instance and stop-instance.

These commands have the following syntax:

start-instance [--user admin_user] [--password admin_password] [--host
admin_host] [--port admin_port] [--local=true/false] [--domain domain_name]
[--debug=true/false] [--passwordfile file_name] [--secure | -s] instance_name

stop-instance [--user admin_user] [--password admin_password] [--host
admin_host] [--port admin_port] [--local=true/false] [--domain domain_name]
[--passwordfile file_name] [--secure | -s] instance_name

These commands have a local option which you can use to start or stop the server
without going through the Administration Server. If you use the local option, you
do not need to specify the host, port, user, and password (or passwordfile)
options.

For information on the syntax of these commands, use the asadmin help. For
information on using asadmin, see Appendix A, “Using the Command Line
Interface.”

Using the Windows Services (Windows)
You can start the server by using the Services Control Panel in Windows.

Follow these steps:

Starting and Stopping an Application Server Instance

Chapter 4 Using Application Server Instances 71

1. In the Control Panel click Administrative Tools.

2. Click Services.

3. Scroll through the list of services and double-click the service for your server.

It is called Sun Application Server (domain_name:instance_name). For example,
Sun Application Server (domain1:server1).

4. Click Start or Stop.

5. Click OK.

Using the startserv and stopserv Scripts
To use the startserv and stopserv scripts, at the command-line prompt go to the
directory:

instance_dir/bin

where install_dir is the directory where you installed the server, domain_dir is the
domain directory, and instance_dir is the name of the instance you want to start.

For UNIX, type:

./startserv

Log in as root if the server runs on ports with numbers lower than 1024; otherwise,
log in as root or with the server’s user account.

You can use the optional parameter -i at the end of the line. The -i option runs
the server in inittab mode, so that if the server process is ever killed or crashed,
inittab will restart the server for you. This option also prevents the server from
putting itself in a background process.

For Windows, type:

startserv

To stop the server manually, at the command-line prompt go to the directory:

NOTE If the server is already running, the startserv command will fail.
You must stop the server first, then use the startserv command.
Also, if the server startup fails, you should kill the process before
trying to restart it.

Starting the Application Server Instance in Debug Mode

72 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

instance_dir/bin

where install_dir is the directory where you installed the server and instance_dir is
the name of the instance you want to start.

For UNIX, type:

./stopserv

If you used the /etc/inittab file to restart the server you must remove the line
starting the server from /etc/inittab and type kill -1 1 before you try to stop
the server. Otherwise, the server restarts automatically after it is stopped.

For Windows, type:

stopserv

Starting the Application Server Instance in Debug
Mode

You can run the application server instance in debug mode if developers want to
debug their J2EE applications.

To start the server in debug mode:

1. Access the Administration interface and click the name of the application
server instance you want to start in debug mode.

2. Click the General tab.

3. Click the checkbox next to Run in Debug Mode.

4. Restart the application server instance.

Debug mode changes the JVM settings. Debug Enabled is set to true, and the
Debug Options change. For more information on the JVM Debug options, see the
Java Platform Debugger Options documentation at
http://java.sun.com/products/jpda/doc/conninv.html.

To start the application server instance in debug mode from the command-line
interface, use the asadmin utility’s start-instance command with the debug
option set to true. For more information on the command syntax, see the online
help for the command-line interface.

Setting the Termination Timeout

Chapter 4 Using Application Server Instances 73

Setting the Termination Timeout
When you stop an application server instance, it stops accepting new connections.
Then it waits for all outstanding connections to complete. The time the server waits
before timing out is configurable in the init.conf file, which can be found in
instance_dir/config/. By default it is set to 30 seconds. To change the value, add
the following line to init.conf:

TerminateTimeout seconds

where seconds represents the number of seconds the server will wait before timing
out.

The advantages to configuring this value is that the server will wait longer for
connections to complete. However, because servers often have connections open
from nonresponsive clients, increasing the termination timeout may increase the
time it takes for the server to shut down.

Restarting an Application Server Instance
Automatically (UNIX)

You can restart an application server instance using one of the following methods:

• Automatically restart it from the /etc/inittab file.

Note that if you are using a version of UNIX not derived from System V, you
will not be able to use the /etc/inittab file.

• Automatically restart it with daemons in /etc/rc2.d when the machine
reboots.

• Restart it manually. See “Starting and Stopping an Application Server
Instance” on page 69 and “Deleting an Application Server Instance” on
page 78.

This section contains the following topics:

• About Restarting Automatically

• Restarting Automatically with /etc/inittab (UNIX)

• Restarting Automatically with the System RC Scripts (UNIX)

Restarting an Application Server Instance Automatically (UNIX)

74 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Restarting Automatically
Because the installation scripts cannot edit the /etc/rc.local or /etc/inittab
files, you must edit those files with a text editor. If you do not know how to edit
these files, consult your system administrator or system documentation.

Normally, you cannot start an SSL-enabled server with either of these files because
the server requires a password before starting. Although you can start an
SSL-enabled server automatically if you keep the password in plain text in a file,
this is not recommended.

The server’s startserv script, key pair file, and the key password should be
owned by root (or, if a non-root user installed the server, that user account), with
only the owner having read and write access to them.

Restarting Automatically with /etc/inittab (UNIX)
To restart the server using inittab, put the following text on one line in the
/etc/inittab file:

http:2:respawn:install_dir/path_to_domain_dir/instance_dir/bin/startserv
-start -i

where install_dir is the directory where you installed the server, path_to_domain_dir
is the path to the domain and instance_dir is the server’s directory.

The -i option prevents the server from putting itself in a background process.

You must remove this line before you stop the server, otherwise the server
automatically restarts.

CAUTION Leaving the SSL-enabled server’s password in plain text in the
server’s startserv script is a large security risk. Anyone who can
access the file has access to the SSL-enabled server’s password.
Consider the security risks before keeping the SSL-enabled server’s
password in plain text.

Restarting an Application Server Instance Manually (UNIX)

Chapter 4 Using Application Server Instances 75

Restarting Automatically with the System RC
Scripts (UNIX)
If you use /etc/rc.local, or your system’s equivalent, place the following line in
/etc/rc.local:

install_dir/path_to_domain_dir/instance_dir/bin/startserv

Replace install_dir with the directory where you installed the server,
path_to_domain_dir with the path to the domain, and instance_dir with the name of
the application server instance.

Restarting an Application Server Instance
Manually (UNIX)

On UNIX, you have the option of restarting the server instance manually. Unlike
stopping the server instance, then starting it, a restart does not stop the watchdog
program. For information about the watchdog, see “About the Watchdog” on
page 77.

There are three ways to restart the server instance, covered in the following topics:

• Restarting the Server Instance Using the Restart Button (UNIX)

• Restarting the Server Instance Using the restart-instance Command (UNIX)

• Restarting the Server Instance Using the restartserv Script (UNIX)

NOTE If you have made manual changes to your configuration files by
editing them, you must apply changes before your restart the server,
either by using the Apply Changes button in the Administration
interface, or by using the asadmin reconfig command with the
keepmanualchanges option set to true. For more information on
applying changes, see “Applying Changes to an Application Server
Instance” on page 79.

Restarting an Application Server Instance Manually (UNIX)

76 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Restarting the Server Instance Using the Restart
Button (UNIX)
To restart the server instance using the Administration interface:

1. In the left pane, under App Server Instances, click the name of the instance to
restart.

2. In the right pane, click Restart.

3. You see a message when the application server instance is restarted
successfully.

Restarting the Server Instance Using the
restart-instance Command (UNIX)
Using the command-line interface utility asadmin, you can start and stop your
application server instances either from the command-line or from a script. Use the
commands restart-instance. This command has the following syntax:

restart-instance [--user admin_user] [--password admin_password] [--host
admin_host] [--port admin_port] [--local=true/false] [--domain domain_name]
[--passwordfile file_name] [--secure | -s] instance_name

This command has a local option which you can use to restart the server instance
without going through the Administration Server.

For information on the syntax of these commands, use the asadmin help. For
information on using asadmin, see Appendix A, “Using the Command Line
Interface.”

Restarting the Server Instance Using the
restartserv Script (UNIX)
To use the restartserv script, at the command-line prompt go to the directory:

instance_dir/bin

where install_dir is the directory where you installed the server, domain_dir is the
domain directory, and instance_dir is the name of the instance you want to start.

Type:

About the Watchdog

Chapter 4 Using Application Server Instances 77

./restartserv

Log in as root if the server runs on ports with numbers lower than 1024; otherwise,
log in as root or with the server’s user account.

About the Watchdog
The watchdog (appserv-wdog on UNIX, appservd-wdog.exe on Windows) is a
program that is shipped with your Sun ONE Application Server. It performs the
following tasks:

• Starts the server

• Stops the server

• If SSL/TLS is enabled, prompts the administrator for the trust database
password when the server starts

• Restarts the server if it goes down

The watchdog runs in the background, without user intervention. You should
never have to configure or otherwise change it. One watchdog runs for each
application server instance, including the Administration Server.

On UNIX, each watchdog spawns a process for the primordial application server
(appservd) process, which in turn spawns the appservd process that accepts
requests. Since it starts the server, the watchdog process ID is shown in the pid log
file in instance_dir/logs.

NOTE appservd Processes on UNIX Platforms: Although you will notice that
there is a single appservd process started for each application server
instance on Windows, there are two appservd processes started per
application server instance on UNIX systems.

On UNIX, one appservd process is referred to as the "primordial" process
while the second appservd process is referred to as the "worker" process.
The worker process is the process that carries out the actual processing of
application requests while the primordial process acts as an overarching
controller. In a future release of the application server, you will have the
option to define the number of worker processes for each application server
instance. In the initial release of the product, only one worker process is
supported per application server instance.

Adding an Application Server Instance

78 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Adding an Application Server Instance
To add an application server instance using the Administration interface:

1. Access the Administration interface and click App Server Instances in the left
pane.

2. Click the General tab.

3. On the Application Server Instances page, click New.

4. On the Create New Instance page, provide an instance name and a port
number.

The instance name must be unique for this Administration Server and domain.
The port number must not be used by any other process on the machine.

If you are using UNIX, you can also specify a UNIX user for the instance to run
as.

5. Click OK.

For more information, see the online help.

To add another application server instance using the command-line interface, use
the asadmin utility’s create-instance command, which has the following syntax:

asadmin create-instance [--user admin_user] [--password admin_password]
[--host host] [--port port] [--sysuser sys_user] [--domain domain_name]
[--local=true/false] [--passwordfile file_name] [--secure | -s]
--instanceport instance_port instance_name

This command has a local option which you can use to restart the server instance
without going through the Administration Server. The sysuser option is only for
UNIX.

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Deleting an Application Server Instance
You can delete an application server instance from your administrative domain. Be
sure that you don’t need the application server instance anymore before you delete
it, since this process cannot be undone.

Applying Changes to an Application Server Instance

Chapter 4 Using Application Server Instances 79

To delete an application server instance from your machine using the
Administration interface:

1. Access the Administration interface and click the name of the application
server instance you want to remove.

2. Click the General tab.

3. Click Delete.

For more information, see the online help.

To delete an application server instance from your machine using the
command-line interface, use the asadmin utility’s delete-instance command,
which has the following syntax:

asadmin delete-instance [--user admin_user] [--password admin_password]
[--host admin_host] [--port admin_port] [--domain domain_name]
[--local=true/false] [--passwordfile file_name] [--secure | -s] instance_name

This command has a local option which you can use to delete the server instance
without going through the Administration Server.

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Applying Changes to an Application Server
Instance

When you change configuration information using the Administration interface or
the command-line interface, the changes are not applied immediately, but are
saved into special files, located in server_instance/config/backup. The
Administration interface and command-line interface display configuration values
stored in files in the above directory. Until the changes you make are applied they
do not take effect. Applying changes is also called reconfiguring the server. When
you apply your changes, all changes made to the configuration since the last time
you applied changes take effect. Note that restarting the instance does not apply
the changes automatically.

If you’ve made changes to the server instance configuration that require you to
apply changes, a yellow icon appears next to the application server instance in the
left pane’s tree view, in the banner when you access the server instance, and on the
server instance’s main page.

Applying Changes to an Application Server Instance

80 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 4-1 Warning Icon

To apply changes to an application server instance using the Administration
interface:

1. Access the Administration interface and click the name of the application
server instance you want to reconfigure.

2. Click the General tab.

3. Click Apply Changes.

When the changes are applied, the screen displays a message.

To reconfigure an application server instance using the command-line interface,
use the asadmin utility’s reconfig command, which has the following syntax:

asadmin reconfig --user admin_user [--password admin_password] [--host
admin_host] [--port admin_port] [--passwordfile file_name] [--secure | -s]
[--discardmanualchanges=true/false | --keepmanualchanges=true/false]
instance_name

If you have made manual changes to the configuration files by editing them by
hand, you must use keepmanualchanges=true to keep those edits during the
reconfiguration (the option defaults to false). If you set
discardmanualchanges=true, you discard any changes made manually. Setting
discardmanulchanges=false (the default) does not mean the same thing as
keepmanualchanges=true. Instead, setting it to false it is the equivalent of not
specifying the discardmanualchanges option.

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

For some properties, you need to restart the server, as well as apply changes, in
order for your changes to take effect. These properties include all properties set in
the configuration files init.conf and obj.conf, and some properties in
server.xml. For information about these files, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Viewing Application Server Instance Status

Chapter 4 Using Application Server Instances 81

Your server will warn you if the changes require restart by putting a yellow
warning icon next to the server instance left pane’s tree view, in the banner when
you access the server instance, and on the server instance’s main page. The
messages in the banner and on the page indicate that a restart is required. Once you
restart the server instance, the yellow warning icons disappear.

The server.xml settings that do not require a restart include the following:

• Deploying, undeploying, and redeploying J2EE applications (EAR files), EJB
modules (JAR files), web modules (WAR files), connectors (RAR files). Note
that these settings also don’t require Apply Changes.

• Enabling and disabling J2EE applications (EAR files), EJB modules (JAR files),
web modules (WAR files), and connectors (RAR files).

• Creating, updating, and deleting resources.

• Setting monitoring enabled to true/false for the EJB container or MDB
container.

• Changes to HTTP and web-container features (that is, in server.xml, changes
to http-service and web-container and their sub-elements).

Viewing Application Server Instance Status
You can view whether a server is started or stopped, as well as basic application
server instance settings, using the Administration interface.

To view application server instance status:

1. In the left pane, click the application server instance name.

2. In the right pane, click the General tab.

You see whether the server is running or not running, as well as the hostname,
port number, installation directory, and the version of the Sun ONE
Application Server software.

To view the application server instance’s status using the command-line interface,
use the asadmin utility’s show-instance-status command. The status is starting,
started, stopping, or stopped. The command has the following syntax:

asadmin show-instance-status --user admin_user [--password
admin_password] [--host admin_host] [--port admin_port] [--passwordfile
file_name] [--secure | -s] instance_name

Configuring JVM Settings

82 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Configuring JVM Settings
You can configure Java Virtual Machine (JVM) settings for you application server
instance. These settings include the location of your Java home, compiler options,
debugging options, and profiler information. One reason to configure these
settings is to improve performance. For more information on performance see the
Sun ONE Application Server Performance and Tuning Guide.

This section describes the following topics:

• Configuring General Settings

• Configuring Path Settings

• Configuring JVM Options

• Configuring the JVM Profiler

• Configuring JVM Settings Using the Command-Line Interface

Configuring General Settings
To configure the JVM’s general options in the Administration interface:

1. In the left pane, click the application server instance name.

2. In the right pane, click the JVM tab.

3. Click General.

4. Set the Java Home.

The Java Home is the path to the directory where the Java Developer’s Kit
(JDK) is installed. Sun ONE Application Server supports the Sun JDK 1.4.0_02
or higher.

5. Choose whether to enable debugging and set debug options.

A list of debug options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

Configuring JVM Settings

Chapter 4 Using Application Server Instances 83

6. Choose rmic options.

The rmic options field shows the rmic options passed to the RMI compiler at
application deployment time. The -keepgenerated option saves generated
source for stubs and ties. For more information about the rmic command, see
the Sun ONE Application Server Developer's Guide to Enterprise Java Beans.

7. Click Save.

Configuring Path Settings
To configure the JVM’s path settings in the Administration interface:

1. In the left pane, click the application server instance name.

2. In the right pane, click the JVM tab.

3. Click Path Settings.

4. Choose a suffix for the system’s classpath.

5. Choose whether to ignore the environment classpath.

If you do not ignore the classpath, the CLASSPATH environment variable is
read and appended to the Sun ONE Application Server classpath. The
CLASSPATH environment variable is added after the classpath-suffix, at the
very end.

For a development environment, the classpath should be used. For a
production environment, this classpath should be ignored to prevent
environment variable side effects.

6. Set a native library path prefix and suffix.

The native library path is the automatically constructed concatenation of the
Application Server installation relative path for its native shared libraries, the
standard JRE native library path, the shell environment setting
(LD_LIBRARY_PATH on UNIX), and any path specified in the profiler
element. Since this is synthesized, it does not appear explicitly in the server
configuration.

7. Click Save.

Configuring JVM Options
To set JVM command-line options in the Administration interface:

Configuring JVM Settings

84 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

1. In the left pane, click the application server instance name.

2. In the right pane, click the JVM tab.

3. Click JVM Options.

4. To add a JVM option, type it in the text field at the top of the screen and click
Add.

5. To delete a JVM option, click the checkbox next to it and click Delete.

6. To edit a JVM option, edit the text in the JVM Option field and click Save.

For information about specific JVM options, see
http://java.sun.com/docs/hotspot/VMOptions.html

Configuring the JVM Profiler
To configure the JVM Profiler in the Administration interface:

1. In the left pane, click the application server instance name.

2. In the right pane, click the JVM tab.

3. Click Profiler.

4. Specify the name of the profiler, its classpath and native library path, and
whether it is enabled.

5. To add a JVM option for the profiler, type it in the text field at the top of the
screen and click Add.

6. To delete a JVM option for the profiler, click the checkbox next to it and click
Delete.

7. To edit a JVM option for the profiler, edit the text in the JVM Option field and
click Save.

For more information about profilers, see the Sun ONE Application Server
Developer's Guide.

Configuring JVM Settings Using the
Command-Line Interface
To configure JVM Settings using the command-line interface’s asadmin utility, use
the following commands:

Configuring Logging Setting and Monitoring Settings

Chapter 4 Using Application Server Instances 85

To get all the attributes from an instance:

asadmin> get server_instance.java-config.*

To get an attribute called classpathprefix in server1:

asadmin> get server1.java-config.classpathprefix

To set an attribute called classpathprefix in server1:

asadmin> set server1.java-config.classpathprefix=com.sun

The above examples all assume you have already set the user, password, host, and
port in your environment variables. For a full list of attributes, see Appendix A,
“Using the Command Line Interface.”

To set JVM options using the command-line interface’s asadmin utility, use the
following commands:

asadmin> create-jvm-options --user admin_user [--password admin_password]
[--host host] [--port port] [--secure | -s] [--instance instance_name]
[--profiler=true/false]
(jvm_option_name=jvm_option_value)[:jvm_option_name=jvm_option_name]*

asadmin> delete-jvm-options --user admin_user [--password admin_password]
[--host host] [--port port] [--secure | -s] [--instance instance_name]
[--profiler=true/false]
(jvm_option_name=jvm_option_value)[:jvm_option_name=jvm_option_name]*

Note: you can enter more than one JVM option separated by colon. If the options
are used by the profiler, set --profiler to true.

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Configuring Logging Setting and Monitoring
Settings

The settings on the Logging and Monitoring tabs are Logging and Monitoring
settings are covered in separate chapters. For information on logging, see
Chapter 5, “Using Logging.” For information on Monitoring and SNMP settings,
see Chapter 6, “Monitoring the Sun ONE Application Server.”

Changing Application Server Instance Advanced Settings

86 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Changing Application Server Instance Advanced
Settings

An application server instance has additional settings showing the instance’s locale
(which determines settings such as the character set and language), the path to the
server’s log files, the path to the directory for deployed applications, and the path
to the session store directory where passivated beans and persistent HTTP sessions
are stored.

In addition, you enable application reloading and poll interval for how often to
reload. Dynamic application reloading automatically checks applications for
changes, and serves the updated version automatically if they have been changed.
In general, you should enable dynamic reloading in a development environment
and not in a production environment. The poll interval specifies the interval at
which the Application Server checks the applications for updates.

To change the application server instance’s settings using the Administration
interface:

1. In the left pane, click the application server instance name.

2. On the application server instance’s page, click the Advanced tab.

3. Enter the desired value in the fields.

4. Click Save.

To change the server instance’s advanced setting using the command-line
interface’s asadmin utility, you use the get and set commands. When you get all the
attributes for a server instance

To get all the attributes from an instance:

asadmin get instance_name.*

For example:

asadmin get server1.*

To get an attribute called logRoot for server1:

asadmin get server1.logRoot

To set an attribute called logRoot for server1:

asadmin set server1.logRoot=/space/log

Changing Application Server Instance Advanced Settings

Chapter 4 Using Application Server Instances 87

The above examples all assume you have already set the user, password, host, and
port in your environment variables. For more information on command syntax, see
the command-line interface help. For more information on using asadmin, see
Appendix A, “Using the Command Line Interface.”

Changing Application Server Instance Advanced Settings

88 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

89

Chapter 5

Using Logging

This chapter describes the logging features and functions of the Sun ONE
Application Server. In addition, components for which logging may be used are
discussed.

This chapter includes the following topics:

• About Logging

• Logging on the UNIX and Windows Platform

• Using Log Levels

• About Virtual Servers and Logging

• About Loggers

• About Client Side Logging

• Redirecting Application and Server Log Output

• Log File Management

• Configuring Logging Through the Command-line Interface

• Configuring Logging Through the Administration Interface

• Configuring the Directives for Error Logging

• Viewing the Access Log File

• Viewing the Event Log Filew

• Setting Log Preferences

• Running the Log Analyzer

• Viewing Events (Windows 2000 Pro)

About Logging

90 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Logging
Logging is a useful debugging and diagnostic tool when used in applications. It
also increases the developer’s productivity. The application server’s own log
output can help identify and diagnose server configuration and deployment
problems.

Logging within the Sun ONE Application Server uses the Java logging API. Sun
ONE Application Server collects and stores logging information in two log files,
namely, access.log and server.log located in the logs directory. You can also
direct logs to your own log file.

A logged message provides more information than simply the message itself. The
additional information provided includes:

• Date and time of the event.

• Log level for the event. Appserver specified Loglevel ID or name.

• Process ID (PID). PID of the appserv process.

• (Optional) Virtual server ID (vsid). The vsid that generated the message.

• Message ID. Subsystem and a four digit integer.

• Message data.

The type and order of the additional message information varies depending upon
the platform used for logging and the logging service enabled for that platform. To
enable the virtual server ID for logged messages, see “Configuring the Log
Service” on page 113.

Logging on the UNIX and Windows Platform
This section discusses how log files are created. In addition, this section includes
the following topics:

• Default Logging in server.log

• Logging Using syslog

• Logging Using the Windows eventlog

Logging on the UNIX and Windows Platform

Chapter 5 Using Logging 91

Default Logging in server.log
On both the UNIX and Windows platforms, the log files are created in server.log

located in the log sub-directory. Logs coming from all the server components and
virtual servers of an instance are collected in this single file.

The default log level for the entire server can be set. However, you can also
override the default log level for a particular subsystem at the subsystem level. You
can also redirect stdout and stderr to the server's event log and direct the log
output to the operating system's system log. Additionally, you can direct stdout
and stderr content to the server’s event log. Log messages by default are sent to
stderr in addition to the specified server log file.

Another feature available is to log the virtual server ID with the log message. This
is a useful feature when multiple virtual servers are used to log messages to the
same log file. You can choose to write the log messages to system log. When you do
so, logging is not performed on the server.log file. Instead the syslog logging
service on UNIX, or the system logging service on Windows platform is used to
produce and manage logs.

You can also use the server.xml attributes to control the contents of this file. For
details about the server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Example of server.log
The following is an example of server.log.

Timestamp, Log Level, (PID vsid(optional)): messageID: message

[01/Aug/2002:11:39:31] INFO (1224): CORE1116: Sun ONE Application
Server 7.0

[01/Aug/2002:11:39:36] INFO (1224): CORE5076: Using [Java
HotSpot(TM) Server VM, Version 1.4.0_02-20020712] from [Sun
Microsystems Inc.]

[01/Aug/2002:11:39:50] INFO (1224): JMS5023: JMS service
successfully started. Instance Name = domain1_server1, Home =
[D:\install_7_29\imq\bin].

[01/Aug/2002:11:39:53] INFO (1224): CIS0056: Creating TCP
ServerConnection at [EndPoint
[IIOP_CLEAR_TEXT:192.18.145.66:3700:false]]

[01/Aug/2002:11:39:53] INFO (1224): CIS0057: Created TCP
ServerConnection at [EndPoint
[IIOP_CLEAR_TEXT:192.18.145.66:3700:false]]

Logging on the UNIX and Windows Platform

92 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

[01/Aug/2002:11:39:54] INFO (1224): CIS0054: Creating TCP
Connection from [-] to [EndPoint
[IIOP_CLEAR_TEXT:192.18.145.66:3700:false]]

Logging Using syslog
For stable operational environments where centralized logging is required syslog

is appropriate. For environments where log output is frequently required for
diagnostics and debugging, individual server instance or virtual server logs may
be more manageable.

By using the syslog log file, in conjunction with syslogd, and the system log
daemon, you can configure the syslog.conf file to:

• Log messages to the appropriate system log

NOTE Redirecting log messages pertaining to pre-compiled JSPs:

The log messages pertaining to the JSPs that are pre-compiled are stored by
default in the administration server's log file which is located at
{domain_root}/{domain_name}/admin-server/logs/server.log.

Since all the messages are logged to the same file, exceptions or errors
thrown while deploying applications using pre-compiled JSPs could get lost
in the volume of messages in the common log file. When multiple
applications are being deployed to multiple instances under a given
domain, the log messages in the admin-server will need to be carefully
scrutinized for any exceptions relevant to a particular application's JSPs.
This causes redundancy.

Therefore, it is better to log messages pertaining to applications that are
deployed using pre-compiled JSPs, in the server instance’s server.log file,
instead of the administrative server’s server.log file.

To redirect the log messages to your Sun ONE Application Server instance’s
server.log file, change the path to the log file in the Administrator Interface.
See Configuring the Log Service for more information.

NOTE • All logged data for the server instance and administration
server in one file may prove difficult to read and debug. It is
recommended that you use the syslog master log file only for
deployed applications that are running smoothly.

• Logged message are intermixed with all other logs from the
Solaris daemon applications.

Logging on the UNIX and Windows Platform

Chapter 5 Using Logging 93

• Write messages to the system console

• Forward logged messages to a list of users, or forward logged messages to
another syslogd on another host over the network

Configuring syslog
To allow better manageability and readability, you can direct messages with less
severity to be stored in a separate file by configuring syslog.conf located in the
/etc directory.

To configure syslog:
1. To direct messages with less severity to be stored in a separate file add the

following command to the syslog.conf file in Solaris:

daemon.debug /var/adm/iasdebug

2. Give a hang-up signal to syslogd. This can be done by using the following
command:

kill -HUP <PID syslogd>

NOTE Following installation of Sun ONE Application Server, the log
service element attribute for the server, use-system-logging, is not
enabled. This means that logs by default are not directed to syslog

on UNIX or the Windows Event Log on Windows platforms.You
can direct logging to syslog or the Windows Event Log by enabling
this attribute in the Server element of server.xml described in the
Sun ONE Application Server Configuration File Reference. Before
setting use-system-logging, see “Log File Management,” on page
107.

NOTE When log messages are directed to the Windows eventlog, only
messages with level INFO, WARNING, SEVERE, ALERT or FATAL are
logged.

Logging on the UNIX and Windows Platform

94 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

3. Go to the Admin Server in the Administration interface and select the Write to
system log option. Save, and apply changes. Restart the Admin Server for the
changes to take effect.

An example of a configured Solaris syslog.conf file follows:

#ident"@(#)syslog.conf1.598/12/14 SMI"/* SunOS 5.0 */

#

Copyright (c) 1991-1998 by Sun Microsystems, Inc.

All rights reserved.

#

syslog configuration file.

#

This file is processed by m4 so be careful to quote (`') names

that match m4 reserved words. Also, within ifdef's, arguments

containing commas must be quoted.

#

*.err;kern.notice;auth.notice/dev/sysmsg

*.err;kern.debug;mail.crit/var/adm/messages

daemon.info;daemon.err;daemon.debug;daemon.alert;daemon.crit;dae

mon.warning/var/adm/iaslog

daemon.debug/var/adm/iasdebug

#daemon.notice;/var/adm/iaslognotice

#daemon.warning;/var/adm/iaslogwarning

#daemon.alert;/var/adm/iaslogalert

#daemon.err;/var/adm/iaslogerr

#*.alert;kern.err;daemon.erroperator

#*.alertroot

.emerg

Logging on the UNIX and Windows Platform

Chapter 5 Using Logging 95

if a non-loghost machine chooses to have authentication

messages

sent to the loghost machine, un-comment out the following line:

#auth.noticeifdef(`LOGHOST', /var/log/authlog, @loghost)

mail.debugifdef(`LOGHOST', /var/log/syslog, @loghost)

#

non-loghost machines will use the following lines to cause

"user"

log messages to be logged locally.

#

ifdef(`LOGHOST', ,

user.err/dev/sysmsg

user.err/var/adm/messages

user.alert`root, operator'

user.emerg*

)

For more information, see the syslog.conf man page.

Any change made to syslog.conf will require a restart of the Sun ONE
Application Server for the change to take effect.

Since logging to syslog means, logs from all Sun ONE Application Servers,
and other daemon applications are collected in the same file, logged messages
are enhanced with the following information to identify Sun ONE Application
Server-specific messages from the particular server or virtual server instance:

• Unique message ID

• Timestamp

• Instancename

• Program name (appservd or appserv-wdog)

• Process ID (PID of the appserv process)

• Thread ID (optional)

Logging on the UNIX and Windows Platform

96 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Server ID

The log service can be configured for both the server instance and the virtual server
instance in the server.xml file. The log service configuration for the virtual server
instance is described in the section “About Virtual Servers and Logging” on
page 100. The log service configuration for the server instance is described in
“Configuring Logging Through the Administration Interface” on page 112.

Log levels are configurable through the Administration interface for applicable
subsystems and components.

For more information on the syslog logging mechanism used in the UNIX
operating environment, use the following man commands at a terminal prompt:

man syslog

man syslogd

man syslog.conf

Example of syslog messages
The following is an example of syslog messages.

Timestamp, hostname [instance_name], [subsystem], [vsid], Message ID, Loglevel,
Message data

Jul 19 14:33:18 strange /usr/lib/nfs/lockd[164]: [ID 599441
daemon.info] Number of servers not specified. Using default of 20.

Jul 19 14:33:20 strange ntpdate[181]: [ID 558275 daemon.notice]
adjust time server 192.18.56.149 offset 0.06702 6 sec

Jul 19 14:38:13 strange xntpd[248]: [ID 204180 daemon.info]
synchronisation lost

Jul 19 14:38:47 strange server1 appservd[374]: [ID 702911
daemon.info] INFO (374): CORE1116: Sun ONE Application Server 7.0

Jul 19 14:38:48 strange server1 appservd[374]: [ID 702911
daemon.info] FINE (374): Collecting statistics for up to 1
processes with 128 threads, 200 listen sockets, and 1000 virtual
servers

Logging Using the Windows eventlog
For more information on the event log mechanism used in the Windows operating
environment, refer to the Windows help system index for the keywords Event
Logging.

Using Log Levels

Chapter 5 Using Logging 97

Using Log Levels
This section discusses log levels and how you can assign a log level for each Sun
ONE Application Server subsystem.

The following topics are described:

• About Log Levels

• Log Levels Used for syslog Configuration

About Log Levels
The Sun ONE Application Server uses the standard JDK 1.4 log levels for selective
logging of information. In addition to the standard JDK log levels, Sun ONE
Application Server has added log levels designed to map more intuitively to
server.log and to tightly integrate with Solaris.

When logged messages are routed to server.log, they are also mapped to log
levels as defined in the “Sun ONE Application Server Log Levels Mapped to
server.log” on page 99.

You can assign a log level for each Sun ONE Application Server subsystem for
which logging is enabled. A log level is useful to streamline the amount of message
information that is recorded during runtime. The level is specified in the
server.xml file for the intended subsystem. You can specify the log level from the
Administration interface for the selected subsystem, or, you can edit the
server.xml file directly to set the desired log level for the selected subsystem.

NOTE The default log level for the server.log file (or for syslog) for the
Admin Server and the default application server instance is INFO.
When the default log level is used for the application server
instance, error and information messages are logged. To avoid
logging such messages, change the log level to WARNING or
SEVERE in the server.xml file or in the Administration interface of
the Admin Server and the server instance.

Default log level across the server can be set in the log-service
element. This affects any element that has log level set to “default”.

Using Log Levels

98 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

An example of setting the log level through the Administration interface is shown
in the figure “Log Level for JMS Service” on page 102. To set the log level for each
subsystem or component directly in the server.xml file, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

The Log levels described in the table “Log Levels” on page 98 match the
requirements of the JDK1.4 logging API specification. However, the log levels
ALERT and FATAL are specific to Sun ONE Application Server and are not
implemented in the JDK1.4 logging API.

The following table defines the log levels and messages in Sun ONE Application
Server, in increasing order of severity. The left column lists the log level
designation in the Sun ONE Application Server and the right column provides a
brief description of each log level.

CAUTION Manual edits to the server.xml file may introduce syntax errors
that result in server startup failures. Guidelines for manually editing
configuration files are discussed in the Sun ONE Application Server
Administrator’s Configuration File Reference, section “Manually
Editing Configuration Files”.

Table 5-1 Log Levels

Log level Description

FINEST
FINER
FINE

Messages indicate extent of verbosity of debug messages. FINEST gives the
maximum verbosity.

CONFIG Messages relate to a variety of static configuration information, to assist in
debugging problems that may be associated with particular configurations.

INFO Messages are informative in nature, usually related to server configuration
or server status. These messages do not indicate errors that need immediate
action.

For example, a message could be logged that configuration change
notification has been received; creating a new topic on MessageBroker

WARNING Messages indicate a warning. The message would probably be
accompanied by an exception.

SEVERE Messages indicate an event of considerable importance that is likely to
prevent normal application execution

ALERT* Messages alert the user to take specific action.

Using Log Levels

Chapter 5 Using Logging 99

Log Levels Used for syslog Configuration
The following table contains a list of log levels that can be configured within the
Sun ONE Application Server when using syslog. The left column lists the log level
designation in the Sun ONE Application Server, and right column provides the
corresponding log level in the syslog facility.

FATAL* Messages indicate a fatal error, after which server execution is not
recommended. Ideally, this would be the last message before a server crash.

* Log levels specific to Sun ONE Application Server.

NOTE All messages with a log level less than INFO (FINEST, FINER, FINE,
and CONFIG) provide information that help with issues relating to
debugging and must be enabled as advised by technical support.
Messages with a log level less than INFO are generally not localized.

Table 5-2 Sun ONE Application Server Log Levels Mapped to server.log

Sun ONE Application Server syslog level

FINEST LOG_DEBUG

FINER LOG_DEBUG

FINE LOG_DEBUG

CONFIG LOG_INFO

INFO (default) LOG_INFO

WARNING LOG_WARNING

SEVERE LOG_ERR

ALERT LOG_ALERT

FATAL LOG_CRIT

Table 5-1 Log Levels

Log level Description

About Virtual Servers and Logging

100 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Virtual Servers and Logging
The Sun ONE Application Server can have virtual server instances. Each virtual
server within a Sun ONE Application Server instance has its own identity and may
have its own log file. The use of separate log files for each virtual server can help
track server activity for particular transactions and resources.

To specify the log file name for a virtual server from the Administration interface,
go to the HTTP Server link from the directory tree and open the server instance
element under the virtual server folder to display the General tab on the right
frame. You can enter the path and name of the log file for this virtual server in the
Log File field. The figure “Setting the Virtual Server Log File Name” on page 100
shows where this setting is located.

Figure 5-1 Setting the Virtual Server Log File Name

NOTE When logging is enabled and an application is running, logged
messages from the application are logged without the virtual server
ID.

About Loggers

Chapter 5 Using Logging 101

You can also direct logged messages from multiple virtual servers to one server log
file. When so doing, you may wish to enable the log-virtual-server-id in the
log service element of the server.xml file. This helps users to distinguish log
messages originating from different virtual servers.

<log-service level="FINEST" log-stdout="false" log-stderr="false"
echo-log-messages-to-stderr="false" create-console="false"
log-virtual-server-id="true" use-system-logging="false">

</log-service>

<http-listener>

<virtual-server-class>

<virtual-server id="server1"
http-listeners="http-listener-1" hosts="strange" mime="mime1"
state="on" accept-language="false"/>

<virtual-server id="server2" hosts="strange"
mime="mime1"/>

</virtual-server-class>

</http-listener>

In this example, <log-service log-virtual-server-id="true"> is responsible
for including virtual_server_id in every log message. This allows you to
differentiate messages coming from different virtual servers. The absence of
attribute “log-file” in the virtual-server element, causes all the virtual servers to log
messages to a single file.

About Loggers
Logging can be enabled or disabled selectively at the subsystem level. Logging
control for each subsystem is specified in the server.xml file, as described in the
Sun ONE Application Server Configuration File Reference. Each subsystem has its own
logger in accordance with the requirements of the JDK1.4 logging API.

In the following table, the left column defines the subsystem and the right column
the element in the server.xml file for each subsystem.

Table 5-3 Subsystems and Locations in Sun ONE Application Server

Subsystem Element

Administration Server <admin-service>

EJB Container <ejb-container>

About Loggers

102 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 5-2 Log Level for JMS Service

Web Container <web-container>

MDB Container <mdb-container>

Sun ONE Message Queue (JMS service) <jms-service>

Security Service <security-service>

Java Transaction Service (JTS) <transaction-service>

Object Request Broker (ORB) <iiop-service>

Default handlers1 <log-service>

1. Default handlers refers to the default logger associated with all server.xml entries that are not
associated with a particular subsystem, such as the utility classes.

Table 5-3 Subsystems and Locations in Sun ONE Application Server

Subsystem Element

About Client Side Logging

Chapter 5 Using Logging 103

The table “Log Levels” on page 98 defines the log levels, in increasing order of
severity, provided for messages in Sun ONE Application Server. These log levels
match the requirements of the JDK1.4 logging API specification. In addition, the
log levels ALERT and FATAL are specific to Sun ONE Application Server and are
not supported in the JDK1.4 logging API.

About Client Side Logging
The Application Client Container (ACC) has its own log service and can only log to
a local file.

The ACC typically runs in its own process, on a different host from the application
server. As such it has its own logging infrastructure and its own log file. The ACC
configuration is held in the file sun-acc.xml.

The client subsystem logging element for the ACC is log-service. The following
table lists the element, and the attributes, each with the noted default and range of
values.

An example of the sun-acc.xml file is provided in the Sun ONE Configuration File
Reference.

NOTE On the Windows platform, if you choose to send logs to the
Windows server.log, only messages with level INFO, WARNING,
SEVERE, ALERT or FATAL are logged to Windows Event Log.

Table 5-4 ACC Logging Element

Element Attribute Description

log-service file ACC log file; when empty or
missing, log to stdout.

log-service level ACC log level.

Redirecting Application and Server Log Output

104 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Redirecting Application and Server Log Output
For developers, it is important that the application logs and server logs be made
readily available during unit testing for application components and J2EE
applications. On the Windows platform, developers prefer to see server log
messages displayed in a command window on the desktop. On the UNIX platform,
many developers are comfortable with simply having the log messages stream to
stderr in the terminal window in which the server instance is started, or, use the
command tail -f to see the log messages written in log files.

The server.xml file contains attributes that can be set for stdout and stderr to
direct logged messages to a log file or to the terminal window, and so forth. See the
Sun ONE Application Server Configuration File Reference for more information on the
use of stdout and stderr.

See “Configuring the Log Service” on page 113 for information on the log service.

Log File Management
You can set up your access and event log (server.log) files to be automatically
archived. At a certain time, or after a specified interval, your logs are rotated. Sun
ONE Application Server saves the old log files and stamps the saved file with a
name that includes the date and time they were saved.

For example, you can set up your access log files to rotate every hour, and Sun
ONE Application Server saves and names the file “access.199907152400,” where
name of the log file, year, month, day, and 24-hour time is concatenated together
into a single character string. The exact format of the log archive file varies
depending upon which type of log rotation you set up.

NOTE Although you can create multiple virtual servers and associate a log
file for each virtual server, log rotation settings for individual virtual
servers is not supported.

Log File Management

Chapter 5 Using Logging 105

Depending on the operating system, there are four distinct ways you can perform
log rotations. These are discussed in the section that follows. Topics include:

For UNIX and Windows:

• Internal-daemon Log Rotation

• Scheduler Based Log Rotation

For Solaris 9

• Using Solaris logadm utility. For more information, see “Rotation Using Solaris
logadm Utility” on page 107.

For Solaris (any version)

• Using Solaris cron utility. For more information, see “Rotation Using Solaris
“cron” Utility” on page 109.

Internal-daemon Log Rotation
Internal-daemon log rotation is available for both UNIX and Windows operating
systems. Internal-daemon log rotation occurs within the HTTP daemon and can
only be configured at the server instance startup time. Logs rotated using this
method are saved in the following format:

access.<YYYY><MM><DD><HHMM>

error. <YYYY><MM><DD><HHMM>

You can specify the time used as a basis to rotate log files and start a new log file.
For example, if the rotation start time is 12:00 a.m., and the rotation interval is 1440
minutes (one day), a new log file is created immediately upon save regardless of
the present time and collects information until the rotation start time. The log file
rotates every day at 12:00 a.m., and the access log is stamped at 12:00 a.m. and

NOTE These facilities are primarily provided for non-Solaris platforms.

For Solaris, these facilities are not enabled by default, and you must
use the native Solaris operating system log management facilities
such as logadm on Solaris 9. On Solaris 8, the preferred utility for log
management would be the cron facility described in “Using the
Solaris cron Utility to Schedule Execution of logadm” on page 111.

Log File Management

106 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

saved as access.199907152400. Likewise, if you set the interval at 240 minutes
(four hours), the four-hour intervals begin at 12:00 a.m. such that the access log files
will contain information gathered from 12:00 a.m. to 4:00 a.m., from 4:00 a.m. to
8:00 a.m., and so forth.

If log rotation is enabled, log file rotation starts at server startup. The first log file to
be rotated gathers information from the current time until the next rotation time.
Using the previous example, if you set your start time at 12:00 a.m. and your
rotation interval at 240 minutes, and the current time is 6:00 a.m., the first log file to
be rotated will contain the information gathered from 6:00 a.m. to 8:00 a.m, and the
next log file will contain information from 8:00 a.m. to 12:00 p.m. (noon), and so
forth.

Scheduler Based Log Rotation
Scheduler log rotation, allows you to archive log files immediately or have the
server archive log files at a specific time on specific days. To archive log files
immediately select Admin Server from the left pane of the Administration
interface. Then, click on the Logging link at the top of the right page. Next, click
Log Rotation. Finally, click Archive.

Logs rotated using the scheduler method are saved as the original filename
followed by the date and time the file was rotated. For example, access might
become access.24Apr-0430PM when it is rotates at 4:30 p.m.

Log rotation is initialized at server startup. If rotation is turned on, Sun ONE
Application Server creates a time-stamped access log file and rotation starts at
server startup.

Once the rotation starts, Sun ONE Application Server creates a new time stamped
log file when there is a request or error that needs to be logged to the access or error
log file and it occurs after the prior-scheduled “next rotate time”.

To archive log files and to specify use of the schedulerd control method, select
Admin Server from the left pane of the Administration interface. Then, click on the
Logging link at the top of the right page. Next, click the Scheduler based Log
Rotation box. Finally, OK. The current state of thescheduler is indicated.

NOTE For the Windows platform, and for server logging directed to a file
other than syslog on Solaris, you must archive the server logs.

Log File Management

Chapter 5 Using Logging 107

Rotation Using Solaris logadm Utility
The Solaris 9 operating system incorporates the utility logadm which can be used to
perform an array of functions with logged messages.

Particular to the Sun ONE Application Server, this utility is useful for performing
log rotation tasks when running it from the Solaris cron utility, described in “Using
the Solaris cron Utility to Schedule Execution of logadm” on page 111.

You can specify the following log rotation details with respect to log files:

• All log file names on the system that must be rotated

• Rotation interval

• Condition that will trigger the rotation

• Number of backup log files to be saved

• Naming convention of backup log files to be saved

The above details are specified in the file logadm.conf located in:

n /etc/logadm.conf

A sample logadm.conf file follows:

Copyright 2001-2002 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

ident "@(#)logadm.conf 1.2 02/02/13 SMI"

#

logadm.conf

#

Default settings for system log file management.

The -w option to logadm(1M) is the preferred way to write to this

file,

but if you do edit it by hand, use "logadm -V" to check it for

errors.

#

The format of lines in this file is:

<logname> <;options>

Log File Management

108 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For each logname listed here, the default options to logadm

are given. Options given on the logadm command line override

the defaults contained in this file.

logadm typically runs early every morning via an entry in

root's crontab (see crontab(1)).

#

/var/log/syslog -C 8 -P 'Tue Jul 9 10:10:00 2002' -a 'kill -HUP `cat

/var/run/syslog.pid`' /var/adm/messages -C 4 -P 'Tue Jul 30 10:10:00
2002' -a

'kill -HUP `cat /var/run/syslog.pid`' /var/cron/log -c -s 512k -t
/var/cron/olog

/var/lp/logs/lpsched -C 2 -N -t '$file.$N'

#

The entry below is used by turnacct(1M)

#

/var/adm/pacct -C 0 -N -a '/usr/lib/acct/accton pacct' -g adm -m 664
-o adm -p never

#

The entry below will rotate SUN One application server's default
logfile

every day provided the current logfile size is >= 512k. It will
compress

the old log file before archiving it and also delete the old files
after 30

days. The compression is done with gzip(1) and the resulting log
file has

the suffix of .gz.

/var/appserver/domains/domain1/server1/logs/server.log -A 30d -s
512k -p 1d -z

Alternatively, you can start log rotation on a specific file by invoking the logadm
command interactively.

The following example rotates syslog and keeps eight log files. Old log files are
placed in the directory /var/oldlogs instead of /var/log:

% logadm -C8 -t'/var/oldlogs/syslog.$n' /var/log/syslog

Log File Management

Chapter 5 Using Logging 109

You can also use an interactive command-line option to invoke rotation on a file
specified in /etc/logadm.conf, but with different or modified options.

If options are specified both in /etc/logadm.conf and on the command-line, those
in the /etc/logadm.conf file are applied first. Therefore, the command-line
options override those in /etc/logadm.conf. An example of this is as follows:

% logadm /var/appserver/domains/domain1/server1/logs/server.log -p
now

The above command rotates the given file using all the options provided for that
file in /etc/logadm.conf.

For detailed information on logadm utility and its options, please refer to its
manpage as follows:

% man logadm

OR

% logadm -h

Rotation Using Solaris “cron” Utility
On Solaris 8, the cron utility can be used to perform application server log
rotations. This can be done by using the following command:

% crontab -e

This starts your favorite editor (defined by env. variable $EDITOR) so that you can
provide the list of cron entries.

NOTE When multiple options are specified at a time, there is an implied
AND between them. This means that all conditions must be met
before the log is rotated.

NOTE This command also invokes /etc/cron.d/logchecker script as
soon you exit from the editor. This script feeds the changed/new
crontab entries to cron daemon. Therefore, entries added this way
are immediately picked up by cron daemon and log rotations starts
immediately.

You need not restart the cron daemon to enable log rotations.

Log File Management

110 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

This section includes the following topics:

• About the crontab Entry Format

• Using the Solaris cron Utility to Schedule Execution of logadm

About the crontab Entry Format
A crontab file consists of lines of six fields each. The fields are separated by spaces
or tabs. The first five fields are integer patterns that specify the following:

• minute (0-59)

• hour (0-23),

• day of the month (1-31),

• month of the year (1-12),

• day of the week (0-6 with 0=Sunday).

Using this format, you can specify access and eventlog files to be rotated at
specified time of day/week/month and schedule to repeat the rotations. For
example,

0 0 * * 1-5

/opt/SUNWappserver7/appserver/domains/domain1/server1/bin/rotatelog
s

 0 12 * * 1-5

/opt/SUNWappserver7/appserver/domains/domain1/server1/bin/rotatelog
s

 0 * * * 1-5

/opt/SUNWappserver7/appserver/domains/domain1/mainserver/bin/rotate
logs

This rotates access and log files for server1 at midnight and noon every day
between Monday and Friday; while access and log files for mainserver is rotated
every hour of every day between Monday and Friday.

The crontab files are stored under /var/spool/cron/crontabs/. You can create
the crontab file as an end user or root. Depending on your privileges, you can see
the crontab entries by using the following command:

% crontab -l username

Configuring Logging Through the Command-line Interface

Chapter 5 Using Logging 111

Using the Solaris cron Utility to Schedule Execution of logadm
The cron command starts a process that executes commands at specified dates and
times. Regularly scheduled commands can be specified according to instructions
found in crontab files in the directory /var/spool/cron/crontabs.

As an example of a regularly scheduled command used with cron, the following
entry in crontab will start logadm everyday at midnight.

0 0 * * 0-6 logadm

Note that users can submit their own crontab file using the crontab(1)
command.

To keep a log of all actions taken by cron, CRONLOG=YES (by default) must be
specified in the /etc/default/cron file. /etc/cron.d/logchecker is a script that
checks to see if the log file has exceeded the system ulimit. If so, the log file is
moved to /var/cron/olog.

Configuring Logging Through the Command-line
Interface

You can configure aspects of the logging service from the command-line for the
server instance and for the virtual server instance.

To get all of the log-service attributes for the server instance:

asadmin> get instance_name.log-service.*

The log-service attributes are also defined in the table “Log Service Attributes” on
page 114.

An example of using this command with a designated server instance name
follows:

asadmin> get server1.log-service.*

The list of attributes for the logging service of the server1 instance is returned. You
can configure each listed attribute by using the set command.

NOTE All the command examples in this section assume that the
environment variables have been set.

Configuring Logging Through the Administration Interface

112 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To enable the logging of a virtual server ID for the virtual server instance, enter the
following command at the terminal prompt:

asadmin> get instance_name.LogVirtualServerId

The current state of the LogVirtualServerId is returned. If the state is false, you can
enable it with the set command as follows:

asadmin> set instance_name.LogVirtualServerId=true

To set the log file name for a virtual server instance, use the set command as
follows:

asadmin> set instance_name.virtual-server.<virtual server
id>.logFile=<log file>

As an example, the following set log file command is issued:

asadmin> set
instance2.virtual-server.instance2.logFile=/space/IAs7se/appserver7/appse
rv/domains/domain1/instance2/logs/log

For more information on command syntax, see the command-line interface help.

For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Configuring Logging Through the Administration
Interface

This section describes the tasks you can perform through the Sun ONE Application
Server Administration interface to configure the available logging service options
for both server-wide (global) elements, directives, and application components.

This section includes the following topics:

• Configuring the Log Service

• Configuring Logging for Application Server Components and Subsystems

• Configuring the Directives for Error Logging

Configuring Logging Through the Administration Interface

Chapter 5 Using Logging 113

Configuring the Log Service
The log service is an element within the J2EE Service Element category in the
server.xml file, as described in the Sun ONE Application Server Configuration File
Reference. The log service is used to configure the system logging service, which
includes the following log files:

• Server log

• Access log

• Transaction log

• Virtual server log

Configuration of the system logging service includes specifying values for
attributes of the log service element.

Figure 5-3 Log Service Administration for the Service Instance

Configuring Logging Through the Administration Interface

114 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

You can configure the following attributes for the log service element through the
Administration interface, as shown in the figure “Log Service Administration for
the Service Instance” on page 113.

• Log File

• Default Log Level

• Log Standard Out content to event log

• Log Standard Error content to event log

• Echo to Standard Error

• Create Console

• Log Virtual Server ID

• Write to System Log

The Log Service link is accessible from the expanded tree hierarchy for the server
instance in the left pane of the Administration interface. The following table
describes each of the attributes that can be configured, along with the default and
range of values allowed.

Table 5-5 Log Service Attributes

Attribute Default Description

file server.
log1

(optional) Overrides the name or location of the
server log. The file and directory in which the server
log is kept must be writable by whatever user
account used to run the server.

level INFO (optional) Controls the default type of messages
logged by other elements to the server log. Allowed
values are as follows, from highest to lowest:
FINEST, FINER, FINE, CONFIG, INFO, WARNING,
SEVERE, ALERT, FATAL.

Each value logs all messages for all lower values; for
example, FINEST logs all messages, and FATAL logs
only FATAL messages. The default value is INFO,
which logs all INFO, WARNING, SEVERE, ALERT, and
FATAL messages.

log-stdout True (optional) If true, redirects stdout output to the
server log. Legal values are on, off, yes, no, 1, 0,
true, false.

Configuring Logging Through the Administration Interface

Chapter 5 Using Logging 115

Configuring Logging for Application Server
Components and Subsystems
This section describes how to enable logging and select a log level for Sun ONE
Application Server components and subsystems. Note that the Java Transaction
Service component has more than one log file. Since most of the components and
subsystems are handled in the same way with respect to configuring a log level, the
procedure to select a log level is documented one time only, for the indicated
grouping of components and subsystems.

The following components and subsystems can utilize selective logging of server
messages. You can become familiar with the components and subsystems from the
references to other topics within this guide as indicated.

• ORB - Configuring Support for Corba-based Clients

• Web Container - Configuring J2EE Services

• EJB Container - Configuring J2EE Services

• MDB Container - Configuring J2EE Services (within the EJB container)

• Java Transaction Service - Configuring J2EE Services

log-stderr True (optional) If true, redirects stderr output to the
server log. Legal values are on, off, yes, no, 1, 0,
true, false.

echo-log-messages-to-stderr True (optional) If true, sends log messages to stderr in
addition to the server log. Legal values are on, off,
yes, no, 1, 0, true, false.

create-console False (optional) If true, creates a console window on
Windows operating system for stderr output.
Legal values are on, off, yes, no, 1, 0, true, false.

log-virtual-server-id False (optional) If true, virtual server IDs are displayed in
the virtual server logs. These are useful if multiple
virtual-server elements share the same log file.

use-system-log False If true, uses the UNIX syslog service or Windows
Event Logging to produce and manage logs.

1. In the directory specified by the log-root attribute of the server element.

Table 5-5 Log Service Attributes

Attribute Default Description

Configuring Logging Through the Administration Interface

116 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• JMS Service - Java Message Service

• Virtual Server - Using Virtual Servers

To Specify a Log Level
To specify a log level for ORB, Web Container, EJB Container, MDB Container
(within the EJB Container), Java Transaction Service, and JMS Service, perform the
following procedure:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance to display the components and subsystems you
wish to edit.

2. Click the link for the desired component or subsystem.

3. In the right page of the Administration interface, select one of the following log
level parameters, from the Log Level drop-down list. The log levels are
described in “About Log Levels” on page 97.

To Specify a Log File: (Virtual Server)
To specify a log file, perform the following procedure:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance to display the HTTP Server subsystem.

2. Click the HTTP Server link.

3. Click the Virtual Server link.

4. Click the desired server instance link.

5. In the right page of the Administration interface, under the General tab, enter
the desired directory path and file name for the Log File field.

To Specify a Transaction Log Location: (Java Transaction Service)
To specify a transaction log location, perform the following procedure:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance to display the Transaction Service subsystem.

2. Click the Transaction Service link.

3. In the right page of the Administration interface, under the Advanced field
group, enter the desired directory path and file name for the Transaction Log
Location field.

Viewing the Access Log File

Chapter 5 Using Logging 117

Configuring the Directives for Error Logging
Sun ONE Application Server includes error logging directives for the init.conf
file. The following directives are included:

• Error Log Date Format. The ErrorLogDateFormat directive specifies the date
format that the server logs use.

• Log Flush Interval. The LogFlushInterval determines the maximum time
interval, in seconds, before which the access log is flushed from the memory
into the access.log file.

• Pid Log. PidLog specifies a file in which to record the process ID (pid) of the
base server process. Some of the server support programs assume that this log
is in the server root, in logs/pid.

All the directives for init.conf are fully described in the Sun ONE Application
Server Configuration File Reference.

Viewing the Access Log File
You can view both the Administrator server’s and the Sun ONE Application Server
instance’s http log files.

To view the Administration Server’s http log, select the Admin Server from the left
pane in the Administration interface, and then choose the Logging tab from the
right page. The View HTTP Access Log link is displayed. Select this link to view
the configured access log. An example of the displayed log is shown in the figure
“Admin Server View HTTP Access Log” on page 118.

Viewing the Access Log File

118 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 5-4 Admin Server View HTTP Access Log

To view an access log for the application server instance, click the server instance
desired from the left pane of the Administration interface. Click on the Logging tab
from the right pane. Click the View Access Log link to display the configured
active access log for that server instance. An example is shown in the figure
“Application Server Instance View Access Log” on page 119.

Viewing the Event Log File

Chapter 5 Using Logging 119

Figure 5-5 Application Server Instance View Access Log

Viewing the Event Log File
You can view both the Administrator server’s and the Sun ONE Application Server
instance’s active event log files.

To view the Administrator server’s event log, select the Admin Server from the left
pane, and then choose the Logging tab from the right page. The View Event Log
link will be displayed. Select this link to view the configured event log. An example
of the displayed log is shown in the figure “Admin Server View Event Log” on
page 120.

Viewing the Event Log File

120 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 5-6 Admin Server View Event Log

To view the event log for the application server instance, click the server instance
desired from the left pane of the Administration interface, and then choose the
Logging tab from the right pane. The View Event Log link will be displayed. Select
this link to view the configured event log. An example of the displayed log is
shown in the figure “Application Server Instance View Event Log” on page 121.

Setting Log Preferences

Chapter 5 Using Logging 121

Figure 5-7 Application Server Instance View Event Log

Setting Log Preferences
During installation, an access log file named access is created for the server. You
can customize access logging for any resource by specifying whether to log
accesses, what format to use for logging, and whether the server should spend time
looking up the domain names of clients when they access a resource.

To use one log file for multiple virtual servers, LogVsId should be turned on in the
server.xml file for the event log. See the Sun ONE Application Server Configuration
File Reference for details. Alternatively, LogVsID can be turned on in the Admin
Server Logging tab of the Administration interface.

Follow the steps below to enable the Log virtual server ID from the Administration
interface. The changes are effected following restart of the Administration server.

1. Click the Admin Server from the left pane of the Administration interface.

2. Click the Logging tab on the right page.

Running the Log Analyzer

122 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

3. Click within the check box for Log virtual server ID.

4. Click the Save button to apply the changes to the Sun ONE Application Server.

This setting requires a restart of the Sun ONE Application Server for the change to
take effect.

Running the Log Analyzer
The flexanlg is a Log Analyzer tool used for log file reporting. The Log Analyzer
can be used only when logging is directed to a file other than syslog.

Use the log analyzer to generate statistics about your default server, such as a
summary of activity, most commonly accessed URLs, times during the day when
the server is accessed most frequently, and so on. The log analyzer cannot generate
statistics for virtual servers other than the default server. However, statistics can be
viewed for each virtual server as described in “Viewing the Access Log File” on
page 117.

You can run the log analyzer command from the command-line, by running the
tool flexanlg, which is in the directory install_dir/bin/flexanlg.

To run flexanlg, type the following command and options at the command
prompt:

flexanlg [-P] [-n name] [-x] [-r] [-p order] [-i file]* [-m
metafile]* [o file][c opts] [-t opts] [-l opts] [-h help]

Command Options (Options marked with * can be repeated).

-i filename

input log file(s)

-P

proxy log format

-n servername

the name of the server

-x

NOTE Before running the log analyzer, you must rotate the server logs.
For more information, see “Log File Management” on page 104.

Running the Log Analyzer

Chapter 5 Using Logging 123

output in HTML

-r

resolve IP addresses to hostnames

-p [c, t, l]

output order; default order is counts, time statistics, and lists

-m filename

meta file(s)

-o filename

output log file; default is stdout

-c [h, n, r, f, e, u, o, k, c, z]

count these items; default is: h, n, r, e , u, o, k, c

h: total hits

n: 304 Not Modified status codes (use local copy)

r: 302 Found status codes (redirects)

f: 404 Not Found status codes (Document Not Found)

e: 500 Server Error status codes (Misconfiguration)

u: total unique URLs

o: total unique hosts

k: total kilobytes transferred

c: total kilobytes saved by caches

z: Do not count any items

-t [sx, mx, hx, xx, z]

find general statistics; default is: s5m5h24x10

s (number): Find top (number) seconds of log

m (number): Find top (number) minutes of log

h (number): Find top (number) hours of log

u (number): Find top (number) users of log

a (number): Find top (number) user agents of log

Viewing Events (Windows 2000 Pro)

124 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

r (number): Find top (number) referers of log

x (number): Find top (number) for miscellaneous keywords

z: Do not find any general statistics

-l [cx, hx]

Make a list of the specified suboption; default is: c+3h5

c (x, +x): most commonly accessed URLs

x: only list x entries

+x: only list if accessed more than x times

h (x, +x): hosts or IP addresses most often accessing your server

x: only list x entries

+x: only list if accessed more than x times

z: Do not make any lists

EXAMPLE: Using the flexanlg command

flexanlg -i /var/opt/SUNQappserver7/domains/domain1/server1/logs/access

Viewing Events (Windows 2000 Pro)
In addition to logging errors to the server.log file, Sun ONE Application Server
logs severe system errors to the Event Viewer. The Event Viewer lets you monitor
events on your system. Use the Event Viewer to see errors resulting from
fundamental configuration problems, which can occur before the error log is
opened.

To use the Event Viewer, perform the following steps:

1. From the Start menu, select Programs and then Administrative Tools. Choose
Event Viewer in the Administrative Tools program group.

2. Choose Application from the Log menu.

The Application log appears in the EventViewer. Errors from Sun ONE
Application Server has a source label of https-serverid.

NOTE Before running the log analyzer, you should archive the server logs.

Viewing Events (Windows 2000 Pro)

Chapter 5 Using Logging 125

3. Choose Find from the View menu to search for one of these labels in the log.
Choose Refresh from the View menu to see updated log entries.

For more information about the Event Viewer, consult your system
documentation.

Viewing Events (Windows 2000 Pro)

126 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

127

Chapter 6

Monitoring the Sun ONE Application
Server

This chapter contains information about the monitoring and Simple Network
Management Protocol (SNMP) features and functions available in the Sun ONE
Application Server.

This chapter includes the following sections:

• About Monitoring the Sun ONE Application Server

• Extracting Monitoring Data Using the CLI

• Administering the Transaction Service Using the CLI

• Using HTTP Quality of Service

• About SNMP

• Setting Up SNMP

• Enabling and Starting the SNMP Master Agent

About Monitoring the Sun ONE Application
Server

You can monitor the Sun ONE Application Server by collecting activity statistics
from strategic data points on your system. The statistics show you how many
requests your server is handling and how well it is handling those requests. You
can view some statistics for individual virtual servers and others for the entire
application server instance. Either the asadmin utility or SNMP can be used to
monitor the Sun ONE Application Server.

About Monitoring the Sun ONE Application Server

128 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The following topics are addressed in this section:

• Statistics

• SNMP

• HTTP Server Monitoring

• Application Components and Subsystems Monitoring

• Quality of Service (QOS)

Statistics
Statistics collection is always enabled for most of the Sun ONE Application Server
application components and subsystems, including the HTTP server; no enabling
functions are required. However, there are some statistics that are collected only
when monitoring is explicitly enabled on that subsystem, or only when relevant
functionality is enabled. These statistics include the following data points:

• Statistics for EJB methods

• Active transactions

• Connections (only if Quality of Service is enabled)

• DNS (only if DNS Cache is enabled)

Monitoring can be enabled for application subsystems or components from the
Administration interface, as described in “Application Components and
Subsystems Monitoring” on page 129.

If the server monitor reports that the server is handling a large number of requests,
you may need to adjust the server configuration or the system’s network kernel.
For more information on adjusting your server’s configuration, see the Sun ONE
Application Server Performance Tuning and Sizing Guide.

SNMP
The Sun ONE Application Server provides network management information
through its information gathering tools using Simple Network Management
Protocol (SNMP), a protocol used to exchange management and monitoring
information across a network. Using SNMP, programs called agents monitor

About Monitoring the Sun ONE Application Server

Chapter 6 Monitoring the Sun ONE Application Server 129

various devices on the network (hubs, routers, bridges, and so on). Another
program collects the data from the agents. The database created by the monitoring
operations is called a management information base (MIB).This data is used to check if
all devices on the network are operating properly.

While only the HTTP server can be monitored using SNMP; all components and
systems can be monitored using the command-line interface (CLI)

For more information on SNMP, see “About SNMP” on page 160 and “Setting Up
SNMP” on page 168.

HTTP Server Monitoring
HTTP server monitoring is enabled by default, which means it doesn’t need to be
specifically turned on. HTTP server monitoring is based on an XML file and is
accessed using the asadmin command as a set of three monitorable attributes. The
elements, subelements, and the attributes of this XML file are described in
“Monitorable HTTP Server Elements” on page 144 and “Monitorable HTTP Server
Attributes” on page 145.

For more information about using asadmin, see “Using the Command Line
Interface” on page 413.

Application Components and Subsystems
Monitoring
Some of the subsystems or components within the Sun ONE Application Server do
not need to have monitoring enabled because the relevant statistics are always
collected. For example, monitoring for application components such as containers
can be enabled or disabled. When monitoring is enabled, in addition to the
statistics that are always collected, additional statistics on all EJB methods are also
collected. Monitoring for JDBC connection pools is always enabled. A connection
pool is initialized upon first access and relevant statistics can be monitored anytime
after that.

NOTE Only HTTP server statistics are available using SNMP. Statistics for
all the subsystems of the Sun ONE Application Server, including the
HTTP server, are available using the command-line interface.

About Monitoring the Sun ONE Application Server

130 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For a full list of monitorable data points, see “Monitorable Attribute Names” on
page 139.

You can enable monitoring for selected application components and subsystems
from the Administration interface or from the command-line interface (CLI). For
example, to enable monitoring from the CLI for the EJB container, type the
following command from a terminal window:

set server1.ejb-container.monitoringEnabled=true

reconfig server1

where server1 is the instance name.

The equivalent functionality can be accessed on the Administration interface under
the Containers node.

The following topics are addressed in this section:

• Monitoring for Container Subsystems

• Monitoring for the ORB Service

• Monitoring for the Transaction Service

Monitoring for Container Subsystems
In the case of the EJB container, when monitoring is enabled, the statistics related to
the methods for all entity beans, stateful session beans, and stateless session beans
are collected. These statistics include:

• Total number of errors

• Total number of calls

• Total number of successes

• Execution time, in milliseconds (for last invocation of the method)

All other statistics for container subsystems are always collected. Some of the
monitored data points include statistics relative to:

• Initial, minimum, and maximum stateless beans in pool

• Minimum and preferred number of stateful and entity beans in cache

• Minimum and preferred number of stateless session beans in cache

• Number of beans created and destroyed

• Other related statistics

About Monitoring the Sun ONE Application Server

Chapter 6 Monitoring the Sun ONE Application Server 131

Monitoring for the ORB Service
For the ORB service, monitored data points include statistics gathered for the ORB
connection and the ORB thread pool. ORB statistics are always collected and,
therefore, it is not necessary to enable monitoring for the ORB service.

Monitoring for the Transaction Service
For the Java Transaction Service (JTS) service, monitored data points include:

• Total completed transactions

• Total rolled back transactions

• Total inflight transactions

• List of inflight transactions

Refer to “Administering the Transaction Service Using the CLI” on page 153 for
further information.

Quality of Service (QOS)
Quality of Service refers to the performance limits you set for a server instance
virtual server class or virtual server. For example, if you are an Internet Service
Provider (ISP), you might want to charge different fees for virtual servers
depending on how much bandwidth is provided. You can limit two areas: the
amount of bandwidth and the number of connections.

The Quality of Service information provided by the Sun ONE Application Server is
used to determine server efficiency during runtime with respect to:

• Start-up time

• Server traffic and effects of traffic upon bandwidth

• Analysis of live versus static data

• Other data elements

For more information, see “Administering the Transaction Service Using the CLI”
on page 153.

Extracting Monitoring Data Using the CLI

132 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Extracting Monitoring Data Using the CLI
With the asadmin command, you can extract monitored data through the
command-line interface (CLI) using the list and get commands.

This section addresses the following topics:

• The list --monitor Command

• The get --monitor Command

• CLI Name Mapping

• HTTP Server Monitorable Objects

The list --monitor Command
The list command provides information about the application components and
subsystems currently being monitored for the specified server instance name.
Using this command, you can see the monitorable components and
sub-components for a server instance.

Example
asadmin> list --monitor server1

returns the following list of application components and subsystems that have
monitoring enabled:

iiop-service
transaction-service
application.converter
application.myApp
http-server

You can also list applications that are currently monitored in the specified server
instance. This can be useful when particular monitoring statistics are sought from
an application using the get command.

NOTE The set command is only used to set monitoring for the transaction
service as described in “Administering the Transaction Service
Using the CLI” on page 153.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 133

Example
asadmin> list --monitor server1.application

returns:

converter
myApp

For a more comprehensive example, see “Petstore Example” on page 135.

The get --monitor Command
This command retrieves the following monitored information:

• All attribute(s) monitored within a component or subsystem

• Specific attribute monitored within a component or subsystem

When an attribute is requested that does not exist for a particular component or
subsystem, an error is returned. Similarly, when a specific attribute is requested
that is not active for a component or subsystem, an error is returned.

Refer to “CLI Name Mapping” on page 134 for more information on the use of the
get command.

Example 1
Attempt to get all attributes from a subsystem for a specific attribute:

asadmin> get --monitor server1.iiop-service.orb.system.orb-connection.*

total-inbound-connections=1
total-outbound-connections=1

Example 2
Attempt to get all attributes from a J2EE application:

asadmin> get --monitor server1.application.converter.*

Attribute name(s) not found

There are no monitorable attributes exposed at the J2EE-application level, therefore
the command fails.

Example 3
Attempt to get a specific attribute from a subsystem:

asadmin> get --monitor server1.transaction-service.inflight-tx

Extracting Monitoring Data Using the CLI

134 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Attribute name = inflight-tx Value = No active transaction found.

Example 4
Attempt to get an unknown attribute from within a subsystem attribute:

asadmin> get --monitor server1.iiop-service.orb.system.orb-connection.bad-name

Could not get the attribute

Execution failed for the command: get --monitor
server1.iiop-service.orb-connection.bad-name

CLI Name Mapping
The Sun ONE Application Server uses a tree structure to track monitorable objects.
Every node in the tree has a name and a type. If a type is singleton, only a single
node of the type can exist under any parent node. For more information on type of
nodes in this tree, see “Monitorable Object Types” on page 137.

The root object in the tree is represented by the Sun ONE Application Server
instance name. For example, the root monitoring object for an instance named
server1 is:

server1

All child objects are then addressed using the dot (.) character as separator. If a
child node is of singleton type, then only the monitoring object type is needed to
address the object, otherwise a name of the form type.name is needed to address
the object.

For example, http-server is one of the valid monitorable object types and is
singleton. To address a singleton child node representing the http-server of
instance server1, the name is:

server1.http-server

Another example, application, is a valid monitorable object type and is not a
singleton. To address a non-singleton child node representing the application
Petstore, the name is:

server1.application.petstore

The CLI names can also address specific attributes in monitorable objects. For
example, http-server has a monitorable attribute called summary. The following
name addresses the summary attribute:

server1.http-server.summary

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 135

There is no fixed naming convention for attribute names exposed by monitoring
objects.

You are not expected to know the valid names for CLI use. The list command lets
you inspect available monitorable objects, while the get command used with a
wildcard parameter allows you to inspect all available attributes on any
monitorable object.

The following example illustrate some client name mapping scenarios:

Petstore Example
A user wants to inspect the number of calls made to a method in the Petstore
application deployed on the Sun ONE Application Server instance named
server1. A combination of the list and get commands is used to access desired
statistics on a method.

1. Invoke the CLI in multi-mode.

2. Set some useful environment variables to avoid entering them for every
command:

asadmin>export AS_ADMIN_USER=admin AS_ADMIN_PASSWORD=admin123

asadmin>export AS_ADMIN_HOST=localhost AS_ADMIN_PORT=4848

3. List monitorable components for instance server1:

asadmin>list --monitor server1

Output is:
iiop-service

transaction-service

application.CometEJB

application.ConverterApp

application.petstore

http-server

resources

The list of monitorable components includes iiop-service, http-server,
transaction-service, resources, and all deployed (and enabled)
applications.

Extracting Monitoring Data Using the CLI

136 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

4. List the monitorable subcomponents in the Petstore application (-m can be
used instead of --monitor):

asadmin>list -m server1.application.petstore

Output is:
ejb-module.signon-ejb_jar

ejb-module.catalog-ejb_jar

ejb-module.uidgen-ejb_jar

ejb-module.customer-ejb_jar

ejb-module.petstore-ejb_jar

ejb-module.AsyncSenderJAR_jar

ejb-module.cart-ejb_jar

5. List the monitorable subcomponents in the EJB module sigon-ejb_jar of the
Petstore application:

asadmin>list -m server1.application.petstore.ejb-module.signon-ejb_jar

Output is:
entity-bean.UserEJB

stateless-session-bean.SignOnEJB

6. List the monitorable subcomponents in the entity bean UserEJB for the EJB
module sigon-ejb_jar of the Petstore application:

asadmin>list -m
server1.application.petstore.ejb-module.signon-ejb_jar.entity-bean.UserEJB

Output is:
bean-method.create0

bean-method.findByPrimaryKey1

bean-method.remove2

bean-method.getUserName3

bean-method.setPassword4

bean-method.getPassword5

bean-method.matchPassword6

bean-method.remove7

bean-method.isIdentical8

bean-method.getEJBLocalHome9

bean-method.getPrimaryKey10

bean-pool

bean-cache

7. List the monitorable subcomponents in the method getUserName3 for the
entity bean UserEJB in the EJB module sigon-ejb_jar of the Petstore
application:

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 137

asadmin>list -m
server1.application.petstore.ejb-module.signon-ejb_jar.entity-bean.UserEJB.bean-m
ethod.getUserName3

Output is:

No monitorable entities for element
server1.application.petstore.ejb-module.signon-ejb_jar.entity-bean.UserEJB.bean-m
ethod.getUserName3

8. There are no monitorable subcomponents for methods. Get all monitorable
statistics for the method getUserName3.

asadmin>get -m server1.application.petstore.ejb-module.
signon-ejb_jar.entity-bean.UserEJB.bean-method.getUserName3.*
method-name = public abstract java.lang.String
com.sun.j2ee.blueprints.signon.user.ejb.UserLocal.getUserName()
total-num-errors = 0
total-num-success = 2
execution-time-millis = 1
total-num-calls = 2

9. You can also get a specific statistic, such as execution time.

asadmin>get -m server1.application.petstore.ejb-module.
signon-ejb_jar.entity-bean.UserEJB.bean-method.getUserName3.execution-time-millis
execution-time-millis = 1

Monitorable Object Types
The tree of objects used for monitoring contains several nodes. A node is a specific
entry in the object tree, and is identified uniquely by its type, name, and parent
node. Some of the node types are singleton, meaning that only one node of the type
can exist under a parent node. A name is not relevant for a singleton node.

A non-singleton type node needs a name. The Instance Name column describes the
possible namespace.

The following table describes the tree structure in terms of possible parent-child
relationships among various node types and the namespaces for some of the node
types.

Extracting Monitoring Data Using the CLI

138 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-1 Monitoring Object Types

Node Type Single-
ton?

Leaf? Child Node Types Instance Names

root Yes No http-server
iiop-service
resources
transaction-service
application
standalone-ejb-module

http-server Yes No virtual-server
process

virtual-server Yes Yes

process Yes Yes

iiop-service Yes Yes orb

orb No No orb-connection
orb-thread-pool

system is reserved for
system ORB. All user
ORBs get a name
derived from TCP
endpoint.

orb-connection Yes Yes

orb-thread-pool Yes Yes

resources Yes No jdbc-connection-pool

jdbc-connection-pool No Yes The names are the
same as those
specified by the user
while creating a
connection pool.

transaction-service Yes Yes

application No No ejb-module Name of the
application as
registered in
server.xml.

ejb-module No No stateless-session-bean
stateful-session-bean
entity-bean
message-driven-bean

Name of the EJB
module. It is derived
from the EJB JAR
name.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 139

Monitorable Attribute Names
It is not necessary for every monitorable object to expose monitorable attributes.
Some of the objects are used just for grouping other objects. For the Sun ONE
Application Server, except for an http-server node, only the leaf nodes of the tree
have attributes. The http-server node type has attributes as well as child nodes.
The following tables list possible monitorable attribute names for various nodes.

standalone-ejb-module No No stateless-session-bean
stateful-session-bean
entity-bean
message-driven-bean

Name of the
standalone EJB
module as registered
in server.xml.

stateless-session-bean No No bean-pool
bean-method

Name of the bean from
the deployment
descriptor.

stateful-session-bean No No bean-cache
bean-method

Name of the bean from
the deployment
descriptor.

entity-bean No No bean-cache
bean-pool
bean-method

Name of the bean from
the deployment
descriptor.

message-driven-bean No No bean-pool
bean-method

Name of the bean from
the deployment
descriptor.

bean-pool Yes Yes

bean-cache Yes Yes

bean-method No Yes onMessage for
message-driven beans,
method name
followed by a numeric
suffix for methods in
other enterprise beans.
(The suffix is needed
to disambiguate
overloaded methods.)

Table 6-1 Monitoring Object Types (Continued)

Node Type Single-
ton?

Leaf? Child Node Types Instance Names

Extracting Monitoring Data Using the CLI

140 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-2 http-server

Attribute Name Datatype Description

summary String
(Formatted)

HTTP server summary. Includes virtual servers and processes.

NOTE: See section “HTTP Server Monitorable Objects” on page 144
for more information on what data is exposed in the formatted
string.

Table 6-3 virtual-server

Attribute Name Datatype Description

<vs-id> String
(Formatted)

Virtual server information. For every application server instance
there can be one or more virtual servers. The list of virtual server
IDs can be obtained from the summary attribute of http-server.
You can look up statistics for a specific virtual server using the get
command parameter of the form
server1.http-server.virtual-server.<vs-id>. You can
look up statistics for all virtual servers using the get command
parameter of the form
server1.http-server.virtual-server.*.

NOTE: See section “HTTP Server Monitorable Objects” on page 144
for more information on what data is exposed in the formatted
string.

Table 6-4 process

Attribute Name Datatype Description

<pid> String
(Formatted)

Process information. For every application server instance there is
one process. The process ID can be obtained from the summary
attribute of http-server. Statistics for a process can be obtained
using the parameter of the form
server1.http-server.process.<pid> to the get command.

NOTE: See section “HTTP Server Monitorable Objects” on page 144
for more information on what data is exposed in the formatted
string.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 141

Table 6-5 orb-connection

Attribute Name Datatype Description

total-inbound-connections Integer Total inbound connections to ORB.

total-outbound-connections Integer Total outbound connections from ORB.

Table 6-6 orb-thread-pool

Attribute Name Datatype Description

thread-pool-size Integer Total number of threads in ORB thread pool.

waiting-thread-count Integer Number of thread pool threads waiting for work to arrive.

Table 6-7 jdbc-connection-pool

Attribute Name Datatype Description

total-threads-waiting Integer Total threads waiting for JDBC connection.

total-outbound-connections Integer Total JDBC connection validation failures.

total-connections-timed-out Integer Total connection requests timed out.

Table 6-8 transaction-service

Attribute Name Datatype Description

total-tx-completed Integer Total completed transactions.

total-tx-rolled-back Integer Total rolled back transactions.

total-tx-inflight Integer Total inflight (live) transactions.

isFrozen String Is transaction system frozen (true or false)?

inflight-tx String (Formatted) List of inflight transactions.

Extracting Monitoring Data Using the CLI

142 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-9 bean-pool

Attribute Name Datatype Description

max-pool-size Integer The maximum number of bean instances in the pool.

steady-pool-size Integer The number of bean instances normally maintained in the pool.
When a pool is first created, it will be populated with a size
equal to steady-pool-size. When an instance is removed
from the pool, it is replenished asynchronously, so that the
pool size is at, or above, steady-pool-size.

pool-resize-quantity Integer The increment by which pool grows up to max-pool-size or
shrinks to steady-pool-size

idle-timeout-in-seconds Integer Defines the rate at which the pool cleaning thread is executed.
Checks if the current size is greater than the steady pool size
and removes pool-resize-quantity elements. If the
current size is less than steady-pool-size, it is increased by
pool-resize-quantity, with a ceiling of min
(current-pool-size+pool + resize-quantity,
max-pool-size). Only objects that have not been accessed
for more than pool-idle-timeout-in-seconds are
candidates for removal

num-beans-in-pool Integer Number of beans available in pool.

num-threads-waiting Integer Number of threads waiting for free beans.

total-beans-created Integer Number of beans created so far.

total-beans-destroyed Integer Number of beans destroyed so far.

jms-max-messages-load Integer The maximum number of messages to load into a JMS session
at one time for a message-driven bean to serve. Default is 1.
Applies only to pools for message driven beans.

Table 6-10 bean-cache

Attribute Name Datatype Description

cache-resize-quantity
(resize-quantity)

Integer The quantity by which the cache size is reduced when
the number of beans in cache equals
max-cache-size (that is, when cache overflow
occurs.)

cache-misses Integer The number of times a user request did not find a
bean in the cache.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 143

idle-timeout-in-seconds Integer Rate at which the cache cleaner thread is scheduled.
This cleaner thread examines all beans in the cache
and passivates those beans that are not accessed for
cache-idle-timeout-in-seconds.

cache-hits Integer The number of times a user request found an entry in
the cache.

total-beans-in-cache Integer The number of beans in the cache. This is the current
size of the cache.

max-beans-in-cache Integer Maximum number of beans that can be held in the
cache beyond which cache overflow occurs.

num-passivations Integer Number of passivations. Applies only to stateful
session beans.

num-passivation-errors Integer Number of errors during passivation. Applies only to
stateful session beans.

num-expired-sessions-removed Integer Number of expired sessions removed by the cleanup
thread. Applies only to stateful session beans.

num-passivation-success Integer Number of times passivation completed successfully.
Applies only to stateful session beans.

Table 6-11 bean-method

Attribute Name Datatype Description

method-name String Fully qualified name of the method.

total-num-calls Integer Number of times the method has been invoked. This is collected
for stateless and stateful session beans and entity beans if
monitoring enabled is true for EJB container, and for
message-driven beans if monitoring is enabled for the
message-driven bean container.

total-num-errors Integer Number of times the method execution resulted in an
exception. This is collected for stateless and stateful session
beans and entity beans if monitoring is enabled under EJB
settings, and for message-driven beans if monitoring is enabled
under MDB settings.

Table 6-10 bean-cache (Continued)

Attribute Name Datatype Description

Extracting Monitoring Data Using the CLI

144 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

HTTP Server Monitorable Objects
The HTTP server monitorable attribute name summary prints the attribute values of
the Server element and a summary of its subelements, including the number of
each subelement and attribute values for each subelement. The HTTP server
virtual-server attribute prints the attribute values of the VirtualServer
element and the details of each of its subelements.The process attribute prints the
attribute values of the Process element and the details of each of its subelements.

To enable NSAPI performance profiling and obtain statistics on the Profile and
ProfileBucket elements, see the Sun ONE Application Server Developer's Guide to
NSAPI.

For information on how to use the monitoring statistics for performance tuning, see
the Sun ONE Application Server Performance and Tuning Guide.

Monitorable HTTP Server Elements
The following table lists the HTTP server monitorable elements.

total-num-success Integer Number of times the method successfully executed. This is
collected for stateless and stateful session beans and entity
beans if monitoring enabled is true for EJB container, and for
message-driven beans if monitoring is enabled for the
container.

execution-time-millis Long Time spent executing the method for the last successful run of
this method. This is collected for stateless and stateful session
beans and entity beans if monitoring is enabled on the EJB
container and for message-driven beans if monitoring is
enabled on the container.

Table 6-12 Monitorable HTTP Server Elements

Element Name Subelements Description

Server ConnectionQueue
ThreadPool
Profile
Process
VirtualServer

A server instance.

Table 6-11 bean-method (Continued)

Attribute Name Datatype Description

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 145

Monitorable HTTP Server Attributes
The following tables list the HTTP server monitorable attributes.

ConnectionQueue None The queue in which requests are held
prior to being serviced. There is only one
connection queue in Sun ONE
Application Server 7.

ThreadPool None A thread pool, as defined in the
init.conf file.

Profile None An NSAPI performance profile bucket, as
defined in the init.conf file.

Process ConnectionQueueBucket
ThreadPoolBucket
DnsBucket
DnsBucket
KeepaliveBucket
CacheBucket
Thread

A single server process within a server
instance.

ConnectionQueueBucket None Tracks statistics pertaining to a specific
ConnectionQueue.

ThreadPoolBucket ThreadPoolBucket Tracks statistics pertaining to a specific
ThreadPool.

DnsBucket None Tracks DNS statistics.

KeepaliveBucket None Tracks keepalive (persistent connection)
statistics.

CacheBucket None Tracks file cache (NSFC) statistics.

Thread RequestBucket
ProfileBucket

Describes a request processing thread.

VirtualServer RequestBucket
ProfileBucket

Describes a virtual server.

RequestBucket None Tracks request-related statistics.

ProfileBucket Tracks statistics pertaining to a Profile
element.

Table 6-12 Monitorable HTTP Server Elements (Continued)

Element Name Subelements Description

Extracting Monitoring Data Using the CLI

146 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-13 Server

Attribute Name Values Description

Id The server instance ID (for example, server1).

VersionServer A string that contains the Sun ONE Application
Server version.

TimeStarted GMT The time this server instance was started.

SecondsRunning The number of seconds since this server instance
started.

TicksPerSecond The number of ticks in a second. This value is
system-dependent.

MaxProcs The maximum number of processes.

MaxThreads The maximum number of processing threads.

MaxVirtualServers The maximum number of virtual servers tracked.

FlagProfilingEnabled 0 (off), 1 (on) Indicates whether NSAPI performance profiling is
enabled (on).

FlagVirtualServerOverflow 0 (no), 1 (yes) Indicates whether more than
MaxVirtualServers are configured (yes). If
this attribute is set to 1, statistics are not being
tracked for all virtual servers.

LoadMinuteAverage Average load in 1 minute.

Load5MinuteAverage Average load in 5 minutes.

Load15MinuteAverage Average load in 15 minutes.

RateBytesTransmitted bytes per
second

The rate at which data is transmitted over some
server-defined interval, or 0 if this information is
not available.

RateBytesReceived bytes per
second

The rate at which data is received over some
server-defined interval, or 0 if this information is
not available.

Table 6-14 ConnectionQueue

Attribute Name Values Description

Id The connection queue ID.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 147

Table 6-15 ThreadPool

Attribute Name Values Description

Id The thread pool ID.

Name The symbolic name of the thread pool.

Table 6-16 Profile

Attribute Name Values Description

Id The NSAPI performance profile bucket ID.

Name The symbolic name of the NSAPI performance
profile bucket.

Description The description of the NSAPI performance profile
bucket.

Table 6-17 Process

Attribute Name Values Description

Pid The operating system process identifier that
uniquely identifies this process.

Mode unknown
active

Displays active when this process is active.

TimeStarted GMT The time this process was started.

CountConfigurations The number of times a configuration has been
loaded, or 0 if this information is not available.

SizeVirtual kilobytes The size of virtual memory used by this process.

SizeResident kilobytes The size of the resident memory used by this
process.

FractionSystemMemoryUsage Fraction of system memory used by this process.

Extracting Monitoring Data Using the CLI

148 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-18 ConnectionQueueBucket

Attribute Name Values Description

ConnectionQueue The ID of a ConnectionQueue element.

CountTotalConnection The total number of new connections that have
been accepted.

CountQueued The number of connections currently enqueued.

PeakQueued The largest number of connections that have been
in the queue simultaneously.

MaxQueued The maximum number of connections that can be
in the queue.

CountOverflow The number of times the queue has been too full to
accommodate a connection.

CountTotalQueued The total number of connections that have been
queued. A given connection may be queued
multiple times, so CountTotalQueued may be
greater than or equal to
CountTotalConnections.

TicksTotalQueued The total number of ticks that connections have
spent in the queue. A tick is a system-dependent
unit of time; see TicksPerSecond.

Table 6-19 ThreadPoolBucket

Attribute Name Values Description

Thread-pool The ID of a ThreadPool element.

CountThreadsIdle The number of request processing threads
currently idle.

CountThreads The number of request processing threads.

MaxThreads The maximum number of request processing
threads that can exist concurrently.

CountQueued The number of requests queued for processing by
this thread pool.

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 149

PeakQueued The largest number of requests that have been in
the queue simultaneously.

MaxQueued The maximum number of requests that can be in
the queue.

Table 6-20 DnsBucket

Attribute Name Values Description

FlagCacheEnabled 0 (off), 1 (on) Indicates whether the DNS cache is enabled (on).

CountCacheEntries The number of DNS entries presently in the cache.

MaxCacheEntries The maximum number of DNS entries the cache
can accommodate.

CountCacheHits The number of times a DNS cache lookup has
succeeded.

CountCacheMisses The number of times a DNS cache lookup has
failed.

FlagAsyncEnabled 0 (off), 1 (on) Indicates whether asynchronous DNS lookups are
enabled (on).

CountAsyncNameLookups The total number of asynchronous DNS name
lookups performed.

CountAsyncAddrLookups The total number of asynchronous DNS address
lookups performed.

CountAsyncLookupsInProgress The total number of asynchronous DNS lookups
currently in progress.

Table 6-21 KeepaliveBucket

Attribute Name Values Description

CountConnections The number of connections currently in keepalive
mode.

MaxConnections The maximum number of simultaneous keepalive
connections.

Table 6-19 ThreadPoolBucket (Continued)

Attribute Name Values Description

Extracting Monitoring Data Using the CLI

150 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

CountHits The total number of times connections in keepalive
mode have subsequently made a valid request.

CountFlushes The number of times keepalive connections have
been closed by the server.

CountTimeouts The number of times keepalive connections have
timed out.

SecondsTimeouts The number of seconds before the server closes an
idle keepalive connection.

CountRefusals The number of times keepalive connections have
been refused by the server.

Table 6-22 CacheBucket

Attribute Name Values Description

FlagEnabled 0 (off), 1 (on) Indicates whether the file cache is enabled (on).

SecondsMaxAge Number of
seconds

The maximum age of a file cache entry.

CountEntries The number of entries currently in the file cache.

MaxEntries The maximum number of cache entries the file
cache can accommodate simultaneously.

CountOpenEntries The number of entries associated with an open file.

MaxOpenEntries The maximum number of cache entries associated
with an open file that the file cache can
accommodate simultaneously.

SizeHeapCache Number of
bytes

The amount of heap used by cached file content.

MaxHeapCacheSize Number of
bytes

The maximum amount of heap the file cache uses
for cached file content.

SizeMmapCache Number of
bytes

The amount of address space used by memory
mapped file content.

MaxMmapCacheSize Number of
bytes

The maximum amount of address space that the
file cache uses for memory mapped file content.

CountHits The number of times a cache entry lookup has
succeeded.

Table 6-21 KeepaliveBucket (Continued)

Attribute Name Values Description

Extracting Monitoring Data Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 151

CountMisses The number of times a cache entry lookup has
failed.

CountInfoHits The number of times a file information lookup has
succeeded.

CountInfoMisses The number of times a file information lookup has
failed.

CountContentHits The number of times a content lookup has
succeeded.

CountContentMisses The number of times a content lookup has failed.

Table 6-23 Thread

Attribute Name Values Description

Mode unknown, idle, DNS,
request, processing,
response, updating

The thread's last known status.

TimeStarted GMT The time this thread was started.

ConnectionQueue The ID of the ConnectionQueue the thread is
servicing.

Table 6-24 VirtualServer

Attribute Name Values Description

Id The virtual server ID.

Mode unknown,
active

Displays active when this virtual server is active.

Hosts The software virtual server hostnames serviced by this virtual
server (for example, www.foo.com foo.com foo.isp.com).

Interfaces The interfaces (listeners) the virtual server is configured for (for
example, 192.168.1.2:80 192.168.1.2:443).

Table 6-22 CacheBucket (Continued)

Attribute Name Values Description

Extracting Monitoring Data Using the CLI

152 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 6-25 RequestBucket

Attribute Name Values Description

CountRequests The number of requests serviced.

CountBytesReceived The number of bytes received, or 0 if this
information is not available.

CountBytesTransmitted The number of bytes transmitted, or 0 if this
information is not available.

RateBytesTransmitted bytes per
second

The rate at which data was transmitted over some
server-defined interval, or 0 if this information is
not available.

MaxByteTransmissionRate The maximum rate at which data was transmitted
over some server-defined interval, or 0 if this
information is not available.

CountOpenConnections The number of open connections, or 0 if this
information is not available.

MaxOpenConnections The maximum number of open connections, or 0 if
this information is not available.

Count2xx The number of 200-level responses sent.

Count3xx The number of 300-level responses sent.

Count4xx The number of 400-level responses sent.

Count5xx The number of 500-level responses sent.

CountOther The number of responses sent that were not 200,
300, 400, or 500 level.

Count200 The number of 200-level responses sent.

Count302 The number of 302-level responses sent.

Count304 The number of 304-level responses sent.

Count400 The number of 400-level responses sent.

Count401 The number of 401-level responses sent.

Count403 The number of 403-level responses sent.

Count404 The number of 404-level responses sent.

Count503 The number of 503-level responses sent.

Administering the Transaction Service Using the CLI

Chapter 6 Monitoring the Sun ONE Application Server 153

Administering the Transaction Service Using the
CLI

You can use the set command to administer the statistics you want to monitor for
the JTS.

Example 1
To add a transaction to a rollback list (which results in rollback or specified
transaction), issue the set command as follows:

set --monitor server1.transaction-service.rollback-list=txnid1

Example 2
To freeze the transaction service, issue the set command as follows:

set --monitor server1.transaction-service.freeze=true

The following table describes the attributes that can be monitored to gather
statistics for the JTS. These attributes can be set from the command line according
to the rules described in “CLI Name Mapping” on page 134.

For more information on the java transaction service, refer to Chapter 9, “Using
Transaction Services.”

Table 6-26 ProfileBucket

Attribute Name Values Description

Profile The ID of a Profile element.

Countcalls The number of calls to NSAPI SAFs.

CountRequests The number of requests processed.

TicksDispatch The number of ticks spent dispatching requests. A
tick is a system-dependent unit of time; see
TicksPerSecond.

TicksFunction The number of ticks spent in NSAPI SAFs. A tick is
a system-dependent unit of time; see
TicksPerSecond.

Using HTTP Quality of Service

154 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using HTTP Quality of Service
The following settings govern how traffic is counted and how often the bandwidth
is recomputed:

• Recompute interval—Indicates how often (in milliseconds) the bandwidth is
computed.

• Metric interval—The period of time for which data is used in traffic
calculations.

In the Administration interface, you can enable these server or class-level settings
for the server instance or for a class of virtual servers. However, you can override
them for an individual virtual server.

This section includes the following topics:

• Quality of Service Example

• Configuring Quality of Service (QOS)

• Required Changes to the obj.conf File

• Known Limitations to Quality of Service

Quality of Service Example
The following example shows how the Quality of Service information is collected
and computed.

• The server has metric interval of 30 seconds.

• The server starts up at a time of 0 seconds.

• At 1 second, an HTTP connection generates 5000 bytes of traffic to/from the
server.

• No more connections are made after that. At 30 seconds, the total traffic for the
last 30 seconds is 5000 bytes.

• At 32 seconds, the traffic sample from 1 second is discarded, since it is older
than the 30 seconds of the metric interval. The total traffic for the last 30
seconds is now 0.

The recompute interval works similarly. The server’s recompute interval is 100ms.

Using HTTP Quality of Service

Chapter 6 Monitoring the Sun ONE Application Server 155

Continuing with the example, the bandwidth is recomputed periodically every 100
milliseconds. The calculation is based on the amount of traffic as well as the metric
interval.

• At 0 seconds, the bandwidth is calculated for the first time. The total traffic is
zero, divided by the metric interval of 30 seconds, giving a bandwidth of zero.

• At 1 second, the bandwidth is calculated for the 10th time (1000 milliseconds/
100 milliseconds). The total traffic is 5000 bytes, which is divided by 30
seconds. The bandwidth is 5000/30 = 166 bytes per second.

• At 30 seconds, the bandwidth is calculated for the 300th time. The total traffic is
5000 bytes, which is divided by 30 seconds. The bandwidth is 5000/30 = 166
bytes per second.

• At 32 seconds, the bandwidth is computed again for the 320th time. The traffic
is now 0 (since the one connection that generated traffic is too old to be
counted), divided by 30, giving a bandwidth of 0 bytes/second.

Configuring Quality of Service (QOS)
Quality of Service for a server instance or a class of virtual servers is configured
through the Administration interface.

To configure Quality of Service, follow these steps:

1. Select the App Server Instances node in the left pane.

2. Expand the server instance node to display the HTTP Server node.

3. Click the HTTP Server node to display the QOS tab.

4. Click the QOS tab.

A following page displays the general settings for Quality of Service, followed
by a properties button.

NOTE To enforce your Quality of Service settings, you must also set up
Server Application Functions (SAFs) in the obj.conf file as
described in “Required Changes to the obj.conf File” on page 158.

Using HTTP Quality of Service

156 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 6-1 Virtual Server Instance QOS Tab

5. To enable Quality of Service for this HTTP Server, click QOS Enable.

Note: By default, Quality of Service is disabled. Enabling Quality of Service
slightly increases server overhead.

Using HTTP Quality of Service

Chapter 6 Monitoring the Sun ONE Application Server 157

6. Specify the QOS Metrics Interval.

The metrics interval is the time period, in seconds, that data is sampled during
server traffic calculations. The default value is 30 seconds.

If your site commonly has large file transfers, use a large value (several
minutes or more) for this field. A large file transfer might take up all the
allowed bandwidth for a short metric interval, and result in connections being
denied if you’ve enforced the maximum bandwidth setting. Since the
bandwidth is averaged by the metric interval, a longer interval smooths out
spikes caused by large files.

If the bandwidth limit is much lower than available bandwidth (for example, 1
MB-per-second bandwidth limit but with a 1 GB-per-second connection to the
backbone), the metric interval should be shortened.

Note: If you have large static file transfers and a bandwidth limit that is much
lower than the available bandwidth, you must decide which situation to tune
for, since the problems require opposite solutions.

7. Specify the QOS Recompute Time Interval.

The recompute time interval is the number of milliseconds between each
computation of the bandwidth for all servers, classes, and virtual servers. The
default is 100 milliseconds.

8. Specify the Bandwidth Limit.

This is the maximum bandwidth limit for the server instance in bytes per
second. It is interdependent with the QOS Metrics Interval to some extent.

9. Choose whether or not to enforce the maximum bandwidth setting.

If you choose to enforce the maximum bandwidth, when the server reaches its
bandwidth limit, additional connections are refused.

If you do not enforce the maximum bandwidth, when the maximum is
exceeded, the server logs a message to the event log.

10. Specify the connection limit.

This is the number of concurrent requests processed.

11. Choose whether or not to enforce the connection limit setting.

If you choose to enforce the maximum connections, when the server reaches its
limit, additional connections are refused. If you do not enforce the maximum
connections, when the maximum is exceeded, the server logs a message to the
event log.

Using HTTP Quality of Service

158 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

12. (Optional). If specifying additional name-value pair attributes for Quality of
Service, click the Properties button.

For a list of allowed name-value pairs for Quality of Service properties, refer to
the online help.

13. Click Save to commit the changes to the server instance.

14. Access App Server Instances and your server instance in the left pane, then
click Apply Changes.

Required Changes to the obj.conf File
To enforce Quality of Service, you must include directives in your obj.conf file to
invoke following Server Application Functions (SAFs):

• AuthTrans qos-handler

• Error qos-error

In order to work properly, the qos-handler AuthTrans directive must be the first
AuthTrans configured in the default object. The role of the Quality of Service
handler is to examine the current statistics for the virtual server, virtual server
class, and global server, and to enforce the limits by returning an error. The Sun
ONE Application Server includes a built-in sample Quality of Service handler SAF,
called qos-handler. This SAF logs when limits are reached, and returns a 503
Server busy error to the server so that it can be processed by the NSAPI.

The Sun ONE Application Server also includes a built-in sample error SAF called
qos-error which returns an error page stating which limits caused the 503 error
and the value of the statistic that triggered the limit.

For more information on these SAFs and how to use them, see the Sun ONE
Application Server Developer’s Guide to NSAPI.

Known Limitations to Quality of Service
When you use the Quality of Service features, keep in mind the following
limitations:

• The Quality of Service features only measure the HTTP bandwidth at the
application level. The HTTP bandwidth can differ from the actual TCP
network bandwidth for a variety of reasons:

Using HTTP Quality of Service

Chapter 6 Monitoring the Sun ONE Application Server 159

❍ If SSL is enabled, handshakes and client certificate exchanges add to the
traffic but are not measured.

❍ If chunked encoding is enabled in either or both directions, the chunking
layer removes the chunk headers and they are not counted in the traffic.
Other headers or protocol items are counted.

• The Quality of Service features cannot accurately measure traffic from
PR_TransmitFile calls. For basic I/O operations such as
PR_Send()/net_write or PR_Recv()/net_read, the data transferred can be
quickly accounted for by the bandwidth manager, since the number of bytes
transferred in one system call is usually the size of a buffer and the I/O call
returns quickly. This works very well to measure the instantaneous bandwidth
of dynamic content applications. However, because the amount of data
transferred from PR_TransmitFile is only known at the end of the transfer, it
can’t be measured before it completes.

If the PR_TransmitFile is short, then the Quality of Service features will
perform adequately. However, If the PR_TransmitFile is long, as in the case
of a long file downloaded by a dialup user, the whole amount of data
transferred will be counted at completion time. When the bandwidth manager
recomputes bandwidth after the next recompute interval period starts, the
bandwidth computed will increase significantly because of that recent large
PR_TransmitFile. This case could cause the server to deny all requests until
the next metric interval, when the bandwidth manager will "expire" the
transmit file operation (since it is too old) and thus the bandwidth value will go
back down. If your site commonly has very long static file downloads, you
should increase the metric interval from the default 30 seconds.

• The bandwidth computed is always an approximation because it is not
measured instantaneously, but is recomputed at regular intervals and over a
certain period. For example, if the metric interval is the default 30 seconds and
the server is idle for 29 seconds, then the next second, a client could potentially
use 30 times the bandwidth limit in one second.

• The Quality of Service bandwidth statistics are lost whenever the server is
reconfigured dynamically. In addition, the Quality of Service limitations are
not enforced in threads that have connections on an older, inactive
configuration, because the bandwidth manager thread only computes
bandwidth statistics for the active configuration. Potentially, a client that
doesn’t close its socket for a long time and remains active so that the server
doesn’t time it out would not be subject to the Quality of Service limitations
after a dynamic server reconfiguration.

About SNMP

160 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• The concurrent connections are computed with a different granularity for
virtual servers than for virtual server classes and the global server instance.
The connection counter for an individual virtual server is incremented
atomically immediately after the request is parsed and routed to the virtual
server. It is also decremented atomically at the end of the response processing
for that request. This means that the virtual server connection statistics are
always exact at any instant.

However, the connection statistics for the virtual server class and global server
instance are not updated instantly. They are updated by the bandwidth
manager thread every recompute interval. The connection count for the virtual
server class is the sum of the connections on all virtual servers of that class; and
the global server instance connection count is the sum of connections on all
virtual server classes.

Because of the way these values are computed, the number of connections for a
virtual server is always correct, and if you’ve enforced a limit to the number of
connections, you can never have more than the limit. The virtual server class
and server instance values are not quite as accurate, since they are only
computed at intervals.

About SNMP
Simple Network Management Protocol (SNMP) is a protocol used to exchange
management and monitoring information across a network. With SNMP, data
travels between a managed device and a network management station (NMS). A
managed device is anything that runs SNMP: hosts, routers, your HTTP server, and
other servers on your network.

This section addresses the following topics:

• Network Management Station (NMS)

• Management Information Base (MIB) Objects

• SNMP Messages

• SNMP Trap Destinations

• SNMP Agent Community

About SNMP

Chapter 6 Monitoring the Sun ONE Application Server 161

Network Management Station (NMS)
The network management station (NMS) is a machine used to remotely manage a
specific network. Usually, the NMS software will provide a graph to display
collected data or use that data to make sure the server is operating within a
particular tolerance.

The NMS is usually a powerful workstation with one or more network
management applications installed. A network management application such as
HP OpenView graphically shows information about managed devices, such as
your HTTP servers. For example, it might show which servers in your enterprise
are up or down, or the number and type of error messages received. When you use
SNMP with the Sun ONE Application Server, this information is transferred
between the NMS and the server through the use of two types of agents: the
subagent and the master agent.

The subagent gathers information about the server instances running in various
domains and passes the information to the master agent. There is a master agent
and a subagent for every installation of the Sun ONE Application Server.

The master agent exchanges information between the various subagents and the
NMS. The master agent is installed with the Sun ONE Application Server.

You can have multiple subagents installed on a host computer, but only one master
agent. For example, if you had Sun ONE Directory Server, Sun ONE Application
Server, and the Sun ONE Messaging Server installed on the same host, the
subagents for each of the servers would communicate with the same master agent.

The NMS either requests information from the server or changes the value of a
variable store in the server’s MIB. For example:

1. The NMS sends a message to the Admin Server master agent. The message
might be a request for data (a GET message), or an instruction to set a variable
in the MIB (a SET message).

2. The master agent forwards the message to the appropriate subagent.

3. The subagent retrieves the data or changes the variable in the MIB.

4. The subagent reports data or status to the master agent, then the master agent
forwards the message back (a GET message) to the NMS.

NOTE After making any SNMP configuration changes, you must click the
Apply button, then restart the SNMP subagent.

About SNMP

162 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

5. The NMS displays the data textually or graphically through its network
management application.

Management Information Base (MIB) Objects
The Sun ONE Application Server stores variables pertaining to managing and
monitoring information across a network. Variables the master agent can access are
called managed objects. These objects are defined in a tree-like structure called the
management information base (MIB). The MIB provides access to the HTTP server’s
network configuration, status, and statistics. Using SNMP, you can view this
information from the network management workstation (NMS).

The top level of the MIB tree shows that the internet object identifier has the
following subtrees:

• directory (1)

• mgmt (2)

• experimental (3)

• private (4)

The private (4) subtree contains the enterprises (1) node. Each subtree in the
enterprises (1) node is assigned to an individual enterprise, which is an
organization that has registered its own specific MIB extensions. An enterprise can
then create product-specific subtrees under its subtree. MIBs created by companies
are located under the enterprises (1) node.

Each Sun ONE Application Server subagent provides a MIB for use in SNMP
communication. The server reports significant events to the NMS by sending
messages or traps containing these variables. The NMS can query the server's MIB
for data.

Each Sun ONE Application Server has its own MIB located at install_dir/lib

The Sun ONE Application Server’s MIB is a file called appserv.mib. This MIB
contains the definitions for various variables pertaining to network management
for the Sun ONE Application Server.

The Sun ONE Application Server MIB has an object identifier of

appserver 1 (as appserver7 OBJECT IDENTIFIER ::= {appserver 1 }) and
is located in the install_dir/lib directory.

About SNMP

Chapter 6 Monitoring the Sun ONE Application Server 163

You can see administrative information about your Sun ONE Application Server
and monitor the server in real time using the Sun ONE Application Server MIB.
The following table lists and describes the managed objects stored in the
appserv.mib file.

appserv.mib Managed Objects and Descriptions

Managed object Description

iwsCpuID CPU identifier.

iwsCpuIdleTime Idle CPU time.

iwsCpuKernelTime CPU kernel time.

iwsCpuTable Sun ONE Application Server CPUs.

iwsCpuUserTime CPU user time.

iwsInstanceTable Sun ONE Application Server instances.

iwsInstanceId Server instance identifier

iwsInstanceVersion String, such as
SunONE-ApplicationServer-Enterprise/7
BB1-01/24/2001 17:15 (SunOS DOMESTIC)

iwsInstanceDescription Description of the server instance.

iwsInstanceOrganization Organization responsible for the server instance.

iwsInstanceContact Contact information for person(s) responsible for server
instance.

iwsInstanceLocation Where the server is located.

iwsInstanceStatus Status of the server instance.

iwsInstanceUptime How long the server has been running.

iwsInstanceDeathCount Number of times server instance processes have gone
down.

iwsInstanceRequests Number of requests processed by the server instance.

iwsInstanceInOctets Number of octets received by the server instance. Will
show 0 if information is not available.

iwsInstanceOutOctets Number of octets transmitted by the server instance. Will
show 0 if information is not available.

iwsInstanceCount2xx Number of 200-level (Successful) responses issued by the
server instance.

iwsInstanceCount3xx Number of 300-level (Redirection) responses issued by
the server instance.

About SNMP

164 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

iwsInstanceCount4xx Number of 400-level (Client Error) responses issued by
the server instance.

iwsInstanceCount5xx Number of 500-level (Server Error) responses issued by
the server instance.

iwsInstanceCountOther Number of other (neither 2xx, 3xx, 4xx, nor 5xx)
responses issued by the server instance.

iwsInstanceCount200 Number of 200 (OK) responses issued by the server
instance.

iwsInstanceCount302 Number of 302 (Moved Temporarily) responses issued
by the server instance.

iwsInstanceCount304 Number of 304 (Not Modified) responses issued by the
server instance.

iwsInstanceCount400 Number of 400 (Bad Request) responses issued by the
server instance.

iwsInstanceCount401 Number of 401 (Unauthorized) responses issued by the
server instance.

iwsInstanceCount403 Number of 403 (Forbidden) responses issued by the
server instance.

iwsInstanceCount404 Number of 404 (Not Found) responses issued by the
server instance.

iwsInstanceLoad1MinuteAverage 1 minute load average of the system running the server
instance.

iwsInstanceLoad5MinuteAverage 5 minute load average of the system running the server
instance.

iwsInstanceLoad15MinuteAverage 15 minute load average of the system running the server
instance.

iwsInstanceNetworkInOctets Number of octets transmitted on the network per
second.

iwsInstanceNetworkOutOctets Number of octets received on the network per second.

iwsVsTable Server virtual servers.

iwsVsId Virtual server identifier.

iwsVsRequests Number of requests processed by the virtual server.

iwsVsInOctets Number of octets received by the virtual server.

iwsVsOutOctets Number of octets transmitted by the virtual server.

appserv.mib Managed Objects and Descriptions (Continued)

Managed object Description

About SNMP

Chapter 6 Monitoring the Sun ONE Application Server 165

iwsVsCount2xx Number of 200-level (Successful) responses issued by the
virtual server.

iwsVsCount3xx Number of 300-level (Redirection) responses issued by
the virtual server.

iwsVsCount4xx Number of 400-level (Client Error) responses issued by
the virtual server.

iwsVsCount5xx Number of 500-level (Server Error) responses issued by
the virtual server.

iwsVsCountOther Number of other (neither 2xx, 3xx, 4xx, nor 5xx)
responses issued by the virtual server.

iwsVsCount200 Number of 200 (OK) responses issued by the virtual
server.

iwsVsCount302 Number of 302 (Moved Temporarily) responses issued
by the virtual server.

iwsVsCount304 Number of 304 (Not Modified) responses issued by the
virtual server.

iwsVsCount400 Number of 400 (Bad Request) responses issued by the
virtual server.

iwsVsCount401 Number of 401 (Unauthorized) responses issued by the
virtual server.

iwsVsCount403 Number of 403 (Forbidden) responses issued by the
virtual server.

iwsVsCount404 Number of 404 (Not Found) responses issued by the
virtual server.

iwsProcessTable Sun ONE Application Server processes.

iwsProcessId Operating system process identifier.

iwsProcessThreadCount Number of request processing threads.

iwsProcessThreadIdle Number of request processing threads currently idle.

iwsProcessConnectionQueueCount Number of connections currently in connection queue.

iwsProcessConnectionQueuePeak Largest number of connections that have been queued
simultaneously.

iwsProcessConnectionQueueMax Maximum number of connections allowed in connection
queue.

iwsProcessConnectionQueueTotal Number of connections that have been accepted.

appserv.mib Managed Objects and Descriptions (Continued)

Managed object Description

About SNMP

166 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

SNMP Messages
GET and SET are two types of messages defined by SNMP.

Each object is assigned a unique identifier within the MIB. Objects are accessed by
the SNMP Manager by issuing GET and GETNEXT commands which specify the
object's unique identifier. The Proxy Agent obtains the value of the specified object
and transmits it to the SNMP manager. Events added to the log may generate
SNMP traps provided they satisfy trap filter conditions. Events that do not
generate traps are merely recorded as an entry in the maintenance log table and are
accessed by the SNMP Manager through normal GET and GETNEXT commands.

iwsProcessConnectionQueueOverflows Number of connections rejected due to connection queue
overflow.

iwsProcessKeepaliveCount Number of connections currently in keepalive queue.

iwsProcessKeepaliveMax Maximum number of connections allowed in keepalive
queue.

iwsProcessSizeVirtual Process size in kilobytes.

iwsProcessSizeResident Process resident size in kilobytes.

iwsProcessFractionSystemMemoryUsage Fraction of process memory in system memory.

iwsListenTable Sun ONE Application Server listen sockets.

iwsListenId Listen socket identifier.

iwsListenAddress Address where socket listens.

iwsListenPort Port where socket listens.

iwsListenSecurity Encryption support.

iwsThreadPoolCount Number of requests denied.

iwsThreadPoolMax Maximum number of requests allowed in queue.

iwsThreadPoolPeak Largest number of requests that have been queued
simultaneously.

iwsThreadPoolTable Sun ONE Application Server thread pools.

iwsVsCount503 Number of 503 (Unavailable) responses issued.

iwsInstanceCount503 Number of 503 (Unavailable) responses issued.

appserv.mib Managed Objects and Descriptions (Continued)

Managed object Description

About SNMP

Chapter 6 Monitoring the Sun ONE Application Server 167

GET and SET messages are sent by a network management station (NMS) to a
master agent. You can use one or the other, or both, through the Administration
interface.

SNMP exchanges network information in the form of protocol data units (PDUs).
These units contain information about variables stored on the managed device,
such as the HTTP server. These variables, also known as managed objects, have
values and titles that are reported to the NMS as necessary. Protocol data units sent
by the server to the NMS are known as traps. The use of GET, SET, and trap
messages are explained further in the following sections.

SNMP Trap Destinations
An SNMP trap is a message the SNMP agent sends to a network management
station (NMS). For example, an SNMP agent sends a trap when the status of an
interface has changed from up to down. The SNMP agent must know the address
of the NMS so it knows where to send traps.

You can configure this trap destination for the SNMP master agent from the Sun
ONE Application Server Administration interface. You can also view, edit, and
remove the trap destinations you have already configured. When you configure
trap destinations using the Administration interface, you are actually editing the
CONFIG file.

The server subagent sends a message or trap to the NMS when a significant event
has occurred. For example:

1. The subagent informs the master agent that the server has stopped.

2. The master agent sends a message, or trap, reporting the event to the NMS.

3. The NMS displays the information textually or graphically through its network
management application.

Refer to “Installing the SNMP Master Agent” on page 171 for instructions on
setting up the SNMP trap port.

SNMP Agent Community
The SNMP agent community consists of a community string and the operations
assigned to the specified community. The community string is a text string for a
network management station (NMS) name that an SNMP agent uses for
authorization. This means that an NMS would send a community string with each
message it sends to the agent.

Setting Up SNMP

168 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The operations assigned are get and/or set. The SNMP agent can then verify
whether the NMS is authorized to perform get, set, or both get and set

operations for data exchange. Community strings are not concealed when sent in
SNMP packets; strings are sent in ASCII text.

You can configure and manage the community string and the allowed operations
for each specified community from the Administration interface. Refer to
“Installing the SNMP Master Agent” on page 171 for instructions on setting up the
SNMP Agent Community.

Setting Up SNMP
In general, to use SNMP, a master agent and at least one subagent must be installed
and running on your system. The master agent must be installed before you can
enable a subagent. Refer to “Installing the SNMP Master Agent” on page 171.

The procedures for setting up SNMP are different depending upon your system.
The following table provides an overview of procedures to follow for different
situations. The actual procedures are described in detail later in the chapter.

If your server meets these conditions... ...follow these procedures. (discussed in detail in
the following sections).

No native agent is currently running 1. Start the master agent.

2. Enable the subagent for each server
installed on the system.

• Native agent is currently running

• No SMUX

• No need to continue using native
agent

1. Stop the native agent when you install the
master agent for your Administration
Server.

2. Start the master agent.

3. Configure the SNMP subagent for each
server instance.

Setting Up SNMP

Chapter 6 Monitoring the Sun ONE Application Server 169

Before you begin, you should verify two things:

• Is your system already running an SNMP agent (an agent native to your
operating system)?

• If so, does your native SNMP agent support SMUX communication?

See your system documentation for information on how to verify this information.

The following topics are addressed in this section:

• Using a Proxy SNMP Agent (UNIX/Linux)

• Installing the SNMP Master Agent

• Native agent is currently running

• No SMUX

• Needs to continue using native agent

1. Install a proxy SNMP agent.

2. Start the proxy SNMP agent.

3. Restart the native agent using a port
number other than the master agent port
number.

4. Start the master agent.

5. Enable the subagent for each server
installed on the system.

NOTE After changing SNMP settings in the Admin Server, installing a
new server, or deleting an existing server, you must perform the
following steps:

• (Windows 2000) Restart the Windows SNMP service or reboot
the machine.

• (UNIX) Restart the SNMP master agent and the SNMP
subagent using the Admin Server.

If your server meets these conditions... ...follow these procedures. (discussed in detail in
the following sections).

Setting Up SNMP

170 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using a Proxy SNMP Agent (UNIX/Linux)
You need to use a proxy SNMP agent when you already have a native agent
running, and you want to continue using it concurrently with a Sun ONE
Application Server master agent. Before you start, be sure to stop the native master
agent. (See your system documentation for detailed information.)

This section includes the following topics:

• Installing the Proxy SNMP Agent

• Starting the Proxy SNMP Agent

• Restarting the Native SNMP Daemon

Installing the Proxy SNMP Agent
If an SNMP agent is running on your system and you want to continue using the
native SNMP daemon, follow the steps in these sections:

1. Install the SNMP master agent. See “Installing the SNMP Master Agent” on
page 171.

2. Install and start the proxy SNMP agent and restart the native SNMP daemon.
See “Using a Proxy SNMP Agent (UNIX/Linux)” on page 170.

3. Start the SNMP master agent. See “Enabling and Starting the SNMP Master
Agent” on page 174.

4. Enable the subagent. See “Enabling the Subagent” on page 180.

To install the SNMP proxy agent, edit the CONFIG file (you can give this file a
different name), located in install_dir/lib/snmp/sagt in the server root directory,
so that it includes the listening port for the SNMP daemon. The proxy agent also
needs to include the MIB trees and traps that the proxy SNMP agent will forward.

Here is an example of a CONFIG file:

NOTE To use a proxy agent, you’ll need to install it and then start it. You’ll
also have to restart the native SNMP master agent using a port
other than the port the Sun ONE Application Server master agent is
running on.

Setting Up SNMP

Chapter 6 Monitoring the Sun ONE Application Server 171

Starting the Proxy SNMP Agent
To start the proxy SNMP agent, enter the following at the command prompt:

sagt -c CONFIG&

Restarting the Native SNMP Daemon
After starting the proxy SNMP agent, restart the native SNMP daemon at the port
you specified in the CONFIG file.

To restart the native SNMP daemon, enter the following at the command prompt:

snmpd -P port_number

where port_number is the port number specified in the CONFIG file. For example, on
the Solaris platform, using the port in the previously mentioned example of a
CONFIG file, you would enter:

snmpd -P 1161

Installing the SNMP Master Agent

To install the master SNMP agent:

1. Log in as root.

AGENT AT PORT 1161 WITH COMMUNITY public
SUBTREES 1.3.6.1.2.1.1,

1.3.6.1.2.1.2,
1.3.6.1.2.1.3,
1.3.6.1.2.1.4,
1.3.6.1.2.1.5,
1.3.6.1.2.1.6,
1.3.6.1.2.1.7,
1.3.6.1.2.1.8

FORWARD ALL TRAPS;

NOTE You cannot use the Administration interface to install and start the
master SNMP agent unless the server is running as root.

Setting Up SNMP

172 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

2. Check whether an SNMP daemon (snmpd) is running on port 161.

If no SNMP daemon is running, go to Step 4.

If an SNMP daemon is running, make sure you know how to restart it and
which MIB trees it supports.

3. If an SNMP daemon is running, kill its process.

4. In the Administration interface, select the Admin Server node from the left
pane.

5. Select the Monitoring tab to display the SNMP Agent Trap page, as shown in
the following figure:

Figure 6-2 SNMP Agent Trap Page

The Manager Entries information is displayed on this page.

6. Type the name of the system that is running your network management
software.

Setting Up SNMP

Chapter 6 Monitoring the Sun ONE Application Server 173

7. Type the trap port number at which your network management system listens
for traps. (The well-known port is 162.) For more information on traps, see
“SNMP Trap Destinations” on page 167.

8. Type the community string you want to use in the trap. For more information
on community strings, see “SNMP Agent Community” on page 167.

9. Click OK.

10. Click the SNMP Agent Community link within the Monitoring tab.

The Community Strings information is displayed, as shown in the following
figure.

Figure 6-3 SNMP Agent Community Page

11. Type the community string for the master agent.

12. Choose an operation level for the community.

After you establish a community, you can edit its settings or remove it from the
buttons indicated within the Current Communities heading on this page.

13. Click OK.

Enabling and Starting the SNMP Master Agent

174 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

14. Access App Server Instances and your server instance in the left pane, then
click Apply Changes.

Enabling and Starting the SNMP Master Agent
Master agent operation is defined in an agent configuration file named CONFIG,
which you can edit manually. You must install the master SNMP agent before you
can enable the SNMP subagent.

This section includes the following topics:

• Starting the Master Agent on Another Port

• Manually Configuring the SNMP Master Agent

• Editing the Master Agent CONFIG File

• Defining sysContact and sysLocation Variables

• Configuring the SNMP Subagent

• Starting the SNMP Master Agent

• Enabling the Subagent

Starting the Master Agent on Another Port
The Administration interface will not start the SNMP master agent on ports other
than 161. However, you can manually start the master agent on another port using
the following steps:

1. Edit install_dir/lib/snmp/magt/CONFIG to specify the desired port.

NOTE If you get a bind error similar to System Error: Could not bind

to port when restarting the master agent, use ps -ef | grep
snmp to check if magt is running. If it is running, use the command
kill -9 pid to end the process. The CGIs for SNMP will then start
working again.

Enabling and Starting the SNMP Master Agent

Chapter 6 Monitoring the Sun ONE Application Server 175

2. Run the start script as follows:

cd instance_root/admin-server ./start -shell
install_dir/lib/snmp/magt/magt

install_dir/lib/snmp/magt/CONFIG

install_dir/lib/snmp/magt/INIT

The master agent will then start on the desired port. However, the Administration
interface will be able to detect that the master agent is running.

Manually Configuring the SNMP Master Agent
To configure the master SNMP agent manually:

1. Log in as root.

2. Check to see if there is an SNMP daemon (snmpd) running on port 161.

If an SNMP daemon is running, make sure you know how to restart it and
which MIB trees it supports. Then kill its process.

3. Edit the CONFIG file located in lib/snmp/magt in the server root directory.

4. (Optional) Define sysContact and sysLocation variables in the CONFIG file as
described in “Defining sysContact and sysLocation Variables” on page 176.

Editing the Master Agent CONFIG File
The CONFIG file defines the community and the manager that will work with the
master agent. The manager value should be a valid system name or an IP address.

Here is an example of a basic CONFIG file:

COMMUNITY public
ALLOW ALL OPERATIONS

MANAGER manager_station_name
SEND ALL TRAPS TO PORT 162
WITH COMMUNITY public

Enabling and Starting the SNMP Master Agent

176 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Defining sysContact and sysLocation Variables
You can edit the CONFIG file to add initial values for sysContact and sysLocation

which specify the sysContact and sysLocation MIB-II variables. The strings for
sysContact and sysLocation in this example are enclosed in quotes. Any string
that contains spaces, line breaks, tabs, and so on must be in quotes. You can also
specify the value in hexadecimal notation.

Here is an example of a CONFIG file with sysContact and sysLocation variables
defined:

Configuring the SNMP Subagent
To configure the SNMP subagent, perform the following steps:

1. From the Admin Server, select the server instance node in the left pane.

2. Select the Monitoring tab from the right pane.

3. Select the SNMP Subagent Configuration link.

The following page is displayed:

COMMUNITY public
ALLOW ALL OPERATIONS

MANAGER nms2
SEND ALL TRAPS TO PORT 162
WITH COMMUNITY public

INITIAL sysLocation “Server room
901 San Antonio Road
Palo Alto CA 94303
USA”

INITIAL sysContact “John Doe
email: jdoe@sun.com”

Enabling and Starting the SNMP Master Agent

Chapter 6 Monitoring the Sun ONE Application Server 177

Figure 6-4 SNMP Subagent Configuration Page

4. (UNIX only) Enter the name and domain of the server in the Master Host field.

5. Enter the Description of the server, including operating system information.

6. Enter the Organization responsible for the server.

7. Enter the location of the server instance.

8. Enter the name of the person responsible for the server and the person’s
contact information in the Contact field.

9. Select On to Enable the SNMP Statistics Collection.

10. Click OK.

11. Access App Server Instances and your server instance in the left pane, then
click Apply Changes.

Enabling and Starting the SNMP Master Agent

178 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Starting the SNMP Master Agent
Once you have installed the SNMP master agent, you can start it manually or by
using the Admin Server from the Administration interface.

Manually Starting the SNMP Master Agent
To start the master agent manually, enter the following at the command prompt:

magt CONFIG INIT&

The INIT file is a nonvolatile file that contains information from the MIB-II system
group, including system location and contact information. If INIT doesn’t already
exist, starting the master agent for the first time will create it.

To start a master agent on a non-standard port, use one of two methods:

Method 1: In the CONFIG file, specify a transport mapping for each interface over
which the master agent listens for SNMP requests from managers. Transport
mappings allow the master agent to accept connections at the standard port and at
a non-standard port. The master agent can also accept SNMP traffic at a
non-standard port. The maximum number of concurrent SNMP is limited by your
target system’s limits on the number of open sockets or file descriptors per process.
Here is an example of a transport mapping entry:

TRANSPORT extraordinary SNMP
OVER UDP SOCKET
AT PORT 11161

After editing the CONFIG file manually, you should start the master agent manually
by typing the following at the command prompt:

magt CONFIG INIT&

Method 2: Edit the /etc/services file to allow the master agent to accept
connections at the standard port as well as at a non-standard port.

Starting the SNMP Master Agent Using the Admin Server
To start the SNMP master agent using the Admin Server, perform the following
steps:

NOTE An invalid manager name in the CONFIG file will cause the master
agent start-up to fail.

Enabling and Starting the SNMP Master Agent

Chapter 6 Monitoring the Sun ONE Application Server 179

1. Log in to the Admin Server.

2. From the Admin Server node in the left pane, choose the Monitoring tab.

3. Choose the SNMP Agent Control link near the top of the right pane.

The following page is displayed.

Figure 6-5 SNMP Agent Control Page

NOTE You must be logged in the Sun ONE Application Server as root to
start the SNMP Master Agent.

Enabling and Starting the SNMP Master Agent

180 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

4. Click Start.

You can also stop and restart the SNMP master agent from the SNMP Agent
Control page.

Enabling the Subagent
After you have installed the master agent that comes with the Administration
Server, you must enable the subagent for your server instance before you attempt
to start it. For information on installing the master agent, see “Installing the SNMP
Master Agent” on page 171.

You can use the subagent to stop the SNMP function on UNIX/Linux platforms.
You must stop the subagent first, then the master agent. If you stop the master
agent first, you may not be able to stop the subagent. If that happens, restart the
master agent, stop the subagent, then stop the master agent.

To enable the SNMP subagent:

1. Expand the App Server Instances node in the left pane.

2. Select the server instance, then click the Monitoring tab.

3. Select the SNMP Subagent Control option to display the page as shown in the
following figure.

Enabling and Starting the SNMP Master Agent

Chapter 6 Monitoring the Sun ONE Application Server 181

Figure 6-6 SNMP Subagent Control Page

From this page, you can start, stop, or restart the SNMP subagent. The status of the
subagent is indicated just above the control buttons.

On the Windows platform, the Windows SNMP service is used for monitoring the
Sun ONE Application Server; it can be controlled from the Control
Panel/Administrative Tools/Services option.

NOTE After making any SNMP configuration changes, you must click
OK, then restart SNMP subagent from the SNMP Subagent Control
page.

Enabling and Starting the SNMP Master Agent

182 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

183

Chapter 7

Configuring the Web Server Plugin

This chapter explains how Sun ONE Application Server processes HyperText
Transfer Protocol (HTTP) requests, and how to configure and use the web server
plugin with Sun ONE Application Server. This chapter also explains how to
configure and use the web server plugin with Microsoft IIS, and the Apache web
server.

This chapter includes the following topics:

• About the Web Server Plugin

• Handling Client Requests

• Web Server Plugin Configuration

• The Web Server Plugin SAF Reference

• Using the Web Server Plugin

• Configuring Microsoft IIS To Use the Web Server Plugin

• Configuring Apache Web Server

About the Web Server Plugin
The web server plugin is an HTTP reverse proxy plugin that allows you to instruct
a Sun ONE Web Server or Sun ONE Application Server to forward certain HTTP
requests to another server. For example, you can configure a web server connected
to the Internet to forward requests for specific web applications to an application
server located behind a corporate firewall.

Within Sun ONE Application Server, the web server plugin allows one server
instance to forward an HTTP (web) request to another server instance.

The web server plugin performs the following functions:

Handling Client Requests

184 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Re-uses connections from the proxy server, whenever possible. This eradicates
the necessity of opening new connections to process incoming requests.

• The web server plugin starts streaming requests and responses as it starts
receiving them. In other words, the plugin does not wait till the request or
response is collected fully before forwarding it to the remote server.

• The web server plugin maintains multiple outbound HTTP connections to the
same remote server, as appropriate. Connections formed for requests that are
forwarded by the web server plugin are called outbound HTTP connections.

To understand how the web server plugin works, it is necessary to understand the
basics of HTTP requests, and specifically the method used by Sun ONE
Application Server to process HTTP requests.

Handling Client Requests
Sun ONE Application Server is an application server that can directly accept and
respond to HTTP requests. In this section, we will discuss HTTP basics in and also
look at how Sun ONE Application Server handles requests. This section covers the
following topics:

• HTTP Basics

• Steps in the Request Handling Process

HTTP Basics
As a quick summary, the HTTP/1.1 protocol works as follows:

• The client (usually a browser) opens a connection to the server and sends a
request

• The server processes the request, generates a response, and closes the
connection if it finds a Connection: Close header.

The request consists of a line indicating a method such as GET or POST, a Universal
Resource Identifier (URI) indicating which resource is being requested, and an
HTTP protocol version separated by spaces.

This is normally followed by a number of headers, a blank line indicating the end
of the headers, and sometimes body data. Headers may provide various
information about the request or the client body data. Headers are typically only
sent for POST and PUT methods.

Handling Client Requests

Chapter 7 Configuring the Web Server Plugin 185

The example request shown below would be sent by a browser to request the
server foo.com to send back the resource in /index.html. In this example, no body
data is sent because the method is GET (the point of the request is to get some data,
not to send it.)

The server receives the request and processes it. It handles each request
individually, although it may process many requests simultaneously. Each request
is broken down into a series of steps that together make up the request handling
process.

The server generates a response which includes the HTTP protocol version, HTTP
status code, and a reason phrase separated by spaces. This is normally followed by
a number of headers. The end of the headers is indicated by a blank line. The body
data of the response follows. A typical HTTP response might look like this:

The status code and reason phrase tell the client how the server handled the
request. Normally the status code 200 is returned indicating that the request was
handled successfully and the body data contains the requested item. Other result
codes indicate redirection to another server or the browser’s cache, or various types
of HTTP errors such as “404 Not Found.”

GET /index.html HTTP/1.0

User-agent: Mozilla

Accept: text/html, text/plain, image/jpeg, image/gif, */*

Host: foo.com

HTTP/1.0 200 OK
Server: Standard/7.0
Content-type: text/html
Content-length: 83

<HTML>
<HEAD><TITLE>Hello World</Title></HEAD>
<BODY>Hello World</BODY>
</HTML>

Handling Client Requests

186 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Steps in the Request Handling Process
When Sun ONE Application Server first starts up it performs certain initialization
tasks, and then waits for an HTTP request from a client (such as a browser). When
it receives a request, it first selects a virtual server.

After the virtual server is selected, the virtual server’s obj.conf file specifies how
the request is handled with the following steps:

1. AuthTrans (authorization translation)

Verify any authorization information (such as name and password) sent in the
request.

2. NameTrans (name translation)

Translate the logical URI into a local file system path.

3. PathCheck (path checking)

Check the local file system path for validity and check that the requestor has
access privileges to the requested resource on the file system.

4. ObjectType (object typing)

Determine the MIME-type (Multi-purpose Internet Mail Encoding) of the
requested resource (for example. text/html, image/gif, and so on).

5. Service (generate the response)

Generate and return the response to the client.

6. AddLog (adding log entries)

Add entries to log file(s).

7. Error (service)

This step is executed only if an error occurs in the previous steps. If an error
occurs, the server logs an error message and aborts the process.

Web Server Plugin Configuration

Chapter 7 Configuring the Web Server Plugin 187

Web Server Plugin Configuration
The configuration and behavior of the web server plugin are determined by a set of
configuration files. Sun ONE Application Server looks at the configuration defined
in these files each time it processes a request from a client. The configuration files
are named obj.conf and init.conf. The obj.conf file is prefixed with the name
of the virtual server, for example server1-obj.conf. For more information, see
“The obj.conf File” on page 373.

Each instance of Sun ONE Application Server has its own init.conf file, to which
the server refers at startup.

As discussed in the preceding topic, the obj.conf configuration file contains a
series of instructions (directives) that tell Sun ONE Application Server what to do
at each stage in the client request and response process. Each directive invokes a
Server Application Function (SAF).

The obj.conf file is essential to the operation of the Sun ONE Application Server.
When you make changes to the server through the Administration interface, the
system automatically updates obj.conf.

The init.conf configuration file sets values of variables that configure the server
during initialization. The server executes the configuration parameters specified in
this file, during server start up. See the Sun ONE Application Server Administrator’s
Configuration File Reference for more information.

The following figure illustrates the relationship between the web browser, a
front-end web server, a backend application server, and the web server plugin's
service-passthrough and auth-passthrough SAFs:

Figure 7-1 Relationship Between Web Browser, Web Server, Application Server, and
Web Server Plugin SAFs

The Web Server Plugin SAF Reference

188 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The Web Server Plugin SAF Reference
This section discusses the function and behavior of the following Server
Application Functions (SAF):

• init-passthrough

• auth-passthrough

• service-passthrough

• check-passthrough

init-passthrough
The init-passthrough function initializes the web server plugin. This function
must be called before the web server plugin can be used.

Example:

Init fn="load-modules" shlib="c:/plugins/passthrough.dll"
funcs="init-passthrough,auth-passthrough,check-passthrough,service-
passthrough" NativeThread="no"

Init fn="init-passthrough"

auth-passthrough
The auth-passthrough SAF is applicable in AuthTrans-class directives.

The auth-passthrough function inspects the incoming HTTP (web) request for
client information encoded by a service-passthrough function running on an
intermediate server. The client information includes:

• IP address request originated from

• SSL key size used by originating client

• SSL client certificate presented by originating client

When auth-passthrough detects encoded client information, it treats the request as
a direct request from the originating client and not as a request forwarded by an
intermediate server running service-passthrough.

This is useful in two-tier deployment scenarios where;

The Web Server Plugin SAF Reference

Chapter 7 Configuring the Web Server Plugin 189

• a Sun ONE Application Server instance is hidden by a second firewall behind
the corporate firewall

• no client connections are permitted directly to the S1AS instance.

In such network architectures, a client always connects to the front-end web server
which is running the proxy plugin. This web server is the one that forwards
requests to Sun ONE Application Server. This indicates that Sun ONE Application
Server can only receive requests from the proxy host (in this case, the web server),
and never directly from client hosts. This means that if applications, deployed on a
Sun ONE Application Server instance that is behind two firewalls, query for client
information such as the client’s IP address, the applications will get the proxy host
IP (since that is the actual originating host for the relayed request). The
auth-passthrough SAF can be used to modify this behavior so that the remote
(proxied) client information is presented instead.

Since auth-passthrough makes it possible to override information that may be
used for authentication (for example, the IP address from which the request
originated) it is important that only trusted clients or servers be allowed to connect
to a server running auth-passthrough. As a precautionary measure, it is
recommended that only servers behind the corporate firewall should run
auth-passthrough. A server that is accessible through the Internet should not run
the auth-passthrough SAF. The auth-passthrough SAF should be used only if
the relevant information about the originating client is required.

Note that in the scenario described above, SSL client authentication could be
turned 'on' only for web server and turned 'off' always for application server, for
the configuration to work properly.

Command Example:

AuthTrans fn="auth-passthrough"

service-passthrough
The service-passthrough SAF is applicable in Service-class directives.

The service-passthrough SAF forwards a request from one server to another
server for processing. The service-passthrough SAF can be configured to use
SSL or non SSL (HTTPS or HTTP) connections to the remote server, independent of
the type of connection through which the original request was received. The
service-passthrough SAF encodes information about the originating client that
may be decoded by an auth-passthrough function running on the remote server.

The Web Server Plugin SAF Reference

190 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

A service-passthrough directive is typically used in combination with other
directives in the obj.conf configuration file as follows:

<Object name="passthrough">

ObjectType fn="force-type" type="magnus-internal/passthrough"

Error reason="Bad Gateway" fn="send-error"
uri="$docroot/badgateway.html"

</Object>

<Object name="default">

....

NameTrans fn="assign-name" from="(/webapp1|/webapp1/*)" name="passthrough"

...

</Object>

If the backend application server is down, the user will be shown the local HTML
file badgateway.html instead. In case the server running the
service-passthrough SAF needs to serve files to which it has access, and forward
only rejected requests to the backend application servers, the ObjectType line
would be changed to:

ObjectType fn="check-passthrough" type="magnus-internal/passthrough"

check-passthrough
The check-passthrough SAF is Applicable in ObjectType-class directives.

The check-passthrough function checks to see if the requested resource (for
example, an HTML document, or a GIF image) is available on the local server. If
the requested resource does not exist locally, the check-passthrough SAF sets the
type to indicate that the request should be passed to another server to be processed
by the service-passthrough SAF.

Parameters:

type - (optional) type to set when the request resource does not exist. The default
is "magnus-internal/passthrough".

Example

ObjectType fn="check-passthrough"

Using the Web Server Plugin

Chapter 7 Configuring the Web Server Plugin 191

Using the Web Server Plugin
To use the web server plugin on a Sun ONE Web Server, you must make changes
to the configuration files of both Sun ONE Application Server and Sun ONE Web
Server. Follow the procedures listed in this section to configure and use the Sun
ONE Web Server plugin:

• Changes to Sun ONE Web Server

• Changes to Sun ONE Application Server

Changes to Sun ONE Web Server
Take backups of critical configuration files, such as magnus.conf and obj.conf,
before making changes to these files.

1. Create a directory in the web server installation area that will contain the
passthrough plugin. For example:

cd /webserver_install_dir/plugins

mkdir -p passthrough/bin

2. Copy the passthrough plugin from Sun ONE Application Server installation to
this new, web server directory. For example:

cd appserver_install_dir/lib

cp libpassthrough.so webserver_install_dir/plugins/passthrough/bin

For Windows, copy the passthrough.dll file.

3. Edit the magnus.conf file, found under
webserver_install_dir/https-host.domain/config, and append the following lines:

Init fn="load-modules"
shlib="webserver_install_dir/plugins/passthrough/bin/libpassthrough.so"
funcs="init-passthrough,auth-passthrough,check-passthrough,service-passthrough"
NativeThread="no"

Init fn="NSServletEarlyInit" EarlyInit=yes

Init fn="NSServletLateInit" LateInit=yes

Init fn="init-passthrough"

4. Edit the obj.conf file, found under
webserver_install_dir/https-host.domain/config, and add the NameTrans
directive as shown:

Using the Web Server Plugin

192 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

<Object name=default>
NameTrans fn="NSServletNameTrans" name="servlet"
NameTrans fn="assign-name" from="/*" name="passthrough"
</Object>

The from="/*" uri is the context root of a web application deployed on the
remote servers, and passthrough corresponds to the name of the <Object> in
obj.conf.

For example:

<Object name="default">

...

NameTrans fn="assign-name" from="(/webapp1|/webapp1/*)"

name="passthrough"

...

</Object>

5. Add the following lines in the obj.conf file:

<Object name="passthrough">
ObjectType fn="force-type" type="magnus-internal/passthrough"
PathCheck fn="deny-existence" path="*/WEB-INF/*"
Service type="magnus-internal/passthrough" fn="service-passthrough"
servers="http://servername:port"
Error reason="Bad Gateway" fn="send-error" uri="$docroot/badgateway.html"
</Object>

6. Restart the Sun ONE Web Server instance.

Next, you must configure Sun ONE Web Server to route requests to the web server
plugin.

Changes to Sun ONE Application Server
Take backups of the critical configuration files, such as magnus.conf and
obj.conf, before making changes to these files.

1. Edit the install_dir/domains/domain1/server1/config/init.conf file and
append the following lines:

On UNIX:

Using the Web Server Plugin

Chapter 7 Configuring the Web Server Plugin 193

Init fn="load-modules"
shlib="webserver_install_dir/plugins/passthrough/bin/libpassthrough.so"
funcs="init-passthrough,auth-passthrough,check-passthrough,service-passthrough"
NativeThread="no"
Init fn="init-passthrough"

On Windows:

Init fn="load-modules" shlib="c:/install_dir/bin/passthrough.dll"
funcs="init-passthrough,auth-passthrough,check-passthrough, service-passthrough"
NativeThread="no"
Init fn="init-passthrough"

2. Edit the install_dir/domains/domain1/server1/config/server1-obj.conf
and add the AuthTrans directive as shown here:

<Object name="default">
AuthTrans fn="match-browser" browser="*MSIE*" ssl-unclean-shutdown="true"
AuthTrans fn="auth-passthrough"
fn="service-passthrough" servers="server"
Error reason="Bad Gateway" fn="send-error" uri="$docroot/badgateway.html"
</Object>

server is a URL of the following form:

http://servername:port

3. Restart the Sun ONE Application Server instance.

This completes the changes you need to make to Sun ONE Application Server. The
procedures in the preceding section is to configure a single instance of the
application server. To enable more instances to use the web server plugin, you
must make these changes in the configuration files of those application server
instances.

NOTE For Solaris and Linux, the name of the plugin library will be
libpassthrough.so. For Windows, the name of the plugin library
will be passthrough.dll

Configuring Microsoft IIS To Use the Web Server Plugin

194 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring Microsoft IIS To Use the Web Server
Plugin

Configuring the Microsoft Internet Information Services to use the web server
plugin involves configuring the web server plugin for use with Microsoft IIS, and
configuring Microsoft IIS to use the web server plugin.

You can also configure server pools to handle multiple applications that run on
different servers.

The following topics are covered in this section:

• Configuring the Web Server Plugin for IIS

• Configuring IIS to Use the Web Server Plugin

• Configuring Multiple Server Pools

• Sample sun-passthrough.properties File

Configuring the Web Server Plugin for IIS
To configure the web server plugin for IIS, perform the following tasks:

1. Create a directory for the web server plugin under the under the IIS wwwroot

directory, by typing the following command, from the C:\ command line
prompt:

md \Inetpub\wwwroot\sun-passthrough

2. Copy the plugin files to the C:\Inetpub\wwwroot\sun-passthrough
directory.

3. Use a text editor to add the URL of the machine on which Sun ONE
Application Server is installed, to the
C:\Inetpub\wwwroot\sun-passthrough\sun-passthrough.properties

file.

You will need to add the following information via a text editor:

server=http://appservername:port

where, appservername is the hostname or IP address of machine on which Sun
ONE Application Server is installed, and port is the number of the port on
which it listens (this value is typically set to 80).

Configuring Microsoft IIS To Use the Web Server Plugin

Chapter 7 Configuring the Web Server Plugin 195

4. List the context roots you want Sun ONE Application Server to service in the
C:\Inetpub\wwwroot\sun-passthrough\sun-passthrough.properties

file.

These context roots should correspond to the context roots of applications
deployed on Sun ONE Application Server. Requests to these context roots will
be serviced by Sun ONE Application Server, while other requests are handled
by the IIS web server. The command lines to pass requests to a web application
is:

passthrough=/webapplication

where, /webapplication is the context root of a web application. To pass all
requests to Sun ONE Application Server, add the following line:

passthrough=/

You have now configured the web server plugin in the Microsoft IIS root directory.
To complete the process, you now need to configure Microsoft IIS to use the web
server plugin.

Configuring IIS to Use the Web Server Plugin
To configure IIS to use the web server plugin, you need to open the Windows
Internet Services Manager. The Internet Services Manager is located in the
Administrative Tools folder in the Control Panel folder.

Open the Internet Services Manager, and perform the following tasks:

1. Select the web site for which you want to enable the plugin. This web site is
typically named the Default Web Site.

2. Right click on the web site and select Properties to open the Properties
notebook.

3. Open the ISAPI Filters tab, click the Add button, and follow the steps given
below, to add a new ISAPI filter:

a. In the Filter Name field, enter Sun ONE Application Server

b. In the Executable field, type
C:\Inetpub\wwwroot\sun-passthrough\sun-passthrough.dll

c. Click OK, and close the Properties notebook.

4. You now need to create and configure a new virtual directory. Follow the steps
given below to create and configure a new virtual directory:

Configuring Microsoft IIS To Use the Web Server Plugin

196 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

a. Right click on the default web site, select New, and then Virtual Directory.
The Virtual Directory Creation Wizard opens.

b. In the Alias field, type sun-passthrough.

c. In the Directory field, type C:\Inetpub\wwwroot\sun-passthrough

d. Ensure that you check the Execute Permission checkbox and that all other
permission checkboxes are left unchecked.

e. Click Finish.

5. You need to stop and start the web server, for your new settings to take effect.
To stop the web server, right click on the web site and select Stop. To start the
web server, right click on the web site and select Start.

Next, type the following in a web browser, to access the web application
context root:

http://webservername/webapplication

where, webservername is the hostname or IP address of the web server and
/webapplication is the context root that you listed in the
C:\Inetpub\wwwroot\sun-passthrough\sun-passthrough.properties file
to verify that the web server, web server plugin, and Sun ONE Application
Server are operating correctly.

Configuring Multiple Server Pools
It is possible to partition your web applications across multiple application servers
(that is, you run some applications on one set of servers and other applications on
another set of servers) by configuring server pools in the
sun-passthrough.properties file. For each server pool, choose a unique name,
comprised of letters and numbers. Once you complete the steps for installing and
configuring the web server plugin for Microsoft IIS, as given in the section
“Configuring Microsoft IIS To Use the Web Server Plugin” on page 194, edit the
C:\Inetpub\wwwroot\sun-passthrough\sun-passthrough.properties file and
prefix the relevant server and passthrough property lines with the unique name
that you choose for the server pool. Place a period (.) after the server pool name.

For example, the following lines from the sun-passthrough.properties file
define two server pools. The first server pool consists of server-a and the services
requests for context root /app1. The second server pool consists of server-b and
the services requests for /app2 and /app3 context roots.

server=http://server-a

Configuring Microsoft IIS To Use the Web Server Plugin

Chapter 7 Configuring the Web Server Plugin 197

passthrough=/app1

serverpool2.server=http://server-b

serverpool2.passthrough=/app2

serverpool2.passthrough=/app

Sample sun-passthrough.properties File
Sun ONE Application Server web server plugin for IIS

#

This file is used to configure the Sun ONE Application Server web server

plugin for IIS. Lines beginning with a '#' are ignored.

server

#

The server property specifies the URL of an application server. If multiple

server properties are given, the plugin will distribute load across the

specified application servers.

#

server=http://localhost:8080

passthrough

#

The passthrough property specifies the context root (virtual directory) of a

web application. Requests for the given context root will be passed to the

application server for processing. If 'passthrough=/' is specified, all

requests will be passed to the application server for processing.

#

passthrough properties should be ordered from most to least specific. For

example, 'passthrough=/apps/app1' should appear before 'passthrough=/apps'.

#

Multiple passthrough properties are allowed.

#

#passthrough=/webapp

Configuring Microsoft IIS To Use the Web Server Plugin

198 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

#passthrough=/servlets

#passthrough=*.jsp

passthrough=/

prefix

#

The prefix property specifies the IIS virtual directory that contains the

plugin DLL, sun-passthrough.dll.

#

prefix=/sun-passthrough

error-url

#

The error-url property specifies the URL of a page to redirect the client to

when the application server is unavailable.

#

#error-url=/badgateway.htm

It is possible to configure multiple server pools by prefixing the server

and passthrough property names with a pool name followed by a period ('.').

Pool names can be any sequence of letters and numbers.

#

For example, the following properties define two server pools. One server

pool will service the web applications at '/app1' and the other will service

the web applications at '/app2' and '/app3':

#

#serverpool1.server=http://server-a

#serverpool1.passthrough=/app1

#

#serverpool2.server=http://server-b

#serverpool2.passthrough=/app2

#serverpool2.passthrough=/app3

Configuring Apache Web Server

Chapter 7 Configuring the Web Server Plugin 199

Configuring Apache Web Server
This section describes how you can compile the Apache source code and configure
your installation of Apache Web Server to work with Sun ONE Application Server.

To enable HTTP requests to be sent to Sun ONE Application Server, you must
compile the Apache sources to use the mod_proxy module, and then modify the
httpd.conf file.

This section contains information on the following procedures:

• Minimum Requirements

• Compiling Apache With mod_proxy Module

• Modifying the httpd.conf File

• Starting And Stopping Apache

Minimum Requirements
You must meet the following requirements to successfully compile Apache web
server and use the mod_proxy plugin.

• apache_1.3.27 (sources)

• Sun’s C Compiler for Solaris 8 and 9.

• Sun ONE Application Server 7 installables.

• On Solaris 8 and 9, ensure that CC and make are in the PATH.

Compiling Apache With mod_proxy Module
1. Download the latest Apache source distribution with built-in mod_proxy

module from www.apache.org

Unpack the source distribution. The source distribution comes as a compressed
archive. If you are installing Apache 1.3.27, the source distribution archive will
read apache_1.3.27.tar.gz.

2. De-compress and untar the archive using the following command:

$ tar -zxvf apache_1.3.27.tar.gz

This command will create a directory called apache_1.3.27 in your current
working directory.

Configuring Apache Web Server

200 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

3. You now need to configure your environment to compile the Apache source
code. The source distribution comes with a script called configure, which
checks your environment for the necessary support files (such as headers,
shared libraries and utility programs) that are required to successfully compile
Apache.

To configure you environment, go to the Apache source directory and proceed
with the following steps:

a. Make sure that the following paths exist, while installing Apache on
Solaris:

• CC=/opt/SUNWspro/bin/cc

Where /opt/SUNWspro/bin is the path where cc is installed. Make
sure that this is in your PATH.

• Make sure that /usr/ccs/bin is in your PATH.

b. Run the following command:

./configure --enable-module=proxy --prefix=/usr/local/apache

The path specified in the prefix argument indicates where you wish to install
Apache.This is a variable and you can specify the path where you want to
install Apache.

This command will output several lines on the screen.Essentially this
command creates the Makefiles for the build according to your system
configuration. If there are errors in configure, you may be missing some
header files or utility programs which you must install before proceeding.

4. After the configure script runs successfully, you can compile Apache using
the make command, as follows:

make

This command will output several lines on the screen indicating that the
process is compiling Apache source code and linking Apache. This process
should normally conclude without errors. However if any errors occur, please
check if all the library files and utility programs of Apache have been properly
downloaded.

Configuring Apache Web Server

Chapter 7 Configuring the Web Server Plugin 201

5. You now need to install Apache. Apache installs itself in the
/usr/local/apache directory (or any other directory that you specify). To
install Apache, run the following command:

make install

If this command executes successfully, your system now has Apache installed.
You should see Apache's installation files in the following directory:

/usr/local/apache

The main configuration file, called httpd.conf, will be installed in the
/usr/local/apache/conf directory.

Modifying the httpd.conf File
Apache is configured through the file, httpd.conf. This file consists of a number
of Apache directives, which determine the various operating parameters of the
Apache server. For a simple installation of Apache, you will need to modify the
following few directives:

ServerRoot “/usr/local/apache”
Port 5000

ServerRoot is the path in which you installed Apache.

Apache is now configured for default behavior and web serving. Next, you must
add the following application server specific directives to the httpd.conf file to
enable Apache to forward HTTP requests to Sun ONE Application Server:

<IfModule mod_proxy.c>
ProxyPass / http://<s1as_server.some.domain>:<port>/
ProxyPassReverse / http://<s1as_server.some.domain>:<port>/
</IfModule>

Here, <s1as_server.some.domain>:<port> should be replaced by the URL address of
your Sun ONE Application Server. Duplicate these two lines for each web
application context root, where /application is the web application context root and
http://server is the URL of the Sun ONE Application Server.

This completes your configuration of Apache web server.

NOTE mod_proxy lacks the SSL transport and load balancing features of
Sun ONE Application Server 7 reverse proxy plugin. Also, it is not
possible for web applications to obtain the client’s IP address or SSL
client certificate when using mod_proxy.

Configuring Apache Web Server

202 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Starting And Stopping Apache
Apache comes bundled with a script titled apachectl that facilitates starting,
stopping and restarting Apache. Run the follow command to start Apache

$ /usr/local/apache/bin/apachectl start

To stop apache, run the following command:

use /usr/local/apache/bin/apachectl stop

After you start, you can test your installation of Apache. Once Apache is running,
type the following address in your web browser: http://localhost/. If your
installation was successful and Apache is running, you should see a test page
displaying a message to the effect.

201

Chapter 8

Configuring J2EE Containers

Sun ONE Application Server provides various J2EE containers in compliance with
the J2EE 1.3 specification. Containers provide runtime support for J2EE application
components such as Enterprise Java Beans (EJBs) and Message Driven Beans
(MDBs). MDBs and EJBs never interact directly with other J2EE application
components. They use the protocols and methods of the EJB container for
interacting with each other and with platform services, such as the Java
Transaction Service. The container is interposed between application components
and J2EE services. This allows the container to transparently inject the services
defined by the components' deployment descriptors, such as declarative
transaction management, security checks, resource pooling, and state
management.

Sun One Application Server incorporates the Web Container and the EJB
Container.

This chapter includes the following topics:

• About the Web Container

• About the EJB Container

About the Web Container
The Web Container is a J2EE container that hosts web applications. The web
container extends the web server functionality by providing developers the
environment to run servlets and Java Server Pages (JSPs). Servlets provide a
component-based, platform-independent method for building web-based
applications, without the performance limitations of CGI (Common Gateway
Interface) programs. The JSP technology is an extension of the servlet technology,

About the Web Container

202 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

created to support authoring of HTML and XML pages. Servlets or JSPs contained
in a web container are capable of invoking bean methods in an Enterprise Java
Beans (EJB) container. Bean methods are invoked either through local invocation or
remote invocation using an Object Request Broker (ORB).

The web container also provides web applications access to local EJBs that are
located using JNDI (Java Naming Directory Interface).

The figure “Web Container within the Sun ONE Application Server Architecture”
explains the role and the location of the web container, in the Sun ONE Application
Server architecture:

Figure 8-1 Web Container within the Sun ONE Application Server Architecture

This section covers the following topics:

• Understanding the Web Container’s Role

• Web Application Configuration

• Web Application Deployment

• Single Sign-on Facility

• Logging the Web Container

About the Web Container

Chapter 8 Configuring J2EE Containers 203

Understanding the Web Container’s Role
The primary role of the web container is to provide a run-time environment for
web applications and provide services (database access, security, multi-threading,
and so on) to web applications hosted in the container. A web application is a
collection of servlets, HTML pages, classes, and other resources that make up a
complete application on Sun ONE Application Server.

The following are the elements of a web application:

• Servlets

• JSP pages

• Utility classes

• Static documents (html, images, sound files, etc.)

• Client side Java applets, beans, and classes

• Descriptive meta information which ties all of the above elements together.

Web applications may be deployed in the web containers running in a Sun ONE
Application Server.

For more information on how to configure and use the web server plugin with Sun
ONE Application Server, see Chapter 7, “Configuring the Web Server Plugin.”

Web Application Configuration
You can also configure web containers to deploy web applications within virtual
servers. The web container can be configured to contain more than one virtual
server. Each virtual server can be configured to host any number of web
applications. Web applications are scoped within the context of a virtual server. For
more information about virtual servers, see Chapter 15, “Using Virtual Servers.”

The following topics are covered in this section:

• Virtual Server Attributes

• Web-module Attributes

Virtual Server Attributes
You can specify values for certain configurable attributes for a virtual server. A
virtual server can have more than one web application associated with it. A user
needs to sign on to a web application.

About the Web Container

204 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

If the attribute for single sign on, sso-enabled, is set to the default value true in
the server.xml file, a user can sign on to any one of the web applications
associated with the specific virtual server. The user’s identity is then recognized by
all other web applications running on the same virtual server. If the value for
sso-enabled is set to false, then single sign on is disabled for all web applications
in this virtual server.

The sso-enabled attribute is dynamically configurable and does not require a
server restart to enable effect.

More information about single-sign on is provided in the section “Single Sign-on
Facility” on page 206.

Web-module Attributes
The Sun ONE Application Server-specific deployment descriptors are specified in a
file called sun-web.xml, which can be found in the WEB-INF directory of a given
web application.

Usually, there is a sun-web.xml file configured for each web application. However,
the web container does not require that every web application have an
sun-web.xml file. In the absence of the sun-web.xml file, the web container
assumes default values for all Sun ONE Application Server-specific attributes.

The context-root Attribute
This attribute defines the context root at which the web application is installed. If
this attribute is an empty string then this web application is designated to be the
default web application for the virtual server. The default web application for a
virtual server responds to all requests that cannot be resolved to other web
applications deployed to the virtual server. Every virtual server has a default web
application.

For the default web application, the value of this field should be an empty string
"".

The location Attribute
The input for this attribute should be a valid directory path, which indicates the
location of the default web application. During the installation process, the location
of the default web application is set to the modules/default-web-app/ directory.

The location attribute is required and can be either a fully qualified or relative
path to the directory in which the contents of the WAR (Web ARchive) file have
been extracted. If the path specified is relative, then it needs to be relative to the
application root directory defined at the virtual server level.

For example:

About the Web Container

Chapter 8 Configuring J2EE Containers 205

location="applications/<ear name>/<war-module name>/"

location="modules/<war-module name>"

location="/u/myapps/<war-module name>"

location="/u/myapps/<ear-name>/<war-module name>"

The enabled Attribute
The default value for this attribute is true, indicating that a web application is
enabled to service requests. By setting the value of the enabled attribute to false,
you can temporarily disable the web application from servicing requests.
However, the contents of the web application (as stored in your hard-disk) are not
removed.

Web Application Deployment
The web container deploys web applications from a Web ARchive (WAR) file or
from a directory containing an exploded view (WEB-INF/lib,WEB-INF/classes,
and so on) of the WAR file. You do not need to restart the server to deploy an
application.

The web container deploys a “default” web application on each virtual server. The
default location (directory) is in the modules/default-web-app/ subdirectory of the
app root directory for the virtual server. This default web application responds to
all requests that cannot be resolved to other web applications deployed to the
virtual server. This web application consists of an invoker servlet to handle
requests to /servlet/* and a JSP servlet to serve JSP pages. The default web
application can access EJBs as long the user denotes the EJB references in the
web.xml and sun-web.xml files.

The default web application is defined in the server.xml of a virtual server looks
as follows:

<web-module context-root="" location="modules/default-web-app/">

Dynamic Re-deployment and Hot Deployment
Dynamic redeployment is the ability to redeploy an existing application without a
server restart. Dynamic redeployment happens when an application's
configuration (contents of its xml files) and certain classes change. Dynamic
re-deployment results in behavior identical to that of dynamic reloading the entire
application's classes. In addition, dynamic re-deployment involves creating new
application contexts (web and ejb) and getting rid of the old application contexts.
Thus, dynamic re-deployment results in a brand new instance of the application

About the Web Container

206 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

(except for existing session data). This feature is also supported in development
mode only and can result in exceptions similar to those for dynamic reloading.
Also, configuration changes that require server restarts do not take effect until this
restart happens. Dynamic reloading is activated only for applications and
unshared standalone modules whose central configuration specifies it.

When a web application is reloaded, all existing session information is
automatically saved and restored, regardless of whether a persistence mechanism
was configured for the session manager.

Hot deployment is the ability to deploy an application at server runtime, without
requiring a server restart. This feature uses the same infrastructure as is used for
dynamic redeployment. However, since there is no state left over from a previous
incarnation, this feature is supported at production time.

Single Sign-on Facility
As long as the user accesses only unprotected resources in any of the web
applications on a specific virtual server, the user is not challenged to authenticate
himself.

When the user accesses a protected resource in any web application associated
with a specific virtual server, the user will be challenged to authenticate himself
using the login method defined for the web application currently being accessed.

Once authenticated, the roles associated with the user will be utilized for
access-control decisions across all of the associated web applications. The user is
then not required to authenticate himself individually to each web application.

When a the user logs out of a web application the user's sessions in all web
applications will be invalidated. Any subsequent attempt to access a protected
resource in any application will require the user to authenticate himself again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates
each request with the saved user identity, so it can only be utilized in client
environments that support cookies.

Logging the Web Container
You can control the default logging behavior of the web container and any
applications that are hosted in a virtual server, by setting different log levels. Note
that the logging behavior doesn’t affect the application’s own logging.

About the Web Container

Chapter 8 Configuring J2EE Containers 207

Specifying a log level controls the type of messages that will be logged. For
example, if you specify that only messages that bear the log level FATAL be logged,
then the messages "higher" log level than this value will be silently ignored. Only
messages logged with an explicit log level are compared to this value.

Messages logged with no explicit log level are logged unconditionally. The default
behavior is to log all warning, error and fatal messages.

To set log levels for the web container, perform the following tasks:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance tree to find the web container configuration you
want to modify.

2. Expand the Containers tab, and select Web Container from the list of J2EE
containers that are displayed. You will see the page displayed in “Logging the
Web Container,” in the right pane of the Administration interface.

Figure 8-2 Logging the Web Container

3. Select the log level you want, from the Log Level drop-down list. For a listing
of all the log levels and their definitions, see Chapter 5, “Using Logging.”

4. Click save to save your settings

To create additional properties for the web container, click the Properties button.

About the EJB Container

208 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About the EJB Container
Enterprise Java Bean container is a runtime environment that controls the
enterprise beans and provides them with important system level services. An EJB
is a component that executes within an EJB container, which in turn executes
within an EJB server. The following system level services are provided to the beans:

• Transaction Management

• Security

• Life cycle Management

• Remote connectivity

• Database connection pooling

• Naming Service

Enterprise beans are server components written in Java that contain business logic.
The EJB Container provides the remote access to the bean. EJBs always work
within the context of a container, which serves as a link between the EJBs and the
server that hosts them. The EJB container enables distributed application building
using your own components and components from other suppliers.

Through the EJB container, Sun ONE Application Server provides high-level
transaction, state management, multi-threading, and resource pooling wrappers,
thereby shielding you from having to know the low-level API details. This
container provides all standard container services denoted by the 2.0 EJB
Specification, and also provides additional services specific to the Sun ONE
Application Server.

Passivation and activation processes are used by the container to manage bean
activity to ensure scalability.

This section covers the following topics:

• Understanding the EJB Container’s Role

• Configuring the EJB Container

Understanding the EJB Container’s Role
The EJB container provides the following standard services:

About the EJB Container

Chapter 8 Configuring J2EE Containers 209

• Passivation

The process of transferring an EJB from memory to secondary storage.
Passivation allows a bean's resources to be released without destroying the
bean. In this way, a bean is made to be persistent, and can be recalled without
the overhead of instantiation.

• Activation

The process of transferring an EJB from secondary storage to memory. The
container contract establishes the relationship between an EJB and its
container, and is completely transparent to a client. This relationship includes:

❍ Life cycle

For session beans, this includes the javax.ejb.SessionBean and
javax.ejb.SessionSynchronization interface implementations. For
entity beans, this includes the javax.ejb.EntityBean interface
implementation. For message-driven beans, this includes the
javax.ejb.MessageDriven interface implementation.

❍ Session context

A container implements the javax.ejb.SessionContext interface to pass
services and information to a session bean instance when the bean instance
is created.

❍ Entity context

A container implements the javax.ejb.EntityContext interface to pass
services and information to an entity bean when the bean instance is
created.

❍ Message context

A container implements the javax.ejb.MDBContext interface to pass
services and information to a message-driven bean when the bean instance
is created.

❍ Environment

A container implements java.util.Properties and makes these
properties available to its EJBs.

❍ Service information

A container makes its services available to its EJBs.

The Sun ONE Application Server services include remote access, naming, security,
concurrency, transaction control, and database access.

About the EJB Container

210 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The EJB container is responsible for:

• Creating the implementation object (EJBObject) that allows remote
connectivity.

• Creating the home implementation object that allows for creation of the
EJBObject.

• Binding the home implementation object to the naming service so that clients
can look up the home object.

• Ensuring that only authorized clients invoke the bean methods (through the
EJBObject).

• Ensuring that business methods are invoked in the appropriate transactions.

• Managing the life cycle of the beans. Managing the life cycle of beans include:

❍ Pooling the beans

❍ Calling the appropriate callback methods (such as
ejbActivate/ejbPassivate)

❍ Managing a pool of database connections so that the applications use and
reuse the connections more efficiently.

Actual implementation details are part of the container, based on a standard
prescribed interface between a container and its EJBs. You are not required to know
or to handle platform-specific implementation details. Instead, you can create
generic, task-focused EJBs to be used with any vendor's products that support the
EJB standard.

It is useful to understand the types of EJBs that are used by Sun ONE Application
Server.

Types of Enterprise Java Beans
An EJB is an object that represents one of the following:

• A session with a particular client, which automatically maintains state across
multiple client-invoked methods.

• A persistent entity object, possibly shared among multiple clients.

• A stateless service, such as message handling.

Entity beans are primarily used to handle data access using the Java Database
Connectivity (JDBC) API, while session beans provide transient application objects
and perform discrete business tasks. There are three kinds of EJBs, as discussed in
the following topics:

About the EJB Container

Chapter 8 Configuring J2EE Containers 211

• About Session Beans

• About Entity Beans

• About Message-driven Beans

About Session Beans
A session bean implements business rules or logic for a particular client request.

Session beans are intended to represent transient objects and processes, such as a
single database record, a document copy for editing, or specialized business objects
for individual clients. That is, a session bean is a private resource used only by the
client that creates it. Because these objects are only available to a single client,
session beans can maintain client-specific session information, called the
conversational state.

For example, you might create an EJB to simulate an electronic shopping cart. Each
time a user logs in to an application, the application creates the shopping cart
session bean to hold purchases for that user. After the user logs out or finishes
shopping, the session bean is released.

Session beans have the following characteristics:

• Session beans execute in relation to a single client.

• Session beans are relatively short lived.

• Session beans do not always survive a server crash.

• Session beans are removed if the EJB container crashes.

• Session beans also handle transaction management according to property
settings. This is optional.

• Session beans update shared data in an underlying database. This is optional.

• A session bean can be either stateless or stateful.

Stateless Session Beans. A stateless session bean encapsulates a temporary piece
of business logic needed by a specific client for a limited time span. Stateless
session beans do not maintain the conversational state.

Stateful Session Beans. A stateful session bean is transient, but maintains a
conversational state to preserve information about its contents and values between
client calls. The conversational state enables the bean's container to maintain
information about the session bean state and to recreate the state at a later point in
program execution when needed.

About the EJB Container

212 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Entity Beans
Entity beans commonly represent persistent data which is maintained directly in a
database or accessed through an Enterprise Information System (EIS) application
as an object. The server that hosts EJBs and an EJB container provides a scalable
runtime environment for concurrently active entity EJBs.

A simple example of an entity bean is one defined to represent a single row in a
database table, where each bean instance represents a specific row. A more
complex example is an entity bean designed to represent complicated views of
joined tables in a database, where, for example, each bean instance represents the
contents of a single shopping cart.

Entity beans have the following characteristics:

• Entity beans provide an object view of data in the EIS resource, usually a
database.

• Entity beans can be accessed by all users.

• Entity beans transparently survive server crashes.

• Entity beans use transactions that are either container-managed or
bean-managed.

Entity beans represent persistent data, either as container-managed persistence or
bean-managed persistence. An entity bean's persistence can either be managed by
the bean or the container.

Bean-managed persistence. When an entity bean manages its own persistence. The
bean developer implements persistence code (such as JDBC calls) directly in the
EJB class methods. The possible downside is portability loss if a proprietary
interface is used, and the risk in associating the bean to a specific database.

Container-managed persistence. When entity bean persistence is managed by the
container. Because the container transparently manages the persistence state, you
do not need to implement any data access code in the bean methods. Not only is
this method simpler to implement, but it makes the bean fully portable without
any ties to a specific database.

An entity bean that uses container-managed persistence is essentially an
auto-generated (by the container) version of an entity bean that uses
bean-managed persistence.

For more information on building and using Entity beans, see the Sun ONE
Application Server Developer’s Guide to Enterprise JavaBeans Technology.

About the EJB Container

Chapter 8 Configuring J2EE Containers 213

About Message-driven Beans
A message-driven bean is an EJB that allows J2EE applications to process messages
asynchronously. A message-driven bean is driven by the arrival of Java Message
Service messages.

From its creation until destruction, a message-driven bean instance lives in a
message-driven bean container. The container provides security, transaction,
concurrent processing of messages, life cycle management of the message-driven
bean instances, and other services for the message-driven bean. The server that
hosts EJBs and an EJB container provides a scalable runtime environment for
concurrently active message-driven beans.

The Java Message Service API in the J2EE 1.3 platform specifies the following:

• Application clients, EJB components, and web components can send or
synchronously receive a Java Message Service message. In addition,
application clients can use Java Message Service messages asynchronously.

• The message-driven beans enable the asynchronous consumption of messages.
A Java Message Service provider may optionally implement concurrent
processing of messages by message-driven beans.

A message-driven bean represents a stateless service; it is essentially an
asynchronous message consumer that is completely anonymous and has no
client-visible identity. A message-driven bean has neither a home nor a component
interface. A client accesses a message-driven bean through Java Message Service by
sending messages to the Java Message Service destination (queue or topic) for
which the message-driven bean class is the MessageListener.

Only message-driven beans can asynchronously receive messages. A session or
entity beans is not permitted to be a Java Message Service MessageListener.

Message-driven beans have the following characteristics:

• Execute upon receipt of a single client message.

• Are asynchronously invoked.

• Are relatively short lived.

• Do not directly represent shared data in the database, but may access and
update this data.

• Are removed if the EJB server crashes.

• Are stateless.

• Optionally, are transaction-aware.

About the EJB Container

214 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring the EJB Container
You can configure the log level for the EJB container, and also enable monitoring.
The EJB container handles both EJBs and MDBs. Using the Administration
interface, you can configure settings for the EJBs and the MDBs that the container
manages. This section covers the following topics:

• Performing General Configuration

• Configuring EJB Settings

• Configuring MDB Pool Settings

Performing General Configuration
You configure the following aspects of the EJB container:

• Logging

• Monitoring

• Transaction Attributes

To set log levels for the EJB container, to enable monitoring and to set transaction
attributes, perform the following tasks:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance tree, for the EJB container configuration you want to modify.

2. Expand the Containers tab, and select EJB Container from the list of J2EE
containers that are displayed. You will see the window as shown in “EJB
Container - General Configuration” in the right pane of the Administration
interface.

About the EJB Container

Chapter 8 Configuring J2EE Containers 215

Figure 8-3 EJB Container - General Configuration

3. Mark the checkbox against Monitoring Enabled, to enable monitoring of the
EJB Container. You’ve now enabled monitoring for the EJB container of this
specific instance of Sun ONE Application Server. For a list of the monitorable
aspects of the EJB container, see the table “Monitoring Statistics for EJB
Container.”

4. Select the log level you want, from the Log Level drop-down list. For a listing
of all the log levels and their definitions, Chapter 5, “Using Logging.”
Specifying a log level controls the type of messages that will be logged. For
example, if you specify that only messages that bear the log level FATAL be
logged, then the messages “higher” log level than this value will be silently
ignored. Only messages logged with an explicit log level are compared to this
value.

Messages logged with no explicit log level are logged unconditionally. The
default behavior is to log all warning, error and fatal messages.

5. From the Commit Option drop down list, select the Commit Option you want
to use for the EJB Container.

A transaction can end in two ways: with a commit or a rollback. When a
transaction commits, the data modifications made by its statements are saved.
When you design an enterprise bean, you determine if the commit is a
container-managed or a bean-managed transaction. The options in the UI are
therefore, B for bean-managed commit, and C for container-managed commit.

6. Click the Properties button to create new properties for the EJB container.

About the EJB Container

216 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

7. Click OK to save your settings.

The following table displays the attributes of the EJB container that can be
monitored:

Configuring EJB Settings
Using the Administration interface, you can configure the default pool and bean
cache settings for the EJBs managed by the EJB container, as discussed in the
following topics:

• To Configure EJB Pool Settings

• To Configure EJB Cache Settings

Table 8-1 Monitoring Statistics for EJB Container

Statistic Name Data Type
& units

Range of values Comments

minBeansInPool Integer 0-MAXINT The preferred minimum number of beans in
the pool (applies to stateless session beans

initialBeansInPool Integer 0-MAXINT The initial number of beans in the pool
(applies to stateless session beans).

maxBeansInPool Integer 0-MAXINT Maximum number of beans in the pool.
(applies to stateless session beans).

beanIdleTimeoutInSeconds Integer 0-MAXLONG Idle timeout in seconds beyond which the
bean will be destroyed.

numBeansCreated Integer 0-MAXINT Number of beans so far created.

numBeansDestroyed Integer 0-MAXINT Number of beans so far destroyed.

numThreadsWaitaing Integer 0-MAXINT Number of threads waiting for free beans

numBeansInPool Integer 0-MAXINT Number of beans available in pool. (If this is
greater than zero, then numThreadsWaitaing
must be 0)

maxBeansInCache Integer 0-MAXINT The maximum number of beans in the cache
(applies to entity and stateful beans).

minBeansInCache Integer 0-MAXINT The preferred minimum number of beans in
the cache (applies to entity and stateful
beans).

cacheFaultsPercentage Double Number of cache misses that resulted in
activating from backup store.

About the EJB Container

Chapter 8 Configuring J2EE Containers 217

To Configure EJB Pool Settings
To configure EJB pool settings, perform the following tasks:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance tree, whose EJB settings you want to modify.

2. Expand the Containers tab, and select EJB Container from the list of J2EE
containers that are displayed. You will see the window as shown in
“Configuring EJB Pool Settings” in the right pane of the Administration
interface.

Figure 8-4 Configuring EJB Pool Settings

3. In the Steady Pool Size field, specify the minimum number of beans in the
pool. This applies to stateless session beans.

4. In the Max Pool Size drop down list, specify the maximum number of beans
you want in the pool, at any given point in time. This setting applies to
stateless session beans

5. In the Pool Resize Quantity field, specify the number of beans to be removed
from the pool, if the beans are idle for more than the time specified in the
idle-timeout-in-seconds tag.

6. In the Idle Timeout (secs) field, specify the period, in seconds, that a bean can
remain idle. When the idle-timeout period elapses and the bean is still idle, it
will be destroyed.

7. Click Save to save your changes.

To Configure EJB Cache Settings
To configure EJB cache settings, perform the following tasks:

About the EJB Container

218 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance tree, whose EJB settings you want to modify.

2. Expand the Containers tab, and select EJB Container from the list of J2EE
containers that are displayed. You will see the window as shown in
“Configuring EJB Pool Settings” in the right pane of the Administration
interface.

Figure 8-5 Configuring EJB Cache Settings

3. In the Max Cache Size field, specify the maximum number of beans to be
maintained in the cache. The default value for this attribute is as specified in
the idle-timeout-in-seconds attribute.

4. In the Cache Resize Quantity field, specify the number of beans to be selected
for destruction, if the number of beans in the pool exceeds the quantity
specified in the Max Cache Size attribute.

5. In the Removal Timeout (secs) field, specify the amount of time that a bean that
is idle in the backup store can remain passivated. If a bean is not accessed by a
client beyond the value specified in the removal-timeout-in-seconds
attribute, then the bean will be removed from the backup store and therefore
will not be accessible to the client.

6. From the Victim Selection Policy drop-down list, select the victim selection
algorithm that must be employed to select victim beans to be removed from the
pool.

About the EJB Container

Chapter 8 Configuring J2EE Containers 219

7. In the Idle Timeout (secs) field, specify the period for which a bean is allowed
to be idle in the cache. After this period elapses, the bean is passivated. The
period for which the bean remains passivated (in the idle backup store), is
controlled by the removal-timeout-in-seconds parameter.

8. Click Save to save your changes.

Configuring MDB Pool Settings
Using the Administration interface, you can configure the default pool settings for
the MDBs managed by the EJB container. To configure default pool settings for
MDBs, perform the following tasks:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance tree, whose MDB container configuration you want to modify.

2. Expand the Containers tab, and select EJB Container from the list of J2EE
containers that are displayed. You will see the window shown in “Configuring
MDB Pool Settings” in the right pane of the Administration interface.

Figure 8-6 Configuring MDB Pool Settings

3. Click MDB Settings. In the Steady Pool Size text field, specify the minimum
number of beans in the pool. This applies to stateless session beans.

4. In the Max Pool Size field specify the maximum number of beans you want in
the pool, at any given point in time.

About the EJB Container

220 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

5. In the Pool Resize Quantity field, specify the number of beans to be removed
from the pool, if the beans are idle for more than the time specified in the
idle-timeout-in-seconds tag.

6. In the Idle Timeout (secs) field, specify the period, in seconds, that a bean can
remain idle. When the idle-timeout period elapses and the bean is still idle, it
will be destroyed.

7. Click Save to save your settings.

221

Chapter 9

Using Transaction Services

Transactions are an integral part of business. A typical business transaction
involves transfer of assets between two or more involved parties. Accurate records
are usually stored in one or more databases. Because this information is critical for
business operations, it must be valid, current, and reliable. Transaction processing
can be difficult to a novice programmer. The J2EE platform provides several
abstractions that simplify development of dependable transaction processing
applications. In this chapter, we will discuss J2EE transactions and transaction
support in Sun ONE Application Server.

This chapter discusses Java Transactions in general, and the transaction support
incorporated into Sun ONE Application Server in specific.

This chapter includes the following topics:

• What Is a Transaction?

• Transactions in J2EE

• Transactional Resource Managers

• Local and Distributed Transactions

• Container-Managed Transactions

• Bean-Managed Transactions

• Transaction Service Administration

What Is a Transaction?
To emulate a business transaction, a program may need to perform several steps. A
financial program, for example, might transfer funds from a checking account to a
savings account, by performing the steps listed in the following pseudocode:

Transactions in J2EE

222 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

begin transaction

debit checking account

credit savings account

update history log

commit transaction

In the preceding pseudocode, the begin and commit statements mark boundaries
of the transaction. To complete this transaction, all the three steps complete must
complete successfully. If all three steps don’t complete successfully, data integrity
could be compromised.

This guarantee is described as atomicity. A transaction can end in two ways: with
a commit or a rollback. When a transaction commits, the modifications made by
statements within the transaction boundaries are saved and made permanent. The
changes are durable, that is they will survive future system failures. If any statement
within a transaction fails, the transaction rolls back, undoing the effects of all
statements executed so far in the transaction. In the pseudocode, for example, if a
disk drive crashed during the credit step, the transaction would roll back and undo
the data modifications made by the debit statement.

Even if a transaction fails, data integrity would be intact because the transaction
accounts still balance. This aspect of transactional behavior is known as
transactional consistency.

The transaction service also provides isolation, which means that phases in a
transaction cannot be observed by other applications and threads, until the
transaction is committed or rolled back. Once a transaction is committed, the
committed transaction can be safely observed by applications and threads.

Transactions in J2EE
Transaction processing in J2EE involves the following five participants:
Transaction Manager, Application Server, Resource Manager(s), Resource
Adapter(s) and the User Application. Each of these entities contribute to reliable
transaction processing, by implementing different APIs and functionalities,
discussed below:

• Transaction Manager provides the services and management function required
to support transaction demarcation, transactional resource management,
synchronization, and transaction context propagation.

Transactional Resource Managers

Chapter 9 Using Transaction Services 223

• The Application server provides the infrastructure required to support the
application run-time environment which includes transaction state
management.

• Resource Manager (through a resource adapter) provides the application
access to resources. The resource manager participates in distributed
transactions by implementing a transaction resource interface used by the
transaction manager to communicate transaction association, transaction
completion and recovery work. An example of such a resource manager is a
relational database server.

• A Resource Adapter is a system level software library that is used by the
application server or client to connect to a Resource Manager. A Resource
Adapter is typically specific to Resource Manager. It is available as a library
and is used within the address space of the client using it. An example of such
a resource adapter is the JDBC driver.

• A transactional User Application developed to operate in a J2EE application
server environment, looks up transactional data sources, and optionally, the
transaction manager, using JNDI. May use declarative transaction attribute
settings for EJBs or explicit programmatic transaction demarcation.

The term Resource Manager is often used interchangeably with Resource Adapter,
as there is a close tie between the two entities.

Transactional Resource Managers
The following transactional resource managers are supported in J2EE transactions.

• Databases

• JMS Providers

• J2EE Connectors

Databases
Databases are the most commonly encountered transactional resource managers in
J2EE applications. JDBC is the API is used by J2EE components to access databases.
Database resources are configured as JDBC resources. JDBC resources are managed
by a resource managers, or JDBC Drivers. A JDBC driver may provide support for
Local transactions or Global transactions, and in some cases for both local and
global transactions.

Transactional Resource Managers

224 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Sun ONE Application Server supports usage of JDBC and Transactions from
various J2EE components. For more details on how JDBC resources are registered
and configured, see “About JDBC Resources” on page 264. The Application Server
is responsible for providing transaction continuity (that is, initiating a transaction
and accessing the database from multiple application components). For example, a
servlet may start a transaction, access a database, invoke an enterprise bean that
accesses the same database as part of the same transaction, and finally, commit the
transaction.

JMS Providers
JMS stands for Java Message Service. A JMS Provider is the J2EE term for the
Message Broker Service. The JMS API provides reliable and transactional exchange
of messages between applications. Support of transactional JMS data sources is a
required capability in J2EE. JMS resources and JDBC resources can participate in
the same transaction.

Sun ONE Application Server comes integrated with Sun ONE Message Queue, a
fully capable JMS provider and the corresponding transactional resource manager.
In this manner, Sun ONE Application Server enables transactional JMS access from
servlets, JSP pages and enterprise beans. It is also possible to use third party JMS
Providers with Sun ONE Application Server. For more details, see Chapter 11,
“Using the JMS Service.”

J2EE Connectors
Sun ONE Application Server supports resource adapters that use XATransaction
mode as transaction resource managers. The platform must enable transactional
access to the resource adapter from servlets, JSP pages, and enterprise beans. It is
possible to access the resource adapter from multiple application components
within a single transaction. For example, a servlet may wish to start a transaction,
access the resource adapter, invoke an enterprise bean that also accesses the
resource adapter as part of the same transaction, and finally, commit the
transaction.

Local and Distributed Transactions

Chapter 9 Using Transaction Services 225

Local and Distributed Transactions
A transaction that involves only one resource can be completed using local
transactions. A local transaction also requires that all participating application
components execute within one process. Transactions that involve more than one
resource, or multiple participant processes become distributed or global
transactions. Local transaction optimization uses the resource manager specific
optimization and it is transparent to the J2EE application.

The type of transaction is largely determined by the interfaces implemented of the
involved resource managers. For example, a JDBC Data Source that implements
javax.sql.DataSource interface can participate in Local transactions. A Data
Source that implements javax.sql.XADataSource is capable of taking part in
global transactions. Some JDBC resources implement both the interfaces, and when
such a JDBC resource is registered with Sun ONE Application Server, it may be
necessary to provide additional configuration information in the Sun ONE
Application Server configuration to indicate the preferred capability for that
resource.

Local transactions are simpler and naturally more efficient than global
transactions. Local transactions are inadequate when the data that needs to be
transformed is spread across multiple data sources. Sometimes, it is not possible to
predict how many data sources would need to be enlisted in a transaction. So
global transactions are encountered quite frequently in the real world. Some
performance enhancing optimizations are possible with global transactions.

J2EE supports transactional applications comprising any combination of servlets or
JSPs accessing multiple enterprise beans within a transaction. Each component
may acquire one or more connections to access one or more transactional resource
managers. In the following figure, the call tree starts from a servlet or JSP page
accessing multiple enterprise beans, which in turn may access other enterprise
beans. The components access resource managers via connections.

Local and Distributed Transactions

226 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

J2EE Components Accessing Resources in a Transaction

For example, an application may require that all the components in the above
figure access resources as part of a single transaction. The application server
provider must provide the transaction capabilities to support such a scenario.

J2EE transactional management supports flat transactions. A flat transaction
cannot have any child (nested) transactions.

Transaction Recovery is an important aspect of distributed transactions. When a
resource becomes unreachable during critical points, or if there are other
unrecoverable errors, the status of the distributed transaction can be in question.
Automatic and manual recovery of stranded/incomplete transactions is an
important feature in Sun ONE Application Server. You can enable automatic
transaction recovery by using the Administration interface. For more information
on how to control transaction recovery, see “Transaction Service Administration”
on page 235.

Container-Managed Transactions

Chapter 9 Using Transaction Services 227

Connections—used as a synonym here for resources—can be marked as either
shareable or non-shareable. A J2EE application component that intends to use a
connection in an un-shareable way must provide deployment information to that
effect, to prevent the connection from being shared by the container. Examples of
when this may be needed include situations with changed security attributes,
isolation levels, character settings, and localization configuration.

Containers must not attempt to share connections that are marked un-shareable. If
a connection is not marked as unshareable, it must be transparent to the
application whether the connection is actually shared or not.

J2EE application components may use the optional deployment descriptor element
res-sharing-scope to indicate whether a connection to a resource manager is
shareable or unshareable. Containers should assume connections to be shareable if
no deployment hint is provided. J2EE application components may cache
connection objects and reuse them across multiple transactions. Containers that
provide connection sharing should transparently switch such cached connection
objects (at dispatch time) to point to an appropriate shared connection with the
correct transaction scope.

When designing an enterprise bean application, the developer must determine
how the boundaries are specified.

Container-Managed Transactions
In an enterprise bean with container-managed transactions, the EJB container sets
the boundaries of the transactions. You can use container-managed transactions
with any type of enterprise bean: session, entity, or message-driven.
Container-managed transactions simplify development because the enterprise
bean code does not explicitly mark the transaction's boundaries. The code does not
include statements that begin and end the transaction.

Typically, the container begins a transaction immediately before an enterprise bean
method starts. It commits the transaction just before the method exits. Each method
can be associated with a single transaction. Nested or multiple transactions are not
allowed within a method.

Container-managed transactions do not require all methods to be associated with
transactions. When deploying a bean, you specify which of the bean's methods are
associated with transactions by setting the transaction attributes.

This section covers the following topics:

• Transaction Attributes

Container-Managed Transactions

228 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Setting Transaction Attributes

• Rolling Back a Container-Managed Transaction

• Synchronizing a Session Bean’s Instance Variables

• Methods Not Allowed in Container-Managed Transactions

Transaction Attributes
A transaction attribute controls the scope of a transaction. The following figure
illustrates why controlling the scope is important. In the diagram, method-A
begins a transaction and then invokes method-B of Bean-2. When method-B
executes, does it run within the scope of the transaction started by method-A or
does it execute with a new transaction? The answer depends on the transaction
attribute of method-B.

Figure 9-1 Transaction Attributes

A transaction attribute may have one of the following values:

• Required

• RequiresNew

• Mandatory

• NotSupported

• Supports

Container-Managed Transactions

Chapter 9 Using Transaction Services 229

• Never

Required
If the client is running within a transaction and invokes the enterprise bean's
method, the method executes within the client's transaction. If the client is not
associated with a transaction, the container starts a new transaction before running
the method.

The Required attribute will work for most transactions. Therefore, you may want
to use it as a default, at least in the early phases of development. Because
transaction attributes are declarative, you can easily change them at a later time.

RequiresNew
If the client is running within a transaction and invokes the enterprise bean's
method, the container takes the following steps:

• Suspends the client's transaction

• Starts a new transaction

• Delegates the call to the method

• Resumes the client's transaction after the method completes

If the client is not associated with a transaction, the container starts a new
transaction before running the method.

You should use the RequiresNew attribute when you want to ensure that the
method always runs within a new transaction.

Mandatory
If the client is running within a transaction and invokes the enterprise bean's
method, the method executes within the client's transaction. If the client is not
associated with a transaction, the container throws the
TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean's method must use the
transaction of the client.

NotSupported
If the client is running within a transaction and invokes the enterprise bean's
method, the container suspends the client's transaction before invoking the
method. After the method has completed, the container resumes the client's
transaction.

Container-Managed Transactions

230 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

If the client is not associated with a transaction, the container does not start a new
transaction before running the method.

Use the NotSupported attribute for methods that don't need transactions. Because
transactions involve overhead, this attribute may improve performance.

Supports
If the client is running within a transaction and invokes the enterprise bean's
method, the method executes within the client's transaction. If the client is not
associated with a transaction, the container does not start a new transaction before
running the method.

Because the transactional behavior of the method may vary, you should use the
Supports attribute with caution.

Never
If the client is running within a transaction and invokes the enterprise bean’s
method, the container throws a RemoteException. If the client is not associated
with a transaction, the container does not start a new transaction before running
the method.

Attribute Summary
The following table summarizes the effects of the transaction attributes. Both the T1
and T2 transactions are controlled by the container. A T1 transaction is associated
with the client that calls a method in the enterprise bean. In most cases, the client is
another enterprise bean. A T2 transaction is started by the container just before the
method executes.

In the last column of, the term “None” indicates that the business method does not
execute within a transaction controlled by the container. However, the database
calls in such a business method might be controlled by the transaction manager of
the DBMS.

Table 9-1 Transaction Attributes

Transaction Attribute Client’s Transaction Business Method’s Transaction

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Container-Managed Transactions

Chapter 9 Using Transaction Services 231

Setting Transaction Attributes
Because transaction attributes are stored in the deployment descriptor, they can be
changed during several phases of J2EE application development: enterprise bean
creation, application assembly, and deployment. However it is the responsibility of
a developer to specify the attributes when creating the bean. The attributes should
be modified only by an application developer who is assembling components into
larger applications. The individual who deploys the J2EE application is not
responsible for specifying the transaction attributes.

You can specify the transaction attributes for the entire enterprise bean or for
individual methods. If you’ve specified one attribute for a method and another for
the bean, the attribute for the method takes precedence. When specifying attributes
for individual methods, the requirements differ with the type of bean. Session
beans need the attributes defined for business methods, but do not allow them for
the create methods. Entity beans require transaction attributes for the business,
create, remove, and finder methods. Message-driven beans require transaction
attributes (either Required or NotSupported) for the onMessage method.

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction. First, if a system
exception is thrown, the container will automatically roll back the transaction.
Second, by invoking the setRollbackOnly method of the EJBContext interface,
the bean method instructs the container to roll back the transaction. If the bean
throws an application exception, the rollback is not automatic, but may be initiated
by a call to setRollbackOnly.

Mandatory None error

T1 T1

NotSupported None None

T1 None

Supports None

T1

None

T1

Table 9-1 Transaction Attributes

Container-Managed Transactions

232 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

In the following example, the transferToSaving method of the BankEJB example
illustrates the setRollbackOnly method. If a negative checking balance occurs,
transferToSaving invokes setRollBackOnly and throws an application
exception (InsufficientBalanceException). The updateChecking and
updateSaving methods update database tables. If the updates fail, these methods
throw a SQLException and the transferToSaving method throws an
EJBException. Because the EJBException is a system exception, it causes the
container to automatically roll back the transaction. Here is the code for the
transferToSaving method:

public void transferToSaving(double amount) throws
InsufficientBalanceException {

checkingBalance -= amount;
savingBalance += amount;

if (checkingBalance < 0.00) {
context.setRollbackOnly();

throw new InsufficientBalanceException();
}

try {
updateChecking(checkingBalance);

updateSaving(savingBalance);
} catch (SQLException ex) {

throw new EJBException
("Transaction failed due to SQLException: "
+ ex.getMessage());

 }
}

When the container rolls back a transaction, it always undoes the changes to data
made by SQL calls within the transaction. However, only in entity beans will the
container undo changes made to instance variables. (It does so by automatically
invoking the entity bean’s ejbLoad method, which loads the instance variables
from the database.) When a rollback occurs, a session bean must explicitly reset any
instance variables changed within the transaction. The easiest way to reset a
session bean’s instance variables is by implementing the
SessionSynchronization interface.

You can also roll back a transaction by passing the transaction ID through the
command line interface. For more details, please see “Administering Transactions
Using the Command-Line Interface” on page 238.

Container-Managed Transactions

Chapter 9 Using Transaction Services 233

Synchronizing a Session Bean’s Instance
Variables
The SessionSynchronization interface, which is optional, allows you to
synchronize the instance variables with their corresponding values in the database.
The container invokes the SessionSynchronization methods—afterBegin,
beforeCompletion, and afterCompletion—at each of the main stages of a
transaction.

The afterBegin method informs the instance that a new transaction has begun.
The container invokes afterBegin before it invokes the first business method
within a transaction. The afterBegin method is a good place to load the instance
variables from the database. The BankBean class, for example, loads the
checkingBalance and savingBalance variables in the afterBegin method:

public void afterBegin() {

System.out.println("afterBegin()");
try {

checkingBalance = selectChecking();
savingBalance = selectSaving();

} catch (SQLException ex) {
throw new EJBException("afterBegin Exception: " +

ex.getMessage());
}

}

The container invokes the beforeCompletion method after the business method
has finished, but just before the transaction commits. The beforeCompletion
method is the last opportunity for the session bean to roll back the transaction (by
calling setRollbackOnly). If it hasn’t already updated the database with the
values of the instance variables, the session bean may do so in the
beforeCompletion method.

The afterCompletion method indicates that the transaction has completed. It has
a single boolean parameter, whose value is true if the transaction was committed
and false if it was rolled back. If a rollback occurred, the session bean can refresh its
instance variables from the database in the afterCompletion method:

public void afterCompletion(boolean committed) {

System.out.println("afterCompletion: " + committed);
if (committed == false) {

try {
checkingBalance = selectChecking();
savingBalance = selectSaving();

Bean-Managed Transactions

234 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

} catch (SQLException ex) {
throw new EJBException("afterCompletion SQLException:
" + ex.getMessage());

}
}
}

Methods Not Allowed in Container-Managed
Transactions
You should not invoke any method that might interfere with the transaction
boundaries set by the container. The list of prohibited methods follows:

• The commit, setAutoCommit, and rollback methods of java.sql.Connection

• The getUserTransaction method of javax.ejb.EJBContext

• Any method of javax.transaction.UserTransaction

You may, however, use these methods to set boundaries in bean-managed
transactions.

Bean-Managed Transactions
In a bean-managed transaction, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. An entity bean cannot have
bean-managed transactions; it must use container-managed transactions instead.
Although beans with container-managed transactions require less coding, they
have one limitation: When a method is executing, it can be associated with either a
single transaction or no transaction at all. If this limitation will make coding your
bean difficult, you should consider using bean-managed transactions.

The following pseudocode illustrates the kind of fine-grained control you can
obtain with bean-managed transactions. By checking various conditions, the
pseudocode decides whether to start or stop different transactions within the
business method.

begin transaction
...
update table-a
...
if (condition-x)

commit transaction

Transaction Service Administration

Chapter 9 Using Transaction Services 235

else if (condition-y)
update table-b
commit transaction

else
rollback transaction
begin transaction
update table-c
commit transaction

Transaction Service Administration
You can administer transaction by using the Administration interface, or by using
the Command Line Interface.

This section covers the following topics:

• Administering Transactions Using the Administration Interface

• Administering Transactions Using the Command-Line Interface

Administering Transactions Using the
Administration Interface
Using the Administration interface, you can enable monitoring, set log levels, and
specify advanced options for your transactions.

You can control instance-wide transaction service attributes, such as recovery
policy and time-outs. The properties and configuration that you specify here are
stored in the server.xml file.

To configure transaction service options, perform the following tasks:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance tree, whose transaction configuration you want to modify.

2. Select Transaction Service from the list of J2EE services that are displayed. You
will see the following window, shown in the figure “Configuring Transaction
Service Options” in the right pane of the Administration interface:

Transaction Service Administration

236 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 9-2 Configuring Transaction Service Options

3. To enable monitoring for your transactions, mark the Monitoring Enabled
checkbox. The following table lists the features of Java Transaction services
that can be monitored:

Table 9-2 Monitorable Attributes of Java Transaction Services

Property Type Description

transactionsCompleted int Number of transactions completed since monitoring is
enabled

transactionsRolledBack int Number of transactions rolled back since monitoring is
enabled

transactionsRecovered int Number of transactions recovered since monitoring is
enabled

Transaction Service Administration

Chapter 9 Using Transaction Services 237

4. Select the log level you want to set for your transactions, from the Log Level
drop-down list. For a more information on log levels and how they are
incorporated, see Chapter 5, “Using Logging.”

5. Mark the checkbox against Recover on Restart to automatically recover failed
transactions at server restart. When a resource becomes unreachable during
critical points in the transaction Commit protocol, transactions may not
complete and remain in transaction log file. If this check box has been marked,
the server attempts to recover stranded transaction upon server restart. If the
involved resources remain unreachable, this may delay server restart. This
checkbox is not marked by default.

6. For enterprise beans with container-managed transactions, you can control the
transaction timeout interval by setting the value of the Transaction Timeout
(secs) property.

If the value of this property is set to 0, your transaction does not time out.

In the Transaction Timeout (secs) field, specify the transaction timeout interval.
If a transaction is not completed within the specified time, the transaction will
be rolled back. If the value set for this attribute is 0, the transaction does not
time out.

7. In the Transaction Log Location field, specify the absolute path to the directory
in which you want to store your log files. You need to restart your server for
the new transaction log directory to be effective.

8. From the Heuristic Decision drop-down box, select the heuristic decision that
you want to apply to your transactions. Select Commit or Rollback from the
options indicated, to specify how the Application Server should determine the
outcome of an in-doubt transaction during recovery, if the outcome cannot be
determined unambiguously. If the Heuristic Decision is set to Rollback, it rolls
back the transaction. In some cases, it may be acceptable to commit such a
transaction.

transactionsInFlight int Number of transactions presently being processed

timeStamp long In milliseconds, recording the time at which the statistic
was produced. This will be whatever that is reported by
System.getCurrentTimeInMillis()

Table 9-2 Monitorable Attributes of Java Transaction Services

Transaction Service Administration

238 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

9. In the Keypoint Interval (transactions) field, specify the number of transactions
between keypoint operations in the log. Keypoint operations reduce the size of
the transaction log file by removing entries for completed transactions and
compressing the file. A larger value for this attribute results in a larger
transaction log file, but fewer keypoint operations mean a potentially better
performance. A smaller value (for example, 100) results in smaller log files, but
slightly reduced performance due to the greater frequency of keypoint
operations.

Administering Transactions Using the
Command-Line Interface
You can administer and monitor database transactions using the Command Line
Interface (CLI), as explained in the following sections:

• Listing In-Flight Transactions

• Managing Transactions

• Freezing the Transaction Service

• Monitoring Transactions

These sections explain how to use the Command Line Interface to manage and
monitor transactions.

Listing In-Flight Transactions
The following command should be used to get the in-flight transaction data
(assuming that you are in multimode and have already set the user name and
password):

- asadmin> get --monitor
<instanceName>.transaction-service.inflight-tx

The multi-line output will look like this:-

Transaction Id State Elapsed Time (ms)

txnid1 Prepared 20

txnid2 Active 100

txnid3 Active 120

Transaction Service Administration

Chapter 9 Using Transaction Services 239

Managing Transactions
In the example given in Listing In-Flight Transactions, let us assume that you want
to rollback transactions with the transaction Ids: txn-ids, txnid2, and txnid3. A
sample command to rollback chosen transactions, would look like the following
example:

asadmin> set --monitor
<instanceName>.transaction-service.rollback-list=txnid2,txnid3

Freezing the Transaction Service
To freeze the transaction service, run the following command:

asadmin> set --monitor
<instanceName>.transaction-service.freeze=true

When the transaction service is frozen the transaction manager in the application
server, will suspend all in-flight transactions. Freezing is not recommended on a
production deployment system.

To unfreeze the transaction service, run the following command:

asadmin> set --monitor
<instanceName>.transaction-service.freeze=false

When the transaction service is set in motion again, the system continues where it
left off. If a live system was left in frozen state for too long, some database
connections may time out, resulting in rolled back transactions.

Monitoring Transactions
To get the monitoring data of transactions, including in-flight transaction data, run
the following command:

asadmin> get --monitor <instanceName>.transaction-service.*

If there are no active transactions when you run this command, you will get the
following output:

total-tx-completed = 5

total-tx-rolledback = 2

total-tx-inflight = 0

isFrozen = false

tx-inflight = No active transactions found.

If there are active transactions, when you run this command, you will get the
following output:

Transaction Service Administration

240 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

total-tx-completed = 5

total-tx-rolledback = 2

total-tx-inflight = 2

isFrozen = false

tx-inflight =

Transaction Id State Elapsed Time(ms)

txnid1 Prepared 500

txnid2 Active 360

241

Chapter 10

Configuring Naming and Resources

This chapter describes the J2EE Resources used by Sun ONE Application Server
and discusses the methods used to create and manage these resources:

This chapter includes the following topics:

• About J2EE Naming Services and Resources

• About Java Naming and Directory Interface (JNDI)

• About Persistence Manager Resources

• About JDBC Resources

• About Java Mail Resources

About J2EE Naming Services and Resources
J2EE applications including EJBs, web application components and application
clients may access a wide variety of resources such as resource managers, data
sources (for example SQL datasources), connection factories, mail sessions, Java
Message Service destination objects, and URL connection factories. The J2EE
platform exposes such resources to the applications via Java Naming and Directory
(JNDI) naming service.

Sun ONE Application Server allows you to create and manage the following J2EE
resources:

• JDBC Datasources

• Java Mail Sessions

• JMS Destinations

About J2EE Naming Services and Resources

242 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

JDBC Datasources
A JDBC Datasource is a J2EE resource that you can create and manage using Sun
ONE Application Server.

The JDBC API is the API for connectivity with relational database systems. The
JDBC API has two parts:

• An application-level interface used by the application components to access
databases.

• A service provider interface to attach a JDBC driver to the J2EE platform.

A JDBC DataSource object is the representation of a data source in the Java
programming language. In basic terms, a data source is a facility for storing data. It
can be as sophisticated as a complex database for a large corporation or as simple
as a file with rows and columns. A JDBC Datasource is a J2EE resource that can be
created and managed via Sun ONE Application Server.

For more information on JDBC Datasources, see “About JDBC Resources” on
page 264.

Java Mail Sessions
JMS destinations are J2EE resources that can be created and managed via Sun ONE
Application Server.

Many internet applications require the ability to send email notifications, so the
J2EE platform includes the JavaMail API along with a JavaMail service provider
that allows an application component to send internet mail. The JavaMail API has
two parts:

• An application-level interface used by the application components to send mail

• A service provider interface used at the J2EE SPI level.

Java Mail Sessions are J2EE resources that can be created and managed via Sun
ONE Application Server. For more information on Java Mail Sessions, see “About
Java Mail Resources” on page 286.

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 243

JMS Destinations
Java Messaging Service (JMS) is a standard API for messaging that supports
reliable point-to-point messaging as well as the publish-subscribe model. This
specification requires a JMS provider that implements both point-to-point
messaging and publish-subscribe messaging.

JMS provides for two general types of administered objects: connection factories
and destinations. While both encapsulate provider-specific information, they have
very different uses within a JMS client. A connection factory is used to create
connections to a message server, and destination objects are used to identify
physical destinations used by the JMS messaging service.

About Java Naming and Directory Interface
(JNDI)

This section discusses the Java Naming and Directory Interface (JNDI). Java
Naming and Directory Interface (JNDI) is an application programming interface
(API) for accessing different kinds of naming and directory services. J2EE
components locate objects by invoking the JNDI lookup method.

This section covers the following topics:

• JNDI Architecture

• J2EE Naming Services

• Naming References and Binding Information

• Naming References in J2EE Standard Deployment Descriptor

• JNDI Connection Factories

JNDI Architecture
The JNDI architecture consists of an Application Programmer’s Interface (API) and
a Service Provider Interface (SPI). Java applications use the JNDI API to access a
variety of naming and directory services. The SPI enables a variety of naming and
directory services to be plugged in transparently, thereby allowing the Java
application using the JNDI API to access their services. The following figure,
“Overview of the JNDI Architecture,” illustrates the services than can be accessed
through the JNDI API:

About Java Naming and Directory Interface (JNDI)

244 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 10-1 Overview of the JNDI Architecture

J2EE Naming Services
A JNDI name is a people-friendly name for an object. These names are bound to
their objects by the naming and directory service that is provided by a J2EE server.
Because J2EE components access this service through the JNDI API, we usually
refer to an object’s people-friendly name as its JNDI name. The JNDI name of the
Pointbase database is jdbc/Pointbase. When it starts up, Sun ONE Application
Server reads information from configuration file and automatically adds JNDI
database names to the name space.

J2EE application clients, enterprise beans, and web components are required to
have access to a JNDI naming environment.

The application component's naming environment is a mechanism that allows
customization of the application component's business logic during deployment or
assembly. Use of the application component's environment allows the application
component to be customized without the need to access or change the application
component's source code.

A J2EE container implements the application component's environment, and
provides it to the application component instance as a JNDI naming context. The
application component's environment is used as follows:

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 245

• The application component's business methods access the environment using
the JNDI interfaces. The application component provider declares in the
deployment descriptor all the environment entries that the application
component expects to be provided in its environment at runtime.

• The container provides an implementation of the JNDI naming context that
stores the application component environment. The container also provides the
tools that allow the deployer to create and manage the environment of each
application component.

• A deployer uses the tools provided by the container to initialize the
environment entries that are declared in the application component's
deployment descriptor. The deployer can set and modify the values of the
environment entries.

• The container makes the environment naming context available to the
application component instances at runtime. The application component's
instances use the JNDI interfaces to obtain the values of the environment
entries.

Each application component defines its own set of environment entries. All
instances of an application component within the same container share the same
environment entries. Application component instances are not allowed to modify
the environment at runtime. For more information on how J2EE containers such as
the Web Container and EJB Containers use the JNDI naming service to look up
objects, please see “Configuring J2EE Containers” on page 201.

Naming References and Binding Information
A resource reference is an element in a deployment descriptor that identifies the
component’s coded name for the resource. More specifically, the coded name
references a connection factory for the resource. In the example given in the
following section, the resource reference name is jdbc/SavingsAccountDB.

The JNDI name of a resource and the name of the resource reference are not the
same. This approach to naming requires that you map the two names before
deployment, but it also decouples components from resources. Because of this
de-coupling, if at a later time the component needs to access a different resource,
you don’t have to change the name in the code. This flexibility also makes it easier
for you to assemble J2EE applications from preexisting components.

The following table, “JNDI Lookups and Their Associated References,” lists JNDI
lookups and their associated references for the J2EE resources used by Sun ONE
Application Server.

About Java Naming and Directory Interface (JNDI)

246 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Naming References in J2EE Standard
Deployment Descriptor
A naming reference is a string used by the application to look up an object in the
given naming context. For each J2EE application, there is a naming context and the
references are configured in the standard component deployment descriptors.This
section describes the standard deployment descriptor features used in Sun ONE
Application Server. This section covers the following topics:

• Application Environment Entries

• EJB References

• References to Resource Manager Connection Factories

• Resource Environment References

• UserTransaction References

• COSNaming Service

Table 10-1 JNDI Lookups and Their Associated References

JNDI Lookup Name Associated Reference

java:comp/env Application environment entries

java:comp/env/jdbc JDBC DataSource resource manager connection
factories

java:comp/env/ejb EJB References

java:comp/UserTransaction UserTransaction references

java:comp/env/mail JavaMail Session Connection Factories

java:comp/env/url URL Connection Factories

java:comp/env/jms JMS Connection Factories and Destinations

java:comp/ORB ORB instance shared across application
components

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 247

Application Environment Entries
Environment entries, defined using <env-entry>, provide a way of specifying
deployment time parameters to J2EE applications. Note that in case of web
applications, the servlet context initialization parameters could be defined using
<context-param>, but <env-entry> is the preferred way because application
deployers to configure such applications parameters by explicitly specifying the
name, type and values for them.

The following sample describes the syntax of <env-entry> as specified in the J2EE
standard deployment descriptors:

<env-entry>
<description> Send pincode by mail </description>
<env-entry-name> mailPincode </env-entry-name>
<env-entry-value> false </env-entry-value>
<env-entry-type> java.lang.Boolean </env-entry-type>
</env-entry>

The <env-entry-type> tag specifies a fully qualified class name for the entry.
Here is a code snippet to lookup the <env-entry> using JNDI from an application
component (a term referring to a servlet/JSP or an entity bean or an IIOP
application client):

Context initContext = new InitialContext();
Boolean mailPincode = (Boolean)
initContext.lookup("java:comp/env/mailPincode");

// one could use relative names into the sub-context
Context envContext = initContext.lookup("java:comp/env");
Boolean mailPincode = (Boolean)
envContext.lookup("mailPincode");

EJB References
Apart from deployment descriptor support, the JNDI naming service enables
applications to use “logical” names (called EJB references) to map to the home
interfaces of enterprise beans, as described in the following example:

<ejb-ref>
<ejb-ref-name> ejb/EmplRecord </ejb-ref-name>
<ejb-ref-type> Entity </ejb-ref-type>
<home> com.wombat.empl.EmployeeRecordHome </home>
<remote> com.wombat.empl.EmployeeRecord </remote>
<ejb-link> EmployeeEJB </ejb-link>
</ejb-ref>

An application component such as a JSP could access the EJB home object using
JNDI, as described in the following example:

About Java Naming and Directory Interface (JNDI)

248 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Context initContext = new InitialContext();
Context envContext = initContext.lookup("java:comp/env");
Object result = envContext.lookup("ejb/EmplRecord");
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

The ejb-ref-name element defines the string used in the application code (as in
the above given example). The ejb-link element links this reference to target
enterprise bean defined using the ejb-name element of the entity bean defined in
the ejb-jar.xml. It is also possible to provide the linkage without modifying
either the application deployment descriptor or the enterprise bean descriptor.

References to Resource Manager Connection Factories
A factory is an object that creates other objects on demand. A resource factory
creates resource objects, such as database connections or message service
connections. They are configured using <resource-ref> element in the standard
deployment descriptors.

The following examples describe the use of factories:

Example A:

Declaration of a reference to a JDBC connection factory that returns objects of type
javax.sql.DataSource:

<resource-ref>
<description> Primary database </description>
<res-ref-name> jdbc/primaryDB </res-ref-name>
<res-type> javax.sql.DataSource </res-type>
<res-auth> Container </res-auth>
</resource-ref>

Example B:

Here is an example reference to JavaMail Session resource factory:

<resource-ref>
<description> mail Session </description>
<res-ref-name> mail/Session </res-ref-name>
<res-type> javax.mail.Session </res-type>
<res-auth> Container </res-auth>
</resource-ref>

<res-type> is a fully-qualified class name of the resource factory. The
<res-auth> variable can be assigned either Container or Application as a value.
To know more about configuring Java Mail session resource factories, please see
“About Java Mail Resources” on page 286.

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 249

If Container is specified, the web container handles the authentication before
binding the resource factory to JNDI lookup registry. If Application is specified, the
servlet must handle authentication programmatically. Different resource factories
are looked up under a separate sub-context that describes the resource type,
follows:

• jdbc/ for a JDBC javax.sql.DataSource factory

• jms/ for a JMS javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory

• mail/ for a JavaMail javax.mail.Session factory

• url/ for a java.net.URL factory

Here is a code snippet to get JDBC connection from an application component with
the container handling the authentication:

InitialContext initContext = new InitialContext();
DataSource source =
(DataSource) initContext.lookup("java:comp/env/jdbc/primaryDB");
Connection conn = source.getConnection();

Please note that in order to ensure that for these resource references work, the
res-ref-name must map to valid resource factory at runtime.

Resource Environment References
Resource environment references provide a way of accessing, via JNDI lookups,
administered objects associated with a resource. For example, an application may
need to access a JMS Destination object. The <resource-env-ref> element,
defined in the standard deployment descriptors lets applications declare the
resource requirements.

The main difference between <resource-env-ref> and <resource-ref> element
is the absence of specific resource authentication requirement; both these elements
have to be backed up by a resource factory descriptor.

Example:

<resource-env-ref>
<description> My Topic </description>
<res-env-ref-name> jms/MyTopic </res-ref-name>
<res-env-ref-type> javax.jms.Topic </res-type>
</resource-env-ref>

The following piece of code allows you to access a JMS Topic object:

About Java Naming and Directory Interface (JNDI)

250 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

InitialContext initContext = new InitialContext();
javax.jms.Topic myTopic =
(javax.jms.Topic) initContext.lookup("java:comp/env/jms/MyTopic");

Note that in order these resource-env-ref variables to work, the administrators
will have to make target resource factories available at run-time. For more
information about accessing JMS Topics and Queue destinations, see Chapter 11,
“Using the JMS Service.”

UserTransaction References
J2EE requires that containers provide a UserTransaction object implementation at
the JNDI name java:comp/UserTransaction. A UserTransaction object lets
applications to start, commit and abort transactions.

To programmatically initiate and perform transactions, components obtain
reference to the container's default transaction co-ordinator, by doing a JNDI
lookup for java:comp/UserTransaction. The returned object implements
javax.transaction.UserTransaction interface and can be used in the program
to begin, commit, rollback and query status of transactions. JNDI implementation
in Sun ONE Application Server supports such lookup of the transaction
co-ordinator. For more information about the
javax.transaction.UserTransaction interface, see “Using Transaction
Services” on page 221.

Initial Naming Context
The naming support in Sun ONE Application Server is based primarily on J2EE 1.3,
with a few added enhancements.When an application component creates the initial
context, via InitialContext(), Sun ONE Application Server returns an object that
serves as a handle to the application's naming environment. This object in turn
provides sub-contexts for the java:comp/env namespace. Each application gets its
own namespace, that is, java:comp/env name space is per application and objects
bound in one application's namespace don't collide with objects bound in other
applications.

COSNaming Service
The EJB interoperability protocol requires the use of the COSNaming protocol for
lookup of EJB objects using the JNDI API.

EJB containers are required to be able to publish EJBHome object references in a
CORBA CosNaming service. The CosNaming service must implement the IDL
interfaces in the CosNaming module defined, and allow clients to invoke the resolve
and list operations over IIOP.

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 251

The CosNaming service must follow the requirements in the CORBA Interoperable
Name Service specification for providing the host, port and object key for its root
NamingContext object. The CosNaming service must be able to service IIOP
invocations on the root NamingContext at the advertised host, port and object key.

Client containers (that is, EJB, web or application client containers) are required to
include a JNDI CosNaming service provider that uses the mechanisms defined in
the Interoperable Name Service specification to contact the server's CosNaming
service and to resolve the EJBHome object using standard CosNaming APIs. The
JNDI CosNaming service provider may or may not use the JNDI SPI architecture.
The JNDI CosNaming service provider must access the root NamingContext of the
server's CosNaming service by creating an object reference from the following URL:

corbaloc:iiop:1.2@<host>:<port>/<objectkey> (where <host>, <port>,

and <objectkey> are the values corresponding to the root NamingContext
advertised by the server's CosNaming Service), or by using an equivalent
mechanism.

At deployment time, the developer of the client container should obtain the host,
port and object key of the server's CosNaming service and the CosNaming name of
the server EJBHome object (for example, by browsing the server's namespace) for
each ejb-ref element in the client components's deployment descriptor. The
ejb-ref-name (which is used by the client code in the JNDI lokup call) should then
be linked to the EJBHome object's CosNaming name. At runtime, the client
component's JNDI lookup call uses the CosNaming service provider, which contacts
the server's CosNaming service, resolves the CosNaming name, and returns the
EJBHome object reference to the client component.

Since the EJBHome object’s name is scoped within the namespace of the CosNaming
service that is accessible at the provided host and port, it is not necessary to
federate the namespaces of the client and server containers.

The advantage of using CosNaming is better integration with the IIOP
infrastructure that is already required for inter operability, as well as inter
operability with non-J2EE CORBA clients and servers. Since CosNaming stores only
CORBA objects it is likely that vendors will use other enterprise directory services
for storing other resources.

Sun ONE Application Server incorporates all the naming resources of JNDI, based
on the J2EE 1.3 specification.

About Java Naming and Directory Interface (JNDI)

252 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

CosNaming provider To support a global JNDI namespace (accessible to IIOP
application clients), Sun ONE Application Server includes J2EE based CosNaming
provider which supports binding of CORBA references (remote EJB references).
The InitialContext returned to the IIOP clients is a CosNaming provider. An
instance of Sun ONE Application Server server registers the entity beans for the
IIOP clients to lookup and bind to.

Note that Sun ONE Application Server treats objects stored in CosNaming and the
local JNDI naming environment are transient: that is, on each server startup as well
as application reloading, all relevant objects are rebound to the namespace again.
To know more about configuring support for CORBA/IIOP clients, see
“Configuring the Server For CORBA/IIOP Clients” on page 329.

JNDI Connection Factories
For J2EE web applications, the deployment descriptor in the web.xml file is the
placeholder for defining references to application environment entries, resource
manager (such as SQL Data Source) connection factories, or EJBs. Applications
look up such references using the JNDI InitialNamingContext provided by the
J2EE containers. This makes applications portable to different application server
environments by just making changes to the deployment descriptor, that is,
without accessing or modifying the application's source code. Likewise, J2EE
requires the deployment descriptors for entity beans (ejb-jar.xml) as well as the
IIOP application clients (application-client.xml) to be the primary vehicles for
these JNDI naming references.

A connection factory is an object that produces connection objects that enable a
J2EE component to access a resource. The connection factory for a database is a
javax.sql.DataSource object, which creates a java.sql.Connection object.

In Sun ONE Application Server, you can configure the means of accessing the
following resources and resource factories:

• JDBC connection factories

• JMS Connection factories based on MQ

• JavaMail Session connection factories

• JCA Connector factories

• Generic, custom user-written resource object factories.

• Support for external resource repositories such as LDAP

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 253

All Sun ONE Application Server resource factories are specified within the
<resources> </resources> tags in server.xml and have a JNDI name specified
using the jndi-name attribute. This attribute is used to register the factory in the
server-wide namespace. Deployers can map user-specified, application-specific
resource reference names (declared within resource-ref or resource-env-ref
elements) to these server-wide resource factories using the
resource-ref-mapping element. This enables deployment time decisions to be
made with regards to which JDBC drivers (and other resource factories) to use for a
given application.

A custom resource accesses a local JNDI repository and an external resource
accesses an external JNDI repository. Both types of resources need user-specified
factory class elements, JNDI name attributes, etc. In this section, we will discuss
how to configure JNDI connection factory resources, for J2EE resources, and how
to access these resources.

The following topics are covered in this section:

• To Create a Custom Resource

• To Create an External JNDI Resource

• Accessing External JNDI Repositories

• Mapping Application Resource References

• About URL Connection Factory Resources

• Mapping Application Resource Environment References

• Mapping EJB References

To Create a Custom Resource
The custom-resource element defined in server.xml provides a way of
specifying a custom server-wide resource object factory. Such object factories
implement the javax.naming.spi.ObjectFactory interface. This element
associates a JNDI name (specified through the jndi-name sub-element like other
Sun ONE Application Server resources) to be used in the server-wide namespace,
its type, name of the resource factory class and a set of standard properties used to
instantiate the same.

The following example illustrates the implementation of the
javax.naming.spi.ObjectFactory interface:

<resources> <custom-resource jndi-name="test/myBean"
res-type="test.MyBean"factory-class="test.MyBeanFactory"
enabled="true">

About Java Naming and Directory Interface (JNDI)

254 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

<property name="foo" value="test custom bean prop" />
</custom-resource>
</resources>

You need to ensure that the resource reference’s environment references and EJB
references are linked to the configured server-wide resources defined using the
custom-resource and external-jndi-resource tags in server.xml. Dynamic
redeployment of application components is an issue for the JNDI naming
environment. Sun ONE Application Server will release all the application specific
references and rebind all the new references into the newly installed application's
naming context.

To create a custom resource using the Administration interface:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance whose JNDI configuration you want to modify.

2. Open the JNDI tab and click Custom Resources. If any custom resources have
been created already, they will be listed in the right pane. To create a new
custom resource, click New. You will see the “JNDI Custom Resources Page”
in the right pane of the Administration interface:

Figure 10-2 JNDI Custom Resources Page

3. In the JNDI Name field, enter the name that is to be used to access the resource.
This name will be registered in the JNDI naming service.

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 255

4. In the Resource Type field, enter a fully qualified type definition, as shown in
the example above. Your Resource Type definition should follow this format:
xxx.xxx.

5. In the Factory Class field, enter a factory class name for the custom resource
you are creating. The Factory Class is the user-specified name for the factory
class. This class implements the javax.naming.spi.ObjectFactory interface.

6. In the Description field, enter a description for the resource you’re creating.
This description is a string value and can comprise a maximum of 250
characters.

7. Mark the Custom Resource Enabled checkbox, to enable the custom resource.

8. Click OK to save your custom resource.

To Create an External JNDI Resource
To create an external resource using the Administration interface:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance whose JNDI configuration you want to modify.

2. Open JNDI and select External Resources. If any external resources have been
created already, they will be listed in the right pane. To create a new external
resource, click New.

You will see the following window, shown in the “JNDI External Resources
Page” in the right pane of the Administration interface:

Figure 10-3 JNDI External Resources Page

About Java Naming and Directory Interface (JNDI)

256 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

3. In the JNDI Name field, enter the name that is to be used to access the resource.
This name will be registered in the JNDI naming service.

4. In the Resource Type field, enter a fully qualified type definition, as shown in
the example above. Your Resource Type definition should follow this format:
xxx.xxx.

5. In the JNDI Lookup field, enter the JNDI value to look up in the external
repository. For example, if you are creating an external resource to connect to
an external repository, to test a bean class, your JNDI Lookup could read
cn=testmybean.

6. In the Factory Class field, enter a JNDI factory class external repository, for
example, com.sun.jndi.ldap. This class implements the
javax.naming.spi.ObjectFactory interface.

7. In the Description field, enter a description for the resource you’re creating.
This description is a string value and can comprise a maximum of 250
characters.

8. Mark the External Resource Enabled checkbox, to enable the external resource.

9. Click OK to save your custom resource.

Accessing External JNDI Repositories
Often applications running on Sun ONE Application Server require access to
resources stored in an external JNDI repository. For example, generic Java objects
could be stored in an LDAP server as per the Java schema. External JNDI resource
elements let users configure such external resource repositories. The external JNDI
factory must implement javax.naming.spi.InitialContextFactory interface.

Example:

<resources>
<!-- external-jndi-resource element specifies how to access J2EE resources
-- stored in an external JNDI repository. The following example
-- illustrates how to access a java object stored in LDAP.
-- factory-class element specifies the JNDI InitialContext factory that
-- needs to be used to access the resource factory. property element
-- corresponds to the environment applicable to the external JNDI context
-- and jndi-lookup-name refers to the JNDI name to lookup to fetch the
-- designated (in this case the java) object.
-->
<external-jndi-resource jndi-name="test/myBean"
jndi-lookup-name="cn=myBean"
res-type="test.myBean"
factory-class="com.sun.jndi.ldap.LdapCtxFactory">

About Java Naming and Directory Interface (JNDI)

Chapter 10 Configuring Naming and Resources 257

<property name="PROVIDER-URL" value="ldap://ldapserver:389/o=myObjects" />
<property name="SECURITY_AUTHENTICATION" value="simple" />
<property name="SECURITY_PRINCIPAL", value="cn=joeSmith, o=Engineering" />
<property name="SECURITY_CREDENTIALS" value="changeit" />
</external-jndi-resource>
</resources>

Mapping Application Resource References
Application-specific resource references must be mapped to pre-defined
server-wide resource factories. The Sun ONE Application Server specific resource
reference mapping element is used for this.

In the following example, we look at a web application's deployment descriptor
web.xml where a resource reference is specified to a JDBC DataSource.

<resource-ref>
<res-ref-name> jdbc/EstoreDataSource </res-ref-name>
<res-type> javax.sql.DataSource </res-type>
<res-auth> Container </res-auth>
</resource-ref>

The desired res-ref-name can also be mapped to the container-wide Orcale JDBC
connection resource factory, as follows:

<resource-ref>
<res-ref-name> jdbc/EstoreDataSource </resource-ref-name>
<jndi-name> jdbc/estore/InventoryDB </jndi-name>
</resource-ref>

About URL Connection Factory Resources
URL connection factories do not require any resource to be defined in server.xml.
The jndi-name element of the corresponding Sun ONE Application Server
application (web or ejb) deployment descriptor specifies the target URL.

For example, let us assume that a web application's deployment descriptor
web.xml specifies a java.net.URL resource reference and this is mapped to the
URL http://www.sun.com/index.html in sun-web.xml:

The mapping would be as follows:

<resource-ref>
<res-ref-name>myURL</res-ref-name>
<res-type>java.net.URL</res-type>
<res-auth>Container</res-auth>
</resource-ref>

About Java Naming and Directory Interface (JNDI)

258 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

<sun-web-app>
<resource-ref>
<res-ref-name>myURL</res-ref-name>
<jndi-name> http://www.sun.com/index.html </jndi-name>
</resource-ref>
</sun-web-app>

Mapping Application Resource Environment References
Application-specific resource environment reference declarations must be mapped
to target resource objects available in the application server's runtime environment.
The resource environment mapping element defined in the Sun ONE Application
Server-specific configuration file lets deployers map as follows:

Example:

<resource-env-ref>
<description> My Topic </description>
<res-env-ref-name> jms/MyTopic </res-ref-name>
<res-env-ref-type> javax.jms.Topic </res-type>
</resource-env-ref>

This reference is mapped to the jms/iMQ/Topics/Stocks/SUNW topic defined in
server.xml. See the Sun ONE Application Server Administrator’s Configuration File
Reference for more information.

<resource-env-ref-mapping>
<res-env-ref-name> jms/MyTopic </res-ref-name>
<jndi-name> jms/iMQ/Topics/Stocks/SUNW </jndi-name>
</resource-env-ref-mapping>

Mapping EJB References
It's also possible to decouple the actual ejb-name used in the application code from
the ejb-name used for the target enterprise bean. This is particularly useful when
you do not want to modify the web application deployment descriptor, web.xml
and use the ejb-name of the enterprise bean deployment descriptor. The Sun ONE
Application Server specific configuration allows you to map the ejb-ref-name
element to the target bean's ejb-name without using the ejb-ref-mapping
element in the Sun ONE Application Server specific deployment descriptor.

Example:

About Persistence Manager Resources

Chapter 10 Configuring Naming and Resources 259

<ejb-ref>
<ejb-ref-name> ejb/EmplRecord </ejb-ref-name>
<ejb-ref-type> Entity </ejb-ref-type>
<home> com.wombat.empl.EmployeeRecordHome </home>
<remote> com.wombat.empl.EmployeeRecord </remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name> ejb/EmplRecord </ejb-ref-name>
<jndi-name> AccountEJB </jndi-name>
</ejb-ref-mapping>

About Persistence Manager Resources
This module describes persistence and establishes a framework for the use of the
pluggable Persistence Managers that are supported by Sun ONE Application
Server.

This module covers the following topics:

• What is Persistence?

• The Role of the Persistence Manager

• Pre-Deployment Bean Configuration

• Creating a New Persistence Manager

What is Persistence?
A key aspect of most business applications is the programmatic manipulation of
persistent data; long-lived data stored outside of an application. Although
persistent data is read into transient memory for the purpose of using or modifying
it, it is written out to a relational database or flat file system for long-term storage.

In object-oriented programming systems, persistent data is represented in memory
as one or more data objects manipulated by application code. In general, the
correspondence between persistent data in a data store and its representation as a
persistent data object in memory is achieved through a number of software layers
as shown in the following figure, “Basic Persistence Scheme”:

About Persistence Manager Resources

260 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 10-4 Basic Persistence Scheme

Each data store has an interface to the outside world through driver software used
to set up and maintain a connection between the data store and an application.
With this connection established, a query language is used to retrieve information
from the data store and read it into an application, or conversely, to write data from
the application into the data store. Another layer provides a mapping between data
objects in memory and the information in the data store.

Through this general scheme, programmers can represent persistent data as
runtime objects to be used and manipulated by an application. The scheme
supports all basic persistence operations—often abbreviated as CRUD:

• C - Creating persistent data (inserting in a data store)

• R - Retrieving persistent data (selecting from a data store)

• U - Updating persistent data

• D - Deleting persistent data

The Role of the Persistence Manager
The Persistence Manager (PM) is responsible for the persistence of entity beans
with Container-managed Persistence, in the EJB container. The entity bean
provider is responsible for providing the entity bean class as an abstract class. The
Persistence Manager provider’s tools are responsible for providing the concrete
implementations. They can achieve this by sub-classing the abstract entity bean
and related classes and providing an concrete implementation or by utilizing
encapsulation and delegation.

About Persistence Manager Resources

Chapter 10 Configuring Naming and Resources 261

The classes provided by the persistence manager’s tools are responsible for
managing the relationships between the entity beans and for managing the access
to their persistent state. The PM tools are also responsible for providing the
implementations of the java.util.Collection classes that are used in the
maintaining the container managed relationships (CMRs).

Pre-Deployment Bean Configuration
The Enterprise Java Beans standard provides two types of persistence for Entity
Beans. These are the Container Managed Persistence (CMP) and Bean Managed
Persistence (BMP) The EJB 2.0 specification does not define a standard API
between a EJB server and the persistence manager.

This section describes the integration requirements at deployment and
code-generation. Deployment can be used to mean multiple things. Generally
speaking, the deployment process can be thought of three distinct steps:
Configuration, Code-generation and installation.

A number of properties must be specified for a bean, including the persistence
mechanism used, persistence vendor, and the version in use, and additional
information required by the persistence mechanism. Most of the persistence
vendors have a concept of a project, which represents all the related beans and
their dependant classes, which can be deployed as a single unit. There can be a
vendor specific xml file per project.

The three standard files supported for deployment purposes include ejb-jar.xml,
sun-ejb-jar.xml and sun-cmp-mappings.xml. Each EJB module with CMP beans
in the sun-ejb-jar.xml must have a <pm-descriptors> with at least one
<pm-descriptor> element, which specifies five more attributes. These five
attributes are pm-identifier, pm-version, pm-config, pm-class-generator,
and pm-mapping-factory.

The Sun ONE Application Server-specific descriptor (as in sunEjb_jar_2_0.DTD)
defines the persistence manager related tags. A sample CMP descriptor might look
like the one below as defined in the Sun ONE Application Server DTD:

PM descriptors contain one or more pm descriptors, but only of them
must be in use at any given time

-->

<!ELEMENT pm-descriptors (pm-descriptor+, pm-inuse)>

<!--

pm-descriptor describes the properties for the persistence manager

About Persistence Manager Resources

262 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

associated with entity bean

-->

<!ELEMENT pm-descriptor (pm-identifier, pm-version, pm-config?,
pm-class-generator?,

pm-mapping-factory?)>

<!--

This element describes the vendor who provided the PM implementation, for
example this could be Sun ONE Application Server Transparent Persistence,
TopLink, Versant or CocoBase:

-->

<!ELEMENT pm-identifier (#PCDATA)>

<!--

pm-version further specifies which version of PM vendor product to
be used

-->

<!ELEMENT pm-version (#PCDATA)>

<!--

pm-config specifies the vendor specific config file to be used

-->

<!ELEMENT pm-config (#PCDATA)>

<!--

pm-class-generator specifies the vendor specific concrete class
generator

This is the name of the class specific to a vendor:

-->

<!ELEMENT pm-class-generator (#PCDATA)>

<!--

pm-mapping-factory specifies the vendor specific mapping factory

This is the name of the class specific to a vendor:

-->

<!ELEMENT pm-mapping-factory (#PCDATA)>

About Persistence Manager Resources

Chapter 10 Configuring Naming and Resources 263

Creating a New Persistence Manager
Using the Administration interface, you can create a new Persistence Manager
instance. To create a new persistence manager instance:

1. From the left pane of the Administration interface, open the Sun ONE
Application Server instance for which you want to create a new Persistence
Manager. Click Persistence Manager from the list of server components
displayed.

If any persistence managers have been created for that specific instance of Sun
ONE Application Server, you will see the list displayed in the right pane of the
Administration interface.

2. To create a new Persistence Manager, click New. You will see the following
window shown in the figure “Creating a New Persistence Manager”:

Figure 10-5 Creating a New Persistence Manager

About JDBC Resources

264 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

3. This is the JNDI Name used by the application server run-time to locate a
particular Persistence Manager on behalf of an application. The name must the
same as that defined in the entity bean's cmp-resource element of the sun
specific deployment descriptor.

4. In the Description field, provide a description for the new persistence manager.
The value for this field is string, and can comprise up to 250 characters.

5. In the Factory Class field, provide a factory class connection for the persistence
manager. The setEntityContext looks up this connection factory through the
JNDI name lookup. The factory class name is the classname of the Persistence
Manager Factory that creates Persistence Manager instances. By default this
will be set to the Sun ONE Application Server’s internal Persistence Manager
Factory class; if you use an alternative implementation you must ensure that
this class is available in the server classpath.

6. From the Connection Pool drop-down list, select a database connection pool,
into which the new persistence manager will be pooled. With connection
pooling, an entity bean can request a single connection and use it to execute
concurrent statements for multiple client threads. Just like any other database
access, the Persistence Manager will use connection pooling to improve
performance and scalability. Choose an existing connection pool or “None
Selected” if you haven't yet created the pool.

Note: a JDBC Resource will be automatically created to allow the PM runtime
to bind to the connection pool using JNDI - the JNDI name of the JDBC
Resource will be the same as the PM JNDI Name with a prefix of “PM.”
Deleting a Persistence Manager will also delete the associated JDBC Resource.

7. To enable the persistence manager, mark the Persistence Manager Enabled
checkbox. The persistence manager is now enabled for the connection factory
specified.

8. Click OK to save your changes.

About JDBC Resources
This module talks about the JDBC API in general, and JDBC resources and their
implementation and usage in Sun ONE Application Server, in specific.

This module consists of the following sections:

• About the JDBC API

• About Database Access Models

About JDBC Resources

Chapter 10 Configuring Naming and Resources 265

• About JDBC Datasources

• About JDBC Connections

• About JDBC Transactions

About the JDBC API
The JDBC API is a Java API for accessing virtually any kind of tabular data. (As a
point of interest, JDBC is the trademarked name and is not an acronym;
nevertheless, JDBC is often thought of as standing for “Java Database
Connectivity.”) The JDBC API consists of a set of classes and interfaces written in
the Java programming language that provide a standard API for tool/database
developers and makes it possible to write database applications using an all-Java
API.

The JDBC API makes it easy to send SQL statements to relational database systems
and supports all dialects of SQL. But the JDBC 3.0 API goes beyond SQL, also
making it possible to interact with other kinds of data sources, such as files that are
outside of a database.

The value of the JDBC API is that an application can access virtually any data
source and run on any platform with a Java virtual machine. In other words, with
the JDBC API, it isn't necessary to write one program to access a Sybase database,
another program to access an Oracle database, another program to access an IBM
DB2 database, and so on. You can write a single program using the JDBC API, and
the program will be able to send SQL or other statements to the appropriate data
source. And, with an application written in the Java programming language, you
do not have to worry about writing different applications to run on different
platforms. The combination of the Java platform and the JDBC API lets a
programmer write once, and run the code from anywhere.

What Does The JDBC API Do?
A JDBC technology-based driver (JDBC driver) makes it possible to do three
things:

• Establish a connection with a data source

• Send queries and update statements to the data source

• Process the results

The following code fragment gives a simple example of these three steps:

Context ctx = new InitialContext();

About JDBC Resources

266 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

DataSource ds = (DataSource)ctx.lookup("jdbc/AcmeDB");

Connection con = ds.getConnection("myLogin", "myPassword");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

while (rs.next()) {

int x = rs.getInt("a");

String s = rs.getString("b");

float f = rs.getFloat("c");

}

About Database Access Models
The JDBC API supports both two-tier and three-tier models for database access.
Sun ONE Application Server incorporates the more popular, two-tier database
access model.

This section covers the following topics:

• Two-Tier Database Access Model

• Three-Tier Database Access Model

Two-Tier Database Access Model
In the two-tier database access model a Java applet or application talks directly to
the data source using a DBMS-proprietary protocol. This access model requires a
JDBC driver that can communicate with the particular data source being accessed.
A user's commands are delivered to the database or other data source, and the
results of those statements are sent back to the user. The data source may be
located on another machine to which the user is connected via a network. This
configuration is referred to as a client/server configuration, with the user's
machine as the client, and the machine housing the data source as the server. The
network can be an intranet, which, for example, connects employees within a
corporation, or it can be the Internet.

Three-Tier Database Access Model
In the three-tier database access model, the Java applet or application sends
commands to a “middle tier” of services, which then sends the commands to the
data source. The client application communicates with the middle tier via HTTP,
RM, CORBA, or other calls. The middle tier communicates with the data store
through a DBMS-proprietary protocol. The data source processes the commands

About JDBC Resources

Chapter 10 Configuring Naming and Resources 267

and sends the results back to the middle tier, which then sends them to the user.
MIS directors find the three-tier model very attractive because the middle tier
makes it possible to maintain control over access and the kinds of updates that can
be made to corporate data. Another advantage is that it simplifies the deployment
of applications. Finally, in many cases, the three-tier architecture can provide
performance advantages.

About JDBC Datasources
A DataSource object is the representation of a data source in the Java
programming language. In basic terms, a data source is a facility for storing data. It
can be as sophisticated as a complex database for a large corporation or as simple
as a file with rows and columns. A data source can reside on a remote server, or it
can be on a local desktop machine. Applications access a data source using a
connection, and a DataSource object can be thought of as a factory for connections
to the particular data source that the DataSource instance represents. The
DataSource interface provides two methods for establishing a connection with a
data source.

A DataSource object has properties that identify and describe the data source it
represents. Also, a DataSource object works with a JNDI naming service and is
created, deployed, and managed separately from the applications that use it. A
driver vendor will provide a class that is a basic implementation of the DataSource
interface as part of its JDBC 2.0 or 3.0 driver product.

This section covers the following topics:

• Properties Of a DataSource Object

• Registering a JDBC Resource

Properties Of a DataSource Object
A DataSource object has a set of properties that identify and describe the real
world data source that it represents. These properties include information like the
location of the database server, the name of the database, the network protocol to
use to communicate with the server, and so on. DataSource properties follow the
JavaBeans design pattern and are usually set when a DataSource object is
deployed.

To encourage uniformity among DataSource implementations from different
vendors, the JDBC 2.0 API specifies a standard set of properties and a standard
name for each property.

About JDBC Resources

268 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

An instance of a class that implements the DataSource interface represents one
particular data source. Every connection produced by that instance will reference
the same data source. In a basic DataSource implementation, a call to the method
DataSource.getConnection returns a connection object that, like the connection
object returned by the DriverManager facility, is a physical connection to the data
source.

JNDI provides a uniform way for an application to find and access remote services
over the network. The remote service may be any enterprise service, including a
messaging service or an application-specific service, but, of course, a JDBC
application is interested mainly in a database service. Once a DataSource object is
created and registered with a JNDI naming service, an application can use the JNDI
API to access that DataSource object, which can then be used to connect to the data
source it represents.

DataSource objects that implement connection pooling likewise produce a
connection to the particular data source that the DataSource class represents. The
connection object that the method DataSource.getConnection returns, however,
is a handle to a PooledConnection object rather than being a physical connection.
An application uses the connection object just as it usually does and is generally
unaware that it is in any way different. Connection pooling has no effect whatever
on application code except that a pooled connection, as is true with all connections,
should always be explicitly closed. When an application closes a connection that is
pooled, the connection joins a pool of reusable connections. The next time
DataSource.getConnection is called, a handle to one of these pooled connections
will be returned if one is available. Because connection pooling avoids creating a
new physical connection every time one is requested, it can help to make
applications run significantly faster.

A DataSource class can likewise be implemented to work with a distributed
transaction environment. An EJB server, for example, supports distributed
transactions and requires a DataSource class that is implemented to interact with
it. In this case, the DataSource.getConnection method returns a Connection
object that can be used in a distributed transaction. As a rule, EJB servers provide
support for connection pooling as well as distributed transactions. Like connection
pooling, transaction management is handled internally, so using distributed
transactions is easy. The only requirement is that when a transaction is distributed
(this involves two or more data sources), the application cannot call the transaction
methods as either commit or rollback. It also cannot put the connection in
auto-commit mode. The reason for these restrictions is that a transaction manager
begins and ends a distributed transaction under the covers, so an application
cannot do anything that would affect the time that a transaction begins or ends. To
know more about Java transactions, please see Chapter 9, “Using Transaction
Services.”

About JDBC Resources

Chapter 10 Configuring Naming and Resources 269

Registering a JDBC Resource
You can register a JDBC resource with Sun ONE Application Server using either
the Administration interface or the command-line interface.

This section covers the following topics:

• Registering a Resource Using the Command Line

• Registering a Resource Using the Administration Interface

Registering a Resource Using the Command Line
To register a JDBC resource using the command line interface, run the following
command:

./asadmin create-jdbc-resource

The XML snippet, for registering a JDBC resource, would have to specify a few
attributes, as below (excerpted from sun-server_7_0.dtd).

<!-- JDBC javax.sql.DataSource resource definition -->

<!ELEMENT jdbc-resource (description?, property*)>

<!ATTLIST jdbc-resource jndi-name CDATA #REQUIRED

pool-name CDATA #REQUIRED

enabled %boolean; 'true'>

Note that all this specifies, is the symbolic name with which applications will refer
to this data source, from inside J2EE applications. pool-name attribute points to a
named pool definition, that specifies all aspects of database connectivity. The
enabled attribute can be used by the administrator to turn off some resources.

Registering a Resource Using the Administration Interface
To register a datasource using the Administration interface:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance for which you want to register a JDBC resource.

2. Open JDBC.

3. Under JDBC, click JDBC Resource.

4. In the right pane, click New. The page for creating a new JDBC resource,
shown in the figure “Creating a New JDBC Resource” appears in the right
pane.

About JDBC Resources

270 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 10-6 Creating a New JDBC Resource

5. Provide the JNDI name for the resource that you are creating.

JDBC Resources are stored in the JNDI repository and are accessed using the
JNDI name. The JNDI name has an explicit root at Java:comp:env/ so you do
not need to specify that part of the name. It is recommended that JDBC
Resources (DataSources) are stored under the 'jdbc' sub-context so your JNDI
name would be similar to jdbc/EmployeeDB_DS.

6. Select a pool name for the new datasource, from the list of pool names in the
Pool Name drop-down list. All registered connection pools will appear in this
drop-down list. The pool name that you select points to a named pool
definition, that specifies all aspects of database connectivity. More than one
JDBC resource can use a single pool definition. To know more about how to
configure JDBC connection pools, see “Creating a New JDBC Connection Pool
Using the Administration Interface” on page 274.

7. In the Description field, provide a brief description that describes the purpose
of the data source. Your description must not exceed 250 characters.

8. Mark the Enabled checkbox to enable or disable a datasource. A datasource
cannot be used to connect to a database unless it is enabled.

9. Click OK to register the new datasource, or click Cancel to cancel the new
datasource. When you click cancel, you are returned to the main JDBC
resources page, from where you can create a new datasource again.

About JDBC Resources

Chapter 10 Configuring Naming and Resources 271

About JDBC Connections
A Connection object represents a connection with a database. A connection session
includes the SQL statements that are executed and the results that are returned
over that connection. A single application can have one or more connections with a
single database, or it can have connections with many different databases.

A user can get information about a Connection object's database by invoking the
Connection.getMetaData method. This method returns a DatabaseMetaData

object that contains information about the database's tables, the SQL grammar it
supports, its stored procedures, the capabilities of this connection, and so on.

An application uses a Connection object produced by a DataSource object. As is
always the case, an application should include a “finally” block to assure that
connections are closed even if an exception is thrown. This is even more important
if the Connection object is a pooled connection because it makes sure that a valid
connection will always be put back into the pool of available connections. The
following code fragment, in which con is Connection object, is an example of a
finally block that closes a connection if it is valid.

finally{

 if (con != null) con.close();

}

Note that a finally block appears after a try/catch block, as shown in the
following example, where ds is a DataSource object.

try {

 Connection con = ds.getConnection("user", "secret");

 // . . . code to do the application's work

} catch {

 // . . . code to handle an SQLException

} finally {

 if (con != null) con.close();

}

This section covers the following topics:

• About JDBC URLs

• Configuring JDBC Connection Pools

• About Connection Pooling

About JDBC Resources

272 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Monitoring JDBC Connection Pooling

• About Connection Sharing

About JDBC URLs
A URL (Uniform Resource Locator) gives information for locating a resource on the
Internet. It can be thought of as an address.

A JDBC URL provides a way of identifying a data source so that the appropriate
driver will recognize it and establish a connection with it. Driver writers are the
ones who actually determine what the JDBC URL that identifies a particular driver
will be. Users do not need to worry about how to form a JDBC URL; they simply
use the URL supplied with the drivers they are using. JDBC's role is to recommend
some conventions for driver writers to follow in structuring their JDBC URLs.

Since JDBC URLs are used with various kinds of drivers, the conventions are, of
necessity, very flexible. First, they allow different drivers to use different schemes
for naming databases. The ODBC sub-protocol, for example, lets the URL contain
attribute values (but does not require them).

Second, JDBC URLs allow driver writers to encode all necessary connection
information within them. This makes it possible, for example, for an applet that
wants to talk to a given database to open the database connection without
requiring the user to do any system administration chores.

Third, JDBC URLs allow a level of indirection. This means that the JDBC URL may
refer to a logical host or database name that is dynamically translated to the actual
name by a network naming system. This allows system administrators to avoid
specifying particular hosts as part of the JDBC name. There are a number of
different network name services, and there is no restriction about which ones can
be used.

The standard syntax for JDBC URLs is shown here. It has three parts, which are
separated by colons.

jdbc:<subprotocol>:<subname>

The three parts of a JDBC URL are broken down as follows:

• jdbc-the protocol:

The protocol in a JDBC URL is always jdbc.

• <subprotocol>

About JDBC Resources

Chapter 10 Configuring Naming and Resources 273

The name of the driver or the name of a database connectivity mechanism,
which may be supported by one or more drivers. A prominent example of a
sub-protocol name is ODBC, which has been reserved for URLs that specify
ODBC-style data source names. For example, to access a database through a
JDBC-ODBC bridge, one might use a URL such as jdbc:odbc:fred.

In this example, the subprotocol is ODBC, and the subname fred is a local
ODBC data source.

If one wants to use a network name service (so that the database name in the
JDBC URL does not have to be its actual name), the naming service can be the
subprotocol. So, for example, one might have a URL such as:

jdbc:dcenaming:accounts-payable

In this example, the URL specifies that the local DCE naming service should
resolve the database name accounts-payable into a more specific name that can
be used to connect to the real database.

• <subname>:

A way to identify the data source. The subname can vary, depending on the
subprotocol, and it can have any internal syntax the driver writer chooses,
including a sub-subname. The point of a subname is to give enough
information to locate the data source. In the previous example, fred is enough
because ODBC provides the remainder of the information. A data source on a
remote server requires more information, however. If the data source is to be
accessed over the Internet, for example, the network address should be
included in the JDBC URL as part of the subname and should adhere to the
following standard URL naming convention:

//hostname:port/subsubname

Supposing that dbnet is a protocol for connecting to a host on the Internet, a
JDBC URL might look like this:

jdbc:dbnet://wombat:356/fred

Configuring JDBC Connection Pools
Sun ONE Application Server allows users to create named JDBC connection pools.
A JDBC connection pool defines the properties used to create a connection pool. A
pool definition is named, and a definition can be reused to configure multiple
JDBC resources. Each named pool definition results in an instantiation of a physical
pool at server start-up. If two or more JDBC resources point to the same pool
definition, they will be using the same pool of connections at run time.

About JDBC Resources

274 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

You can create and configure JDBC connection pools using the Administration
interface and the Command Line Interface, as detailed in the following sections:

• Creating a New JDBC Connection Pool Using the Administration Interface

• Creating a New JDBC Connection Pool Using the Command-Line Interface

• Using the Command Line Interface to Manage JDBC Connection Pools

Creating a New JDBC Connection Pool Using the Administration Interface
To create a new JDBC connection pool using the Administration interface, perform
the following tasks:

1. In the left pane of the Administration interface, open the Sun ONE Application
Server instance for which you want to create a JDBC connection pool.

2. Select JDBC from the list of J2EE services listed under your Sun ONE
Application Server, and open the ConnectionPools tab under it. You will see
the figure “Creating a New JDBC Connection Pool” in the right pane of the
Administration interface.

Figure 10-7 Creating a New JDBC Connection Pool

3. In the Name field, provide a JNDI name of the connection pool that you are
creating.

4. Mark the Global Transaction Support Enabled checkbox to enable global
Transaction support for the new connection pool. Connection pools that are
capable of participating in global transactions, and are referred to as
XA-capable connection pools.

About JDBC Resources

Chapter 10 Configuring Naming and Resources 275

5. Select a database vendor, from the Database Vendor drop-down list, and click
Next. You need to configure connection pool settings in the screen that is
displayed next.

Configuring Connection Pool Settings
To configure pool settings, perform Step 1to Step 5 as given in “Creating a New
JDBC Connection Pool Using the Administration Interface” on page 274. When you
click Next, as described in Step 5, a new page appears in the right pane of the
Administration interface. It contains the following sections:

• General

• Properties

• Pool Settings

• Connection Validation

• Transaction Isolation

In the General section of this page, specify the values for the parameters provided,
based on the guidelines given in the following table:

In the Properties section of this page you specify standard and proprietary JDBC
connection pool properties; many of these properties are optional. By default the
names of all of the standard properties are provided. You will need to consult your
database vendor's documentation to determine which standard and vendor
specific properties are required.

In the Pool Settings section of this window, specify the values for the parameters
provided, based on the guidelines given in the following table:

Table 10-2 General Settings

Parameter Description

Name The name of the connection pool.

DataSource ClassName The vendor-specific classname that implements the
DataSource and / or XADataSource APIs.

Description The description of the connection pool.

About JDBC Resources

276 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

In the Connection Validation and Transaction Isolation sections of this window,
select the validation method and transaction isolation methods for the connection
pool, based on the guidelines given in the following table:

Table 10-3 Connection Pool Settings

Parameter Description

Steady Pool Size Specify the minimum number of connections that must be
maintained in the pool. When a connection is given to a
requesting thread, it is removed from the pool, reducing the
current pool size. The steady pool size also refers to the number of
entries that will be added to the pool on server startup.

Max Pool Size Specify the maximum number of connections that can be allowed
in the pool at any given point in time.

Pool Resize Quantity When the pool shrinks toward the steady pool size it is resized in
batches. This value determines the size of the batch. Making this
value too large will delay connection recycling, making it too
small will be less efficient. Note, the pool capacity is only ever
increased one connection at a time so this field does not effect
increases in pool capacity.

Idle Timeout (secs) The maximum time in seconds that a connection can remain idle
in the pool. After this time, the pool implementation can close this
connection.

Max Wait tim The amount of time the caller will wait before getting a
connection timeout. The default wait time is long, which means
that a caller can wait for a long time.

Table 10-4 Connection Validation and Transaction Isolation

Parameter Description

Connection Validation
Required

If this field is checked then connections will be validated
before they are passed to the application. This allows the
application server to automatically re-establish database
connections in the case of the database becoming unavailable
due to network failure or database server crash. Validation of
connections will incur additional overhead and slightly
reduce performance.

About JDBC Resources

Chapter 10 Configuring Naming and Resources 277

Creating a New JDBC Connection Pool Using the Command-Line Interface
This section describes, through the use of examples, how to create JDBC connection
pools using the Command Line Interface.

Validation Method There are three methods that the application server can
employ to validate database connections; you need to
understand the capabilities of your database to determine the
appropriate one. The three validation methods are:

• auto-commit, meta-data - the con.getAutoCommit()
and con.getMetaData() methods are commonly used to
validate a connection, unfortunately many JDBC drivers
cache the results of these calls so they do not always
provide a reliable validation. You should check with your
vendor to determine whether these calls are cached or not.

• table: this method requires the app server to perform a
query on a user specified table. The actual query is "select
(count *) from <table-name>". The table must exist and be
accessible, though it doesn't require any rows. You should
not use an existing table that has a large number of rows
or a table that is already frequently accessed.

Table Name If you select the last validation option, table, from the
Validation Method drop-down list, specify the table name
here.

Fail All Connections Check this box to fail all connections in the pool and
re-establish them if a single connection is determined to have
failed. If left unchecked, connections will be individually
re-established only when they are used.

Transaction Isolation Allows you to select the transaction isolation level for this
connection. If left unspecified the pool operates with default
isolation level provided by the JDBC Driver.

Guarantee Isolation
Level

Only applicable if the isolation level has been specified. This
ensures that any connection taken from the pool will have the
same isolation level. For example if the isolation level for the
connection was changed programatically (for example,
con.setTransactionIsolation) when last used this
mechanism will change it back to the specified isolation level.

Table 10-4 Connection Validation and Transaction Isolation

Parameter Description

About JDBC Resources

278 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The following table lists all the options that you need to create connection pools,
such as server name, password. Sample values have been used in the following
table. It is recommended that you keep the parameters specific to your installation
of Sun ONE Application Server ready, before running the commands explained in
this section.

The following example makes use of the variables listed in the “Options required
for creating JDBC Connection Pools using the Command Line Interface” table.

Example 1:

This example creates a JDBC connection pool called SampleJdbcConnectionPool.

A two-step process is used, in this example, to create the JDBC connection pool, as
follows:

• Step 1 - Create a Connection Pool

Table 10-5 Options required for creating JDBC Connection Pools using the Command
Line Interface

Description of the required option Sample Value

Application server admin user name admin

Application server admin password adminadmin

Application server admin port 8888

Application server machine name sas.sun.com

Application server instance name server1

Datasource classname for the connection
pool

oracle.jdbc.xa.client.OracleXADataSource

Note: Use the datasource classname of the
database for which you are creating the
connection pool. The database used in this
example is Oracle.

Jdbc resource description Sample Jdbc Resource

Connection pool description Sample Jdbc Connection Pool

Jdbc resource name jdbc/SampleJdbcResource

Connection pool name SampleJdbcConnectionPool

Database user name oracle

Database password oracle

Jdbc connection URL jdbc:oracle:thin:@oracleserver.sun.com:1521:OR
A

About JDBC Resources

Chapter 10 Configuring Naming and Resources 279

• Step 2 - Apply Changes To the Instance

Step 1 - Create a Connection Pool

The following is the command line interface syntax for creating a JDBC connection
pool:

asadmin create-jdbc-connection-pool --user admin_user [--password
admin_password] [--host localhost] [--port 4848] [--secure | -s]
[--instance instancename] --datasourceclassname classname [--restype
res_type] [--steadypoolsize 8] [--maxpoolsize 32] [--maxwait 60000]
[--poolresize 2] [--idletimeout 300] [--isolationlevel isolation_level]
[--isisolationguaranteed] [--isconnectvalidatereq=false]
[--validationmethod auto-commit] [--validationtable tablename]
[--failconnection=false] [--description text] [--property
(name=value)[:name=value]*] connectionpool_id

For example, the following command will create a connection pool called
SampleJdbcConnectionPool.

asadmin create-jdbc-connection-pool --user admin --password
adminadmin --host sas.sun.com --port 8888 --instance server1
--restype javax.sql.XADataSource --datasourceclassname
oracle.jdbc.xa.client.OracleXADataSource --description "Sample Jdbc
Connection Pool" --property
User="oracle":Password="oracle":URL="jdbc\:oracle\:thin\:@oracleser
ver.sun.com\:1521\:ORA" SampleJdbcConnectionPool

Once the JDBC connection pool is created successfully, you see the following
message:.

Created the JDBC connection pool resource with id =
SampleJdbcConnectionPool

Step 2 - Apply Changes To the Instance

Now that you have successfully created a JDBC connection pool, you need to apply
the changes to the current instance of Sun ONE Application Server.

The following is the syntax for applying the changes to your instance of Sun ONE
Application Server.

NOTE If you want to enable “Global Transaction Support” for the new
connection pool, set --restype javax.sql.XADataSource. In the
URL property, replace the colon (:) with (\:)

About JDBC Resources

280 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin reconfig --user admin_user [--password admin_password] [--host
localhost] [--port adminport] [--secure | -s]
[--discardmanualchanges=false|--keepmanualchanges=false] instancename

For example, the following command applies the changes to server1, the instance of
Sun ONE Application Server.

asadmin reconfig --user admin --password adminadmin --host sas.sun.com
--port 8888 server1

Once the changes are applied to your instance of Sun ONE Application Server, you
will see the following message.

Successfully reconfigured

Using the Command Line Interface to Manage JDBC Connection Pools
You can use the command line interface to manage JDBC connection pools and
their properties, as discussed in this section:

Listing Connection Pools. The following command lists all the connection pools
created for server1, the instance of Sun ONE Application Server used in Step 2.

asadmin list-jdbc-connection-pools --user admin --password adminadmin
--host sas.sun.com --port 8888 server1

Changing a JDBC Connection Pool Property. You can change a JDBC connection
pool’s property, for example, the maxPoolSize property, as follows:

1. Run the following command to get the value specified for the JDBC connection
pool attribute maxPoolSize.

asadmin get -u admin -w adminadmin -H sas.sun.com -p 8888
server1.jdbc-connection-pool.SampleJdbcConnectionPool.maxPoolSize

When you run this command, you will see the following result:

server1.jdbc-connection-pool.SampleJdbcConnectionPool.maxPoolSiz

e = 32

Change the value of MaxPoolSize to 80, by running the following command:

asadmin set -u admin -w adminadmin -H sas.sun.com -p 8888
server1.jdbc-connection-pool.SampleJdbcConnectionPool.maxPoolSize="80"

Once the values are specified as indicated, you will see the following message:

Attribute maxPoolSize set to 80

About JDBC Resources

Chapter 10 Configuring Naming and Resources 281

2. Apply the changes to your instance of Sun ONE Application Server using the
following command:

asadmin reconfig --user admin --password adminadmin --host
sas.sun.com --port 8888 server1

Changing the User Property. In the following piece of sample code, you can
change the property “User” from oracle to System.

asadmin create-jdbc-connection-pool --user admin --password adminadmin
--host sas.sun.com --port 8888 --instance server1 --restype
javax.sql.XADataSource --datasourceclassname oracle.jdbc.xa.client.OracleXADataSource
--description "Sample Jdbc Connection Pool" --property
User="oracle":Password="oracle":URL="jdbc\:oracle\:thin\:@oracleserver.sun.com\:1521\
:ORA" SampleJdbcConnectionPool

1. Run the following command to change the User property.

asadmin set -u admin -w adminadmin -H sas.sun.com -p 8888
server1.jdbc-connection-pool.SampleJdbcConnectionPool.property.User="System"

The name of the user is changed from Oracle to System.

2. After you change the user name, run the following command to apply your
changes:

asadmin reconfig --user admin --password adminadmin --host
sas.sun.com --port 8888 server1

Creating a JDBC resource called SampleJdbcResource. You can create a JDBC
resource, as detailed below. The following is the syntax for creating a JDBC
resource:

asadmin create-jdbc-resource --user admin_user [--password
admin_password] [--host localhost] [--port 4848] [--secure | -s]
[--instance instancename] --connectionpoolid id [--enabled=true]
[--description text] [--property (name=value)[:name=value]*] jndiname

About JDBC Resources

282 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

1. Run the following command to create a JDBC resource called
SampleJdbcResource.

asadmin create-jdbc-resource --user admin --password adminadmin
--host sas.sun.com --port 8888 --instance server1 --description
"Sample Jdbc Resource" --connectionpoolid SampleJdbcConnectionPool
jdbc/SampleJdbcResource

When you run this command, the JDBC resource is created, and you will see
the following message:.

Created the external JDBC resource with jndiname =

jdbc/SampleJdbcResource

2. Next, you need to run the following command to apply the changes to your
instance of Sun ONE Application Server.

asadmin reconfig --user admin --password adminadmin --host
sas.sun.com --port 8888 server1

3. Run the following command to list all the JDBC resources in the instance
server1.

asadmin list-jdbc-resources --user admin --password adminadmin
--host sas.sun.com --port 8888 server1

About Connection Pooling
Applications can obtain connections by first looking up the DataSource using
JNDI. A sample code fragment to accomplish this, is shown below:

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)
ctx.lookup("java:comp/env/jdbc/employee_ds");

After obtaining the DataSource, the application component can obtain connections
in two ways depending on the value set on the <res-auth> element in the J2EE
deployment descriptor. If the value of this element is Container, then the
application can obtain a connection using ds.getConnection() method (that is,
without specifying any sign-on information). Otherwise, the application has to give
the sign-on information to obtain the connection from the resource manager like
ds.getConnecion.(userName, password).

All requests to getConnection() will be served from a pool. The JDBC Connection
pool will be created based on a set of parameters described in server.xml. When the
pool is created, the pool contains the number of connections that are available
initially. So the ds.getConnection() request can be satisfied with the connections
currently available in the pool. The next request (if none of the previous

About JDBC Resources

Chapter 10 Configuring Naming and Resources 283

connections have been returned to the pool) will find the pool empty and will
result in the creation of incremented connections, subject to the limit of the
maximum connections specified for the pool. The pool implementation will keep
track of the number of connections that are created. If a getConnection() request
finds the pool empty, or if the number of created connections is equal to the
maximum connections in the pool, then the current request is blocked. This
happens only if connection sharing is not possible, and continues until a
connection is returned to the pool.

The connection pool will continue to work properly even if the database crashes
and comes up, while the server is still running. This can be accomplished only if
you enable connection validation, as described in “Configuring Connection Pool
Settings” on page 275.

Depending on the value that you select from the Validation Type drop-down list,
the following parameters are executed by the pool implementation program:

• If you choose auto-commit as your connection validation type, the system
checks to see if the connection is valid by performing a
conn.getAutoCommit() method. If the method does not throw an
SQLException then the Connection is assumed to be valid. auto-commit is the
default option for this parameter.

• If you chose meta-data as your connection validation type, then the
conn.getMetaData() method will be performed, to check for metadata on the
connection. and if the method didn't throw SQLException then the Connection
is assumed to be valid.

• If you choose table as your connection validation type, then the query
"Select * From <table-name>" will be executed. If this call doesn’t throw an
SQLException then the connection is assumed to be valid.

If you enable the fail-all-connections property, then if any connection in the pool is
found to be invalid, all connections will be closed and re-established. Otherwise,
invalidation and re-establishment is lazy and happens on use of individual
connections.

The pool implementation also provides the ability to recycle all available
connections in the pool. So if connections are idle beyond the idle period specified,
they will be closed, bringing the pool size to the steady pool size. If the pool is
extremely idle, it may result in the container having to re-establish stale connection
and always keep the pool populated with a steady pool of usable connections. You
must keep this in mind while determining whether to set the steady pool size
relative to the maximum pool size.

About JDBC Resources

284 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Monitoring JDBC Connection Pooling
You may want to monitor the pool operation periodically, to determine if the pool
size configuration is working effectively. The following table lists all the JDBC
connection pooling parameters that can be monitored.

Note that the mechanics of enabling monitoring, and the attributes that can be
monitored are likely to be improved in forthcoming releases.

About Connection Sharing
When multiple connections acquired by a J2EE application use the same resource
manager, the pool implementation will provide connection sharing within the
same transaction scope. The term transaction scope, can be understood from the
following example:

Bean_A starts a transaction (Tx1) and obtains a connection. Bean_A then calls a
method in Bean_B in the same transaction (Tx1). Now if Bean_B acquires a
connection from the same DataSource and with the same sign-on information, it is
clear that the same connection can be shared as only Bean_A will complete the
transaction. Also, note that connections will be shared only if the resource sharing
scope is set to Shareable in the J2ee deployment descriptor. If connection sharing
is not desired, then the resource sharing scope must be set to Unshareable, in the
deployment descriptor. Sun ONE Application Server provides connection sharing,
as it provides better performance.

About JDBC Transactions
A transaction consists of one or more statements that have been executed,
completed, and then either committed or rolled back. When the method commit or
rollback is called, the current transaction ends and another one begins.

Table 10-6 JDBC Connection Pool Parameters for Monitoring

Attribute Name Data Type Description

total-threads-waiting Integer Total threads waiting for
JDBC connection.

total-outbound-connections Integer Total JDBC connection
validation failures

total-connections-timed-out Integer Total connection requests
timed out.

About JDBC Resources

Chapter 10 Configuring Naming and Resources 285

Generally a new Connection object is in auto-commit mode by default, meaning
that when a statement is completed, the method commit will be called on that
statement automatically. In this case, since each statement is committed
individually, a transaction consists of only one statement. If the auto-commit mode
has been disabled, a transaction will not terminate until the method commit or
rollback is called explicitly, so it will include all the statements that have been
executed since the last invocation of either commit or rollback. In this second case,
all the statements in the transaction are committed or rolled back as a group.

The method commit makes permanent any changes an SQL statement makes to a
database, and it also releases any locks held by the transaction. The method
rollback will discard those changes.

In the case of two updates in one transaction, you might at times not want one
change to take effect in an update, unless the other update is also affected. This can
be accomplished by disabling auto-commit and grouping both updates into one
transaction. If both updates are successful, then the commit method is called,
making the effects of both updates permanent; if one fails or both fail, then the
rollback method is called, restoring the values that existed before the updates
were executed. Most JDBC drivers support transactions.

Classes and interfaces in the javax.sql package make it possible for Connection
objects to be part of a distributed transaction, that is, a transaction that involves
connections to more than one DBMS server. In order to be able to participate in
distributed transactions, a Connection object must be produced by a DataSource

object that has been implemented to work with the middle tier server's distributed
transaction infrastructure. Unlike Connection objects produced by the
DriverManager, a Connection object produced by such a DataSource object will
have its auto-commit mode disabled by default. A standard implementation of a
DataSource object, on the other hand, will produce Connection objects that are
exactly the same as those produced by the DriverManager class.

When a Connection object is part of a distributed transaction, a transaction
manager determines when the methods commit or rollback are called on it. Thus,
when a Connection object is participating in a distributed transaction, an
application should not do anything that affects when a connection begins or ends,
such as calling the methods Connection.commit or Connection.rollback, or
turning on the connection's auto-commit mode. These would interfere with the
transaction manager's handling of the distributed transaction.

About Java Mail Resources

286 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About Java Mail Resources
The JavaMail API allows for access to email messages contained in message stores,
and for the creation and sending of email messages using a message transport.
Specific support is included for Internet standard MIME messages. Access to
message stores and transports is through protocol providers supporting specific
store and transport protocols. The JavaMail API specification does not require any
specific protocol providers, but JavaMail includes an IMAP message store provider
and an SMTP message transport provider.

The JavaMail API provides a set of abstract classes defining objects that comprise a
mail system. The API defines classes like Message, Store and Transport. The API
can be extended and can be sub-classed to provide new protocols and to add
functionality when necessary. In addition, the API provides concrete sub-classes of
the abstract classes. These sub-classes, including MimeMessage and MimeBodyPart,
implement widely used Internet mail protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other
e-mail messaging system APIs. The JavaMail API supports many different
messaging system implementation like, different message stores, different message
formats, and different message transports. The JavaMail API provides a set of base
classes and interfaces that define the API for client applications. Developers can
sub-class JavaMail classes to provide the implementations of particular messaging
systems, such as IMAP, POP3, and SMTP.

The following topics are covered in this section:

• About the JavaMail Message-handling Process

• About the Architectural Components of JavaMail

• About JavaBeans Activation Framework (JAF)

• About JavaMail Configuration Parameters

• J2EE Deployment Descriptor for JavaMail Session References

• Entries in Sun ONE Application Server Deployment Descriptor

• Creating a New JavaMail Session

• Configuring Advanced Resource Properties

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 287

About the JavaMail Message-handling Process
The JavaMail API performs the following functions, which comprise the standard
mail handling process for a typical client application:

• Create a mail message consisting of a collection of header attributes and a
block of data of some known data type as specified in the Content-Type header
field. JavaMail uses the Part interface and the Message class to define a mail
message. It uses the JAF-defined DataHandler object to contain data placed in
the message.

• Create a Session object, which authenticates the user, and controls access to the
message store and transport.

• Send the message to its recipient list.

• Retrieve a message from a message store.

• Execute a high-level command on a retrieved message. High-level commands
like view and print are intended to be implemented via JAF-Aware JavaBeans.

The following figure illustrates how the JavaMail API handles the message
handling process:

Figure 10-8 Message Handling Process of the Java Mail API

NOTE Currently, the JavaMail framework does not define mechanisms that
support message delivery, security, disconnected operation,
directory services or filter functionality.

About Java Mail Resources

288 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The JavaMail API is configured by using a static factory method to create a
javax.mail.Session. Sun ONE Application Server requests a Session object using
JNDI, and lists its need for a Session object in its deployment descriptor using a
resource-ref element. A JavaMail API Session object is considered a resource
factory.

Message transport is provided that is capable of handling addresses of type
javax.mail.internet.InternetAddress and messages of type
javax.mail.internet.MimeMessage. The default message transport must be
properly configured to send such messages using the send method of the
javax.mail.Transport class.

The Abstract Layer of the JavaMail API declares classes, interfaces and abstract
methods intended to support mail handling functions that all mail systems
support. API elements comprising the Abstract Layer are intended to be
sub-classed and extended as necessary in order to support standard data types,
and to interface with message access and message transport protocols as necessary.

The internet implementation layer implements part of the abstract layer using
internet standards - RFC822 and MIME.

About the Architectural Components of JavaMail
This section describes the major components comprising the JavaMail architecture,
given in the following topics:

• The Message Class

• Message Storage and Retrieval

• Message Composition and Transport

The Message Class
The Message class is an abstract class that defines a set of attributes and a content
for a mail message. Attributes of the Message class specify addressing information
and define the structure of the content, including the content type. The content is
represented as a DataHandler object that wraps around the actual data.

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 289

The Message class implements the Part interface. The Part interface defines
attributes that are required to define and format data content carried by a Message
object, and to interface successfully to a mail system. The Message class adds From,
To, Subject, Reply-To, and other attributes necessary for message routing via a
message transport system. When contained in a folder, a Message object has a set
of flags associated with it. JavaMail provides Message subclasses that support
specific messaging implementations.

The content of a message is a collection of bytes, or a reference to a collection of
bytes, encapsulated within a Message object. JavaMail has no knowledge of the
data type or format of the message content. A Message object interacts with its
content through an intermediate layer—the JavaBeans Activation Framework
(JAF). This separation allows a Message object to handle any arbitrary content and
to transmit it using any appropriate transmission protocol by using calls to the
same API methods. The message recipient usually knows the content data type and
format and knows how to handle that content.

The JavaMail API also supports multipart Message objects, where each Bodypart
defines its own set of attributes and content.

Message Storage and Retrieval
Messages are stored in Folder objects. A Folder object can contain sub-folders as
well as messages, thus providing a tree-like folder hierarchy. The Folder class
declares methods that fetch, append, copy and delete messages. A Folder object
can also send events to components registered as event listeners.

The Store Class
The Store class defines a database that holds a folder hierarchy together with its
messages. The Store class also specifies the access protocol that accesses folders and
retrieves messages stored in folders. The Store class also provides methods to
establish a connection to the database, to fetch folders and to close a connection.
Service providers implementing Message Access protocols (IMAP, POP3 etc.) start
off by sub-classing the Store class. A user typically starts a session with the mail
system by connecting to a particular Store implementation.

Message Composition and Transport
A client creates a new message by instantiating an appropriate Message subclass. It
sets attributes like the recipient addresses and the subject, and inserts the content
into the Message object. Finally, it sends the Message by invoking the
Transport.send method. The Transport class models the transport agent that routes
a message to its destination addresses. This class provides methods that send a
message to a list of recipients. Invoking the Transport.send method with a Message
object identifies the appropriate transport based on its destination addresses.

About Java Mail Resources

290 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The Session Class
The Session class defines global and per-user mail-related properties that define
the interface between a mail-enabled client and the network.

JavaMail system components use the Session object to set and get specific
properties. The Session class also provides a default authenticated session object
that desktop applications can share. The Session class is a final concrete class. It
cannot be sub-classed. The Session class also acts as a factory for Store and
Transport objects that implement specific access and transport protocols. By calling
the appropriate factory method on a Session object, the client can obtain Store and
Transport objects that support specific protocols.

About JavaBeans Activation Framework (JAF)
JavaMail uses the JavaBeans Activation Framework (JAF) in order to encapsulate
message data, and to handle commands intended to interact with that data.
Interaction with message data should take place via JAF-aware JavaBeans, which
are not provided by the JavaMail API.

With the JavaBeans Activation Framework standard extension, developers who
use Java technology can take advantage of standard services to determine the type
of an arbitrary piece of data, encapsulate access to it, discover the operations
available on it, and to instantiate the appropriate bean to perform said operation(s).
For example, if a browser obtained a JPEG image, this framework would enable the
browser to identify that stream of data as an JPEG image, and from that type, the
browser could locate and instantiate an object that could manipulate, or view that
image.

The JavaBeans Activation Framework API supports various MIME data types. The
JavaMail API must include javax.activation.DataContentHandlers for the
following MIME data types corresponding to the Java programming language type
indicated in the following table.

Table 10-7 JavaMail API MIME Data Type to Java Type Mappings

MIME Type Java Type

Text/Plain java.lang.String

Multipart/ javax.mail.internet.MIME.Multipart

Message/rfc822 javax.mail.internet.MIME.Message

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 291

The JavaBeans Activation Framework integrates support for MIME data types into
the Java platform. MIME byte streams can be converted to and from Java
programming language objects, using avax.activation.DataContentHandlerobjects.
JavaBeans components can be specified for operating on MIME data, such as
viewing or editing the data. The JavaBeans Activation Framework also provides a
mechanism to map filename extensions to MIME types. The JavaBeans Activation
Framework is used by the JavaMail API to handle the data included in email
message. Typical J2EE applications will not need to use the JavaBeans Activation
Framework directly, although applications making sophisticated use of email may
need it.

About JavaMail Configuration Parameters
The following configuration parameters are used by JavaMail Resources in Sun
ONE Application Server. These configuration parameters are name, value pairs
that would be read from the mail-resource element of the server.xml file.

• JNDI Name

The JNDI Name specifies the name with which this mail resource will be
referenced from a J2EE Application.

• Enabled

The enabled configuration parameter specifies whether this mail resource will
be published in the JNDI tree and can be referenced. If a J2EE application
references a resource which is disabled, it will receive a
NameNotFoundException exception.

• store-protocol

Specifies the default Message Access Protocol. The Session.getStore()
method returns a Store object that implements this protocol. The client can
override this property and explicitly specify the protocol with the
Session.getStore(String protocol) method.

• store-protocol class

Specifies the class name that implements the store protocol specified above.
The default for this class is com.sun.mail.imap.IMAPStore.

• transport-protocol

About Java Mail Resources

292 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Specifies the default Transport Protocol. The Session.getTransport()
method returns a Transport object that implements this protocol. The client can
override this property and explicitly specify the protocol by using
Session.getTransport(String protocol) method.

• transport-protocol class

Specifies the class name that implements the transport protocol specified
above. The default for this class is com.sun.mail.smtp.SMTPTransport.

• host

Specifies the default Mail server. The Store and Transport object’s connect
methods use this property, if the protocol specific host property is absent, to
locate the target host.

• user

Specifies the username to provide when connecting to a Mail server. The Store
and Transport object’s connect methods use this property, if the protocol
specific username property is absent, to obtain the username.

• from

Specifies the return address of the current user. Used by the
InternetAddress.getLocalAddress method to specify the current user’s
email address.

• debug

Specifies the initial debug mode. Setting this property to true will turn on
debug mode, while setting it to false turns debug mode off.

• mail-<protocol>-host

Specifies the protocol-specific default Mail server. This overrides the
mail.host property. This property could be set depending on the value of the
store-protocol attribute. For the values of imap or POP for store-protocol, you
need to add properties with the name mail.imap.host or mail.pop3.host,
respectively. The value for the specific property should be set as it is
appropriate in your mail system configuration. For example, with
store-protocol set to IMAP, the property name: mail-imap-host would bear
the value: spaceduck.acme.com.

• mail-<protocol>-user

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 293

Specifies the protocol-specific default user name for connecting to the Mail
server. This overrides the mail.user property. So this property could be
mail.imap.user or mail.pop3.user depending on the selection of
store-protocol attribute. For example, with store-protocol set to IMAP, the
property name: mail-imap-user would bear the value fredbloggs.

J2EE Deployment Descriptor for JavaMail
Session References
Once a JavaMail Resource is registered with the server, it can be referenced in any
J2EE application component using a JNDI lookup. In order to deploy an
application that references resource manager connection factories, the component
provider must declare all the resource manager connection factory references in the
standard J2EE 1.3 deployment descriptor.

The complete J2EE1.3 descriptor elements for JavaMail reference are described
below:

<resource-ref>

 <description>

JavaMail resource used for sending my mail

 </description>

 <res-ref-name>mail/MyMailSession</res-ref-name>

 <res-type>javax.mail.Session</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Entries in Sun ONE Application Server
Deployment Descriptor
For each deployed component that refers to a mail resource, the deployer must
map the resource name used in the component to the actual jndi name with which
the DataSource is registered with the naming service. The deploy tool is expected
to help the deployer to easily make this mapping. This mapping is registered in the
Sun ONE Application Server specific xml. The fragment of the Sun ONE
Application Server specific XML containing the mapping is shown below:

About Java Mail Resources

294 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

<resource-ref>

<res-ref-name>mail/MyMailSession</res-ref-name>

<jndi-name>mail/Session</jndi-name>

</resource-ref>

Creating a New JavaMail Session
You can configure JavaMail sessions using the Administration interface. To create
and configure a new JavaMail session, perform the following tasks:

1. In left pane of the Administration interface, expand the Sun ONE Application
Server instance, for which you want to create a new JavaMail session.

2. Click JavaMail Sessions. You will see the following window, shown in the
figure “Configuring a JavaMail Session” in the right pane of the
Administration interface:

Figure 10-9 Configuring a JavaMail Session

3. In the JNDI Name text field, provide a JNDI name for the Java Mail session that
you are creating. Once a Java Mail Resource is registered with the server, it can
be referenced in any J2EE application component using a JNDI lookup.

4. In the Mail Host text field, specify the DNS name of the default mail server.
The connect methods of the Store and Transport objects use this property, to
locate the target host, if the protocol-specific host property is absent.

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 295

5. In the Default User text field, specify the username to provide when
connecting to a Mail server. The connect methods of the Store and Transport
objects use this property to obtain the username, if the protocol-specific
username property is absent.

6. In the Default Return Address field, specify the default return address of the
current user. The default address should be in this form: username@host.

7. In the Description field, provide a description for this Java Mail session.

8. Mark the Java Mail Session Enabled checkbox to enable the Java Mail session
that you created.

9. Click OK to save the new JavaMail session that you have configured.

Configuring Advanced Resource Properties
You can configure several additional properties for your new JavaMail session
using the Administration interface. The property name and value pairs depend
upon the mail protocol in use. You can also directly specify these properties in the
server.xml file.

To configure additional properties, perform the following tasks:

1. In left pane of the Administration interface, expand the Sun ONE Application
Server instance, whose JavaMail session configuration you want to modify.

2. Click JavaMail Sessions. You will see the following window, shown in the
figure “Configuring Additional Resources for JavaMail Session” in the right
pane of the Administration interface, below the main configuration section
explained in “Creating a New JavaMail Session”:

About Java Mail Resources

296 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 10-10 Configuring Additional Resources for JavaMail Session

3. In the Store Protocol text field, specify the store protocol that you would like to
use for this specific JavaMail session, for example, POP3, or IMAP.

4. In the Store Protocol Class text field, specify the class name of the store
protocol that you have indicated, as shown in the given example.

5. In the Transport Protocol text field, specify the transport protocol that you
want to use for this specific session of JavaMail, for example, SMTP.

6. In the Transport Protocol Class text field, specify the class name of the
transport protocol you have indicated for this session, as shown in the above
example.

7. Mark the Debug Enabled checkbox, to enable debugging of this specific session
of JavaMail. Enabling this checkbox turns the debug mode on.

8. Click OK to save your additional properties configuration.

A complete sample of mail resource configuration is shown below:

<mail-resource

jndi-name = "mail/Session"

enabled = "true"

store-protocol = "imap"

store-protocol-class = "com.sun.mail.imap.IMAPStore"

transport-protocol = "smtp"

transport-protocol-class = "com.sun.mail.smtp.SMTPTransport"

About Java Mail Resources

Chapter 10 Configuring Naming and Resources 297

host = "gopostal.acme.com"

user = "kingkong"

from = "kingkong@acme.com"

debug = "false">

<property name = "mail-imap-host" value = "spaceduck.acme.com"/>

<property name = "mail-imap-user" value = "fredbloggs"/>

</mail-resource>

About Java Mail Resources

298 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

299

Chapter 11

Using the JMS Service

Sun ONE Application Server provides support for applications that use the Java
Message Service (JMS) application programming interface (API) for messaging
operations. JMS is a set of programming interfaces that provide a common way for
Java applications to create, send, receive, and read messages in a distributed
environment.

In particular, JMS is the standards-based way that Java 2 Enterprise Edition (J2EE)
applications perform asynchronous messaging. Accordingly, J2EE
components—Web components or Enterprise JavaBeans (EJB) components—can
use the JMS API to send messages that can be consumed asynchronously by a
specialized EJB, called a message-driven bean (MDB).

Sun ONE Application Server support for JMS messaging, in general, and for
MDBs, in particular, requires messaging middleware that implements the JMS
specification—a JMS provider. Sun ONE Application Server uses Sun ONE
Message Queue (MQ), Version 3.01, as its native JMS provider.

MQ is tightly integrated into Sun ONE Application Server, providing transparent
JMS messaging support. This support (known within Sun ONE Application Server
as the JMS Service) requires only minimal administration.

This chapter provides information needed to understand and administer the
built-in JMS Service provided through Sun ONE Message Queue. It includes the
following topics:

• About JMS

• The Built-in JMS Service

• Administration of the Built-in JMS Service

About JMS

300 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About JMS
The JMS specification describes a set of programming interfaces that support
distributed, enterprise messaging. An enterprise messaging systems enables
independent distributed components or applications to interact through messages.
These components, whether on the same system, the same network, or loosely
connected through the Internet, use messaging to pass data and coordinate their
respective functions.

To support enterprise-scale messaging, JMS provides for reliable, asynchronous
message delivery.

Reliable delivery. Messages from one component to another must not be lost due
to network or system failure. This means the system must be able to guarantee that
a message is successfully delivered.

Asynchronous delivery. For large numbers of components to be able to exchange
messages simultaneously, and support high density throughputs, the sending of a
message cannot depend upon the readiness of the consumer to immediately
receive it. If a consumer is busy or offline, the system must allow for a message to
be sent and subsequently received when the consumer is ready. This is known as
asynchronous message delivery, popularly known as store-and-forward
messaging.

This topic is a brief overview of JMS concepts and terminology:

• Basic Messaging System Concepts

• The JMS Specification

• Message-driven Beans

For a full description of JMS, see the JMS 1.0.2 specification, which can be found at
the following location:

http://java.sun.com/products/jms/docs.html

Basic Messaging System Concepts
A few basic concepts underlie enterprise messaging systems in general, and JMS in
particular. These are discussed in this topic.

About JMS

Chapter 11 Using the JMS Service 301

Message
A message consists of data in some format (message body) and meta-data that
describes the characteristics or properties of the message (message header), such as
its destination, lifetime, or other characteristics determined by the messaging
system.

Message Service Architecture
The basic architecture of a messaging system is illustrated in the figure “Message
Service Architecture.” It consists of message producers and message consumers
that exchange messages by way of a common message service. In general, any
number of message producers and consumers can reside in the same messaging
component. A message producer sends a message to a message service. The
message service, in turn, using message routing and delivery components, delivers
the message to one or more message consumers that have registered an interest in
the message. The message routing and delivery components are responsible for
guaranteeing delivery of the message to all appropriate consumers.

Figure 11-1 Message Service Architecture

Message Delivery Models
There are many relationships between producers and consumers: one to one, one
to many, and many to many relationships. For example, you might have messages
delivered from:

• one producer to one consumer

Message Service

Message
Routing and

Delivery

Message
Producers

Message
Consumers

About JMS

302 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• one producer to many consumers

• many producers to one consumer

• many producers to many consumers.

These relationships are often reduced to two message delivery models:
point-to-point and publish/subscribe messaging. The focus of the point-to-point
delivery model is on messages that originate from a specific producer and are
received by a specific consumer. The focus of publish/subscribe delivery model is
on messages that originate from any of a number of producers and are received by
any number of consumers. These message delivery models can overlap.

Historically, messaging systems supported various combinations of these two
delivery models. The JMS API was intended to create a common programming
approach that supports both point to point and publish/subscribe delivery models.

The JMS Specification
JMS specifies a message structure, a programming model, and a set of rules and
semantics that govern messaging operations.

JMS Message Structure
According to the JMS specification, a message is composed of three parts: a header,
properties (which can be thought of as an extension of the header), and a body.

Header. The header specifies the JMS characteristics of the message: its destination,
whether is persistent or not, its time to live, and its priority. These characteristics
govern how the messaging system delivers the message.

Properties. Properties are optional—they provide values that applications can use
to filter messages according to various selection criteria. Properties are optional.

Message body. The message body contains the actual data to be exchanged. JMS
supports six body types.

JMS Programming Model
In the JMS programming model, JMS clients (components or applications)
exchange messages by way of a JMS message service. Message producers send
messages to the message service, from which message consumers receive them.
These messaging operations are performed using a set of objects (furnished by a
JMS provider) that implement the JMS API. The figure “JMS Programming
Objects” shows the JMS objects used to program the delivery of messages.

About JMS

Chapter 11 Using the JMS Service 303

In the JMS programming model, a JMS client uses a ConnectionFactory object to
create a connection over which messages are sent to and received from the JMS
message service. A Connection is a JMS client’s active connection to the message
service. Both allocation of communication resources and authentication of the
client take place when a connection is created.

Figure 11-2 JMS Programming Objects

The connection is used to create sessions. A Session is a single-threaded context
for producing and consuming messages. It is used to create the message producers
and consumers that send and receive messages. A session supports reliable
delivery through a number of acknowledgement options or through transactions
(which can be managed by a distributed transaction manager).

A JMS client uses a MessageProducer to send messages to a specified physical
destination, represented in the API as a destination object. The message producer
can specify a default delivery mode (persistent vs. non-persistent messages),
priority, and time-to-live that govern all messages sent by the producer to the
physical destination.

Similarly, a JMS client uses a MessageConsumer to receive messages from a
specified physical destination, represented in the API as a destination object. A
message consumer can support either synchronous or asynchronous consumption
of messages. Asynchronous consumption is achieved by registering a
MessageListener with the consumer. The client consumes a message when a
session thread invokes the onMessage() method of the MessageListener object.

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

JMS
Message Service

Message
Routing and

Delivery

Physical Destinations

Message

JMS Client

ConnectionFactory

Destinations

About JMS

304 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Administered Objects: Provider Independence
Two of the objects described in the figure “JMS Programming Model” on page 302
depend on the details of how a JMS provider implements a JMS message service.
The connection factory object depends on the underlying protocols and
mechanisms used by the provider to deliver messages, and the destination object
depends on the specific naming conventions and capabilities of the physical
destinations used by the provider.

Normally these provider-specific characteristics would make JMS client code
dependent on the details of a JMS API implementation. To make JMS client code
provider-independent, however, the JMS specification requires that
provider-specific objects—called administered objects—be accessed in a
standardized way, rather than directly instantiated in client code.

Administered objects encapsulate provider-specific implementation and
configuration information. They are created and configured by an administrator,
stored in a name service, and accessed by client applications through standard
JNDI lookup code. Using administered objects in this way makes JMS client code
provider-independent.

JMS provides for two general types of administered objects: connection factories
and destinations. Both encapsulate provider-specific information, but they have
very different uses within a JMS client. A connection factory is used to create
connections to a message server, while destination objects are used to identify
physical destinations used by the JMS message service.

Message-driven Beans
In addition to the general JMS client programming model introduced in the figure
“JMS Programming Model” on page 302, there is a more specialized adaptation of
the JMS API used in the context of J2EE applications. This specialized JMS client is
called a message-driven bean and is one of a family of EJB components specified in
the EJB 2.0 Specification (http://java.sun.com/products/ejb/docs.html).

NOTE In the context of the Sun ONE Application Server, JMS administered
objects are regarded as JMS resources, similar to other Application
Server resources.

About JMS

Chapter 11 Using the JMS Service 305

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. Hence, when
you invoke a method of these beans, resources are blocked until the methods have
completed. These EJB components have no mechanism for receiving messages
asynchronously, since they are only accessed through standard EJB interfaces.

However, asynchronous messaging is a requirement of many enterprise
applications. Hence, the need for an EJB component that can receive messages and
consume them without being tightly coupled to the producer of the message.

The MDB is a specialized EJB component supported by a specialized EJB container
(a software environment that provides distributed services for the components it
supports).

Figure 11-3 MDB Message Consumers

Message-driven Bean. The MDB is a JMS message consumer that implement the
JMS MessageListener interface. Its onMessage method (written by the MDB
developer) is invoked when a message is received by the MDB container. The
onMessage method consumes the message, just as the onMessage method of any

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer

The Built-in JMS Service

306 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

JMS MessageListener object would. The MDB can consume messages from a single
destination. The messages can be produced by standalone JMS client applications,
Web components, or other EJB components, as shown in the “MDB Message
Consumers” figure.

MDB Container. The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life-cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
might also include other information that can be used by deployment tools to
configure the container. Each such container supports instances of only a single
MDB.

For information on configuring an EJB container’s MDB settings for the Sun ONE
Application Server, see “About Message-driven Beans” on page 213.

The Built-in JMS Service
Support for JMS messaging, in general, and for MDBs, in particular, is built into
Sun ONE Application Server. This support is achieved through the tight
integration of Sun ONE Message Queue with the Sun ONE Application Server,
providing a native, built-in JMS Service.

This topic covers the following topics necessary to understand this built-in JMS
Service:

• About Sun ONE Message Queue (MQ)

• Integration of MQ with Sun ONE Application Server

For information on administering the built-in JMS Service, see “Administration of
the Built-in JMS Service” on page 314.

The Built-in JMS Service

Chapter 11 Using the JMS Service 307

About Sun ONE Message Queue (MQ)
Sun ONE Message Queue (MQ) is an enterprise messaging system that implements
the JMS open standard: it is a JMS provider.

The MQ product has features which go beyond the minimum requirements of the
JMS specification for reliable, asynchronous messaging. Some of these features
(centralized administration, tunable performance, support for multiple messaging
transports. user authentication and authorization) are available in the MQ Platform
Edition integrated into Sun ONE Application Server. Additional features (scalable
message servers and secure messaging) are available by upgrading to the MQ
Enterprise Edition.

An MQ messaging system consists of a number of parts, as illustrated in the figure
“MQ System Architecture” on page 308, that work together to provide for reliable
message delivery.

The main parts of an MQ messaging system are the following:

• MQ Message Server

• MQ Client Runtime

• MQ Administered Objects

• MQ Administration Tools

These are introduced briefly in the following topics. For a more complete
discussion of the MQ messaging system, see the MQ Administrator’s Guide, which
can be found at the following location:

http://docs.sun.com/

MQ Message Server
The main parts of an MQ message server, as shown in the figure “MQ System
Architecture” on page 308, are brokers and physical destinations.

Brokers. A broker provides delivery services for an MQ messaging system.
Message delivery relies upon a number of supporting components that handle
connection services, message routing and delivery, persistence, security, and
logging. A message server can employ one or more brokers to achieve scalability.

Physical Destinations. Delivery of a message is a two-phase process—delivery
from a producing client to a physical destination maintained by a broker, followed
by delivery from the destination to one or more consuming clients. Physical
destinations represent locations in a broker’s physical memory and/or persistent
storage (see “Physical Destinations” on page 309 for more information).

The Built-in JMS Service

308 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 11-4 MQ System Architecture

Brokers
Message delivery in an MQ messaging system—from producing clients to
destinations, and then from destinations to one or more consuming clients—is
performed by a broker (or, in the MQ 3.01 Enterprise Edition, a cluster of brokers
working in tandem). To perform message delivery, a broker must set up
communication channels with clients, perform authentication and authorization,
route messages appropriately, guarantee reliable delivery, and provide data for
monitoring system performance.

To perform this complex set of functions, a broker uses a number of different
components, each with a specific role in the delivery process. You can configure
these internal components to optimize the performance of the broker, depending
on load conditions, application complexity, and so on. See the MQ Administrator’s
Guide for more information.

Object Store

MQ Message Server

JMS Client

MQ
Client Runtime

MQ
Administration

Broker
Brokers

Destinations

Administered
Objects

MQ Messaging System

The Built-in JMS Service

Chapter 11 Using the JMS Service 309

Physical Destinations
MQ messaging is premised on a two-phase delivery of messages: first, delivery of a
message from a producer client to a destination on the broker, and second, delivery
of the message from the destination on the broker to one or more consumer clients.
There are two types of destinations: queues (point to point delivery model) and
topics (publish/subscribe delivery model). These destinations represent locations
in a broker’s physical memory where incoming messages are marshaled before
being routed to consumer clients.

You generally create physical destinations using administration tools, however
destinations can also be automatically created by the broker upon receipt of a
message.

Queue Destinations. Queue destinations are used in point to point messaging,
where a message is meant for ultimate delivery to only one of a number of
consumers that has registered an interest in the destination. As messages arrive
from producer clients, they are queued and delivered to a consumer client.

Topic Destinations. Topic destinations are used in publish/subscribe messaging,
where a message is meant for ultimate delivery to all of the consumers that have
registered an interest in the destination. As messages arrive from producers, they
are routed to all consumers subscribed to the topic. If consumers have registered a
durable subscription to the topic, they do not have to be active at the time the
message is delivered to the topic—the broker will store the message until the
consumer is once again active, and then deliver the message.

MQ Client Runtime
The MQ client runtime provides JMS clients (stand-alone applications, Web
components or EJB components) with an interface to the MQ message server—it
supplies JMS clients with implementations of all the programming interfaces
needed for clients to send messages to destinations and to receive messages from
such destinations.

The figure “Messaging Operations” on page 310 illustrates how message
production and consumption involve an interaction between JMS clients and the
MQ client runtime, while message delivery involves an interaction between the
MQ client runtime and the MQ message server.

The Built-in JMS Service

310 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 11-5 Messaging Operations

MQ Administered Objects
MQ administered objects allow JMS client code to be provider-independent (see
“Administered Objects: Provider Independence” on page 304). They do this by
encapsulating provider-specific implementation and configuration information in
objects that can then be used by client applications in a provider-independent way.
MQ administered objects are created and configured by an administrator, stored in
a name service, and accessed by JMS clients through standard JNDI lookup code.

Connection Factory Administered Objects. A connection factory object is used to
create physical connections between a JMS client (stand-alone applications, Web
components or EJB components) and an MQ message server. A connection factory
object has no physical representation in a broker—it is used simply to enable a JMS
client to establish connections with a broker. It is also used to specify behaviors of
the connection and of the client runtime that uses the connection to access a broker:
an MQ connection factory therefore has a significant number of configurable
attributes that allow you to tune the performance of an MQ system.

Destination Administered Objects. A destination administered object (a queue or
a topic) represents a physical destination (a physical queue or a physical topic) in a
broker to which the publicly-named destination administered object corresponds.
By creating a destination administered object, you allow JMS clients (message
consumers and/or message producers) to access the corresponding physical
destination.

MQ Administration Tools
MQ administration tools fall into two categories: command line utilities and a
graphical user interface (GUI) Administration Console.

MQ Message Server

Broker
Brokers

Destinations

Message
consumption

Message
production

Message
delivery

JMS Client

MQ
Client Runtime

The Built-in JMS Service

Chapter 11 Using the JMS Service 311

The Administration Console. You can use the administration console to connect to
a broker and manage it, create physical destinations on the broker, connect to an
object store and add, update, or delete administered objects from the object store.
There are some tasks that you cannot use the Administration Console to perform;
chief among these are starting up a broker, creating broker clusters, configuring
more specialized properties of a broker, and managing a user database.

Command Line Utilities. You use the MQ utilities to perform all the tasks you can
perform using the administration console, and in addition, to start up and manage
a broker, configure more specialized properties of a broker, and manage a MQ user
database.

Integration of MQ with Sun ONE Application
Server
MQ Platform Edition is automatically installed as part of the Sun ONE Application
Server installation process. For more information, see the Sun ONE Application
Server Installation Guide.

This installation provides Sun ONE Application Server with a JMS messaging
system that supports any number of Sun ONE Application Server instances. Each
server instance, by default, has an associated built-in JMS Service that supports all
JMS clients running in the instance.

This topic covers the following topics:

• Architecture of the Built-in JMS Service

• Disabling the Built-in JMS Service

The built-in JMS Service can be administered using Sun ONE Application Server
administration tools (see “Administration of the Built-in JMS Service” on
page 314).

Architecture of the Built-in JMS Service
The built-in JMS Service—illustrated in the figure “Built-in MQ Messaging
System” on page 312—is similar to an ordinary MQ messaging system (shown in
the figure “MQ System Architecture” on page 308), except for a number of
qualifications, described below.

The Built-in JMS Service

312 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 11-6 Built-in MQ Messaging System

MQ Message Server. Each Sun ONE Application Server instance is associated
with its own built-in JMS Service. The built-in JMS Service makes use of a
single-broker message server. The broker runs in a separate process outside of the
Sun ONE Application Server instance as shown in the figure “Built-in MQ
Messaging System.” By default, the broker instance (the built-in JMS Service) starts
up when its associated server instance is started up and shuts down when the
server instance is shut down. Configuration information for a server instance’s
built-in JMS Service is recorded in the Sun ONE Application Server configuration
store (the server.xml file) and can be modified as described in “Configuring the
JMS Service” on page 315.

MQ Client Runtime. The client runtime part of the JMS Service is a set of libraries
that support the JMS API. Any JMS clients (JMS client components, including
MDBs) that run in a server instance have access to these libraries.

MQ Administered Objects. The built-in JMS Service uses an object store provided
by Sun ONE Application Server. Each server instance has its own object store. The
JMS Service stores administered objects (connection factory and destination
resources) in this object store. You create these administered object resources as
described in “Managing Administered Object Resources” on page 321, and they
are accessed by JMS clients using JNDI lookup code.

Sun ONE Application Server Instance

MQ
Client Runtime

Sun ONE AS
Administration

MQ Message Server

Broker

Destinations

Object Store

Administered
Objects

EJB Container

EJB
Instance

JMS
Message
Producer

MDB Container

Connection
Consumer

MDB
MDBMDB

Instance

JMS
Message
Consumer

Built-in JMS Service

The Built-in JMS Service

Chapter 11 Using the JMS Service 313

Sun ONE Application Server Administration. The Sun ONE Application Server
Administration interface and command line utilities implement a limited subset of
MQ administration capability. The Administration interface and command line let
you configure the built-in JMS Service, create and delete physical destinations, and
create and delete administered object resources needed by JMS clients to perform
JMS messaging operations. These administration tools, however, do not allow (or
do not facilitate) performing more sophisticated administration tasks, such as
setting broker properties, tuning the MQ client runtime, modifying the MQ user
repository, managing MQ security, and so forth. If you wish to perform these
administration tasks for the built-in JMS Service, you have to use the
administration tools installed with MQ and described in the MQ Administrator’s
Guide. For a comparison of MQ and Sun ONE Application Server administration
capability, see the table “Comparison of Sun ONE Message Queue and Sun ONE
Application Server Administration Capability” on page 315.

Disabling the Built-in JMS Service
By default, the built-in JMS Service is started up (that is, the MQ broker is started
up) when the associated Sun ONE Application Server instance is started up.
However, you might want to disable the automatic startup of the JMS Service
when you start up a server instance, either because the server instance does not
need to support JMS messaging or because the server instance uses an external JMS
Service. (To disable the built-in JMS Service, see “Configuring the JMS Service” on
page 315.)

An external JMS Service is a messaging system that is not controlled from within
Sun ONE Application Server. In the case of MQ—the native JMS provider—this
means that you simply start up and manage your MQ message server
independently, using MQ administration tools. JMS clients running in various
server instances can still use MQ administered objects to access the MQ message
server. These administered objects can either be stored in the object store associated
with each application server instance, or in a separate, independent object store
managed by the MQ administration tools (where the store can be shared by
multiple server instances if necessary).

There are a number of scenarios in which a server instance might use an external
JMS Service. The most likely is when JMS clients in different server instances need
to access the same physical destinations. In that case, the server instances must all
access the same message server. To achieve this, you disable the built-in JMS
Service for all server instances and configure all JMS clients to perform the
appropriate JNDI lookups to access the external JMS Service. In addition, you
independently administer the external JMS Service (managing the message server,
creating physical destinations, and creating all needed administered objects) using
the external JMS Service provider’s administration tools.

Administration of the Built-in JMS Service

314 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To configure multiple application server instances to share a single MQ broker
instance:

1. Disable the JMS service on all the server instances.

2. Manage the shared MQ broker independently of any server instance, which
means you must start up and shut down the broker using the administration
tools for managing the external service. You must also manage physical
destinations independently of the Sun ONE Application Server.

3. Configure a connection factory JMS resource in each server instance such that
it points to this external MQ broker (you must set the imqBrokerHostName and
imqBrokerHostPort properties appropriately).

4. Use this connection factory resource when deploying JMS applications on the
Sun ONE Application Server.

It is possible to have both an external and built-in JMS Service running at the same
time. JMS clients in a server instance can access whichever JMS Service they need.

One possibility that is not recommended is to have a number of server instances
share the same built-in JMS Service (one is enabled, the rest are disabled). This is
not recommended because the enabled JMS Service only runs when its associated
server instance runs, making it very difficult to manage the situation.

When you disable a built-in JMS Service, you also disable your ability to perform
administrative tasks associated with that built-in JMS Service. All administrative
tasks needed to support an external JMS Service must be performed using the
administration tools for managing that external service.

Administration of the Built-in JMS Service
This topic focuses on administration of the built-in JMS Service. Administration is
performed on a server instance-by-server instance basis.

Administration of the built-in JMS Service involves the following tasks:

• Configuring the JMS Service

• Managing Physical Destinations

• Managing Administered Object Resources

• Administering the Built-in JMS Service Using the Command-Line Interface

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 315

Administration can be performed using the Sun ONE Application Server’s
Administration interface or command line utility. A comparison of these
administration tools with MQ administration tools is shown in the table
“Comparison of Sun ONE Message Queue and Sun ONE Application Server
Administration Capability.”

The following sections explain how to perform JMS Service administration tasks
using the Sun ONE Application Server Administration interface.

Configuring the JMS Service
At installation time a number of JMS Service properties are set for the built-in JMS
Service. You can change the default values of these properties by configuring the
JMS Service.

JMS Service properties are described in the table “JMS Service Properties.”

Table 11-1 Comparison of Sun ONE Message Queue and Sun ONE Application Server
Administration Capability

Function Sun ONE MQ
Administration
Tools

Sun ONE AS
Administration
interface

Sun ONE AS
Administration
Command Line

Manage MQ broker state yes start/stop start/stop

Configure MQ broker yes no no

Manage MQ broker user
repository

yes no no

Multi-broker clusters yes no no

Manage security yes no no

Manage physical destinations yes create/delete create/delete

Manage durable subscriptions and
transactions

yes no no

Manage administered object
resources

yes create/delete/
configure

yes

Administration of the Built-in JMS Service

316 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Table 11-2 JMS Service Properties

Property Description Default Value

Log level The level of logging information you want
written to the Sun ONE Application Server log
file. For more information, see Chapter 5,
“Using Logging.”

DEBUG_HIGH

Port The primary port number of the broker instance
providing built-in JMS Service. By default, the
built-in JMS Service uses the default primary
port number. However, if that port conflicts
with other software, or if you are starting up
more than one Sun ONE Application Server
instance, you need to specify a unique primary
port number for each.

Note that it is possible to have a port conflict if
the port number assigned to the JMS Service at
installation time later is used by another service.
In this case, you have to give the JMS Service a
different port number.

7676

Administrator’s
username/password

The username/password needed to perform
broker administration tasks, such as managing
physical destinations (see “Managing Physical
Destinations” on page 318). If you want
administrator access to a broker instance to be
secure (by default, any user is provided access),
you need to first make the appropriate entries in
the broker’s user repository (as described in the
MQ Administrator’s Guide) and then enter the
corresponding values here for the
administrator’s username and password.

admin/admin

Start Timeout Specifies the time in seconds that the server
instance waits for the JMS Service to start up. If
this timeout is exceeded, the server instance
startup is aborted.

60

Start Arguments Specifies any arguments that will be used in
starting up the JMS Service. The startup
arguments for the imqbroker command, and
how to specify them, can be found in the MQ
Administrator’s Guide. (The -name and -port
arguments, if supplied, are ignored.)

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 317

The built-in JMS Service can be configured before starting up its corresponding
server instance. If the server instance is already running, however, configuration
changes take effect only after the server instance is stopped and subsequently
restarted.

To configure the built-in JMS Service:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Select the Service link.

The JMS Service configuration screen is displayed on the right pane.

Startup Enabled Specifies whether the built-in JMS Service is
started up when the server instance starts up. If
you are not supporting JMS messaging or are
using an external JMS message service, set this
property to FALSE.

TRUE

Table 11-2 JMS Service Properties (Continued)

Property Description Default Value

Administration of the Built-in JMS Service

318 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 11-7 JMS Service Configuration Screen

5. Modify any of the properties you wish (see the table “JMS Service Properties”
on page 316).

6. Click the Save button.

The JMS Service screen is refreshed.

Managing Physical Destinations
In JMS messaging, a JMS producer sends messages to a physical destination on a
message service from which they are dispatched to a JMS consumer.

For the built-in JMS Service, you can create these physical destinations explicitly or
they can be created automatically by the JMS Service (MQ broker) upon receipt of a
message. In general, you have more control over the messaging system and its
resources by explicitly creating the physical destinations needed by messaging
applications. When these destinations are no longer needed, you can delete them.

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 319

In order to create or delete physical destinations for a built-in JMS Service, the JMS
Service must be running and the administrator username and password (specified
when you configure the built-in JMS Service) must correspond to valid entries in
the broker’s user repository (see the table “JMS Service Properties” on page 316).

Using the Administration interface, you can perform the following management
tasks for physical destinations on a built-in JMS Service:

• Create a Queue or Topic Destination

• List Physical Destinations

• Delete a Physical Destination

Create a Queue or Topic Destination
To create a queue or topic destination:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Open the Service link.

5. Select the Physical Destinations link

The Physical Destinations screen is displayed in the right pane.

6. Click the New button.

The Physical Destinations: New screen is displayed in the right pane.

Administration of the Built-in JMS Service

320 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 11-8 New JMS Physical Destination Screen

7. Enter the name of the physical destination.

8. Select queue or topic from the Type pull down.

9. Click the OK button.

The right pane is refreshed and displays the new queue or topic destination in
the list of existing queue and topic destinations.

List Physical Destinations
To list existing queue and topic destinations:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Open the Service link.

5. Select the Physical Destinations link

The right pane displays the current physical destinations.

Delete a Physical Destination
You can delete queue or topic destinations as needed.

To delete a physical destination:

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 321

1. List the existing destinations (see “List Physical Destinations” on page 320).

2. Click within the Select box for each destination you wish to delete.

Figure 11-9 JMS Physical Destinations Screen

3. Click the Delete button to remove the selected destinations.

The list refreshes, showing the remaining destinations.

Managing Administered Object Resources
MQ administered objects, regarded by Sun ONE Application Service as JMS
Resources, are used by JMS clients to access a JMS Service (either built-in or
external).

Two administered object resources—connection factories and destinations—are
used by J2EE components to obtain connections to a JMS Service, and then to
deliver messages to and from physical destinations on the Service (see “MQ
Administered Objects” on page 310).

Administration of the Built-in JMS Service

322 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Because the creation of administered object resources does not involve the JMS
Service directly, you do not need to enable the JMS Service, and you do not need a
valid username and password (see the table “JMS Service Properties” on page 316),
to create administered object resources for a server instance.

Administered Object Attributes
To support JMS messaging, you must create the administered object resources
required by all JMS clients running in a server instance. At a minimum, you need to
specify a JNDI lookup name for each administered object resource, its type
(connection factory, queue, or topic), a description (optional) and whether or not
the resource is enabled. Other attributes are discussed in the following sections.

Destination (queue or topic)
In the case of queue or topic administered objects, you also need to specify the
name of the corresponding physical destination.

Connection Factory
In the case of connection factory administered objects, the Administration interface
creates, by default, a connection factory that points to the built-in JMS
Service—that is, to a broker instance whose hostname is the local host and whose
port number is that set when configuring the JMS Service (see the table “JMS
Service Properties” on page 316).

However, if you disable the JMS Service for a particular server instance, then any
JMS clients supported by that server instance must use an external JMS Service.
When you create a connection factory to be used to create connections to that
external JMS Service, you need to set attributes that specify the hostname and port
number of the appropriate broker instance.

 Connection factory administered objects have additional attributes used to tune
the server instance’s MQ client runtime. These are documented in the MQ
Developer’s Guide.

 Connection factory administered objects created using the Administration
interface support distributed transaction managers.

Administered Object Resource Management Tasks
From the Administration interface, you can perform the following management
tasks for administered object resources:

• Create a Queue or Topic Administered Object (Destination Resource)

• Create a ConnectionFactory Administered Object

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 323

• List Administered Object Resources

• Delete an Administered Object Resource

Create a Queue or Topic Administered Object (Destination Resource)
To create a queue or topic administered object:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Select the Destination Resources link.

The Destination Resources screen is displayed in the right pane.

5. Click on the New button.

The Destination Resources: New screen is displayed.

Figure 11-10 New Destination Administered Object Screen

6. Enter the JNDI lookup name associated with this destination administered
object.

7. Select the “queue” or “topic” object type from the pull down list.

Administration of the Built-in JMS Service

324 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

8. Click the OK button.

The right pane re-displays the Destination Resource: New screen.

In addition, you must specify the destination name for the object by specifying the
imqDestinationName property. The value of this property should match the
physical destination’s name.

To change the value of this property:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Open the Destination Resources folder.

5. Select the Destination Resource you want to edit.

The right pane displays the Destination Resource screen.

6. In the right pane, click Properties.

The Edit Properties screen appears.

7. In the Name field, enter imqDestinationName.

8. In the Value field, enter the physical destination’s name.

9. Click OK.

The right pane redisplays the Destination Resources screen.

Create a ConnectionFactory Administered Object
To create a queue connection factory or topic connection factory administered
object:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Select the Connection Factories link.

The Connection Factory Resources screen is displayed in the right pane.

5. Click on the New button.

The Connection Factory Resources: New screen is displayed.

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 325

Figure 11-11 New ConnectionFactory Administered Object Screen

6. Enter the JNDI lookup name associated with this connection factory
administered object.

7. Select the connection factory object type from the pull down list.

8. Click the OK button.

The right pane re-displays the Connection Factory Resources screen with the
newly created connection factory object in the list.

If this connection factory creates connections to a broker other than that of the
built-in JMS Service, you must set values for the imqBrokerHostName and
imqBrokerHostPort properties.

To change the value of these properties:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Open the Connection Factories folder

5. Select the Connection Factory resource you want to edit.

The right pane displays the Connection Factory screen.

Administration of the Built-in JMS Service

326 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

6. In the right pane, click Properties.

The Edit Properties screen appears.

7. In the Name field, enter imqBrokerHostName.

8. In the Value field, enter a value for the property.

9. In the Name field and imqBrokerHostPort.

10. In the Value field, enter a value for the property.

11. Click OK.

The right pane redisplays the Connection Factory screen.

List Administered Object Resources
To list existing administered objects:

1. Open the Administration interface.

2. Open a server instance in the left pane.

3. Open the JMS folder.

4. Select the Destination Resources or Connection Factory Resources link

The right pane displays the current destination or connection factory
administered objects.

Delete an Administered Object Resource
To delete an administered object resource:

1. List the existing administered object resources (see “List Administered Object
Resources” on page 326).

The right pane displays the existing administered object resources.

2. Click within the Select box for each object you wish to delete.

Administration of the Built-in JMS Service

Chapter 11 Using the JMS Service 327

Figure 11-12 JMS Connection Factory Screen, Refreshed

3. Click the Delete button to remove each selected object.

The screen refreshes the list, showing the remaining administered object
resources.

Administering the Built-in JMS Service Using the
Command-Line Interface
The Sun ONE Application Server has a command-line utility, asadmin, which you
can use to perform all the same tasks as you can perform with the Administration
interface.

Use the following asadmin commands to configure and administer the built-in JMS
Service.

asadmin Commands for Administering the Built-in JMS Service

Command Use

add-resources Adds one or more resources of type jdbc, jms, or javamail.

create-jmsdest Creates a JMS physical destination.

Administration of the Built-in JMS Service

328 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For information on the syntax of these commands, see the online help for asadmin.
For more information on asadmin, as well as a list of attributes for jms-service and
jms-resource, see Appendix A, “Using the Command Line Interface.”

create-jms-resource Creates a JMS resource.

delete-jmsdest Deletes a JMS physical destination.

delete-jms-resource Deletes a JMS resource.

jms-ping Pings the JMS provider to see if it is running.

list-jmsdest Lists JMS physical destinations for a server instance.

list-jms-resources Lists JMS resources for a server instance.

get and set jms-service Gets and sets attributes for the JMS service.

get and set jms-resource Gets and sets attributes for a JMS resource.

asadmin Commands for Administering the Built-in JMS Service

Command Use

329

Chapter 12

Configuring the Server For
CORBA/IIOP Clients

This chapter explains how to configure support for CORBA/IIOP clients, using the
RMI/IIOP protocol within the Sun ONE Application Server environment.

This chapter includes the following topics:

• About Support for CORBA/IIOP Clients

• Configuring the ORB

About Support for CORBA/IIOP Clients
The J2EE platform provides indirect support for various types of clients, different
hardware platforms, and a multitude of software applications through its
interoperabillity requirements. As a J2EE-compliant product, Sun ONE
Application Server supports a standard set of protocols and formats that ensure
interoperabillity.

The CORBA (Common Object Request Broker Architecture) model is based on
clients requesting services from distributed objects or servers through a
well-defined interface, by issuing requests to the objects in the form of remote
method requests. A remote method request carries information about an operation
that needs to be performed including the object name (called an object reference) of
the service provider and the actual parameters, if there are any. CORBA
automatically handles a lot of network programming tasks such as object
registration, object location, object activation, request de-multiplexing,
error-handling, marshalling and operation dispatching.

The following topics are covered in this section:

• About Interoperabillity

About Support for CORBA/IIOP Clients

330 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• About the ORB

• About the RMI/IIOP Functionality

• About the Authentication Process

About Interoperabillity
Interoperabillity essentially means the ability of an enterprise environment to bring
together applications written in various languages. One or more of these existing
applications may be running on a personal computer platform, while others may
be running on UNIX. In addition, these enterprise environments may also be
supporting standalone Java technology based applications that are not directly
supported by the J2EE platform.

J2EE is mandated to provide support for CORBA IIOP (Internet Inter-Orb Protocol)
protocol. CORBA defines a model that specifies interoperabillity between
distributed objects on a network in a way that is transparent to the user. CORBA
achieves this by defining ways for specifying the externally visible characteristics
of a distributed object in a way that is implementation-independent.

About the ORB
Object Request Broker (ORB for short) is the central component of CORBA. The
ORB provides the required infrastructure to identify and locate objects, handle
connection management, deliver data and request communication.

One CORBA object never talks directly with another. Instead, the object makes
requests through a remote stub to the ORB running on the local machine. The local
ORB then passes the request to an ORB on the other machine using Internet
Inter-Orb Protocol (IIOP for short). The remote ORB then locates the appropriate
object (servant) processes the request and returns the results. IIOP can be used as a
Remote Method Invocation (RMI for short) protocol by JAVA applications or
objects, using the RMI-IIOP technology.

About the RMI/IIOP Functionality
CORBA specifies the ORB which allows applications to communicate with each
other regardless of location. This interoperabillity is delivered through IIOP, and is
typically found in an Intranet setting. Some of the functionalities achieved by RMI
over IIOP are as follows:

About Support for CORBA/IIOP Clients

Chapter 12 Configuring the Server For CORBA/IIOP Clients 331

• Interoperabillity with objects written in other languages.

• Ability to propagate transaction and security context.

• Plug-and-play environment for ORB services.

• Interoperabillity with EJBs

• Use of the COSNaming service, an IIOP-based naming service. The EJB
interoperabillity protocol requires the use of the COSNaming to look up EJB
objects using the Java Naming Directory Interface (JNDI for short) API.

The JAVA ORB that comes bundled with Sun ONE Application Server supports
the following functionalities:

• Conformance level 0 of CSIv2 (Common Secure Interoperabillity version 2).

• Fully compliant COSNaming service implements the IDL interfaces and aid
the EJB container to publish EJBHome references.

• IIOP/GIOP Ver 1.2. CORBA specifies the ORB which allows applications to
communicate with each other regardless of location. This interoperabillity is
delivered through IIOP.

About the Authentication Process
Authentication is the process of confirming an identity. In the context of network
interactions, authentication is the confident identification of one party by another
party. Certificates are one way of supporting authentication.

The following two kinds of authentication are applicable:

Server Authentication. Server authentication refers to the confident identification
of a server by a client; that is, identification of the organization assumed to be
responsible for the server at a particular network address.

Client Authentication. Client authentication refers to the confident identification
of a client by a server; that is, identification of the person assumed to be using the
client software.

Clients can have multiple certificates, much like a person might have several
different pieces of identification.

Configuring the ORB

332 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring the ORB
You can configure multiple IIOP-listeners for each instance of Sun ONE
Application Server. By default, one IIOP listener is configured. You can configure
the IIOP listener properties for your ORB and add additional listeners.

You can also enable monitoring for the ORB, specify the log level at which
messages will be logged, specify thread pool settings, and configure IIOP listener
ports and SSL configuration for the IIOP path. In this section, we will discuss how
to configure ORB support for an instance of Sun ONE Application Server.

The following topics are included in this section:

• To Perform General ORB Configuration

• To Configure IIOP Listener For the ORB

To Perform General ORB Configuration
Using the Administration interface, you can enable monitoring, set log levels, and
configure pool settings for the thread pool. To perform general ORB configuration,
perform the following tasks:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance for which you want to configure ORB settings.

2. Click the ORB tab. You will see the figure “General ORB Configuration” in the
right pane of the Administration interface:

Configuring the ORB

Chapter 12 Configuring the Server For CORBA/IIOP Clients 333

Figure 12-1 General ORB Configuration

3. In the General section of this window, you can enable monitoring, and set log
levels for your ORB.

a. To enable monitoring for the ORB, mark the Monitoring Enabled
checkbox.

b. Choose the log level you want, from the Log Level drop-down list. The
default log level for the server is typically set to INFO. The default level for
the ORB is to use the default for the server. The log level will therefore
display Default (INFO), in the drop-down list.

Log levels are provided to record messages of a range of severity, from
FINEST to FATAL. Setting a log level allows you to select what granularity
of messages are displayed in the log. A granularity of WARNING will
display WARNING, ALERT, SEVERE and FATAL messages. Normally
you would need to set the granularity at the server-wide level, but you can
use this setting to control the messages displayed from the Sun ONE
Application Server ORB.

Configuring the ORB

334 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

4. In the Thread Pool section of this window, you can specify the pool settings for
the request threads used by the ORB.

Request threads handle user requests for application components. When Sun
ONE Application Server receives a request, it assigns the request to a free
thread from the thread pool. The thread executes the client’s requests and
returns results. For example, if the request needs to use a system resource that
is currently busy, the thread waits until that resource is free before allowing the
request to use that resource.

You can specify the minimum and maximum number of threads that are
reserved for requests from applications. The thread pool is dynamically
adjusted between these two values. The minimum thread-pool size you specify
signals the ORB to allocate at least that many threads in reserve for application
requests. That number is increased upto the maximum thread-pool size that
you specify.

Increasing the number of threads available to a process allows the process to
respond to more application requests simultaneously.

a. In the Steady Pool Size field, specify the minimum number of threads in
the pool. The pool will also shrink to this number after threads are idle for
the period specified in the Idle Timeout (secs) field.

b. In the Max Pool Size field, specify the maximum number of threads to
which the thread pool can grow.

c. In the Idle Timeout (secs) field, specify the timeout for the idle threads in
the threadpool to be cleaned up.

5. In the Advanced section of this window, you can configure advanced options
for your ORB, as follows:

a. In the Message Fragment Size field, specify the maximum GIOP 1.2
message size, in order to support fragmentation. The default fragment size
is 1024.

b. In the Total Connections field, specify the maximum number of incoming
remote IIOP connections allowed by the ORB server process.

6. Click Save to save your settings. If you want to revert to your previous settings
without saving the recent changes, click Revert.

Configuring the ORB

Chapter 12 Configuring the Server For CORBA/IIOP Clients 335

To Configure IIOP Listener For the ORB
Each new instance of Sun ONE Application Server comes with a default ORB
configuration, which includes a pre-configured IIOP listener. The IIOP listener is a
listen socket that listens on a specified port and accepts incoming connections from
CORBA based client application You can configure any number of IIOP listeners
for a single instance of Sun ONE Application Server.

To create a new IIOP listener or to configure IIOP listener properties, perform the
following tasks:

1. In the left pane of the Administration interface, expand the Sun ONE
Application Server instance for which you want configure ORB properties.

2. Click ORB, and open the IIOP Listener tab under it. You will see a list of all the
IIOP Listeners that have been configured for that specific instance of Sun ONE
Application Server.

3. To create a new IIOP Listener, click New (if you are editing an existing IIOP
listener, just open the listener and perform tasks listed in the following steps).
When you click New, or when you open an existing IIOP listener, you will see
the figure “Creating a New IIOP Listener”:

Configuring the ORB

336 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 12-2 Creating a New IIOP Listener

4. You can configure general parameters for your IIOP listener, as follows:

a. In the Id text field, provide a name to identify the listener. You can use any
identifier, such as ORB_Listener1, ORB_Listener2, etc.

b. In the Address text field, type the address of the machine on which you
have installed Sun ONE Application Server. You can either specify the
machine address in the machinename.domainname format, as indicated in
the given example, or you can provide the IP address of the machine.

Configuring the ORB

Chapter 12 Configuring the Server For CORBA/IIOP Clients 337

c. In the Port text field, type a unique port number for the new IIOP Listener.
The default IIOP listener comes with a default port number. You can
change this port number. However, before changing the port number,
please ensure that the new port number that you specify is not being used
by any other existing software application or process.

d. To enable the listener, mark the Listener Enabled checkbox.

5. In the SSL/TLS Settings section on this page, you can set security for the IIOP
listener. Check the appropriate boxes associated with the Secure Sockets Layer
(SSL) and Transport Layer Security (TLS), including all the ciphers. You can
select either SSL2 or SSL3/TLS sockets.You can configure the SSL/TLS settings
for your listener, as follows:

a. In the Certificate Nickname field, provide the nickname of the certificate
that the server presents to the client during SSL handshake. You must have
previously installed a certificate to see its nickname in this list.

b. Mark the SSL2 Enabled field, to enable SSL2 security option for the listener
path.

c. Select the SSL2 ciphers that you want to use for the SSL2 security. Mark the
checkboxes against the required ciphers. Unless you have a compelling
reason for not using a specific cipher suite, you should allow them all.

d. Mark the SSL3 Enabled field, to enable SSL3 security option for the listener
path.

e. Mark the TLS Enabled field, to enable TLS. TLS must also be enabled on
the browser seeking access to your server. Check both TLS and SSL3 for
Netscape Navigator 6.0.

f. Mark the TLS Rollback Enabled field. In order to enable TLS Rollback, you
need to enable TLS first. Also ensure that SSL3 and SSL2 are disabled,
when you enable this option. Use the TLS Rollback option for Microsoft
Internet Explorer 5.0 and 5.5.

g. Select the SSL3/TLS ciphers that you want to use for SSL3 and TLS. Select
these only if you have enabled SSL3 or TLS. Unless you have a compelling
reason for not using a specific cipher suite, you should allow them all.

h. Mark the Client Authentication Enabled checkbox to indicate whether the
ORB listener port for SSL IIOP connections with client authentication is
enabled or not. Client authentication is the process of authenticating client
certificates by cryptographically verifying the certificate signature and the
certificate chain leading to the CA on the trust CA list.

6. Click OK to save the IIOP listener settings.

Configuring the ORB

338 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

NOTE • When you install Sun ONE Application Server, an IIOP listener is
created for the default server instance. The default port number for the
default IIOP listener port is 3700.

• Please note that each IIOP listener must bear a different port number.
Also note that the machine address that you provide in the Address text
field must be the address of the machine on which Sun ONE
Application Server is installed.

• For more information about SSL settings for the listener path, and other
details of security for Sun ONE Application Server, see the Sun ONE
Application Server Administrator’s Guide to Security.

339

Chapter 13

Deploying Applications

This chapter describes how to deploy various Sun ONE Application Server
modules and applications.

Sun ONE Application Server modules and applications include J2EE standard
elements and Sun ONE Application Server specific elements. Only Sun ONE
Application Server specific elements are described in detail in this chapter.

To know about packaging and assembling modules and applications for
deployment, see the Sun ONE Application Server Developer’s Guide.

This chapter includes the following topics:

• About J2EE Modules

• About J2EE Applications

• J2EE Standard Descriptors

• Sun ONE Application Server Descriptors

• Naming Standards

• Deployment Directory Structure

• Runtime Environments

• About Classloaders

• Deploying Modules and Applications

• The Application Deployment Descriptor Files

About J2EE Modules

340 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About J2EE Modules
A J2EE module is a collection of one or more J2EE components of the same
container type with deployment descriptors of that type. One descriptor is J2EE
standard, the other is Sun ONE Application Server specific. Types of J2EE modules
are as follows:

• Web Application Archive (WAR): A web application is a collection of servlets,
HTML pages, classes, and other resources that can be bundled and deployed to
several J2EE application servers. A WAR file can consist of the following items:
servlets, JSPs, JSP tag libraries, utility classes, static pages, client-side applets,
beans, bean classes, and deployment descriptors (web.xml and optionally
sun-web.xml).

• EJB JAR File: The EJB JAR file is the standard format for assembling enterprise
beans. This file contains the bean classes (home, remote, local, and
implementation), all of the utility classes, and the deployment descriptors
(ejb-jar.xml and optionally sun-ejb-jar.xml). If the EJB is an entity bean
with container managed persistence, a CMP deployment descriptor,
sun-cmp-mapping.xml, may be included as well.

• Application (RMI/IIOP) Client JAR File: An RMI/IIOP Client is a Sun ONE
Application Server specific type of J2EE client. An RMI/IIOP Client supports
the standard J2EE Application Client specifications, and in addition, supports
direct access to the Sun ONE Application Server. Its deployment descriptors
are application-client.xml and optionally sun-application-client.xml.

• Resource RAR File: RAR files apply to J2EE CA connectors. A connector
module is like a device driver. It is a portable way of allowing EJBs to access a
foreign enterprise system. Each Sun ONE Application Server connector has a
J2EE XML file, ra.xml. A connector must also have a Sun ONE Application
Server deployment descriptor, sun-ra.xml.

Package definitions must be used in the source code of all modules so the
classloader can properly locate the classes after the modules have been deployed.

Because the information in a deployment descriptor is declarative, it can be
changed without requiring modifications to source code. At run time, the J2EE
server reads this information and acts accordingly.

EJB JAR and Web modules can also be assembled as separate .jar or .war files
and deployed separately, outside of any application, as in the following figure.

About J2EE Applications

Chapter 13 Deploying Applications 341

About J2EE Applications
A J2EE application is a logical collection of one or more J2EE modules tied together
by application deployment descriptors. Components can be assembled at either the
module or the application level. Components can also be deployed at either the
module or the application level.

Components are assembled into modules and then assembled into a Sun ONE
Application Server application .ear file ready for deployment.

Each module has a Sun ONE Application Server deployment descriptor and a J2EE
deployment descriptor. The Sun ONE Application Server Administration interface
uses the deployment descriptors to deploy the application components and to
register the resources with the Sun ONE Application Server.

An application consists of one or more modules, an optional Sun ONE Application
Server deployment descriptor, and a required J2EE application deployment
descriptor. All items are assembled, using the Java ARchive (.jar) file format, into
one file with an extension of .ear.

J2EE Standard Descriptors
The J2EE platform provides assembly and deployment facilities. These facilities use
JAR files as the standard package for components and applications, and
XML-based deployment descriptors for customizing parameters. For more
information on the J2EE assembly and deployment process, see Developing
Enterprise Applications with the J2EE, v 1.0, Chapter 7.

The J2EE standard deployment descriptors are described in the J2EE specification,
v1.3.

To check the correctness of these deployment descriptors prior to deployment, see
the information on the deployment descriptor verifier in the Sun ONE Application
Server Developer’s Guide.

The following table, “J2EE Standard Descriptors,” shows where to find more
information about J2EE standard deployment descriptors. The left column lists the
deployment descriptors, and the right column lists where to find more information
about those descriptors.

Sun ONE Application Server Descriptors

342 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

You can find specifications here:

http://java.sun.com/products/

Sun ONE Application Server Descriptors
Sun ONE Application Server uses additional deployment descriptors for
configuring features specific to the Sun ONE Application Server. These are
optional except for the sun-ra.xml file, which is required for a connector module.

To check the correctness of these deployment descriptors prior to deployment, see
the information on the deployment descriptor verifier in the Sun ONE Application
Server Developer’s Guide.

The following table, “Sun ONE Application Server Descriptors,” shows where to
find more information about Sun ONE Application Server deployment descriptors.
The left column lists the deployment descriptors, and the right column lists where
to find more information about those descriptors.

Table 13-1 J2EE Standard Descriptors

Deployment Descriptor Where to Find More Information

application.xml Java 2 Platform Enterprise Edition Specification, v1.3,
Chapter 8, “Application Assembly and Deployment -
J2EE:application XML DTD”

web.xml Java Servlet Specification, v2.3 Chapter 13, “Deployment
Descriptor,” and JavaServer Pages Specification, v1.2,
Chapter 7, “JSP Pages as XML Documents,” and Chapter
5, “Tag Extensions”

ejb-jar.xml Enterprise JavaBeans Specification, v2.0, Chapter 16,
“Deployment Descriptor”

application-client.xml Java 2 Platform Enterprise Edition Specification, v1.3,
Chapter 9, “Application Clients - J2EE:application-client
XML DTD”

ra.xml Java 2 Enterprise Edition, J2EE Connector Architecture
Specification, v1.0, Chapter 10, “Packaging and
Deployment.”

Naming Standards

Chapter 13 Deploying Applications 343

The DTD schema files for all the Sun ONE Application Server deployment
descriptors are located in the install_dir/appserv/lib/dtds directory.

Naming Standards
Names of applications and individually deployed EJB JAR, WAR, and connector
RAR modules (as specified by the name attributes in the server.xml file) must be
unique in the Sun ONE Application Server. If you do not explicitly specify a name,
the default name is the first portion of the file name (without the .war or .jar
extension). For details about server.xml, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Modules of different types can have the same name within an application, because
when the application is deployed, the directories holding the individual modules
are named with _jar, _war and _rar suffixes. Modules of the same type within an
application must have unique names. In addition, database schema file names
must be unique within an application.

Table 13-2 Sun ONE Application Server Descriptors

Deployment Descriptor Where to Find More Information

sun-application.xml “The Application Deployment Descriptor Files” on
page 358.

sun-web.xml Sun ONE Application Server Developer’s Guide to Web
Applications

sun-ejb-jar.xml and
sun-cmp-mapping.xml

Sun ONE Application Server Developer’s Guide to
Enterprise Java Beans

sun-application-client.xml
and sun-acc.xml

Sun ONE Application Server Developer’s Guide to
Clients

sun-ra.xml Sun ONE J2EE CA Service Provider Implementation
Administrator’s Guide

NOTE The Sun ONE Application Server deployment descriptors must
have 600 level access privileges on UNIX systems.

Deployment Directory Structure

344 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using a Java package-like naming scheme is recommended for module filenames,
EAR filenames, module names as found in the <module-name> portion of the
ejb-jar.xml files, and EJB names as found in the <ejb-name> portion of the
ejb-jar.xml files. The use of this package-like naming scheme ensures that name
collisions do not occur. The benefits of this naming practice apply not only to the
Sun ONE Application Server, but to other J2EE application servers as well.

JNDI lookup names for EJBs must also be unique. Here too, establishing a
consistent naming convention may help. For example, appending the application
name and the module name to the EJB name would be one way to guarantee
unique names. In this case, mycompany.pkging.pkgingEJB.MyEJB would be the
JNDI name for an EJB in the module pkgingEJB.jar, which is packaged in the
application pkging.ear.

Make sure your package and file names do not contain spaces or characters that are
illegal for your operating system.

Deployment Directory Structure
When you deploy an application, the directories holding the individual modules
are named with _jar, _war and _rar suffixes. If you use the asadmin deploydir
command to deploy a directory instead of an EAR file, your directory structure
must follow this convention.

Module and application directory structures follow the structure outlined in the
J2EE specification.

Here is an example directory structure of a simple application containing a web
module, an EJB module, and a client module.

Deployment Directory Structure

Chapter 13 Deploying Applications 345

Here is an example directory structure of an individually deployed connector
module.

+ converter_1/
|--- converterClient.jar
|--+ META-INF/
| |--- MANIFEST.MF
| |--- application.xml
| '--- sun-application.xml
|--+ war-ic_war/
| |--- index.jsp
| |--+ META-INF/
| | |--- MANIFEST.MF
| '--+ WEB-INF/
| |--- web.xml
| '--- sun-web.xml
|--+ ejb-jar-ic_jar/
| |--- Converter.class
| |--- ConverterBean.class
| |--- ConverterHome.class
| '--+ META-INF/
| |--- MANIFEST.MF
| |--- ejb-jar.xml
| '--- sun-ejb-jar.xml
'--+ app-client-ic_jar/

|--- ConverterClient.class
'--+ META-INF/

|--- MANIFEST.MF
|--- application-client.xml
'--- sun-application-client.xml

+ MyConnector/
|--- readme.html
|--- ra.jar
|--- client.jar
|--- win.dll
|--- solaris.so
'--+ META-INF/

|--- MANIFEST.MF
|--- ra.xml
'--- sun-ra.xml

Runtime Environments

346 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Runtime Environments
Whether you deploy a component as an individually deployed module or as an
application, deployment affects both the file system and the server configuration.
See the “Module Runtime Environment” and “Application Runtime Environment”
figures.

Module Runtime Environment
The following figure,“Module Runtime Environment,” illustrates the environment
for individually deployed module-based deployment.

Figure 13-1 Module Runtime Environment

For file system entries, modules are extracted as follows:

instance_dir/applications/j2ee-modules/module_name
instance_dir/generated/ejb/j2ee-modules/module_name
instance_dir/generated/jsp/j2ee-modules/module_name

The generated/ejb directory contains stubs and ties; the generated/jsp
directory contains compiled JSPs.

Lifecycle modules are extracted as follows:

instance_dir/applications/lifecycle-modules/module_name

Configuration entries are added in server.xml as follows:

Configuration: File System:

pacpackagingEJB.jar

<ejb-module >
element in server.xml

instance_dir/applications/j2ee-modules/
packagingEJB/*

Runtime Environments

Chapter 13 Deploying Applications 347

<server>
<applications>

<type-module>
...module configuration...

</type-module>
</applications>

</server>

The type of the module in server.xml can be lifecycle, ejb, web, or connector.
For details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Application Runtime Environment
The following figure, “Application Runtime Environment,” illustrates the
environment for application-based deployment.

Figure 13-2 Application Runtime Environment

For file system entries, applications are extracted as follows:

instance_dir/applications/j2ee-apps/app_name
instance_dir/generated/ejb/j2ee-apps/app_name
instance_dir/generated/jsp/j2ee-apps/app_name

The generated/ejb directory contains stubs and ties; the generated/jsp
directory contains compiled JSPs.

Configuration entries are added in server.xml as follows:

Configuration: File System:

packagingApp.ear

packagingEJB.jar

<j2ee-application>
element in server.xml

instance_dir/applications/j2ee-apps/
packagingApp/packagingEJB/*

About Classloaders

348 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

<server>
<applications>

<j2ee-application>
...application configuration...

</j2ee-application>
</applications>

</server>

For details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Configuring server.xml To Use FastJavac Compiler
By default, Sun ONE Application Server uses the in built JDK compiler to compile
applications during deployment. You can also use Sun One Studio’s FastJavac
compiler, which has a faster compilation rate, during deployment.

In the bundled Solaris install, the location of the FastJavac compiler is not
transparent. In order to use the FastJavac compiler, you need to configure the
administrative server’s server.xml with the path for the compiler, as follows:

Add the following jvm-option in the java-config element, in server.xml:

<java-config java-home="/<install-dir>/jdk" server-classpath="....." >

jvm-options>-Dcom.sun.aas.deployment.java.compiler=/<install-dir>/s
tudio4/bin/fastjavac/fastjavac.sun</jvm-options>

<property name="com.sun.aas.deployment.java.compiler.options"

value="-jdk /<install-dir>/jdk" />

</java-config>

About Classloaders
Understanding Sun ONE Application Server classloaders can help you determine
where and how you can position supporting JAR and resource files for your
modules and applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific java
class file needed for resolving a dependency. For example, when an instance of
java.util.Enumeration needs to be created, one of the classloaders loads the
relevant class into the environment. For a more detailed discussion on
Classloaders, see the Sun ONE Application Server Developer’s Guide.

Deploying Modules and Applications

Chapter 13 Deploying Applications 349

Deploying Modules and Applications
This section describes the different ways to deploy J2EE applications and modules
to the Sun ONE Application Server. It covers the following topics:

• Deployment Names and Errors

• The Deployment Life Cycle

• Deployment of Module or Application

• Deploying a WAR Module

• Deploying an EJB JAR Module

• Deploying a Lifecycle Module

• Deploying an RMI/IIOP Client

• Deploying a J2EE CA Resource Adapter

• Deploying Static Content

• Access to Shared Frameworks

Deployment Names and Errors
A unique name is generated in the server.xml file when you deploy an
application or module. Do not change this name. During deployment, the server
detects any name collisions and does not load an application or module having a
non-unique name. Messages are sent to the server log when this happens. For more
about naming, see “Naming Standards” on page 343.

If an error occurs during deployment, the application or module is not deployed. If
a module within an application contains an error, the entire application is not
deployed.

For details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

The Deployment Life Cycle
After an application is initially deployed, it may be modified and reloaded,
redeployed, disabled, reenabled, and finally undeployed (removed from the
server). This section covers the following topics related to the deployment life
cycle:

Deploying Modules and Applications

350 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Dynamic Deployment

• Disabling a Deployed Application or Module

• Dynamic Reloading

Dynamic Deployment
You can deploy, redeploy, and undeploy an application or module without
restarting the server. This is called dynamic deployment.

Although primarily for developers, dynamic deployment can be used in
operational environments to bring new applications and modules online without
requiring a server restart. Whenever a redeployment is done, the sessions at that
transit time become invalid. The client must restart the session.

Disabling a Deployed Application or Module
You can disable a deployed application or module without removing it from the
server. Each application and module has an enabled attribute in the server.xml
file and a corresponding option in the Administration interface, which you can
change. For details about server.xml, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or
module when you change its code. All you have to do is copy the changed class
files into the deployment directory for the application or module. The server
checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production
environment, however, because it may degrade performance. In addition,
whenever a reload is done, the sessions at that transit time become invalid. The
client must restart the session.

To enable dynamic reloading, you can do one of the following:

• Use the Administration interface:

a. Open the Applications component under your server instance.

b. Go to the Applications page.

c. Check the Reload Enabled box to enable dynamic reloading.

Deploying Modules and Applications

Chapter 13 Deploying Applications 351

d. Enter a number of seconds in the Reload Poll Interval field to set the
interval at which applications and modules are checked for code changes
and dynamically reloaded.

e. Click on the Save button.

f. Go to the server instance page and select the Apply Changes button.

• Edit the following attributes of the server.xml file’s applications element:

❍ dynamic-reload-enabled="true" enables dynamic reloading.

❍ dynamic-reload-poll-interval-in-seconds sets the interval at which
applications and modules are checked for code changes and dynamically
reloaded.

For details about server.xml, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

In addition, to load new servlet files, reload EJB related changes, or reload
deployment descriptor changes, you must do the following:

1. Create an empty file named .reload at the root of the deployed application:

instance_dir/applications/j2ee-apps/app_name/.reload

or individually deployed module:

instance_dir/applications/j2ee-modules/module_name/.reload

2. Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each
time you make the above changes.

For JSPs, changes are reloaded automatically at a frequency set in the
reload-interval property of the jsp-config element in the sun-web.xml file. To
disable dynamic reloading of JSPs, set reload-interval="-1".

Tools for Deployment
This section discusses the various tools that can be used to deploy modules and
applications. The deployment tools include:

• The asadmin Utility

• The Administration Interface

• Sun ONE Studio

Deploying Modules and Applications

352 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The asadmin Utility
You can use the asadmin utility to deploy or undeploy applications and
individually deployed modules on local servers. Concurrent deployment on
multiple machines is not supported. This section describes the asadmin utility only
briefly.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 355.

asadmin deploy
The asadmin deploy command deploys a WAR, JAR, RAR, or EAR file. To deploy
an application, specify --type application in the command. To deploy an
individual module, specify --type ejb, web, connector. The syntax is as follows,
with defaults shown for optional parameters that have them:

asadmin deploy --user admin_user [--password admin_password] [--host
localhost] [-port 4848] [--secure | -s] [--virtualservers
virtual_servers] [--type application|ejb|web|connector] [--contextroot
contextroot] [--force=true] [--precompilejsp=false] [--name
component_name] [--upload=true] [--retrieve local_dirpath] [--instance
instance_name] filepath

For example, the following command deploys an individual EJB module:

asadmin deploy --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB.jar

asadmin deploydir
The asadmin deploydir command deploys an application or module in an open
directory structure. The structure must be as specified in “Deployment Directory
Structure” on page 344. The location of the dirpath under
instance_dir/applications/j2ee-apps or
instance_dir/applications/j2ee-modules determines whether it is an application
or individually deployed module. The syntax is as follows, with defaults shown for
optional parameters that have them:

asadmin deploydir --user admin_user [--password admin_password] [--host
localhost] [-port 4848] [--secure | -s] [--virtualservers
virtual_servers] [--type application|ejb|web|connector] [--contextroot
contextroot] [--force=true] [--precompilejsp=false] [--name
component_name] [--instance instance_name] dirpath

For example, the following command deploys an individual EJB module:

asadmin deploydir --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB

Deploying Modules and Applications

Chapter 13 Deploying Applications 353

asadmin undeploy
The asadmin undeploy command undeploys an application or module. To
undeploy an application, specify --type app in the command. To undeploy a
module, specify --type ejb, web, or connector. The syntax is as follows, with
defaults shown for optional parameters that have them:

asadmin undeploy --user admin_user [--password admin_password] [--host
localhost] [-port 4848] [--secure | -s] [--type
application|ejb|web|connector] [--instance instance_name] component_name

For example, the following command undeploys an individual EJB module:

asadmin undeploy --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB

The Administration Interface
You can use the Administration interface to deploy modules and applications to
both local and remote Sun ONE Application Server sites. To use this tool, follow
these steps:

1. Open the Applications component under your server instance.

2. Go to the Enterprise Applications, Web Applications, Connector Modules, or
EJB Modules page.

3. Click on the Deploy button.

4. Enter the full path to the module or application (or click on Browse to find it),
then click on the OK button.

5. Enter the module or application name.

You can also redeploy the module or application if it already exists by checking
the appropriate box. This is optional.

6. Assign the application or module to one or more virtual servers by checking
the boxes next to the virtual server names.

7. Click on the OK button.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 355.

Sun ONE Studio
You can use Sun ONE Studio 4 to deploy J2EE applications and modules. For more
information about using Sun ONE Studio, see the Sun ONE Studio 4, Enterprise
Edition Tutorial.

Deploying Modules and Applications

354 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Deployment of Module or Application
You can deploy applications or individual modules that are independent of
applications. The runtime and file system implications of application-based or
individual module-based deployment are described in “Runtime Environments”
on page 346.

Individual module-based deployment is preferable when components need to be
accessed by:

• Other modules

• J2EE Applications

• RMI/IIOP clients (Module-based deployment allows shared access to a bean
from an RMI/IIOP client, a servlet, or an EJB.)

Modules can be combined into an EAR file and then deployed as a single module.
This is similar to deploying the modules of the EAR independently.

Deploying a WAR Module
You deploy a WAR module in one of the ways described in “Tools for
Deployment” on page 351.

You can keep the generated source for JSPs by adding the -keepgenerated
property to the jsp-config element in sun-web.xml. If you include this property
when you deploy the WAR module, the generated source is kept in
instance_dir/generated/jsp/j2ee-apps/app_name/module_name if it is in an
application or instance_dir/generated/jsp/j2ee-modules/module_name if it is in
an individually deployed web module. For more information about the
-keepgenerated property, see the Sun ONE Application Server Developer’s Guide to
Web Applications.

NOTE In Sun ONE Studio, deploying a module or application is referred to
as executing it. Execution also includes making sure the server is
running and displaying the correct URL to activate the module or
application.

Deploying Modules and Applications

Chapter 13 Deploying Applications 355

Deploying an EJB JAR Module
You deploy an EJB JAR module in one of the ways described in “Tools for
Deployment” on page 351.

You can keep the generated source for stubs and ties by adding the
-keepgenerated flag to the rmic-options attribute of the java-config element
in server.xml. If you include this flag when you deploy the EJB JAR module, the
generated source is kept in
instance_dir/generated/ejb/j2ee-apps/app_name/module_name if it is in an
application or instance_dir/generated/ejb/j2ee-modules/module_name if it is in
an individually deployed EJB JAR module. For more information about the
-keepgenerated flag, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Deploying a Lifecycle Module
For general information about lifecycle modules, see the Sun ONE Application
Server Developer’s Guide.

You can deploy a lifecycle module using the following tools:

• The asadmin Utility

• The Administration Interface

The asadmin Utility
To deploy a lifecycle module, use the asadmin create-lifecycle-module
command. The syntax is as follows, with defaults shown for optional parameters
that have them:

asadmin create-lifecycle-module --user admin_user [--password
admin_password] [--host localhost] [-port 4848] [--secure | -s]
[--instance instance_name] --classname classname [--classpath classpath]
[--loadorder load_order_number] [--failurefatal=false] [--enabled=true]
[--description text_description] [--property (name=value)[:name=value]*]
modulename

For example:

asadmin create-lifecycle-module --user jadams --password secret
--host localhost --port 4848 --instance server1 --classname
RMIServer MyRMIServer

Deploying Modules and Applications

356 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To undeploy a lifecycle module, use the asadmin delete-lifecycle-module
command. The syntax is as follows, with defaults shown for optional parameters
that have them:

asadmin delete-lifecycle-module --user admin_user [--password
admin_password] [--host localhost] [-port 4848] [--secure | -s]
[--instance instance_name] module_name

For example:

asadmin delete-lifecycle-module --user jadams --password secret
--host localhost --port 4848 --instance server1 MyRMIServer

To list the lifecycle modules that are deployed on a server instance, use the
asadmin list-lifecycle-modules command. The syntax is as follows, with
defaults shown for optional parameters that have them:

asadmin list-lifecycle-modules --user admin_user [--password
admin_password] [--host localhost] [-port 4848] instance_name

For example:

asadmin list-lifecycle-module --user jadams --password secret --host
localhost --port 4848 server1

The Administration Interface
You can also use the Administration interface to deploy a lifecycle module. Follow
these steps:

1. Open the Applications component under your server instance.

2. Go to the Life Cycle Modules page.

3. Click on the Deploy button.

4. Enter the following information:

❍ Name (required) - The name of the life cycle module.

❍ Class Name (required) - The fully qualified name of the life cycle module’s
class file.

❍ Classpath (optional) - The classpath for the life cycle module. Specifies
where the module is located. The default location is under the application
root directory.

❍ Load Order (optional) - Determines the order in which life cycle modules
are loaded at startup. Modules with smaller integer values are loaded
sooner. Values can range from 101 to the operating system’s MAXINT.
Values from 1 to 100 are reserved.

Deploying Modules and Applications

Chapter 13 Deploying Applications 357

❍ Failure Fatal (optional) - Determines whether the server is shut down if the
life cycle module fails. The default is false.

❍ Enable (optional) - Determines whether the life cycle module is enabled.
The default is true.

5. Click on the OK button.

Deploying an RMI/IIOP Client
Deployment is only necessary for clients that communicate with EJBs. Deploying
an RMI/IIOP client is a three-step process:

1. Deploy the EAR or EJB JAR to be accessed by the RMI/IIOP client.

2. Assemble the necessary client files and deploy the client.

3. After deployment, a client JAR file is created in the following location for an
application:

instance_dir/applications/j2ee-apps/app_name/app_nameClient.jar

or in the following location for an individually deployed module:

instance_dir/applications/j2ee-modules/module_name/module_nameClient
.jar

The client JAR contains the ties and necessary classes for the RMI/IIOP client.
Copy this file to the client machine, and set the APPCPATH environment
variable on the client to point to this JAR.

You are now ready to run the client. For more information, see the Sun ONE
Application Server Developer’s Guide to Clients.

Deploying a J2EE CA Resource Adapter
You deploy a connector module in one of the ways described in “Tools for
Deployment” on page 351.

The Application Deployment Descriptor Files

358 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Deploying Static Content
Static content (HTML, images, etc.) can be hosted both on the web server and on
the Sun ONE Application Server. However, when a WAR is registered, the static
content gets deployed on the application server. All of the samples shipped with
Sun ONE Application Server host the static content on the application server.

For example, to access a static file index.html on the application server, use:

http://server:port/NASApp/<context_root/index.html

Access to Shared Frameworks
When J2EE applications and modules use shared framework classes (such as
components and libraries) the classes can be put in the path for the System
Classloader or the Common Classloader rather than in an application or module. If
you assemble a large, shared library into every module that uses it, the result is a
huge file that takes too long to register with the server. In addition, several versions
of the same class could exist in different classloaders, which is a waste of resources.

For more information about the system classloader, see “About Classloaders” on
page 348.

The Application Deployment Descriptor Files
Sun ONE Application Server applications include two deployment descriptor files:

• A J2EE standard file (application.xml), described in the Java Servlet
Specification, v2.3, Chapter 13, “Deployment Descriptors.”

• An optional Sun ONE Application Server specific file (sun-application.xml),
described in this section.

For more information on application deployment descriptor files, see the Sun ONE
Application Server Developer’s Guide.

359

Part 3

Managing HTTP Server Features and
Virtual Servers

Chapter 14, “Configuring HTTP Features”

Chapter 15, “Using Virtual Servers”

Chapter 16, “Managing Virtual Server Content”

360 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

361

Chapter 14

Configuring HTTP Features

This chapter describes how to configure preferences for your HTTP-related
features of your Sun ONE Application Server. For preferences related to virtual
servers and HTTP listeners, see Chapter 15, “Using Virtual Servers.”

This chapter includes the following topics:

• About the HTTP Features

• Configuring the File Cache

• Tuning Your Server for Performance

• Configuring HTTP Quality of Service

• Adding and Using Thread Pools

• Configuring the File Cache

• Editing Advanced Settings

• Configuring MIME Types

About the HTTP Features
The Sun ONE Application Server HTTP features include setting performance levels
for application server instances, setting performance tuning-related parameters,
and using the file cache to improve performance. These settings are stored in two
configuration files: init.conf and server.xml. You edit the init.conf settings
on the Advanced Settings page. For more information, see “Editing Advanced
Settings” on page 366.

Other properties you edit are stored in the server.xml file, in the http-service
element. For more information on both the init.conf file and the server.xml file,
see the Sun ONE Application Server Administrator’s Configuration File Reference.

Configuring the File Cache

362 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring the File Cache
The Sun ONE Application Server uses a file cache to serve static information faster.
The file cache contains information about files and static file content. The file cache
also caches information that is used to speed up processing of server-parsed
HTML.

The file cache is turned on by default. The file cache settings are contained in a file
called nsfc.conf. This file is present only if file cache parameters have been
changed from their defaults. For more information on nsfc.conf, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

To configure the file cache:

1. In the left pane, click HTTP Server

2. Click the File Caching tab

3. Enter the desired value in the fields.

4. Click OK.

For more information on using the file cache to improve performance, see the Sun
ONE Application Server Performance Tuning and Sizing Guide

Tuning Your Server for Performance
On the Performance Tuning page you can configure settings that control your Sun
ONE Application Server’s performance by controlling how many requests it can
handle, how long requests remain open without activity before timing out, and
whether you are doing reverse lookups of a client’s IP using DNS. Also, if you are
using DNS, you can set such performance-related features as whether you are
using asynchronous DNS, and DNS caching settings.

For more information on tuning, see the Sun ONE Application Server Performance
Tuning Guide.

To set the performance tuning settings:

1. In the left pane, click HTTP Server

2. Click the Tuning tab

3. Enter the desired value in the fields.

4. Click OK.

Configuring HTTP Quality of Service

Chapter 14 Configuring HTTP Features 363

For additional information on the settings you can tune through the
Administration interface, see the online help.

Configuring HTTP Quality of Service
Quality of service refers to the performance limits you set for a server. For example,
an ISP might want to charge different amounts of money for virtual servers
depending on how much bandwidth allowed them.

Before you can use quality of service for a specific virtual server, you must enable it
for the server instance and set some values.

To configure the quality of service settings for the server instance:

1. In the left pane, click HTTP Server.

2. Click the QOS tab.

3. To enable quality of service as a whole, click Enable.

By default quality of service is disabled. Enabling quality of service increases
server overhead slightly.

4. Choose the Recompute Interval.

The recompute interval is the number of milliseconds between each
computation of the bandwidth. The default is 100 milliseconds.

Configuring HTTP Quality of Service

364 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

5. Choose the Metric Interval.

The metric interval is the interval in seconds during which the traffic is
measured. The default is 30 seconds. All bandwidth measured during this time
is averaged to give the bytes per second.

If your site has a lot of large file transfers, use a large value (several minutes or
more) or this field. A large file transfer might take up all the allowed
bandwidth for a short metric interval, and result in connections being denied if
you’ve enforced the maximum bandwidth setting. Since the bandwidth is
averaged by the metric interval, a longer interval smooths out spikes caused by
large files.

If the bandwidth limit is much lower than available bandwidth (for example, 1
MB-per-second bandwidth limit but with a 1 GB-per-second connection to the
backbone), the metric interval should be shortened.

Please note that if you have large static file transfers and a bandwidth limit that
is much lower than available bandwidth, you have to decide which situation to
tune for, since the problems require opposite solutions.

6. Set the bandwidth limit, in bytes per second, for the server.

7. Choose whether or not to enforce the bandwidth limit setting.

If you choose to enforce the bandwidth limit, once the server reaches its
bandwidth limit additional connections are refused.

If you do not enforce the bandwidth limit, when the limit is exceeded the
server logs a message to the error log.

8. Choose the maximum number of connections allowed for the server.

This number is the number of concurrent requests processed.

9. Choose whether or not to enforce the connection limit setting.

If you choose to enforce the connection limit, once the server reaches its limit
additional connections are refused.

If you do not enforce the connection limit, when the limit is exceeded the
server logs a message to the error log.

10. To specify additional name/value pairs, click the Properties button.

11. Click OK.

To configure quality of service using the command-line interface’s asadmin utility,
use the following commands:

Adding and Using Thread Pools

Chapter 14 Configuring HTTP Features 365

• create-http-qos

• delete-http-qos

These commands use the following syntax:

asadmin create-http-qos --user admin_user [--password password] [--host
hostname] [--port admin_port] [--secure | -s] [--passwordfile file_name]
[--virtualserver virtual_server_id] [--bwlimit bandwidth_limit]
[--enforcebwlimit enforce_bandwidth_limit] [--connlimit connection_limit]
[--enforceconnlimit enforce_connection_limit] instancename

asadmin delete-http-qos --user admin_user [--password password] [--host
hostname] [--port admin_port] [--secure | -s] [--passwordfile
file_name][--virtualserver virtual_server_id] instancename

If you specify a virtual server, these commands create or delete quality of service
information for that virtual server. If you do not specify a virtual server, the
command affects the server instance.

For more information on command syntax, see the command-line interface help.
For more informtion on using asadmin, see Appendix A, “Using the Command
Line Interface.”

For more information on the limitations to the quality of service features, see
“Administering the Transaction Service Using the CLI” on page 153.

Adding and Using Thread Pools
You can use thread pools to allocate a certain number of threads to a specific
service, so that it doesn’t take up more threads than you want it to. Another use for
thread pools is for running thread-unsafe plugins. By defining a pool with the
maximum number of threads set to 1, only one request is allowed into the specified
service function.

When you add a thread pool, the information you specify includes the minimum
and maximum number of threads, the stack size, and the queue size.

To add a thread pool:

1. In the left pane, click HTTP Server

2. Click Thread Pool.

3. Enter the desired value in the fields.

4. Click OK.

Editing Advanced Settings

366 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

The thread pool is displayed at the bottom of the page. To edit or delete a thread
pool, click the Edit or Delete button next to it.

After you’ve set up a thread pool, use it by designating it as the thread pool for a
specific service.

For more information on using thread pools to improve performance, see the
Performance Tuning and Sizing Guide.

Editing Advanced Settings
When the Sun ONE Application Server starts up, it looks in a file called init.conf

in the instance_dir/config/ directory to establish a set of global variable settings
that affect the server’s behavior and configuration. Sun ONE Application Server
executes all the directives defined in init.conf.

These settings are shown on the Advanced Settings page. You can edit certain
settings in the init.conf file that affect the following areas:

• DNS

• SSL

• Performance

• CGI

• Keep-alive

• Logging

For a complete description of the init.conf file, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

To edit the advanced settings:

1. In the left pane, click HTTP Server

2. Click the Advanced tab

3. Click the type of settings you want to change (DNS, SSL, and so forth).

4. Make the desired changes to the settings and click OK.

For more information about each type of settings, see the online help.

Configuring MIME Types

Chapter 14 Configuring HTTP Features 367

Configuring MIME Types
The Mime Types page allows you to edit your server’s MIME files. MIME
(Multi-purpose Internet Mail Extension) types control what types of multimedia
files your system supports. MIME types also specify what file extensions belong to
certain server file types, for example to designate what files are CGI programs.

You can create as many MIME types files as you need, and associate them with the
application server instance or virtual servers. One MIME types file, mime.types,
exists by default on the server, and cannot be deleted.

To create a new MIME Types file:

1. In the left pane, under HTTP Server, click MIME Type File.

2. On the right pane, click New.

3. Enter an identifier for the MIME file, and a file name.

4. Click OK.

To edit the definitions in a MIME file:

1. In the left pane, under HTTP Server, click the icon next to MIME Type File to
expand the view.

2. Click the ID of the MIME file you want to edit.

3. On this page, edit the MIME file name associated with the ID.

4. To edit the file extensions in the MIME file, click Edit MIME file.

5. To edit an existing entry, click Edit next to it.

6. On the page that comes up, make your changes and click Change MIME Type.

7. To delete a MIME type, click Remove next to it.

8. To add a new MIME type, enter a category, content type, and file suffix in the
fields, then click New Type.

To configure MIME types using the command-line interface’s asadmin utility, use
the following commands:

• create-mime

• delete-mime

• list-mimes

These commands use the following syntax:

Configuring MIME Types

368 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin create-mime --user admin_user [--password password] [--host
hostname] [--port admin_port] [--secure | -s] [--passwordfile file_name]
[--instance instancename] --mimefile filename mime_id

asadmin delete-mime --user admin_user [--password password] [--host
hostname] [--port admin_port] [--secure | -s] [--passwordfile file_name]
[--instance instancename] mime_id

asadmin list-mimes --user admin_user [--password password] [--host
hostname] [--port admin_port] [--secure | -s] [--passwordfile file_name]
instancename

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

For information on using the MIME types with virtual servers, see the online help
and Chapter 15, “Using Virtual Servers.”

369

Chapter 15

Using Virtual Servers

This chapter explains how to set up and administer virtual servers using your Sun
ONE Application Server. For information on configuring settings for virtual server
content, see Chapter 16, “Managing Virtual Server Content.”

This chapter includes the following topics:

• Virtual Servers Overview

• Using Sun ONE Application Server Features with Virtual Servers

• Creating and Configuring HTTP Listeners

• Creating and Configuring Virtual Servers

• Deploying Virtual Servers

Virtual Servers Overview
When you use virtual servers you can offer companies or individuals domain
names, IP addresses, and some server monitoring capabilities with a single
installed server. For the users, it is almost as if they have their own web servers,
though you provide the hardware and maintain the virtual servers.

When you install the unbundled version of the Sun ONE Application Server, a
default virtual server for the application server instance is created. That is, for the
default application server instance server1, a virtual server named server1 is also
created. If you are using the Solaris 9 bundled version, you need to create a server
instance. When you create it, a virtual server with the same name is also created. A
virtual server is created for each additional application server instance you create.
For more information on creating and configuring virtual servers, see “Creating
and Configuring Virtual Servers” on page 380. For more information on deploying
virtual servers, see “Deploying Virtual Servers.”

Virtual Servers Overview

370 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

This virtual server controls the Sun ONE Application Server’s HTTP features that
are available on a per-virtual server basis. You may not want to use multiple
virtual servers, but you still configure certain properties for your application server
instance by configuring the default virtual server created with that application
server instance.

The settings for virtual servers are stored in the virtual-server element in the
server.xml file, found in the instance_dir/config directory. For more information
about this file, see the Sun ONE Application Server Administrator’s Configuration File
Reference.

Some information pertaining to a virtual server is stored in its obj.conf file. Each
virtual server has a separate obj.conf file.

This section includes the following topics:

• HTTP Listeners

• Virtual Servers

• The obj.conf File

• Virtual Server Selection for Request Processing

• Document Root

• Using Access Log Files and Server Log Files

HTTP Listeners
Connections between the server and clients happen on an HTTP listener, also
called a listen socket. Each HTTP listener you create has an IP address, a port
number, a return server name, and a default virtual server. If you want an HTTP
listener to listen on all configured IP addresses on a given port for a machine, use
0.0.0.0, any, ANY, or INADDR_ANY for the IP address. For more information on
creating and configuring HTTP Listeners, see “Creating and Configuring HTTP
Listeners” on page 377.

When you install the unbundled version of Sun ONE Application Server, one
HTTP listener, http-listener-1, is created automatically. This HTTP listener uses
the IP address 0.0.0.0 and the port number you specified as your HTTP server port
number during installation (the default is 80, or 1024 on UNIX if you are not
installing as root). You cannot delete the default HTTP listener. If you are using
multiple virtual servers, you can either use the default HTTP listener for all virtual
servers, or create multiple HTTP listeners.

Virtual Servers Overview

Chapter 15 Using Virtual Servers 371

When you use the Solaris 9 bundled Sun ONE Application Server, your HTTP
listener is created when you create the server instance. It has the IP address 0.0.0.0
and the port number you specified when you created your instance.

Since an HTTP listener is a combination of IP address and port number, you can
have multiple HTTP listeners with the same IP address and different port numbers,
or with different IP addresses and the same port number. For example, you could
have 1.1.1.1:81 and 1.1.1.1:82. Additionally, you could have 1.1.1.1:81 and 1.2.3.4:81,
as long as your machine is configured to respond to both these addresses.
However, if you use the 0.0.0.0 IP address, which listens on all IP addresses on a
port, you cannot set up HTTP listeners for additional IP addresses that listen on the
same port for a specific IP address. For example, if you have an HTTP listener
using 0.0.0.0:80 (all IP addresses on port 80) you cannot also create an HTTP
listener which uses 1.2.3.4:80.

Each HTTP listener also has a default virtual server, which is the server to which it
routes requests if it can’t connect to the virtual server specified in the request.

In addition, you specify the number of acceptor threads (sometimes called accept
threads) in the HTTP listener. Accept threads are threads that wait for connections.
The threads accept connections and put them in a queue where they are then
picked up by worker threads. Ideally, you want to have enough accept threads so
that there is always one available when a new request comes in, but few enough so
that they do not provide too much of a burden on the system. The default is 1. A
good rule is to have one accept thread per CPU on your system. You can adjust this
value if you find performance suffering.

You also specify whether security is enabled for an HTTP listener and what kind of
security you are using (for example, what kind of SSL and which ciphers).

Virtual Servers
To create a virtual server you must first decide what kind of virtual server you
want. You can have an IP-address-based virtual server, or a URL-host-based
virtual server. To create a virtual server, all you need to specify is a virtual server
ID, one or more HTTP listeners, and one or more URL hosts.

This section includes the following topics:

• Types of Virtual Servers

• IP-Address-Based Virtual Servers

• URL-Host-Based Virtual Servers

• Default Virtual Server

Virtual Servers Overview

372 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Types of Virtual Servers
All virtual servers have a URL host specified. However, the virtual server may also
be associated with an IP address based on an HTTP listener. If the virtual server’s
HTTP listener listens on a specific IP address, the virtual server is called an
IP-address-based virtual server.

If several virtual servers listen on the same IP address, they are distinguished by
the URL host, and are URL-host-based virtual servers.

When a new request comes in, the server determines which virtual server to send it
to based on the IP address or the value in the Host header. It evaluates the IP
address first. For more information, see “Virtual Server Selection for Request
Processing” on page 374.

IP-Address-Based Virtual Servers
In order to have multiple IP addresses on a single computer, you must either map
them through the operating system or provide additional cards. To set up multiple
IP addresses through the operating system, use the Network Control Panel
(Windows) or the ifconfig utility (UNIX). Please note that directions for using
ifconfig vary from platform to platform. Consult your operating system
documentation for more information.

You create an IP-address-based virtual server by creating an HTTP listener that
listens on a specific IP address. You then associate a virtual server as the default
virtual server for the HTTP listener. For more information on ways to deploy
virtual servers, see “Deploying Virtual Servers” on page 387.

URL-Host-Based Virtual Servers
You can set up URL-host-based virtual servers by giving them unique URL hosts.
The contents of the Host request header directs the server to the correct virtual
server.

For example, if you want to set up virtual servers for customers aaa, bbb, and ccc) so
that each customer can have an individual domain name, you first configure DNS
to recognize that each customer’s URL (www.aaa.com, www.bbb.com,
www.ccc.com) resolves to the IP address of the HTTP listener you are using. You
then set the URL hosts for each virtual server to the correct setting (for example,
www.aaa.com). Note that you map hosts to IP addresses in the /etc/hosts file.

You can have any number of these URL-host-based virtual servers associated with
an HTTP listener.

Virtual Servers Overview

Chapter 15 Using Virtual Servers 373

Because URL-Host-based virtual servers use the Host request header to direct the
user to the correct page, not all client software works with them. Older client
software that does not support the HTTP Host header won’t work. These clients
will receive the default virtual server for the HTTP listener.

Default Virtual Server
URL-Host-based virtual servers are selected using the Host request header. If the
end user’s browser does not send the Host header, or if the server cannot find the
specified Host header, the default virtual server for the HTTP listener services the
request.

Also, for IP-address-based virtual servers, if Sun ONE Application Server cannot
find the specified IP address, the default virtual server for the HTTP listener
services the request. You can configure the default virtual server to send an error
message, or server pages from a special document root.

You specify a default virtual server when you create an HTTP listener. You can
always change the default virtual server.

The obj.conf File
By default, each virtual server has a separate obj.conf file where virtual server
settings are stored. When you change settings through the Administration interface
or command-line interface, those changes are made automatically in the
configuration files, including the virtual server’s obj.conf file. All obj.conf files
are located in the instance_dir/config directory. Whenever this guide refers to “the
obj.conf file,” it refers to all obj.conf files or to the obj.conf file for the virtual
server being described.

The file named obj.conf that lacks a prefix is a template that Sun ONE
Application Server uses to create obj.conf files for each virtual server. Editing this
file does not affect any existing virtual servers, but does affect any subsequently
created virtual servers. For more information on editing the obj.conf file directly,
see the Sun ONE Application Server Administrator’s Configuration File Reference.

NOTE Do not confuse the default virtual server for an HTTP listener with
the default virtual server created when you install the server. The
default virtual server is the virtual server for the default application
server instance. The default virtual server for an HTTP listener is
any virtual server you designate as the default.

Virtual Servers Overview

374 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

By default, each active obj.conf file is named virtual_server_name-obj.conf.
Because the default virtual server for a server instance is named after the instance,
when you first create a server instance, its obj.conf file is named
instance_name-obj.conf. Editing one of these files directly or through the
Administration interface changes the configuration of a virtual server.

Virtual Server Selection for Request Processing
Before the server can process a request, it must accept the request via an HTTP
listener, then direct the request to the correct virtual server. This section discusses
how the virtual server is determined.

• If the HTTP listener is configured to only a default virtual server, that virtual
server is selected.

• If the HTTP listener has more than one virtual server configured to it, the
request Host header is matched to the hosts attribute of a virtual server. If no
Host header is present or no hosts attribute matches, the default virtual server
for the HTTP listener is selected.

If a virtual server is configured to an SSL HTTP listener, its hosts attribute is
checked against the subject pattern of the certificate at server startup, and a
warning is generated and written to the server log if they don’t match.

After the virtual server is determined, the Sun ONE Application Server executes
the virtual server’s obj.conf file. For details about how the server decides which
directives to execute in obj.conf, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Document Root
The document root (sometimes called the primary document directory) is the
central directory that contains all the virtual server’s files you want to make
available to remote clients.

The document root directory provides an easy way to restrict access to the files on a
virtual server. It also makes it easy to move documents to a new directory (perhaps
on a different disk) without changing any of the URLs because the paths specified
in the URLs are relative to the primary document directory.

Using Sun ONE Application Server Features with Virtual Servers

Chapter 15 Using Virtual Servers 375

For example, if your document directory is install_dir/docs, a request such as
http://www.sun.com/products/info.html tells the server to look for the file in
install_dir/docs/info.html. If you change the document root (that is, you move all
the files and subdirectories), you only have to change the document root that the
virtual server uses, instead of mapping all URLs to the new directory or somehow
telling clients to look in the new directory.

The document root for your default Sun ONE Application Server instance (server1)
becomes the document root for the virtual servers created within the server1
application server instance. You can override that directory for each virtual server
you create.

Using Sun ONE Application Server Features with
Virtual Servers

Sun ONE Application Server has many features, such as SSL and access control,
that you can use with virtual servers. The following sections describe the features
and provide information on where to look for more information.

This section includes the following topics:

• Using SSL with Virtual Servers

• Using Access Log Files and Server Log Files

• Using Access Control with Virtual Servers

• Using CGIs with Virtual Servers

Using SSL with Virtual Servers
If you want to use SSL on a virtual server, in most cases you use an
IP-address-based virtual server. The customary port is 443. It is difficult to use SSL
on a URL-host-based virtual server because Sun ONE Application Server must
read the request before determining which URL host to send the request to. Once
the server reads the request, the initial handshake, where security information is
exchanged, has already happened.

The only exception is when URL-Host-based virtual servers all have the same SSL
configuration, including the same server certificate, using “wildcard certificates.”
For more information, see the Sun ONE Application Server Administrator’s Guide to
Security.

Using Sun ONE Application Server Features with Virtual Servers

376 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

One way to implement SSL with virtual servers is to have two HTTP listeners, one
using SSL and listening to port 443, and one that is not using SSL. A user would
typically access the virtual server through the non-SSL HTTP listener. When the
need to have secure transactions arises, users could click a button on the web page
to start initiating secure transactions. After that, the requests go through the secure
HTTP listener.

Because SSL transactions are much slower than non-SSL transactions, this design
limits the SSL transactions to only the ones that are necessary. Faster, non-SSL
connections are used the rest of the time.

For more information on setting up and using security with you Sun ONE
Application Server and virtual servers, see the Sun ONE Application Server
Administrator’s Guide to Security. For a diagram of a sample SSL configuration with
virtual servers, see “Example 2: Secure Server” on page 388.

Using Access Log Files and Server Log Files
The access log file is the file where HTTP accesses to the virtual server are logged.
When you create a new virtual server, by default the access log file is the same log
file as the application server instance. In many cases you will want each individual
virtual server to have its own log file. To set this up, you can change the log path
for each virtual server. If you want to keep all virtual server accesses logged to the
same access log file, you can change the logging settings for the server instance so
that the virtual server ID is included in the log file. For more information on
changing the application server instance’s logging, see Chapter 5, “Using
Logging.”

The server log file is the file where informational messages and errors are logged.
When you create a new virtual server, its log file by default is the same as the log
file for the application server instance. You can change the log file for each virtual
server.

Using Access Control with Virtual Servers
With virtual servers you have the ability to set up access control on a per virtual
server basis. You can even configure it so that each virtual server can have user and
group authentication using an LDAP database. For more information, see the Sun
ONE Application Server Administrator’s Guide to Security.

Creating and Configuring HTTP Listeners

Chapter 15 Using Virtual Servers 377

Using CGIs with Virtual Servers
You can use CGIs on virtual servers. You need to set up the directories where CGIs
will be stored on each virtual server and set a file type for the CGI. For more
information on CGIs, see the Sun ONE Application Server Developer’s Guide to Web
Applications.

Creating and Configuring HTTP Listeners
Before the server can process a request, it must accept the request via an HTTP
listener, then direct the request to the correct virtual server. One HTTP listener,
http-listener-1, is created automatically when a server instance is created
(either during installation or later). This HTTP listener uses the IP address 0.0.0.0
and the port number you specified as your application server port number. You
cannot delete the default HTTP listener.

This section covers the following topics:

• Creating an HTTP Listener

• Editing HTTP Listener Settings

• Deleting an HTTP Listener

Creating an HTTP Listener
To create an HTTP listener using the Administration interface:

1. In the left pane, for the application server instance, open HTTP Server.

2. Click HTTP Listeners.

3. Click New.

Creating and Configuring HTTP Listeners

378 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

4. Fill in the fields.

HTTP listeners must have a unique combination of port number and IP
address. You can use either IPV4 or IPV6 addresses. If you want to create an
HTTP listener for IP-address-based virtual servers, specify a particular IP
address at for the HTTP listener.

The Return Server Name field specifies the host name in the URLs the server
sends to the client. This affects URLs the server automatically generates; it
doesn’t affect the URLs for directories and files stored in the server. This name
should be the alias name if your server uses an alias.

The default virtual server is the virtual server that will answer requests for the
HTTP listener if no other virtual server is found first. For more information, see
“Virtual Server Selection for Request Processing” on page 374.

You must enable the HTTP listener before it can accept requests.

You can also enable security and configure advanced properties for this HTTP
listener. To specify IPV6, use the value inet6 in the Family field. If this value is
inet6, IPv4 addresses are prefixed with ::ffff: in the server log.

5. Click OK.

Please note that you must enter an existing virtual server in the default virtual
server field when you create an HTTP listener. You can use the virtual server
created with the server instance, and then go back and change it after you’ve
created additional virtual servers, if you like.

To create an HTTP listener using the command-line interface, use the asadmin
utility’s create-http-listener command. To get a list of all created HTTP
listeners, use the command list-http-listeners.

To create an HTTP Listener, use the following syntax:

asadmin create-http-listener --user username [--password password]
[--host hostname] [--port adminport] [--secure | -s] [--passwordfile
file_name] --address address [--instance instancename] --listenerport
listener_port --defaultvs virtual_server --servername server_name [--family
family] [--acceptorthreads acceptor_threads] [--blockingenabled
blocking_enabled] [--securityenabled security_enabled] [--enabled enabled]
listener_id

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Creating and Configuring HTTP Listeners

Chapter 15 Using Virtual Servers 379

Editing HTTP Listener Settings
To edit HTTP listener settings using the Administration interface:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open HTTP Listeners.

3. Click the HTTP listener you want to edit.

4. Make the desired changes and click Save.

For more information, see the online help.

You can also edit an HTTP listener using the asadmin utility in the command-line
interface. Use the get command to get the current settings, and the set command
to set them to new values.

To get the values of all the attributes of an HTTP listener:

asadmin> get server_instance.http-listener.http_listener_name.*

For example, to get the values for the default HTTP listener:

asadmin> get server1.http-listener.http-listener-1.*

To set the value of any attribute:

asadmin> set server_instance.http-listener.http_listener_name.attribute_name=value

For example, to set the attribute defaultVirtualServer to server2 for
http-listener-1:

asadmin> set
server1.http-listener.http-listener-1.defaultVirtualServer=server2

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Deleting an HTTP Listener
To delete an HTTP listener using the Administration interface:

1. In in the left pane, for the application server instance, open HTTP Server.

2. Click HTTP Listeners.

3. Click the checkbox next to the HTTP listener you want to delete.

4. Click Delete.

Creating and Configuring Virtual Servers

380 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To delete an HTTP listener using the command-line interface, use the asadmin
utility’s delete-http-listener command, using the following syntax:

asadmin delete-http-listener ---user username [--password password]
[--host hostname] [--port adminport] [--secure | -s] [--passwordfile
file_name] --instance instance httplistener_id

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Creating and Configuring Virtual Servers
Once you have set up an HTTP Listener, you can create and use virtual servers.

This section covers the following topics:

• Creating a Virtual Server

• Editing Virtual Server Settings

• Deleting a Virtual Server

Creating a Virtual Server
To create a virtual server using the Administration interface:

1. In the left pane, for the application server instance, open HTTP Server.

2. Click Virtual Servers.

3. Click New.

4. Fill in the required fields and any optional fields.

5. Click Save.

To create a virtual server using the command-line interface, use the asadmin
utility’s create-virtual-server command, using the following syntax:

asadmin create-virtual-server --user username ---user username
[--password password] [--host hostname] [--port adminport] [--secure |
-s] [--passwordfile file_name] [--instance instancename] --hosts hosts
--mime mime_types_file [--httplisteners http-listeners] [--defaultwebmodule
default_web_module] [--configfile config_file] [--defaultobj default_object]
[--state state] [--acls acls] [--acceptlang accept_language] [--logfile
logfile] [--property (name=value)[:name=value]*] virtual_server_id

Creating and Configuring Virtual Servers

Chapter 15 Using Virtual Servers 381

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

When you create a virtual server, you can enter settings of the following types:

• Required Settings

• Optional General Settings

• Web Application Settings

• CGI Settings

• HTTP Quality of Service Settings

Required Settings
The required setting for a virtual server include the name (ID), and the URL host or
hosts.

You also must specify a MIME types file. The MIME types file contains the
mappings of file extensions to types of files. For example, the MIME types file is
where you can specify that all files ending .cgi be treated as CGI files.

You don’t need to create a separate MIME types file for each virtual server. Instead,
you create as many MIME types files as you need and associate them with a virtual
server.The default MIME types file is called mime1 and the file name is
mime.types.

For more information on MIME types files, see “Configuring MIME Types” on
page 367.

Optional General Settings
In addition to the required fields, you can also set optional fields.

HTTP listener
The HTTP listener handles the connection to the virtual server. You must specify
one in order to have remote clients access the virtual server.

ACLs
The access control list (ACL) applied to the virtual server. For more information,
see the Sun ONE Application Server Administrator’s Guide to Security.

Creating and Configuring Virtual Servers

382 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Accept Language Header
When clients contact a server using HTTP 1.1, they can send header information
describing the languages they accept. You can configure your server to parse this
language information.

For example, if you store documents in Japanese and English, you could choose to
parse the accept language header. When clients that have Japanese as the accept
language header contact the server, they receive the Japanese version of the page.
When clients that have English as the accept language header contact the server,
they receive the English version.

If you do not support multiple languages, you should not parse the accept
language header.

State
This state is the virtual server’s state, which is independent of whether the
application server instance is On or Off. If a virtual server’s state displayed on this
page is On, the virtual server can only accept requests if the application server
instance is On as well.

This is true of the default virtual server for the default application server instance
as well. If you turn off your application server instance, your default virtual server
is still set to On, but will not accept connections.

Valid states are On, Off, or Disabled. A virtual server is able to accept connections
if it is set to On

You cannot turn off or disable the default virtual server for the application server
instance.

Log Files
The log file, (also known as the server log file) is the file where informational
messages and errors are logged. The access log file is the file where HTTP accesses
to the virtual server are logged.

Document Root
The document root (sometimes called the primary document directory) is the
central directory that contains all the virtual server’s files you want to make
available to remote clients. For more information, see “Document Root” on
page 374.

Creating and Configuring Virtual Servers

Chapter 15 Using Virtual Servers 383

Web Application Settings
A web application is a collection of servlets, JavaServer Pages, HTML documents,
and other web resources which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server 7 supports the Servlet 2.3 API specification, which
allows servlets and JSPs to be included in web applications. In addition, Sun ONE
Application Server 7 supports SHTML and CGI, which are non-J2EE application
components.

When you create a virtual server, you specify a default web module for the virtual
server. The default web module responds to all requests that cannot be resolved to
other web modules deployed to the virtual server. If you don’t specify a default
web module, the web module that has an empty context root is used. If there’s no
web module with an empty context root, a system default web module is created
and used.

When you deploy a web application, you specify a virtual server. Once you have
deployed a web application, it appears in the list of available web modules to
choose as the default web module for a virtual server. When you specify a web
module as the default web module for a virtual server, the virtual server is
automatically added to the web application’s list of virtual servers.

CGI Settings
The CGI settings you set when you create a virtual server govern the user and
group CGI programs run as, the directory to change to (chroot) before CGI
execution begins, and the directory to change to after the chroot.

On UNIX you can also set nice, an increment that determines a CGI program's
priority relative to the server. Typically, the server is run with a nice value of 0 and
the nice increment would be between 0 (the CGI program runs at same priority as
server) and 19 (the CGI program runs at much lower priority than server).

HTTP Quality of Service Settings
Quality of service refers to the performance limits you set for a virtual server. For
example, an ISP might want to charge different amounts of money for virtual
servers depending on how much bandwidth allowed them. These settings can
either be enforced (that is, only the specified bandwidth and maximum number of
connections will be allowed) or not enforced. If the settings are not enforced, a
message is logged to the log file when the limits are exceeded. For more
information, see “Administering the Transaction Service Using the CLI” on
page 153.

Creating and Configuring Virtual Servers

384 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

In addition to changing these settings through the Administration interface, you
can use the command-line interface’s asadmin utility. To configure quality of
service using the command-line interface’s asadmin utility, use the following
commands:

• create-http-qos

• delete-http-qos

These commands use the following syntax:

asadmin create-http-qos --user username [--password password] [--host
hostname] [--port adminport] [--secure | -s] [--passwordfile file_name]
[--virtualserver virtual_server_id] [--bwlimit bandwidth_limit]
[--enforcebwlimit enforce_bandwidth_limit] [--connlimit connection_limit]
[--enforceconnlimit enforce_connection_limit] instance_name

asadmin delete-http-qos --user username [--password password] [--host
hostname] [--port adminport] [--secure | -s] [--passwordfile file_name]
[--virtualserver virtual_server_id] instance_name

If you specify a virtual server, these commands create or delete quality of service
information for that virtual server. If you do not specify a virtual server, the
command affects the server instance.

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Editing Virtual Server Settings
Once you have set up your virtual servers, you can edit them. For information on
editing virtual server settings, see the following topics:

• Editing General Settings Using the Administration Interface

• Editing General Settings Using the Command-Line Interface

• Editing CGI Settings

• Editing Document Handling Settings, Document Directories Settings, and
HTTP/HTML Settings

Editing General Settings Using the Administration Interface
The virtual server’s general settings are the ones you could set when you created
the virtual server. To change them, follow these steps:

Creating and Configuring Virtual Servers

Chapter 15 Using Virtual Servers 385

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the virtual server you want to edit.

4. Make your desired changes.

The areas you can change include quality of service settings, adding ACLs,
content-related settings such as the document root and the accept language
header, CGI-related settings such as the user, group, nice, and chroot settings,
and the default web module.

5. Click Save.

For more information on some of these settings, see “Creating and Configuring
Virtual Servers” on page 380. Also see the online help.

Editing General Settings Using the Command-Line Interface
You can also edit these setting using the asadmin utility in the command-line
interface. Use the get command to get the current settings, and the set command
to set them to new values.

To get all the attributes from a virtual server, use the following syntax:

asadmin> get instance_name.virtual-server.vserver_id.*

For example:

asadmin> get server1.virtual-server.vs1.*

If you want to get all the attributes for the application server instance server1, use
the following syntax:

asadmin> get server1.virtual-server.server1.*

To set an attribute, for example, the accept language header, use the following
syntax:

asadmin> set
server1.virtual-server.server1.virtualserver.acceptLanguage=false

NOTE You can user the command-line interface to set values for all the
fields on the General page. However, you cannot use the
command-line interface to set values for the fields on the pages on
other tabs, for example, the pages on the CGI tab.

Creating and Configuring Virtual Servers

386 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Editing CGI Settings
For information on editing CGIs, see the Sun ONE Application Server Developers
Guide to Web Applications.

Editing Document Handling Settings, Document Directories Settings,
and HTTP/HTML Settings
For information on changing these settings, see Chapter 16, “Managing Virtual
Server Content.”

Deleting a Virtual Server
To delete a virtual server:

1. In the Administration interface, in the left pane, for the application server
instance, open HTTP Server.

2. Click Virtual Servers.

3. Click the checkbox next to the virtual server you want to delete.

4. Click Delete.

You cannot delete all virtual servers using the Administration interface.

To delete a virtual server using the command-line interface, use the asadmin
utility’s delete-virtual-server command.

Usage is as follows:

asadmin delete-virtual-server --user username [--password password]
[--host hostname] [--port adminport] [--secure | -s] [--passwordfile
file_name] --instance instance virtualserver_id

For more information on command syntax, see the command-line interface help.
For more information on using asadmin, see Appendix A, “Using the Command
Line Interface.”

Deploying Virtual Servers

Chapter 15 Using Virtual Servers 387

Deploying Virtual Servers
Sun ONE Application Server’s virtual server architecture is very flexible. An
application server instance can have any number of HTTP listeners, both secure
and non-secure. You can associate any number of virtual servers with these HTTP
listeners. You can have both IP-address-based and URL-host-based virtual servers.

Every virtual server can (but does not have to) have its own list of ACLs, its own
mime.types file, and its own set of Java Web Applications.

This design gives you maximum flexibility to configure the server for a variety of
applications. The following examples discuss some of the possible configurations
available for Sun ONE Application Server.

• Example 1: Default Configuration

• Example 2: Secure Server

• Example 3: Intranet Hosting

• Example 4: Mass Hosting

Example 1: Default Configuration
The default configuration is one application server instance. This application server
instance has just one HTTP listener listening on port 80, 1024, or whatever you
selected, of any IP address to which your computer is configured.

Some mechanism in your local network establishes a name-to-address mapping for
each of the addresses to which your computer is configured. In the following
example, the computer has two network interfaces: the loopback interface (the
interface that exists even without a network card) on address 127.0.0.1, and an
ethernet interface on address 10.0.0.1.

The name example.com is mapped to 10.0.0.1 via DNS. The HTTP listener is
configured to listen on port 80 on any address to which that machine is configured
(“0.0.0.0:80”).

As there are no IP-address-based virtual servers in the default configuration, the
only HTTP listener is the default one. All connections pass through to virtual
server server1.

Deploying Virtual Servers

388 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 15-1 Default Configuration

In this configuration, connections to the following reach the server and are served
by virtual server VS1

• http://127.0.0.1/ (initiated on example.com)

• http://localhost/ (initiated on example.com)

• http://example.com/

• http://10.0.0.1/

Use this configuration for traditional HTTP server use. You do not need to add
additional virtual servers or HTTP listeners. You configure the settings of the
server by changing the settings for server1.

Example 2: Secure Server
If you want to use SSL in the default configuration, you can simply change the
HTTP listener to secure mode.

Application Server Instance

HTTP Listener
0.0.0.0:80

Loopback
Interface

127.0.0.1

Network
Interface

10.0.0.1

Server Machine www.example.com

www.example.com 10.0.0.1

DNS

Virtual
Server

server1

Deploying Virtual Servers

Chapter 15 Using Virtual Servers 389

You can also add a new secure HTTP listener configured to 0.0.0.0:443 and
associate server1 to the new HTTP listener. The virtual server now has HTTP
listeners, one that uses the secure HTTP listener, and one that doesn’t. Now your
server will serve the same content both with and without SSL, i.e.
http://example.com/ and https://example.com/ deliver the same content.

Figure 15-2 Secure Server

Please note that the SSL parameters are attached to the HTTP listener.

Application Server Instance

HTTP Listener
0.0.0.0:80

HTTP Listener
0.0.0.0:443

Loopback
Interface

127.0.0.1

Network
Interface

10.0.0.1

Server Machine www.example.com

www.example.com 10.0.0.1

DNS

Virtual
Server

server1

Deploying Virtual Servers

390 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Example 3: Intranet Hosting
A more complex configuration of the Sun ONE Application Server is one in which
the server hosts a few virtual servers for an intranet deployment. For example, you
have three internal sites where employees can look up other users' phone numbers,
look at maps of the campus, and track the status of their requests to the
Information Services department. Previously (in this example), these sites were
hosted on three different computers that had the names phone.example.com,
maps.example.com and is.example.com mapped to them.

To minimize hardware and administrative overhead, you want to consolidate all
three sites into one application server living on the machine example.com. You
could set this up in two ways: using URL-host-based or IP-address-based virtual
servers. Both have distinct advantages and disadvantages.

Figure 15-3 Intranet Hosting Using URL-Host-Based Virtual Servers

example.com

Application Server Instance

phone.example.com

maps.example.com

<default>

HTTP Listener
0.0.0.0:80

Loopback
Interface

127.0.0.1

Network
Interface

10.0.0.1

Server Machine www.example.com

www.example.com 10.0.0.1
is.example.com 10.0.0.1
phone.example.com 10.0.0.1
maps.example.com 10.0.0.1

DNS

Virtual
Server

IS

PHONE

MAPS

server1

Deploying Virtual Servers

Chapter 15 Using Virtual Servers 391

While URL-host-based virtual servers are easy to set up, they have the following
disadvantages:

• Supporting SSL in this configuration requires non-standard setup using
wildcard certificates. For more information see the Sun ONE Application Server
Administrator’s Guide to Security.

• URL-host-based virtual servers don’t work with legacy HTTP clients

The advantages to IP-address-based virtual servers are:

• They work with older clients that do not support the HTTP/1.1 Host header.

• Providing SSL support is straightforward.

The disadvantages are:

• They require configuration changes on the host computer (configuration of real
or virtual network interfaces)

• They don’t scale to configurations with thousands of virtual servers

Both configurations require setting up name-to-address mappings for the three
names. In the IP-address-based configuration, each name maps to a different
address. The host machine must be set up to receive connections on all these
addresses. In the URL-host-based configuration, all names can map to the same
address, the one the machine had originally.

Deploying Virtual Servers

392 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Figure 15-4 Intranet Hosting Using IP-Address-Based Virtual Servers

Example 4: Mass Hosting
Mass hosting is a configuration in which you enable many low-traffic virtual
servers. For example, an ISP that hosts many low-traffic personal home pages
would fall into this category. The virtual servers are usually URL-host-based.

HTTP Listener
10.0.0.2:80

HTTP Listener
10.0.0.4:80

HTTP Listener
10.0.0.1:80

HTTP Listener
10.0.0.3:80

Application Server InstanceLoopback
Interface

127.0.0.1

Network
Interface

10.0.0.1

Network
Interface

10.0.0.3

Network
Interface

10.0.0.4

Network
Interface

10.0.0.2

Server Machine www.example.com

www.example.com 10.0.0.1
is.example.com 10.0.0.2
phone.example.com 10.0.0.3
maps.example.com 10.0.0.4

DNS

Virtual
Server

IS

PHONE

MAPS

server1

Deploying Virtual Servers

Chapter 15 Using Virtual Servers 393

Figure 15-5 Mass Hosting

Notice that the default virtual server, server1, still exists.

www.p.com

Application Server Instance

www.q.com

www.r.com

www.s.com

www.t.com

www.u.com

www.v.com

www.w.com

www.x.com

www.y.com

www.z.com

<default>
server1

HTTP Listener
0.0.0.0:80

Loopback
Interface

127.0.0.1

Network
Interface

10.0.0.1

Server Machine www.example.com

www.example.com 10.0.0.1
www.p.com 10.0.0.1
www.q.com 10.0.0.1
www.r.com 10.0.0.1
. . .
www.z.com 10.0.0.1

DNS

Deploying Virtual Servers

394 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

395

Chapter 16

Managing Virtual Server Content

This chapter describes how you can configure and manage the files served by
virtual servers.

This chapter includes the following topics:

• Changing the Document Root

• Setting Additional Document Directories

• Enabling Remote File Manipulation

• Using htaccess

• Restricting Symbolic Links (UNIX)

• Customizing User Public Information Directories (UNIX)

• Setting the Document Preferences

• Customizing Error Responses

• Changing the International Character Set

• Setting the Document Footer

• Configuring URL Forwarding

• Setting up Server-Parsed HTML

• Setting Cache Control Directives

• Using Stronger Ciphers

Changing the Document Root

396 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Changing the Document Root
The document root is the central directory where you store all the files you want to
make available to remote clients.

When you add a virtual server, you specify a document root with an absolute path.
For more information about the document root and how it is used, see “Document
Root” on page 374.

To use the Administration interface to change the document root to use a different
path:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the General Tab.

5. Enter an absolute directory path in the Document Root field.

You need to create this directory manually.

6. Click OK.

For more information, see the online help.

Setting Additional Document Directories
Most of the time, the documents for a virtual or server instance are in the document
root. Sometimes, though, you may want to serve documents from a directory
outside of the document root. You can do this by setting additional document
directories. By serving from a document directory outside of the document root,
you can let someone manage a group of documents without giving them access to
your primary document root.

To use the Administration interface to add an additional document directory:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

NOTE Typically, each virtual server has its own document root.

Enabling Remote File Manipulation

Chapter 16 Managing Virtual Server Content 397

4. Click the Doc Directories tab.

5. Click Additional Doc Directories.

6. Choose the URL prefix to map.

Clients send this URL to the server when they want documents.

7. Specify the directory to map those URLs to.

8. Click OK.

To for more information, see the online help.

You should restrict access to additional document directories so that users cannot
write to them.

Enabling Remote File Manipulation
When you enable remote file manipulation, clients are able to upload files, delete
files, create directories, remove directories, list the contents of a directory, and
rename files on your server. The virtual servers’ configuration file obj.conf
contains the commands that are activated when you enable remote file
manipulation. By activating these commands, you allow remote browsers to
change a server’s documents. You should use access control to restrict write access
to these resources to prevent unauthorized tampering.

Note that enabling remote file manipulations should have no effect on using
content management systems such as Microsoft Frontpage.

UNIX: You must have the correct permissions for your files or this function will
not work; that is, the document root user must be the same as the server user.

To use the Administration interface to enable remote file manipulation:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Directories tab.

5. Click Remote File Manipulation.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

7. Choose to activate remote file manipulation.

Using htaccess

398 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

8. Click OK.

For more information, see the online help.

Using htaccess
The htaccess files are dynamic configuration files that store a subset of
configuration options. You can use htaccess files in combination with the Sun
ONE Application Server standard access controls (standard access controls are
always applied before any htaccess access controls).

For information on using htaccess, see the Sun ONE Application Server
Administrator’s Guide to Security.

Restricting Symbolic Links (UNIX)
You can limit the use of the file system links in your server. File system links are
references to files stored in other directories or file systems. The reference makes
the remote file as accessible as if it were in the current directory. There are two
types of file system links:

• Hard links—A hard link is really two filenames that point to the same set of
data blocks; the original file and the link are identical. For this reason, hard
links cannot be on different file systems.

• Symbolic (soft) links—A symbolic link consists of two files, an original file that
contains the data, and another that points to the original file. Symbolic links are
more flexible than hard links. Symbolic links can be used across different file
systems and can be linked to directories.

For more information about hard and symbolic links, see your UNIX system
documentation.

File system links are an easy way to create pointers to documents outside of the
primary document directory and anyone can create these links. For this reason you
might be concerned that people might create pointers to sensitive files (for
example, confidential documents or system password files).

To use the Administration interface to restrict symbolic links:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

Customizing User Public Information Directories (UNIX)

Chapter 16 Managing Virtual Server Content 399

3. Click the name of the virtual server you want to edit.

4. Click the Doc Directories tab.

5. Click Symbolic Links.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

7. Choose whether to enable soft and/or hard links and the directory to start
from.

8. Click OK.

For more information, see the online help.

Customizing User Public Information Directories
(UNIX)

Sometimes users want to maintain their own web pages. You can configure public
information directories that let all the users on a server create home pages and
other documents without your intervention.

With this system, clients can access your server with a certain URL that the server
recognizes as a public information directory. For example, suppose you choose the
prefix ~ and the directory public_html. If a request comes in for
http://www.sun.com/~jdoe/aboutjane.html, the server recognizes that ~jdoe
refers to a users’ public information directory. It looks up jdoe in the system’s user
database and finds Jane’s home directory. The server then looks at
~/jdoe/public_html/aboutjane.html.

This section contains the following topics:

• Configuring Public Information Directories

• Restricting Content Publication

• Loading the Entire Password File on Startup

NOTE Though the User Document Directories page appears in the
Administration interface for Windows systems, the feature is not
available.

Customizing User Public Information Directories (UNIX)

400 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Configuring Public Information Directories
To use the Administration interface to configure your virtual server to use public
directories:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Handling tab.

5. Click User Doc Directories.

6. Choose a user URL prefix.

The usual prefix is ~ because the tilde character is the standard UNIX prefix for
accessing a user’s home directory.

7. Choose the subdirectory in the user’s home directory where the server looks
for HTML files.

A typical directory is public_html.

8. Designate the password file.

The server needs to know where to look for a file that lists users on your
system. The server uses this file to determine valid user names and to find their
home directories. If you use the system password file for this purpose, the
server uses standard library calls to look up users. Alternatively, you can create
another user file to look up users. You can specify that user file with an
absolute path.

Each line in the file should have this structure (the elements in the
/etc/passwd file that aren’t needed are indicated with *):

username:*:*:groupid:*:homedir:*

9. Choose whether to load the password database at startup.

For more information, see “Loading the Entire Password File on Startup” on
page 401.

10. Click OK.

For more information, see the online help.

Another way to give users separate directories is to create a URL mapping to a
central directory that all of your users can modify.

Setting the Document Preferences

Chapter 16 Managing Virtual Server Content 401

Restricting Content Publication
In some situations a system administrator may want to restrict what user accounts
are able to publish content via user document directories. To restrict a user’s
publishing, add a trailing slash to the user’s home directory path in the
/etc/passwd file:

jdoe::1234:1234:John Doe:/home/jdoe:/bin/sh

becomes:

jdoe::1234:1234:John Doe:/home/jdoe/:/bin/sh

After you make this modification, Sun ONE Application Server will not serve
pages from this user’s directory. The browser requesting the URI receives a “404
File Not Found” error and a 404 error will be logged to the access log.

If, at a later time, you decide to allow this user to publish content, remove the
trailing slash from the /etc/passwd entry, then restart the Application Server
Instance.

Loading the Entire Password File on Startup
You also have the option of loading the entire password file on startup. If you
choose this option, the server loads the password file into memory when it starts,
making user lookups much faster. If you have a very large password file, however,
this option can use too much memory.

Setting the Document Preferences
This section contains the following topics:

• Entering an Index Filename

• Selecting Directory Indexing

• Specifying a Server Home Page

• Specifying a Default MIME Type

To use the Administration interface to set the document preferences, follow these
steps:

1. In the left pane, for the application server instance, open HTTP Server.

Setting the Document Preferences

402 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Handling tab.

5. Click Doc Preferences.

6. Choose the appropriate field values, as discussed in the following sections.

7. Click OK.

The preferences you can set are discussed more fully in the sections that follow. For
additional information, see the online help.

Entering an Index Filename
If a document name is not specified in the URL the server automatically displays
the index file. The default index files are index.html and home.html. If more than
one index file is specified, the server looks in the order in which the names appear
in this field until one is found. For example, if your index filenames are
index.html and home.html, the server looks for index.html and if it doesn’t find
it looks for home.html.

Selecting Directory Indexing
A document directory will probably have several subdirectories. For example,
there might be a directory called products, another called people, and so on. It’s
often helpful to let clients access an overview (or index) of these directories.

The server indexes directories by searching the directory for an index file called
index.html or home.html, which is a file you create and maintain as an overview
of the directory’s contents. For more information, see “Entering an Index
Filename” on page 402. You can specify any file as an index file for a directory by
naming it one of these default names, which means you can also use a CGI
program as an index.

If an index file isn’t found, the server generates an index file that lists all the files in
the document root.

CAUTION If your server is outside the firewall, turn off directory indexing to
ensure that your directory structure and filenames are not accessible.

Customizing Error Responses

Chapter 16 Managing Virtual Server Content 403

Specifying a Server Home Page
When end users first access the server, the first file they see is usually called a home
page. Usually, this file has general information about your server and links to other
documents.

By default, the server finds the index file specified in the Index Filename field in
the Document Preferences page and uses that for the home page. However, you
can also specify a file to use as the home page.

Specifying a Default MIME Type
When a document is sent to a client, the server includes a section that identifies the
document’s type, so the client can present the document in the right way.
However, sometimes the server can’t determine the proper type for the document
because the document’s extension is not defined for the server. In those cases, a
default value is sent.

The default is usually text/plain, but you should set it to the type of file most
commonly stored on your server. Some common MIME types include the
following:

Customizing Error Responses
You can specify a custom error response that sends a detailed message to clients
when they encounter errors from your virtual server. You can specify a file to send
or a CGI program to run.

For example, you can change the way the server behaves when it gets an error for a
specific directory. If a client tries to connect to a part of your server protected by
access control, you might return an error file with information on how to get an
account.

• text/plain • text/html

• text/richtext • image/tiff

• image/jpeg • image/gif

• application/x-tar • application/postscript

• application/x-gzip • audio/basic

Changing the International Character Set

404 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Before you can enable a custom error response, you must create the HTML file to
send or the CGI program to run in response to an error. After you do this, enable
the response in the Administration interface.

To use the Administration interface to enable a customized error response:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Handling tab.

5. Click Error Responses.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

7. For each error code you want to change, specify the absolute path to the file or
CGI that contains the error response.

8. Click OK.

For more information see the online help.

Changing the International Character Set
The character set of a document is determined in part by the language it is written
in. You can override a client’s default character set setting for a document, a set of
documents, or a directory by selecting a resource and entering a character set for
that resource.

Browsers can use the MIME type charset parameter in HTTP to change its
character set. If the server includes this parameter in its response, the browser
changes its character set accordingly. Examples are:

• Content-Type: text/html;charset=iso-8859-1

• Content-Type: text/html;charset=iso-2022-jp

The following charset names are specified in RFC 1700 (except for the names that
begin with x-):

• us-ascii • iso-8859-1

• iso-2022-jp • x-sjis

Changing the International Character Set

Chapter 16 Managing Virtual Server Content 405

Additionally, the following aliases are recognized for us-ascii:

The following aliases are recognized for iso_8859-1:

To use the Administration interface to change the character set:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Handling tab.

5. Click International Characters.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

7. Set the character set for all or part of the server.

If you leave this field blank, the character set is set to NONE.

8. Click OK.

For more information, see the online help.

• x-euc-jp • x-mac-roman

• ansi_x3.4-1968 • iso-ir-6

• ansi_x3.4-1986 • iso_646.irv:1991

• ascii • iso646-us

• us • ibm367

• cp367

• latin1 • iso_8859-1

• iso_8859-1:1987 • iso-ir-100

• ibm819 • cp819

Setting the Document Footer

406 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Setting the Document Footer
You can specify a document footer, which can include the last-modified time, for
all the documents in a certain section of the server. This footer works for all files
except output of CGI scripts or parsed HTML (.shtml) files. If you need your
document footer to appear on CGI-script output or parsed HTML files, enter your
footer text into a separate file and add a line of code or another server-side include
to append that file to the page's output.

To use the Administration interface to set the document footer, follow these steps:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the Doc Handling tab.

5. Click Doc Footer.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

If you choose a directory, the document footer applies only when the server
receives a URL for that directory or any file in that directory.

7. Specify the type of files that you want to have include the footer.

8. Specify the date format.

9. Type any text you want to have appear in the footer.

The maximum number of characters for a document footer is 765. If you want
to include the date the document was last modified, type the string
:LASTMOD:.

For more information see the online help.

Configuring URL Forwarding
URL forwarding allows you to redirect document requests to another server.
Forwarding URLs or redirection is a method for the server to tell a user that a URL
has changed (for example, because you have moved files to another directory or
server). You can also use redirection to seamlessly send a person who requests a
document on one server to a document on another server.

Setting up Server-Parsed HTML

Chapter 16 Managing Virtual Server Content 407

For example, if you forward http://www.sun.com/info/movies to a prefix
film.sun.com, the URL http://www.sun.com/info/movies redirects to
http://film.sun.com/info/movies.

Sometimes you may want to redirect requests for all the documents in one
sub-directory to a specific URL. For example, if you had to remove a directory
because it was causing too much traffic, or because the documents were no longer
to be served for any reason, you could direct a request for any one the documents
to a page explaining why the documents were no longer available. For example, a
prefix on /info/movies could be redirected to http://www.sun.com/explain.html.

To use the Administration interface to configure URL forwarding:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the HTTP/HTML tab.

5. Click URL Forwarding.

6. Type the URL prefix you want to redirect, and whether you want to redirect it
to another prefix or to a static URL.

7. Click OK.

For more information see the online help.

Setting up Server-Parsed HTML
HTML is normally sent to the client exactly as it exists on disk without any server
intervention. However, the server can search HTML files for special commands
(that is, it can parse the HTML) before sending documents. If you want the server
to parse these files and insert request-specific information or files into documents,
you must first enable HTML parsing.

To use the Administration interface to set up HTML parsing:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

4. Click the HTTP/HTML tab.

Setting Cache Control Directives

408 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

5. Click Parse HTML.

6. Choose Entire Server from the resource picker to apply your change to the
whole virtual server, or navigate to a specific directory within a virtual server.

If you choose a directory, the server will parse HTML only when the server
receives a URL for that directory or any file in that directory.

7. Choose whether to activate server-parsed HTML.

You can activate for HTML file s but not the exec tag, or for HTML files and the
exec tag, which allows HTML files to execute other programs on the server.

8. Choose which files to parse.

You can choose whether to parse only files with the .shtml extension, or all
HTML files, which slows performance. If you are using UNIX, you can also
choose to parse UNIX files with the execute permission turned on, though that
can be unreliable.

9. Click OK.

For more information on setting your server to accept parsed HTML, see the online
help.

For more information on using server-parsed HTML, see the Sun ONE Application
Server Developer’s Guide to Web Applications.

Setting Cache Control Directives
Cache-control directives are a way for Sun ONE Application Server to control what
information is cached by a proxy server. Using cache-control directives, you
override the default caching of the proxy to protect sensitive information from
being cached, and perhaps retrieved later. For these directives to work, the proxy
server must comply with HTTP 1.1.

For more information HTTP 1.1, see the Hypertext Transfer Protocol--HTTP/1.1
specification (RFC 2068) at:

http://www.ietf.org/

To use the Administration interface to set cache control directives:

1. In the left pane, for the application server instance, open HTTP Server.

2. Open Virtual Servers.

3. Click the name of the virtual server you want to edit.

Using Stronger Ciphers

Chapter 16 Managing Virtual Server Content 409

4. Click the HTTP/HTML tab.

5. Click Cache Control Directives

6. Fill in the fields. Valid values for the response directives are as follows:

❍ Public. The response is cachable by any cache. This is the default.

❍ Private. The response is only cachable by a private (non-shared) cache.

❍ No Cache. The response must not be cached anywhere.

❍ No Store. The cache must not store the request or response anywhere in
nonvolatile storage.

❍ Must Revalidate. The cache entry must be revalidated from the originating
server.

❍ Maximum Age (sec). The client does not accept a response that has an age
greater than this age.

7. Click OK.

For more information see the online help.

Using Stronger Ciphers
For information on setting stronger ciphers, see the Sun ONE Application Server
Administrator’s Guide to Security.

Using Stronger Ciphers

410 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

411

Part 4

Appendixes

Appendix A, “Using the Command Line Interface”

Appendix B, “Third Party Copyright Notices”

412 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

413

Appendix A

Using the Command Line Interface

This appendix provides instructions for using the command line interface (the
asadmin utility), in singlemode (that is, you run one command at a time from the
command prompt) at the system prompt, in multimode (that is, you can run
multiple commands without needing to reenter environment-level information),
and in scripts and programs. You can use the command line interface in place of
the Administration interface screens.

This appendix contains the following sections:

• About the Command Line Interface

• Using asadmin

• Security Considerations

• Concurrent Access Considerations

• Command Reference

About the Command Line Interface
This section contains the following topics:

• About the asadmin Utility

• About Ant Tasks

• About Other Command Line Utilities

About the Command Line Interface

414 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

About the asadmin Utility
The asadmin utility performs all configuration and administration tasks. You can
use this utility in place of using the Administration interface.

About Ant Tasks
Many developers use Ant to accelerate the development process for J2EE
applications. Ant scripts leverage the asadmin utility for some tasks. Developers
use the Ant tasks for building applications, deploying and undeploying modules
and applications and for controlling the Sun ONE Application Server.

For more information on the Ant tasks, see the Sun ONE Application Server
Developer’s Guide.

For more information on Ant, see the Jakarta Project site at
http://jakarta.apache.org/ant/.

About Other Command Line Utilities
Sun ONE Application Server contains additional command line utilities. The
following table lists the utilities and gives a brief description of each one.

Table A-1 Other Command-Line Utilities

Utility Definition

appclient Launches the Application Client Container and invokes the client
application packaged in the application JAR file.

capture-schema Gets the database schema and mapping information.

flexanlg Generates statistics about your server.

htpasswd Creates the user authentication files.

package-appclient Packs the application client container libraries and jar files. For
more information, see the Sun ONE Application Server Developer's
Guide to Clients.

verifier Validates the J2EE deployment descriptors with the DTDs. For
more information, see the Sun ONE Application Server Developer’s
Guide.

Using asadmin

Appendix A Using the Command Line Interface 415

For more information on these utilities, see their online help.

Using asadmin
The asadmin utility has a set of commands for performing administrative tasks.
You can use these commands to most of the tasks that you can perform using the
Administration interface. You can find the asadmin utility at install_dir/bin and
run it from there. On Windows, double-click the asadmin.bat file and the asadmin
utility launches in a command window, running in multimode.

Please note that some HTTP-server-related properties and the Administration
Server properties cannot be set using the command line; they must be set using the
Administration interface. You can set all properties stored in the server.xml
configuration file, but not the ones stored in init.conf or obj.conf. For more
information on the configuration files, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

For more information on individual commands, see “Command Reference” on
page 433 and the help for the commands.

This section contains the following topics:

• Understanding the Command Syntax

• Using Singlemode and Multimode

• Using Interactive and Non-Interactive Options

• Using the Environment Commands

• Using the Password File Option

• Running asadmin Locally or Remotely

• Using Command Line Invocations

• Using Escape Characters

wscompile Takes the service definition interface and generates the client stubs
or server-side skeletons; or generates a set of WSDL for the
provided interface.

wsdeploy Generates a deployable WAR file.

Table A-1 Other Command-Line Utilities

Utility Definition

Using asadmin

416 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

• Using get and set Commands

• Using Help

• Viewing Output and Errors

Understanding the Command Syntax
The asadmin utility has the following syntax:

asadmin command -short-option argument --long-option argument operand

Command
The command is the operation or task performed. The command is case-sensitive.

Options
Options modify how the utility performs a command. Options are case-sensitive.
Notice that the short options have a single dash (-) in front of them, and the long
options have two dashes (--) in front of them. For many options, you can use either
a long or short form; for example, user can be either --user or -u. Some options are
required and some are optional. Optional options are shown in brackets in a
command’s syntax. You must include all required options when you run a
command or you receive an error message and the command does not execute.

For a list of available long and short option names available see the “Short and
Long Options, Default Values, and Environment Variables” table in “Command
Reference” on page 433.

Most options require argument values, for example --port port_number. The
exceptions are boolean options, which toggle to switch a feature on or off and don’t
require argument values.

You can also save options in the environment variables. For more information, see
“Using the Environment Commands” on page 419. For a complete list of the
environment variable equivalent of options, see “Long and Short Option Formats,
Default Values, and Environment Variable Equivalents” on page 464.

Boolean Options
A boolean options toggles on or off (for example --interactive puts you in
interactive mode where you are prompted for options; --no-interactive turns
off interactive mode). Putting --no- in front of the long option toggles the option
off. Specifying the short option name always sets the opposite of the default value.

Using asadmin

Appendix A Using the Command Line Interface 417

You can group short boolean options. For example, you can use -Ie to specify
interactive (short option -I) and echo (short option -e).

Operands
Operands are set off by a space or a tab. They can come in any order in the
command syntax. You can use -- with no option after it to separate the options
from the operands. Any following arguments are treated as operands, even if they
begin with a dash (-). For example, in

asadmin> create-jvm-options --instance server1 -- -Xmx1500m

-XMx1500m is treated as an operand, even though it begins with a dash.

Syntax Example
asadmin create-instance [--user admin_user] [--password admin_password]
[-H host_name] [--port port_number] [--sysuser sys_user] [--domain
domain_name] [--local=true/false] [--passwordfile file_name] [--secure | -s]
--instanceport instance_port instance_name

In this syntax example -H is the short option for hostname, --user is a long option
with admin_user as its argument, and instance_name is an operand. Optional options
are inside brackets.

The following example shows the syntax with real values. Some of the optional
options are not used in the example.

asadmin create-instance --user admin --password password -H austen
--port 4848 --instanceport 1024 server2

Using Singlemode and Multimode
You can run asadmin either in singlemode or multimode. In singlemode you run
one command at a time from the command prompt. In multimode you can run
multiple commands without needing to reenter environment-level information.

If you are using input from a file, and a command fails, in singlemode the program
exits. If you are using multimode and a command fails, you return to the asadmin
prompt.

Using asadmin

418 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Singlemode
If you invoke a single command in the command line interface from a command
prompt, you are running in singlemode. The command line interface runs the
command and exits back to the command prompt. To run the command line
interface from a command prompt, go to the directory install_dir/appserv/bin and
type your command at the command prompt:

> asadmin command options arguments

For example:

> asadmin create-instance --user admin --password password -H austen
--port 4848 --instanceport 1024 server2

Multimode
Multimode lets you set your environment at the outset so that you can run multiple
commands without needing to re-enter certain environment-level information,
such as your server name, port, and your password. One significant advantage of
using multimode is that commands can be entered end executed significantly
faster, since asadmin stays in memory. If these environment variables are set at the
operating system level, multimode picks up those settings. The asadmin utility
uses these settings until you change them.

On Windows, you are automatically in multimode when you run the asadmin.bat
file.

On UNIX, to start the asadmin utility in multimode from the command line, type:

> asadmin multimode

When you are in multimode, the command prompt changes to asadmin. You can
then type your commands into the asadmin prompt. You do not need to use the
utility name. For example:

asadmin> create-instance --user admin --password password -H austen
--port 4848 --instanceport 1024 server2

Exit multimode by typing exit or quit. You return to the command prompt.

Multiple Multimode
You can also invoke multimode from within a multimode session, by using the
command:

asadmin> multimode

Once you exit the second multimode environment, you return to your original
multimode environment.

Using asadmin

Appendix A Using the Command Line Interface 419

For example, if you are administering server1 in multimode, and you want to
administer server2 to compare the two, you can invoke multimode for server2
from within multimode for server1. Because you do not need to exit your current
multimode session, you can retain your environment settings. When you exit the
multimode session you’re using for server2, you return to your server1
multimode environment.

Using Interactive and Non-Interactive Options
When you use the command line interface, you can use it in interactive or
non-interactive mode. If you choose to use interactive mode, you are prompted for
the password if you don’t specify it. Interactive mode is enabled by default.

You can disable and enable interactive mode by setting the interactive environment
variable using the export command. For more information, see the “Environment
Variables Used with export Command” table.

You can use the interactive option in singlemode under all circumstances. You can
use the interactive option in multimode when you run one command at a time
from the command prompt, and when you run in multimode from a file. However,
commands in multimode when piped from an input stream and commands
invoked from another program cannot run in interactive mode.

Using the Environment Commands
The asadmin utility contains a set of environment variables that you can set using
environment commands. In multimode, once you set these variables you do not
need to reset your environment until you exit multimode. You can also set these
environment variables at the operating system level; if you do, they are
automatically picked up when you enter multimode and they persist after you exit
from multimode.

Environment variables are name/value pairs that you can set at any time by
assignment. Environment variable constitutes of AS_ADMIN_ prefix to the option
name in capitals. For example, to set the Administration Server user, you can type:

export AS_ADMIN_USER=administrator

Where administrator is the administrator’s username.

This also makes the value for AS_ADMIN_USER available to asadmin commands;
for example:

Using asadmin

420 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin multimode
asadmin> export AS_ADMIN_HOST=austen

For as long as you are in this multimode session, the Administration Server
hostname is set to austen, unless you reassign it.

You can also set and export values for multiple environment variables in one step,
for example:

asadmin> export AS_ADMIN_PORT=4848 AS_ADMIN_USER=admin

To see your current environment variable settings, use the export command
without arguments:

asadmin> export
AS_ADMIN_HOST=austen
AS_ADMIN_PORT=4848
AS_ADMIN_USER=admin

Use the unset command to remove a variable and its value from the environment.
For example:

asadmin> unset AS_ADMIN_HOST

You can override the set value for an environment variable either by resetting the
variable, or by setting a different value as part of an asadmin command. For
example:

asadmin> export AS_ADMIN_HOST=dickens
asadmin> show-instance-status --host austen instance-name

This example shows the instance status for an instance in the Administration
Server host austen, because that value overrides the earlier host value of dickens.

If you do not use exported variables, you must provide the following options with
most commands or use the default values (for a list of default values, see “Long
and Short Option Formats, Default Values, and Environment Variable
Equivalents” on page 464):

• --host

• --port

• --user

• --password or --passwordfile

• --secure=true (if secure)

• --instance (if needed)

Using asadmin

Appendix A Using the Command Line Interface 421

The following table, “Environment Variables Used with export Command,”
describes some of the environment variables to use with the export command.
These variables are the most commonly used, as they specifically deal with setting
up the environment. The first column shows the environment variable name, and
the second column shows what it is used for, and the default value if none is set.
For a complete list of the environment variables, see “Long and Short Option
Formats, Default Values, and Environment Variable Equivalents” on page 464

Using the Password File Option
If you do not want to type the passwords on the command line or set environment
variables for the passwords, you can create a password file and use it as an option
from the command line.

Every command which has the a password option also has the passwordfile
option that you can use instead. The password file contains the following lines:

AS_ADMIN_PASSWORD=value

AS_ADMIN_ADMINPASSWORD=value

AS_ADMIN_USERPASSWORD=value

Table A-2 Environment Variables Used with export Command

Environment Variable Use

AS_ADMIN_HOST Hostname of the Administration Server. If no value is
specified, uses localhost.

AS_ADMIN_PORT Port number of the Administration Server. If no value is
specified, uses 4848.

AS_ADMIN_USER Username of the user to run the commands.

AS_ADMIN_PASSWORD Password of the username that runs the commands. The
username and password are used to authenticate the user,
to verify that the user is allowed to administer the server. It
is the same as the authentication that takes place when you
access the Administration Server through the
Administration interface.

AS_ADMIN_SECURE =true if secure.

AS_ADMIN_INSTANCE Sets the instance of the Sun ONE Application Server. Any
subsequent commands that use the instance name as an
argument (but not those that use it as an operand) use this
specified instance.

Using asadmin

422 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

If you use the passwordfile option, the passwords in the file are exported to the
multimode environment, and subsequent commands without the password
options specified use these values.

If you specify both a password and a password file option at the command line, the
values in the password file are exported to the multimode environment, but the
current command uses the password specified in the password option, because the
password option takes precedence over the password file.

Running asadmin Locally or Remotely
Usually the asadmin utility sends its commands through the Administration
Server. Therefore, you do not need to run asadmin on the system where the Sun
ONE Application Server is installed. However, the Administration Server must be
running in order for most asadmin commands to work.

Some commands have the option of being run locally, for example,
create-instance. If you use the --local=true option with create-instance,
you must run it on the machine where the server is installed, but you do not need
to have the Administration Server running in order to create the instance.

Some commands must be run locally. For example, start-appserv, which starts
the Administration Server and all its instances, cannot be run remotely because the
Administration Server is not running until the command starts it.

For more information on the Administration Server, see Chapter 2, “Setting
Administration Server Preferences.”

The following commands can be run both locally and remotely:

• create-instance

• delete-instance

• list-instances

• start-instance

• stop-instance

• display-license

• version

• stop-domain

• restart-instance

Using asadmin

Appendix A Using the Command Line Interface 423

• list-domains

For these commands, you can choose to run a command locally without specifying
the local option. By default, if you specify a value for user, password, host, or port
in the command syntax the command is treated as a remote command (though you
can still specify local values for these options). If you do not specify values for these
options, the command is run locally by default.

When a command is executed locally, if there is a domain option it is required by
the command (unless there is only one domain).When a command is executed
remotely it ignores the domain option if you specify it.

Using Command Line Invocations
You can invoke a command line in many ways, as described in the following
topics:

• Using asadmin from the Command Line

• Using asadmin with Input from a File (Script)

• Using asadmin with Standard Input (Pipe)

Using asadmin from the Command Line
The simplest way to use the commands is one at a time, from the command line.
You type in the utility, command, its options and arguments. In multimode you
type multiple commands without needing to retype the utility name and
environment options (if you have set the environment variables). You can run
either singlemode or multimode commands interactively (prompted for additional
required input, for example, a password) or non-interactively.

For more information on singlemode and multimode, see “Using Singlemode and
Multimode” on page 417.

For more information on using commands interactively, see “Using Interactive and
Non-Interactive Options” on page 419.

Example from Command Line
> asadmin create-instance --user admin --password password --host
austen --port 4848 --instanceport 1024 server2

After the command completes, you return to the operating system prompt.

Using asadmin

424 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Using asadmin with Input from a File (Script)
You can create a script which includes many asadmin commands. With scripts you
can process commands in a batch, set up a job to run at specific times, and
otherwise simplify and automate your administration tasks.

To call a script that is in a file, use the syntax:

> asadmin multimode --file filename

The following is an example of a simple script in a file that you can call in this
manner:

Create new instance and start it.
export AS_ADMIN_USER=admin AS_ADMIN_PASSWORD=mypassword
AS_ADMIN_HOST=austen AS_ADMIN_PORT=4848
create-instance --instanceport 9000 austen3
start-instance austen3

This script sets the environment, creates an instance called austen3 and starts the
new instance. Lines that begin with a number sign (#) are treated as comments and
ignored.

Using asadmin with Standard Input (Pipe)
You can pipe input into the asadmin utility using the following syntax:

cat filename | asadmin multimode

This syntax may not work on Windows.

Using Escape Characters
Some characters, the colon (:), the asterisk (*), and the backslash (\), cause errors if
you use them in the command syntax unless you use escape characters to set them
off. The possibilities for using escape characters vary depending upon what
platform you use and whether you use singlemode or multimode.

This section contains the following topics:

• Escape Characters on UNIX in Singlemode

• Escape Characters on Windows in Singlemode

NOTE You do not need to use escape characters for colons in the get and
set commands.

Using asadmin

Appendix A Using the Command Line Interface 425

• Escape Characters on All Platforms in Singlemode

• Escape Characters on All Platforms in Multimode

Escape Characters on UNIX in Singlemode
On Solaris, you can use either two backslashes (\\) or double-quotes (“ ”) to escape
restricted characters.

Escape with Backslashes (\\)
For example, when creating a JDBC connection pool with a option whose value
includes colons, you could use backslashes (example assumes the environment
variables have been set for some properties):

asadmin create-jdbc-connection-pool --instance server1
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url=jdbc\\:oracle\\:thin\\:@asperfsol8\\:1521\\:V8i:user=staging_lo
okup_app:password=staging_lookup_app OraclePoollookup

Escape with Quotes
To use quotes in the same example as above, you would enclose the value in
double quotes (”) and escape the double quotes with the backslash.

asadmin create-jdbc-connection-pool --instance server1
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url=\"jdbc:oracle:thin:@asperfsol8:1521:V8i\":user=staging_lookup_a
pp:password=staging_lookup_app OraclePoollookup

You can also use the methods described in “Escape Characters on All Platforms in
Singlemode” on page 426.

Escape Characters on Windows in Singlemode
On windows, you can escape using the backslash character. For example, when
creating a JDBC connection pool with a option whose value includes colons, you
could use backslashes (example assumes the environment variables have been set
for some properties):

asadmin create-jdbc-connection-pool --instance server1
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url=jdbc\:oracle\:thin\:@asperfsol8\:1521\:V8i:user=staging_lookup_
app:password=staging_lookup_app OraclePoollookup

Using asadmin

426 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

You can also use the methods described in “Escape Characters on All Platforms in
Singlemode” on page 426.

Escape Characters on All Platforms in Singlemode
On any platform, you can use backslashes to escape the character and enclose the
value containing the escaped characters in double quotes. For example, when
creating a JDBC connection pool with a option whose value includes colons, you
could use the escape characters as follows (example assumes the environment
variables have been set for some properties):

asadmin create-jdbc-connection-pool --instance server1
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url="jdbc\:oracle\:thin\:@iasperfsol8\:1521\:V8i":user=staging_look
up_app:password=staging_lookup_app OraclePoollookup

Escape Characters on All Platforms in Multimode
In multimode you can use the following syntax, which only requires quotes, not
slashes or backslashes:

asadmin> create-jdbc-connection-pool --instance server1
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url="jdbc:oracle:thin:@asperfsol8:1521:V8i":user=staging_lookup_app
:password=staging_lookup_app OraclePoollookup

Using get and set Commands
Use the get and set commands to access and change configuration settings in the
Sun ONE Application Server. In most cases, asadmin commands only set the
required properties. Use the set command to change values for optional properties.

Table A-3 get and set Commands

Command Arguments Use

get (scope) where scope
represents an attribute and
is a valid name.

Gets the value of the attribute.

Using asadmin

Appendix A Using the Command Line Interface 427

You can get or set multiple attribute values in a single command by using spaces
between the attributes. For example:

set server1.appReloadPollInterval=20
server1.mime.mime1.file=mime.types

You can also use the AS_ADMIN_PREFIX environment variable to set a prefix that
will be used by subsequent get and set commands. A period (“.”) is implicitly
inserted between the prefix string and the operand in the get and set commands.
For example:

asadmin>export AS_ADMIN_PREFIX=server1
asadmin>get *
server1.locale = en_US
server1.appReloadPollInterval = 2
server1.name = server1
...

Because the get and set commands require period separators, if an item contains
periods in its name you must use the escape character backslash (\) before them.
The following example shows a server instance name server2.sun.com with the
periods preceded by backslashes:

get server2\.sun\.com.*

If you do not include the backslashes, you get an error message.

set (scope=value) where scope
represents an attribute and
is a valid name, and value is
the value you want to set for
that attribute.

Sets the value of the attribute.

reconfig instance-name After running any command that modifies the
configuration files, you need to run reconfig
in order for the changes to be applied to the
server. For more information on applying
changes/reconfiguring the server, see
“Applying Changes to an Application Server
Instance” on page 79.

Table A-3 get and set Commands

Command Arguments Use

Using asadmin

428 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

get and set Command Examples
The following examples show how to use the get command to get the values of
attributes, and how to use the set command to set values.

MDB Container Service Example
If the application server instance is server1, you can get the values of all
mdb-container attributes by using the following command in multimode, with
your environment set:

asadmin> get server1.mdb-container.*

The following is an example of the output from this command, showing current
values for the attributes:

server1.mdb-container.logLevel = null
server1.mdb-container.steadyPoolSize = 10
server1.mdb-container.idleInPoolTimeoutInSeconds = 600
server1.mdb-container.maxPoolSize = 60
server1.mdb-container.monitoringEnabled = false
server1.mdb-container.poolResizeQuantity = 2

To get just the value of the MDB container attribute monitoringEnabled, use the
following:

asadmin> get server1.mdb-container.montioringEnabled

To set the value of the monitoringEnabled attribute to true, use the following:

asadmin> set server1.mdb-container.montioringEnabled=true

JMS Resource Example
For configuring any of the resources, the attribute should look like:

instancename.resource.primary_key_value.attribute_name

For example:

asadmin> get server1.jms-resource.myjms.*

Gets all the attributes for the JMS destination resource called myjms. For example:

server1.jms-resource.myjms.resType = javax.jms.Topic
server1.jms-resource.myjms.enabled = true
server1.jms-resource.myjms.name = myjms
server1.jms-resource.myjms.description = null

To get the value for a single attribute, for example resType:

asadmin> get server1.jms-resource.myjms.resType

Using asadmin

Appendix A Using the Command Line Interface 429

To set an attribute, for example description:

asadmin> set server1.jms-resource.myjms.description=mydescription

This example sets the description to mydescription.

Getting and Setting Multiple Values Examples
You can get and set multiple values with the same command. To set two attributes
at the same time, separate the attributes by spaces. For example:

set server1.appReloadPollInterval=20
server1.mime.mime1.file=mime.types

Also, you can use the environment variable AS_ADMIN_PREFIX to set a prefix to use
for a number of get and set commands.

Monitoring Using get and set Commands
You can also use the get and set commands to monitor a running server. A list
command also exists for monitoring. You can set an option, monitor, to true or
false. If set to true, you monitor the attributes specified. For more information on
using the command-line interface to monitor the Sun ONE Application Server, see
“Extracting Monitoring Data Using the CLI” on page 132.

Using Help
Help for every asadmin command is available from the command prompt by
typing -h or --help. For example, for help on asadmin, type:

asadmin --help

You see a list of all asadmin commands.

To get a help for a specific asadmin command, type:

asadmin command -h

or

asadmin command --help

The help contains a synopsis, a description of the command, syntax information,
examples, and a list of related commands.

Please note that if you use -h or --help anywhere in a command, you will get help
for the command. The command will not execute.

Using asadmin

430 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

You can also access the command-line help pages as manpages in a UNIX
environment. For an unbundled installation, add install_dir/man to your
MANPATH environment variable. Once this is done, you can access manpages for
Sun ONE Application Server utilities, for example, by typing man asadmin at the
command prompt.

Viewing Output and Errors
When a command executes successfully, you see a message informing you of what
was done. If the command fails, you see an error message.

This section contains the following topics:

• Viewing the Exit Status

• Viewing Usage

Viewing the Exit Status
In addition to an error message, asadmin commands always exit with an exit
status. The exit status is 0 if the command is successful and 1 if the command fails.

Exit Status on UNIX
You can check for the exit status at the command prompt by typing echo $?.

You can also use the exit codes in scripting; for example, the following Korn shell
script uses the exit status to indicate whether the list-instances command
succeeded or failed:

#!/bin/ksh
asadmin list-instances
if [[$? = 0]]

then
echo "success"

else
echo "error"

fi

Exit Status on Windows
On Windows you can check the exit status in your .bat scripts. For example, the
following two scripts show a successful script and the output it returns, and an
unsuccessful script and the output it returns:

Success Condition

Using asadmin

Appendix A Using the Command Line Interface 431

myscript.bat

echo off
echo Processing Command
call asadmin list-instances --domain domain1
if not %errorlevel% EQU 0 goto end
echo Command Succesful
goto program-end
:end
echo Command Failed
:program-end

Output:

Processing Command
admin-server <not running>
server1 <not running>
Command Succesful

Error Condition

myscript.bat

echo off
echo Processing Command
call asadmin list-instances
if not %errorlevel% EQU 0 goto end
echo Command Succesful
goto program-end
:end
echo Command Failed
:program-end

Output:

Processing Command
No default domain. Need to enter a domain.
Command Failed

Viewing Usage
If you type the command without arguments, you get an error message that
includes the syntax for the command. For example:

asadmin> create-instance

Invalid number of operands received

Security Considerations

432 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

USAGE: create-instance [--user admin_user] [--password
admin_password] [--host localhost] [--port 4848] [--sysuser
sys_user] [--domain domain_name] [--local=false] [--passwordfile
file_name] [secure | -s] --instanceport instanceport instancename

Security Considerations
When you run the command line interface from a command line, you must supply
your password with all commands. If you are running in multimode, you must
supply your password initially when you set up the environment. If you exit
multimode, when you start multimode again you must set up your environment
again, including your password. You set passwords using the environment
commands. For more information see “Using the Environment Commands” on
page 419.

You can also set up a password file so you do not need to type your passwords at
the command line. For more information, see “Using the Password File Option” on
page 421.

Without the authentication information of a valid username and password, the
commands will not execute.

The command line interface has the security measures you’ve set up for your Sun
ONE Application Server. For more information regarding security in the Sun ONE
Application Server, see the Sun ONE Application Server Administrator’s Security
Guide.

Concurrent Access Considerations
It is possible that more than one person could attempt to configure a server
concurrently using the command line interface and/or the Administration
interface. If that happens, the second configuration request is queued until the first
one completes. If the request is queued for too long, it times out.

For some commands, the changes don’t take effect until you use the reconfig
command. That means more than one person could edit an attribute before the
changes are applied to the server. For more information on reconfig, see
“Applying Changes to an Application Server Instance” on page 79.

Command Reference

Appendix A Using the Command Line Interface 433

Command Reference
This section contains the following topics:

• List of Commands

• List of Dotted Names and Attributes

• Long and Short Option Formats, Default Values, and Environment Variable
Equivalents

List of Commands
The following table shows all the asadmin commands and their purpose. For more
information on a command’s syntax and usage, see the online help.

The left column shows the command name, and the right column shows its use.

Table A-4 asadmin Commands

Command Use

add-resources Adds one or more resources of type jdbc, jms, or
javamail.

create-acl Creates an ACL (access control list).

create-authdb Creates an authentication database.

create-auth-realm Creates an authentication realm.

create-custom-resource Creates a custom resource.

create-domain Creates a domain.

create-file-user Creates a file realm user in the keyfile.

create-http-listener Creates an HTTP listener.

create-http-qos Creates HTTP quality of service settings for the
application server instance or virtual server.

create-iiop-listener Creates an IIOP listener.

create-instance Creates an application server instance.

create-javamail-resource Creates a Java Mail resource.

create-jdbc-connection-pool Creates a JDBC connection pool.

create-jdbc-resource Creates a JDBC resource.

create-jmsdest Creates a JMS (Java Message Service) destination.

Command Reference

434 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

create-jms-resource Creates a JMS resource.

create-jndi-resource Creates a JNDI resource.

create-jvm-options Creates JVM options in java-config or profiler
elements.

create-lifecycle-module Creates a lifecycle module.

create-mime Creates a MIME types file.

create-persistence-resource Creates a persistence manager factory resource.

create-profiler Creates a profiler for the JVM.

create-ssl Creates SSL settings for an HTTP listener, IIOP
listener, or IIOP service.

create-virtual-server Creates a virtual server.

delete-acl Deletes an ACL.

delete-authdb Deletes an authentication database.

delete-auth-realm Deletes an authentication realm.

delete-custom-resource Deletes a custom resource.

delete-domain Deletes a domain. This command can only be
executed locally.

delete-file-user Deletes a file realm user from the keyfile.

delete-http-listener Deletes an HTTP listener.

delete-http-qos Deletes HTTP quality of service settings for the
application server instance or virtual server.

delete-iiop-listener Deletes an IIOP listener

delete-instance Deletes an application server instance.

delete-javamail-resource Deletes a Java Mail resource.

delete-jdbc-connection-pool Deletes a JDBC connection pool.

delete-jdbc-resource Deletes a JDBC resource.

delete-jmsdest Deletes a JMS destination.

delete-jms-resource Deletes a JMS resource.

delete-jndi-resource Deletes a JNDI resource.

Table A-4 asadmin Commands

Command Use

Command Reference

Appendix A Using the Command Line Interface 435

delete-jvm-options Deletes JVM options in java-config or profiler
elements.

delete-lifecycle-module Deletes a lifecycle module.

delete-mime Deletes a MIME types file.

delete-persistence-resource Deletes a persistence manager factory resource.

delete-profiler Deletes a JVM profiler.

delete-ssl Deletes SSL settings for an HTTP listener, IIOP
listener, or IIOP service.

delete-virtual server Deletes a virtual server.

deploy Deploys an EJB, WEB, connector, appclient, or
application component to the application server
instance.

deploydir Deploys an EJB, WEB, connector, appclient, or
application component that is in the directory to
the application server instance.

disable Disables a deployed component in the
application server instance.

display-license Displays license information. This command can
only be executed locally.

enable Enables (allows to run) a deployed component in
the application server instance.

export Exports the value of an asadmin environment
variable so that it can be used by the subsequent
asadmin commands.

get Gets the value of an attribute.

help Displays help (description, usage, syntax,
examples) for a given command, or general help
for asadmin.

install-license Installs the license file. This command can only
be executed locally.

jms-ping Pings the JMS provider to see if it is running.

list Lists the configurable elements.

list-acls Lists ACLs for an application server instance.

list-authdbs Lists authentication databases.

Table A-4 asadmin Commands

Command Use

Command Reference

436 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

list-auth-realms Lists authentication realms.

list-components Lists the deployed components for a server
instance.

list-custom-resources Lists custom resources in a server instance

list-domains Lists domains.

list-file-users Lists all the file realm users in a server instance.

list-file-groups Lists all the groups for a specified file realm user.
If you do not specify a user, lists all groups for a
server instance.

list-http-listeners Lists HTTP listeners for a server instance.

list-instances Lists application server instances in the domain.

list-iiop-listeners Lists IIOP listeners for a server instance.

list-javamail-resources Lists Java Mail resources for a server instance.

list-jdbc-connection-pools Lists JDBC connection pools for a server instance.

list-jdbc-resources Lists JDBC resources for a server instance.

list-jmsdest Lists JMS destinations for a server instance.

list-jms-resources Lists JMS resources for a server instance

list-jndi-resources Lists JNDI resources for a server instance.

list-lifecycle-modules Lists lifecycle modules for a server instance.

list-mimes Lists MIME types files for a server instance.

list-persistence-resources Lists persistence manager factory resources for a
server instance.

list-profilers Lists JVM profilers for a server instance.

list-sub-components Lists one or more EJBs or Servlets in a deployed
module or in a module of the deployed
application.

list-virtual-servers Lists virtual servers for a server instance.

multimode Allows you to execute multiple command while
retaining your environment settings and
remaining within asadmin.

reconfig Applies change to the server. Most changes do
not take effect until they are applied.

Table A-4 asadmin Commands

Command Use

Command Reference

Appendix A Using the Command Line Interface 437

List of Dotted Names and Attributes
When you use the get and set commands to get and set attributes, you need to
know the names asadmin uses for the services, resources, and so forth so you can
use the name to get the attributes for that particular object.

Because the syntax for using these names involves separating names between
periods, these names are called dotted names.

restart-instance Restarts the server instance.

set Sets the value of an attribute.

show-component-status Shows the status of a deployed component.

show-instance-status Shows the status of a server instance (that is,
whether it is running or not).

shutdown Shuts down the Administration Server.

start-appserv Starts the Administration Server and all the
server instances. This command can only be
executed locally.

start-domain Starts all instances in the domain. This command
can only be executed locally.

start-instance Starts the server instance.

stop-appserv Stops the Administration Server and all the
server instances. This command can only be
executed locally.

stop-domain Stops all instances in the domain.

stop-instance Stops the server instance.

undeploy Removes the deployed component from the
server instance.

unset Unsets the exported environment variables for
asadmin.

update-file-user Updates an existing file realm user.

version Displays version information for the Sun ONE
Application Server.

Table A-4 asadmin Commands

Command Use

Command Reference

438 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Dotted Names Used in asadmin
The following tables list the names used to configure items using the asadmin.
They are broken out into the following categories:

• Service Names

• Resource Names

• Application Names

• Other Names

Service Names
The following table shows the service names to use to get and set attributes for the
services:

Table A-5 Service Names for Command-Line Interface

Service Dotted Name

JMS service configuration jms-service

Transaction service configuration transaction-service

MDB container configuration mdb-container

EJB container configuration ejb-container

Web container configuration web-container

JVM configuration java-config

ORB configuration orb or iiop-service

ORB listener configuration orblistener or iiop-listener

Note that orblistener or iiop-listener are not valid
names as is; both require the names of the listener to
follow. For example:

ORB listener configuration
orblistener.<listener name> or
iiop-listener.<listener name>

Log configuration log-service

Security configuration security-service

HTTP configuration http-service

Command Reference

Appendix A Using the Command Line Interface 439

Resource Names
The following table shows resource names to use to get and set attributes for the
resources. Note that these names are not valid by themselves; they require the
name of a resource to follow the resource name.

Application Names
The following table shows the dotted names to use to get and set attributes
application-related configuration. Note that these names are not valid by
themselves; they require the name of the application to follow.

Table A-6 Resource Names for Command-Line Interface

Resource Dotted Name

JDBC resource configuration jdbc-resource

JNDI resource configuration jndi-resource

JDBC connection pool resource configuration jdbc-connection-pool

Custom resource configuration custom-resource

JMS resource configuration jms-resource

Persistence manager factory resource
configuration

persistence-manager-factory-resource

Java mail resource configuration mail-resource

Table A-7 Application Names for Command-Line Interface

Application Component Dotted Name

Application configuration application

EJB module configuration ejb-module

Web module configuration web-module

Connector module configuration connector-module

Command Reference

440 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Other Names
The following table shows the dotted names of other items you can configure using
get and set. Note that these names are not valid by themselves; they require the
name of the application to follow; for example, http-listener.listener_name,
lifecycle-module.module-name, etc.

Attributes
The following sections show the attributes for each named item listed above, and
provide usage examples. Note that some attributes are read-only (that is, they can
only be used with the get command, not the set command).

jms-service
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-8 Other Item Names for Command-Line Interface

Item Dotted Name

HTTP listener http-listener or http-server.http-listener

MIME types file mime

ACL acl

Virtual server virtual-server

Authentication databases auth-db

Security realms authrealm

Lifecycle module lifecycle-module

Profiler configuration profiler

Server configuration server configuration (name of server instance)

NOTE The examples in this section assume the user, password, host and
port are defined in the environment variables, and don’t list those
options in the syntax.

Command Reference

Appendix A Using the Command Line Interface 441

To get all the attributes from an instance (server1):

asadmin> get server1.jms-service.*

To get an attribute called adminPassword:

asadmin> get server1.jms-service.adminPassword

To set an attribute called adminPassword to a value of admin:

asadmin> set server1.jms-service.adminPassword=admin

transaction-service
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-9 JMS Service Attributes

server.xml Name asadmin Name

port port

admin-username adminUserName

admin-password adminPassword

log-level logLevel

enabled enabled

init-timeout-in-seconds initTimeoutInSeconds

start-args startArgs

Table A-10 Transaction Service Attributes

server.xml Name asadmin Name

automatic-recovery automaticTransactionRecovery

timeout-in-seconds transactionRecoveryTimeout

tx-log-dir transactionLogFile

heuristic-decision heuristicDecision

keypoint-interval keypointInterval

log-level logLevel

monitoring-enabled monitoringEnabled

Command Reference

442 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get all the attributes from an instance (server1):

asadmin> get server1.transaction-service.*

To get an attribute called transactionRecoveryTimeout:

asadmin> get server1.transaction-service.transactionRecoveryTimeout

To set an attribute called transactionRecoveryTimeout to a value of 49:

asadmin> set
server1.transaction-service.transactionRecoveryTimeout=49

mdb-container
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.mdb-container.*

To get an attribute called steadyPoolSize:

asadmin> get server1.mdb-container.steadyPoolSize

To set an attribute called steadyPoolSize to a value of 10:

asadmin> set server1.mdb-container.steadyPoolSize=10

ejb-container
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-11 MDB Container Attributes

server.xml Name asadmin Name

steady-pool-size steadyPoolSize

pool-resize-quantity poolResizeQuantity

max-pool-size maxPoolSize

idle-timeout-in-seconds idleInPoolTimeoutInSeconds

log-level logLevel

monitoring-enabled monitoringEnabled

Command Reference

Appendix A Using the Command Line Interface 443

To get all the attributes from an instance (server1):

asadmin> get server1.ejb-container.*

To get an attribute called maxPoolSize:

asadmin> get server1.ejb-container.maxPoolSize

To set an attribute called maxPoolSize to a value of 12:

asadmin> set server1.ejb-container.maxPoolSize=12

web-container
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-12 EJB Container Attributes

server.xml Name asadmin Name

steady-pool-size steadyPoolSize

pool-resize-quantity poolResizeQuantity

max-pool-size maxPoolSize

cache-resize-quantity cacheResizeQuantity

max-cache-size maxCacheSize

pool-idle-timeout-in-seconds idleInPoolTimeoutInSeconds

cache-idle-timeout-in-seconds idleInCacheTimeoutInSeconds

removal-timeout-in-seconds removalTimeoutInSeconds

victim-selection-policy victimSelectionPolicy

commit-option commitOption

log-level logLevel

monitoring-enabled monitoringEnabled

Table A-13 Web Container Attributes

server.xml Name asadmin Name

log-level logLevel

monitoring-enabled monitoringEnabled (not used)

Command Reference

444 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get all the attributes from an instance (server1):

asadmin> get server1.web-container.*

To get an attribute called logLevel:

asadmin> get server1.web-container.logLevel

To set an attribute called monitoringEnabled to be WARNING:

asadmin> set server1.web-container.logLevel=WARNING

java-config
The following table shows the sserver.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.java-config.*

To get an attribute called classpathprefix:

asadmin> get server1.java-config.classpathprefix

To set an attribute called classpathprefix to a value of com.sun:

Table A-14 JVM Attributes

server.xml Name asadmin Name

java-home javahome

debug-enabled debugEnabled

debug-options debugOptions

javac-options javacoptions

rmic-options rmicoptions

classpath-prefix classpathprefix

server-classpath serverClasspath

classpath-suffix classpathsuffix

native-library-path-prefix libpathprefix

native-library-path-suffix libpathsuffix

env-classpath-ignored envpathignore

Command Reference

Appendix A Using the Command Line Interface 445

asadmin> set server1.java-config.classpathprefix=com.sun

orb or iiop-service
The following table shows the server.xml name for the attribute in the left column,
and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.orb.*

or

asadmin> get server1.iiop-service.*

To get an attribute called msgSize:

asadmin> get server1.orb.msgSize

or

Table A-15 ORB/IIOP Service Attributes

server.xml Name asadmin Name

message-fragment-size msgSize

steady-thread-pool-size minThreads

max-thread-pool-size maxThreads

max-connections maxConnections

idle-thread-timeout-in-seconds idleThreadTimeout

log-level log

monitoring-enabled monitor

cert-nickname cert

ssl2-enabled ssl2

ssl2-ciphers ssl2Ciphers

ssl3-enabled ssl3

ssl3-tls-ciphers ssl3Ciphers

tls-enabled tls

tls-rollback-enabled tlsRollback

client-auth-enabled clientAuth

Command Reference

446 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin> get server1.iiop-service.msgSize

To set an attribute called idleThreadTimeout to 300:

asadmin> set server1.orb.idleThreadTimeout=300

or

asadmin> set server1.iiop-service.idleThreadTimeout=300

orblistener or iiop-listener
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.orblistener.orb_listener_id.*

or

asadmin> get server1.iiop-listener.orb_listener_id.*

To get an attribute called port:

asadmin> get server1.orblistener.orb_listener_id.port

Table A-16 IIOP Listener Attributes

server.xml Name asadmin Name

id id

address address

port port

enabled enabled

cert-nickname cert

ssl2-enabled ssl2

ssl2-ciphers ssl2Ciphers

ssl3-enabled ssl3

ssl3-tls-ciphers ssl3Ciphers

tls-enabled tls

tls-rollback-enabled tlsRollback

client-auth-enabled clientAuth

Command Reference

Appendix A Using the Command Line Interface 447

or

asadmin> get server1.iiop-listener.orb_listener_id.port

To set an attribute called address to bluestar:

asadmin> set server1.orblistener.orb_listener_id.address=bluestar

or

asadmin> set server1.iiop-listener.orb_listener_id.address=bluestar

log-service
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.log-service.*

To get an attribute called level:

asadmin> get server1.log-service.level

To set an attribute called echoToStderr to true:

asadmin> set server1.log-service.echoToStderr=true

Table A-17 Log Configuration Attributes

server.xml Name asadmin Name

file file

level level

log-stdout stdout

log-stderr stderr

echo-log-messages-to-stderr echoToStderr

create-console createConsole

log-virtual-server-id LogVirtualServerId

use-system-logging useSystemLogging

Command Reference

448 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

security-service
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.security-service.*

To get an attribute called anonymousRole:

asadmin> get server1.security-service.anonymousRole

To set an attribute called encryptPasswords to true:

asadmin> set server1.security-service.auditEnabled=true

http-service
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-18 Security Realm Configuration Attributes

server.xml Name asadmin Name

default-realm defaultRealm

default-principal defaultPrinicpal

default-principal-password defaultPrinicpalPassword

anonymous-role anonymousRole

audit-enabled auditEnabled

log-level logLevel

Table A-19 HTTP Service Attributes

server.xml Name asadmin Name

qos-metrics-interval-in-seconds qos-metrics-interval-in-seconds

qos-recompute-time-interval-in-millis qos-recompute-time-interval-in-millis

qos-enabled qos-enabled

bandwidth-limit bandwidthLimit

enforce-bandwidth-limit enforceBandwidthLimit

Command Reference

Appendix A Using the Command Line Interface 449

To get all the attributes from an instance (server1):

asadmin> get server1.http-service.*

To get an attribute called bandwidthLimit:

asadmin> get server1.http-service.bandwidthLimit

To set an attribute called qos-enabled to true:

asadmin> set server1.http-service.qos-enabled=true

jdbc-resource
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.jdbc-resource.jdbc_resource_name.*

To get an attribute called pool:

asadmin> get server1.jdbc-resource.jdbc_resource_name.pool

To set an attribute called enabled to true:

asadmin> set server1.jdbc-resource.jdbc_resource_name.enabled=true

connection-limit connectionLimit

enforce-connection-limit enforceConnectionLimit

Table A-20 JDBC Resource Attributes

server.xml Name asadmin Name

jndi-name name

pool-name pool

enabled enabled

description description

Table A-19 HTTP Service Attributes

server.xml Name asadmin Name

Command Reference

450 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

jndi-resource
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.jndi-resource.jndi_name.*

To get an attribute called factory:

asadmin> get server1.jndi-resource.jndi_name.factory

To set an attribute called factory to com.sun:

asadmin> set server1.jndi-resource.jndi_name.factory=com.sun

jdbc-connection-pool
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-21 JNDI Resource Attributes

server.xml Name asadmin Name

jndi-name name

jndi-lookup-name LookupName

res-type resType

factory-class factory

enabled enabled

description description

Table A-22 JDBC Connection Pool Attributes

server.xml Name asadmin Name

name name

datasource-classname dsClassName

res-type resType

description description

steady-pool-size steadyPoolSize

Command Reference

Appendix A Using the Command Line Interface 451

To get all the attributes from an instance (server1):

asadmin> get server1.jdbc-connection-pool.pool_name.*

To get an attribute called dsClassName:

asadmin> get server1.jdbc-connection-pool.pool_name.dsClassName

To set an attribute called resizeValue to 2:

asadmin> set server1.jdbc-connection-pool.pool_name.resizeValue=2

custom-resource
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

max-pool-size maxPoolSize

max-wait-time-in-millis maxWaitTime

pool-resize-quantity resizeValue

idle-timeout-in-seconds idleTimeout

transaction-isolation-level transactionIsolationLevel

is-isolation-level-guaranteed isIsolationLevelGuaranteed

connection-validation-method validationMethod

is-connection-validation-required isValidationRequired

fail-all-connections failAll

validation-table-name validationTable

Table A-23 Custom Resource Attributes

server.xml Name asadmin Name

jndi-name name

res-type resType

factory-class factory

enabled enabled

description description

Table A-22 JDBC Connection Pool Attributes

server.xml Name asadmin Name

Command Reference

452 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get all the attributes from an instance (server1):

asadmin> get server1.custom-resource.jndi_name.*

To get an attribute called factory:

asadmin> get server1.custom-resource.jndi_name.factory

To set an attribute called factory:

asadmin> set server1.custom-resource.jndi_name.factory=myclass

jms-resource
The following table shows the sserver.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.jms-resource.jms_resource_name.*

To get an attribute called res-type:

asadmin> get server1.jms-resource.jms_resource_name.resType

To set an attribute called enabled to true:

asadmin> set server1.jms-resource.jms_resource_name.enabled=true

persistence-manager-factory-resource
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-24 JMS Resource Attributes

server.xml Name asadmin Name

jndi-name name

res-type resType

enabled enabled

description description

Command Reference

Appendix A Using the Command Line Interface 453

To get all the attributes from an instance (server1):

asadmin> get server1.persistence-manager-factory-resource.jndi_name

To get an attribute called factoryClass:

asadmin> get
server1.persistence-manager-factory-resource.jndi_name.factoryClass

To set an attribute called enabled to true:

asadmin> set
server1.persistence-manager-factory-resource.jndi_name.enabled=true

mail-resource
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-25 Persistence Manager Factory Resource Attributes

server.xml Name asadmin Name

jndi-name jndiName

jdbc-resource-jndi-name JdbcResourceJndiName

factory-class factoryClass

enabled enabled

description description

Table A-26 Java Mail Resource Attributes

server.xml Name asadmin Name

jndi-name name

enabled enabled

store-protocol storeProtocol

store-protocol-class storeProtocolClass

transport-protocol transportProtocol

transport-protocol-class transportProtocolClass

host host

user user

Command Reference

454 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get all the attributes from an instance (server1):

asadmin> get server1.mail-resource.jndi_name.*

To get an attribute called host:

asadmin> get server1.mail-resource.jndi_name.host

To set an attribute called enabled to true:

asadmin> set server1.mail-resource.jndi_name.enabled=true

application
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.application.application_name.*

To get an attribute called location in an application:

asadmin> get server1.application.application_name.location

To set an attribute called location:

from from

debug debug

description description

Table A-27 Application Attributes

server.xml Name asadmin Name

name name

location location

virtual-servers virtualServers

description description

enabled enabled

Table A-26 Java Mail Resource Attributes

server.xml Name asadmin Name

Command Reference

Appendix A Using the Command Line Interface 455

asadmin> set server1.application.application_name.location=
"/export/home/as7se/as1/repository/applications/ASConverter"

ejb-module
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes of stand-alone EJB module in an instance (server1):

asadmin> get server1.ejb-module.ejb_jar_name.*

To get all the attributes of an EJB module in an application for an instance (server1):

asadmin> get
server1.j2ee-application.application_name.ejb-module.ejb_jar_name.*

or

asadmin>get server1.application.application_name.ejb-module.ejb_jar_name.*

To get an attribute called location from a stand-alone EJB module:

asadmin> get server1.ejb-module.ejb_jar_name.location

To get an attribute called location from an EJB module in an application:

asadmin> get
server1.j2ee-application.application_name.ejb-module.ejb_jar_name.
location

or

asadmin> get
server1.application.application_name.ejb-module.ejb_jar_name.location

To set an attribute called location in the stand-alone EJB module:

Table A-28 EJB Module Attributes

server.xml Name asadmin Name

name name

location location

description description

enabled enabled

Command Reference

456 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin> set
server1.ejb-module.ejb_jar_name.location="/export/home/as7se/as1/repos
itory/modules/ejb_jar_name"

To set an attribute called location in the EJB module bundled into an application:

asadmin> set
server1.j2ee-application.application_name.ejb-module.ejb_jar_name.
location="/export/home/as7se/as1/repository/modules/ejb_jar_name"

or

asadmin>set
server1.application.application_name.ejb-module.ejb_jar_name.location="/ex
port/home/as7se/as1/repository/modules/ejb_jar_name"

web-module
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes of stand-alone web module in an instance (server1):

asadmin> get server1.web-module.web_war_name.*

To get all the attributes of a web module in an application for an instance (server1):

asadmin> get server1.web-module.application_name.web_war_name.*

To get an attribute called location from stand-alone web module:

asadmin> get server1.web-module.web_war_name.location

To get an attribute called location from the web module in an application:

asadmin> get server1.web-module.application_name.web_war_name.location

Table A-29 WEB Module Attributes

server.xml Name asadmin Name

name name

location location

context-root contextRoot

virtual-servers virtualServers

description description

enabled enabled

Command Reference

Appendix A Using the Command Line Interface 457

To set an attribute called location in the standalone web module:

asadmin> set server1.web-module.war-ic.location=
"/export/home/as7se/as1/repository/modules/web_war_name"

To set an attribute called location in the web module bundled into an application:

asadmin> set server1.web-module.application_name.web_war_name.location=
"/export/home/as7se/as1/repository/modules/web_war_name"

connector-module
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes of standalone connector module in an instance (server1):

asadmin> get server1.connector-module.connector_rar_name.*

To get an attribute called location from standalone connector module:

asadmin> get server1.connector-module.connector_rar_name.location

To set an attribute called location in the standalone connector module:

asadmin> set server1.connector-module.connector_rar_name.location=
"/export/home/as7se/as1/repository/modules/connector_rar_name"

http-listener or http-server.http-listener
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-30 Connector Module Attributes

server.xml Name asadmin Name

name name

location location

description description

enabled enabled

Table A-31 HTTP Listener Attributes

server.xml Name asadmin Name

id id

Command Reference

458 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get all the attributes from an instance (server1):

asadmin> get server1.http-listener.http_listener_name.*

or

asadmin> get server1.http-server.http-listener.http_listener_name.*

To get an attribute called factory:

asadmin> get server1.httpl-listener.http_listener_name.address

or

asadmin> get server1.http-server.http-listener.http_listener_name.address

To set an attribute called address to the IP address 0.0.0.0:

asadmin> set server1.http-listener.http_listener_name.address=0.0.0.0

address address

port port

family family

acceptor-threads acceptorThreads

blocking-enabled blockingEnabled

security-enabled securityEnabled

default-virtual-server defaultVirtualServer

server-name serverName

enabled enabled

cert-nickname cert

ssl2-enabled ssl2

ssl2-ciphers ssl2Ciphers

ssl3-enabled ssl3

ssl3-tls-ciphers ssl3Ciphers

tls-enabled tls

tls-rollback-enabled tlsRollback

client-auth-enabled clientAuth

Table A-31 HTTP Listener Attributes

server.xml Name asadmin Name

Command Reference

Appendix A Using the Command Line Interface 459

or

asadmin> set
server1.http-server.http-listener.http_listener_name.address=0.0.0.0

mime
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.mime.mime_name.*

To get an attribute called file:

asadmin> get server1.mime.mime_name.file

To set an attribute called file to mime.types:

asadmin> set server1.mime.mime_name.file=mime.types

acl
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.acl.acl_name.*

Table A-32 MIME Types Attributes

server.xml Name asadmin Name

id id

file file

Table A-33 ACL Attributes

server.xml Name asadmin Name

id id

file file

Command Reference

460 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

To get an attribute called file:

asadmin> get server1.acl.acl_name.file

To set an attribute called file:

asadmin> set server1.acl.acl_name.file=com/as1.acl

virtual-server
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-34 Virtual Server Attributes

server.xml Name asadmin Name

id id

http-listeners httpListeners

config-file configFile

default-object defaultObject

accept-language acceptLanguage

log-file logFile

default-web-module defaultWebModule

hosts hosts

mime mime

state state

acls acls

bandwidth-limit bandwidthLimit

enforce-bandwidth-limit enforceBandwidthLimit

connection-limit connectionLimit

enforce-connection-limit enforceConnectionLimit

property name="dir" value= property.dir

property name="nice" value= property.nice

property name="user" value= property.user

property name="group" value= property.group

property name="chroot" value= property.chroot

Command Reference

Appendix A Using the Command Line Interface 461

To get all the attributes from an instance (server1):

asadmin> get instance_name.virtual-server.vserver_id.*

For example:

asadmin> get server1.virtual-server.server1.*

To get an attribute called httpListeners for virtual server server1:

asadmin> get server1.virtual-server.server1.httpListeners

To set an attribute called acceptLanguage to false:

asadmin> set server1.virtual-acceptLanguage=false

auth-db
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance:

asadmin> get instancename.virtual-server.vserver_id.auth-db.authdb_id.*

For example, for the instance server1, virtual server server1:

asadmin> get server1.virtual-server.server1.auth-db.authdb_id.*

To get an attribute called database:

property name="docroot" value= property.docroot

property name="accesslog" value= property.accesslog

Table A-35 Authentication Database Attributes

server.xml Name asadmin Name

id id

database database

basedn basedn

certmaps certmaps

Table A-34 Virtual Server Attributes

server.xml Name asadmin Name

Command Reference

462 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin> get server1.virtual-server.server1.auth-db.authdb_id.database

To set an attribute called database:

asadmin> set
server1.virtual-server.server1.auth-db.authdb_id.database=Oracle

authrealm
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.authrealm.authrealm_id.*

To get an attribute called classname:

asadmin> get server1.authrealm.authrealm_id.classname

To set an attribute called classname:

asadmin> set
server1.authrealm.authrealm_id.classname=com.sun.as.security.auth.real
m.sharedpassword.SharedPasswordRealm

lifecycle-module
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

Table A-36 Authorization Realm Attributes

server.xml Name asadmin Name

name name

classname classname

Table A-37 LifeCycle Module Attributes

server.xml Name asadmin Name

name name

enabled enabled

class-name className

classpath classPath

Command Reference

Appendix A Using the Command Line Interface 463

To get all the attributes from an instance (server1):

asadmin> get server1.lifecycle-module.lifecycle_module_id.*

To get an attribute called className for a lifecycle module:

asadmin> get server1.lifecycle-module.lifecycle_module_id.className

To set an attribute called className:

asadmin> set
server1.lifecycle-module.lifecycle_module_id.className=com.lifecycle_module_id.
lifecycle

profiler
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.profiler.*

To get an attribute called enabled:

asadmin> get server1.profiler.enabled

To set an attribute called enabled to false

load-order loadOrder

is-failure-fatal isFailureFatal

description description

Table A-38 JVM Profiler Configuration Attributes

server.xml Name asadmin Name

name name

classpath classPath

native-library-path nativeLibraryPath

enabled enabled

Table A-37 LifeCycle Module Attributes

server.xml Name asadmin Name

Command Reference

464 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

asadmin> set server1.profiler.enabled=false

server configuration (name of server instance)
The following table shows the server.xml name for the attribute in the left
column, and the name used by asadmin in the right column.

To get all the attributes from an instance (server1):

asadmin> get server1.*

To get an attribute called logRoot:

asadmin> get server1.logRoot

To set an attribute called logRoot:

asadmin> set server1.logRoot="/space/log"

Long and Short Option Formats, Default Values,
and Environment Variable Equivalents
The following table lists the long and short formats for command line options. If
there is no short format listed, a short format of the option is not available.

Table A-39 Server Configuration Attributes

server.xml Name asadmin Name

instance-name name

locale locale

log-root logRoot

session-store sessionStore

application-root applicationRoot

dynamic-reload-enabled appDynamicReloadEnabled

dynamic-reload-poll-interval-in-seconds appReloadPollInterval

Command Reference

Appendix A Using the Command Line Interface 465

Table A-40 Short and Long Options, Default Values, and Environment Variables

Option Name Long Format Short
Format

Default
Value

Environment Variable

acceptlang --acceptlang AS_ADMIN_ACCEPT_

acceptorthreads --acceptorthreads AS_ADMIN_ACCEPTOR_THREAD
S

acls --acls AS_ADMIN_ACLS

address --address AS_ADMIN_ADDRESS

adminpassword --adminpassword AS_ADMIN_ADMINPASSWD

adminport --adminport 4848 AS_ADMIN_ADMINPORT

adminuser --adminuser AS_ADMIN_ADMINUSER

basedn --basedn AS_ADMIN_BASEDN

blockingenabled --blockingenabled AS_ADMIN_BLOCKINGENABLED

bwlimit --bwlimit AS_ADMIN_BWLIMIT

certmaps --certmaps AS_ADMIN_CERTMAPS

certname --certname AS_ADMIN_CERTNAME

classname --classname AS_ADMIN_CLASSNAME

classpath --classpath AS_ADMIN_CLASSPATH

clientauthenabled --clientauthenabled AS_ADMIN_CLIENTAUTHENABL
ED

configfile --configfile AS_ADMIN_CONFIGFILE

connectionpoolid --connectionpoolid AS_ADMIN_CONNECTIONPOOLI
D

connlimit --connlimit AS_ADMIN_CONNLIMIT

contextroot --contextroot AS_ADMIN_CONTEXTROOT

database --database AS_ADMIN_DATABASE

debug --debug false AS_ADMIN_DEBUG

defaultobj --defaultobj AS_ADMIN_DEFAULTOBJ

defaultwebmodule --defaultwebmodule AS_ADMIN_DEFAULTWEBMODU
LE

description --description AS_ADMIN_DESCRIPTION

Command Reference

466 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

discardmanualchanges --discardmanualchanges -d false AS_ADMIN_DISCARDMANUALC
HANGES

echo --echo -e false AS_ADMIN_ECHO

enabled --enabled AS_ADMIN_ENABLED

enforcebwlimit --enforcebwlimit AS_ADMIN_ENFORCEBWLIMIT

enforceconnlimit --enforceconnlimit AS_ADMIN_ENFORCECONNLIMI
T

failconnection --failconnection false AS_ADMIN_FAILCONNECTION

failurefatal --failurefatal false AS_ADMIN_FAILUREFATAL

family --family AS_ADMIN_FAMILY

file --file -f AS_ADMIN_FILE

force --force -F true AS_ADMIN_FORCE

help --help -h AS_ADMIN_HELP

host --host -H AS_ADMIN_HOST

hosts --hosts AS_ADMIN_HOSTS

httplistenerid --httplistenerid AS_ADMIN_HTTPLISTENERID

httplisteners --httplisteners AS_HTTP_LISTENERS

idletimeout --idletimeout 300 AS_ADMIN_IDLETIMEOUT

instance --instance -i server1 AS_ADMIN_INSTANCE

instanceport --instanceport AS_ADMIN_INSTANCEPORT

interactive --interactive -I true AS_AMDIN_INTERACTIVE

isconnectvalidaterequired --isconnectvalidaterequired false
AS_ADMIN_ISCONNECTVALIDA
TEREQUIRED

jdbcjndiname --jdbcjndiname -a AS_ADMIN_JDBCJNDINAME

jndilookupname --jndilookupname -l AS_ADMIN_JNDILOOKUPNAME

keepmanualchanges --keepmanualchanges -k false AS_ADMIN_KEEPMANUALCHA
NGES

loadorder --loadorder AS_ADMIN_LOADORDER

local --local -l false

Table A-40 Short and Long Options, Default Values, and Environment Variables

Option Name Long Format Short
Format

Default
Value

Environment Variable

Command Reference

Appendix A Using the Command Line Interface 467

logfile --logfile AS_ADMIN_LOGFILE

maxpoolsize --maxpoolsize 32 AS_ADMIN_MAXPOOLSIZE

maxwait --maxwait 6000 AS_ADMIN_MAXWAIT

mime --mime AS_ADMIN_MIME

mimefile --mimefile AS_ADMIN_MIMEFILE

monitor --monitor -m false AS_ADMIN_MONITOR

name --name -n AS_ADMIN_NAME

nativelibpath --nativelibpath AS_ADMIN_NATIVELIBPATH

objtype --objtype -o AS_ADMIN_OBJTYPE

password --password -w AS_ADMIN_PASSWORD

poolresize --poolresize 2 AS_ADMIN_POOLRESIZE

port --port -p 8000 AS_ADMIN_PORT

prefix --prefix -x AS_ADMIN_PREFIX

printprompt --printprompt -P true AS_ADMIN_PROMPT

property --property AS_ADMIN_PROPERTY

securityenabled --securityenabled AS_ADMIN_SECURITYENABLED

servername --servername AS_ADMIN_SERVERNAME

ssl2ciphers --ssl2ciphers AS_ADMIN_SSL2CIPHERS

ssl2enabled --ssl2enabled AS_ADMIN_SSL2ENABLED

ssl3enabled --ssl3enabled AS_ADMIN_SSL3ENABLED

ssl3tlsciphers --ssl3tlsciphers AS_ADMIN_SSL3TLSCIPHERS

state --state AS_ADMIN_STATE

steadypoolsize --steadypoolsize 8 AS_ADMIN_STEADYPOOLSIZE

storeprotocol --storeprotocol AS_ADMIN_STOREPROTOCOL

storeprotocolclass --storeprotocolclass AS_ADMIN_STOREPROTOCOLCL
ASS

tlsenabled --tlsenabled AS_ADMIN_TLSENABLED

tlsrollbackenabled --tlsrollbackenabled AS_ADMIN_TLSROLLBACKENAB
LED

Table A-40 Short and Long Options, Default Values, and Environment Variables

Option Name Long Format Short
Format

Default
Value

Environment Variable

Command Reference

468 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

transprotocol --transprotocol smtp AS_ADMIN_TRANSPROTOCOL

type --type S_ADMIN_TRANSPROTOCOLCLA
SS

upload --upload -U true AS_ADMIN_TYPE

url --url AS_ADMIN_URL

user --user -u AS_ADMIN_USER

validationmethod --validationmethod auto-co
mmit

AS_ADMIN_VALIDATIONMETHO
D

validationtable --validationtable AS_ADMIN_VALIDATIONTABLE

version --version -v AS_AMDIN_VERSION

virtualserver --virtualserver AS_ADMIN_VIRTUALSERVER

Table A-40 Short and Long Options, Default Values, and Environment Variables

Option Name Long Format Short
Format

Default
Value

Environment Variable

469

Appendix B

Third Party Copyright Notices

This product includes code licensed from RSA Security, Inc.

Portions of this product were developed using ANTLR. ANTLR 1989-2000
developed by jGuru.com, http://www.ANTLR.org and http://www.jGuru.com.

This product includes software developed through the Netbeans Project at
http://www.netbeans.org under the Sun Public License. Such software, if
available, may be found at www.netbeans.org.

This product includes Perl. A copy of Perl, if available, may be found at
http://public.ActiveState.com/gsar/APC/.

This product includes software developed through the Exolab Project
(http://www.exolab.org).

This product includes software developed through the DOM4J Project
(http://dom4j.org/).

This product includes software developed by Apache Foundation. Copyright (c)
1999-2001 The Apache Software Foundation. All rights reserved.

This product includes software developed by The Regents of University of
California. Copyright (c) 1991, 1993 The Regents of University of California. All
rights reserved.

This product includes software developed by International Business Machines
Corporation. Copyright (c) 1995-2001 International Business Machines Corporation
and others. All rights reserved. The IBM code was obtained under the ICU License.
See below.

ICU License - ICU 1.8.1 and later.

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2001 International Business Machines Corporation and others
All rights reserved.

470 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of
their respective owners.

471

Glossary

This glossary provides definitions for common terms used to describe the Sun
ONE Application Server deployment and development environment. For a
glossary of standard J2EE terms, please see the J2EE glossary at:

http://java.sun.com/j2ee/glossary.html

access control The means of securing your Sun ONE Application Server by
controlling who and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Sun ONE Application Server. See also general
ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Sun ONE Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Sun ONE Application Server, including
deployment, browser-based administration, and access from the command-line
interface (CLI) and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

API Applications Program Interface. A set of instructions that a computer
program can use to communicate with other software or hardware that is designed
to interpret that API.

472 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an .ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application. Client tier: the user
interface (UI). End users interact with client software (such as a web browser) to
use the application. Server tier: the business logic and presentation logic that make
up your application, defined in the application’s components. Data tier: the data
access logic that enables your application to interact with a data source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

Glossary 473

authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

474 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by
cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

Glossary 475

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.

CMR See container-managed relationship.

CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

476 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Sun ONE Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Glossary 477

CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global JNDI name space (accessible to IIOP
application clients), Sun ONE Application Server includes J2EE based CosNaming
provider which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.

decryption The process of transforming encrypted information so that it is
intelligible again.

478 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.

Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document
directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

Glossary 479

Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Sun ONE Application Server, such as domain name, domain
location, domain port, domain host.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the .ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called
checkInventoryLevel and orderProduct. By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

480 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBs).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

Glossary 481

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servlet that extends javax.servlet.GenericServlet. Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

482 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-IP authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extends javax.servlet.HttpServlet. These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

IIOP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IMAP Internet Message Access Protocol.

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

isolation level See transaction isolation level.

Glossary 483

J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.jar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APIs written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for
accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

484 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients. The
use of administered objects allows JMS clients to be provider-independent; that is,
it isolates them from the proprietary aspects of a provider. These objects are placed
in a JNDI name space by an administrator and are accessed by JMS clients using
JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

Glossary 485

JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

486 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.

key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Glossary 487

MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

management information base (MIB) A tree-like structure that defines the
variables the master SNMP agent can access. The MIB provides access to the HTTP
server’s network configuration, status, and statistics. Using SNMP, you can view
this information from the network management workstation (NMS). See also
network management station (NMS) and SNMP.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

network management station (NMS) A machine used to remotely manage a
specific network. Usually, the NMS software will provide a graph to display
collected data or use that data to make sure the server is operating within a
particular tolerance. See also SNMP.

NTV Name, Type, Value.

object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Sun ONE Application Server Administrative interface that creates XML
deployment descriptors for entity beans.

488 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without
destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Sun ONE
Application Server, database connections, servlet instances, and enterprise bean
instances can all be pooled.

POP3 Post Office Protocol

Glossary 489

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or INSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including
processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.

private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server.xml file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

490 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

RAR file Resource ARchive. A JAR archive that contains a resource adapter.

RDB Relational database.

RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Sun ONE
Application Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

Glossary 491

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the java.sql.ResultSet interface.
ResultSets are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

rollback Cancellation of a transaction.

row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the java.sql.ResultSet interface,
enabling ResultSet to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

492 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servlet class. A servlet is a reusable application that
runs on a server. In the Sun ONE Application Server, a servlet acts as the central
dispatcher for each interaction in an application by performing presentation logic,
invoking business logic, and invoking or performing presentation layout.

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Sun ONE Application
Server can invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

Glossary 493

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

SSL Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Sun ONE Application Server feature interface IState2. See
also conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

494 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Sun ONE Application Server uses Sun
ONE Directory Server to store shared server information, including information
about users and groups. See also LDAP.

Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

system administrator The person who administers Sun ONE Application Server
software and deploys Sun ONE Application Server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Attribute A transaction attribute controls the scope of a transaction.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

Glossary 495

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

Transaction Recovery Automatic or manual recovery of distributed transactions.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database I security file that contains the public and private keys; also
referred to as the key-pair file.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that /ham/burger is the base
directory and a URI specifies toppings/cheese.html. A corresponding URL
would be http://domain:port/toppings/cheese.html.

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLs to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www.my-domain.com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host. A
web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

496 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure. Sun ONE Application Server also supports
some non-Java web application technologies, such as SHTML and CGI.

web cache An Sun ONE Application Server feature that enables a servlet or JSP
to cache its results for a specific duration in order to improve performance.
Subsequent calls to that servlet or JSP within the duration are given the cached
results so that the servlet or JSP does not have to execute again.

web connector plug-in An extension to a web server that enables it to
communicate with the Sun ONE Application Server.

web container See container.

web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Sun ONE Application Server to
forward certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

XA protocol A database industry standard protocol for distributed transactions.

XML Extensible Markup Language. A language that uses HTML-style tags to
identify the kinds of information used in documents as well as to format
documents.

497

Index

A
accept language header, parsing 382
acceptor threads

specifying number via HTPP listener 54
virtual servers 371

access 121
access control, using virtual servers 376
access log files 104, 117

configuring 121
rotation 104
viewing 117

access.log 90
ACL, attributes 459
acl, dotted name 459
activation, definition 209
Adaptor, Resource 223
additional document directories 396
AddLog 186
add-resources command 327, 433
administered objects See JMS administered objects
Administration interface

accessing 35, 46
administering transactions 235
automatic transaction recovery 226
configuring log service attributes 114
general settings, configuring 82
JVM options, configuring 83
JVM Profiler, configuring 84
online help, accessing 39
path settings, configuring 83
shutting down the Administration Server 49

standard buttons 38
tabs, using 38
using 35

Administration Server
about 46
applying changes 53
control settings, viewing 53
settings, accessing 51
shutting down, methods for 49
starting the SNMP master agent 178
starting, methods for 47

administration, tools and associated functions 32
administrative domains

about 57
creating 33

admin-service 101
afterBegin 233
afterCompletion 233
agents, SNMP 170
ALERT 98
analyzer, log

running (archive server logs prior to use) 122
ansi_x3.4-1968 405
ansi_x3.4-1986 405
Ant tasks 414
appclient utility 414
application and server log output, redirecting 104
application client container 103
Application Client Container (ACC)

client side logging 103
application client JAR file 340

Section A

498 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Application Server
logging features and functions 89
online documentation, web site location 24
overview and key features 31
product line overview 22

application server instance
about 68
accessing 42
advanced settings 86
applying changes 80
starting and stopping 69
starting manually 75
status, viewing 81

application, dotted name 454
application.xml deployment descriptor 342
application-client.xml deployment descriptor 342
applications

attributes 454
connection sharing 284
directory structure 344
disabling 350
dynamic reloading 350
elements of web 203
environment entries 247
J2EE, introduction 341
JMS and 304
JNDI lookup names 344
monitoring object type 138
naming standards 343
resource environment references 258
resource references 257
runtime environment 346

appserv.mib 162
managed objects and descriptions 163

appservd 77
appservd-wdog.exe 77
appserv-wdog 77
archiving, log files 104
AS_ADMIN_HOST 421
AS_ADMIN_INSTANCE 421
AS_ADMIN_PASSWORD 421
AS_ADMIN_PORT 421
AS_ADMIN_PREFIX 427
AS_ADMIN_SECURE 421
AS_ADMIN_USER 421

asadmin utility
about 414
attributes 437
command syntax 416
commands 416
concurrent access 432
database, administering and monitoring

transactions 238
default values 464
dotted names 437
environment commands 419
environment variables 464
escape characters 424
exit status 430
export 419
extracting monitoring data 132
from command line 423
from pipe 424
from script 424
get 426
help 429
interactive 419
JVM settings 84
license commands 43
local 422
long options 464
multimode 418
non-interactive 419
operands 417
options 416
password file option 421
reconfig 427
remote 422
restarting instances 76
security 432
set 426
short options 464
singlemode 418
starting and stopping instances 70
transaction administration 238
unset 420
usage 431

ascii 405
atomicity 222
attributes

EJB container (that can be monitored) 216
transaction, deployment descriptors 231

Section B

Index 499

transactions 228
virtual server 203
web-module 204

attributes, asadmin 437
auth-db 461
authentication 331
authentication database attributes 461
authorization realm attributes 462
auth-passthrough 187, 188
authrealm 462
AuthTrans 186
AuthTrans qos-handler 158
AuthTrans-class 188
auto-commit connection validation 283
avax.transaction.UserTransaction 234

B
bean-cache

monitoring attribute names 142
monitoring object type 139

beanIdleTimeoutInSeconds 216
bean-managed transactions

not allowed for entity beans 234
bean-method

monitoring attribute names 143
monitoring object type 139

bean-pool, monitoring object type 139
beans, message-driven

characteristics 213
beforeCompletion 233
BM1168210 144
boolean options 416
business methods, transactions 231, 233

C
cache control directives, setting 408
cache settings, configuring EJB 217

CacheBucket
monitoring attributes 150
monitoring HTTP server elements 145

cacheFaultsPercentage 216
cache-hits 143
cache-misses 142
cache-resize-quantity 142
capture-schema utility 414
CGIs 403

settings for virtual servers 383
with virtual servers 377

character set
changing 404
iso_8859-1 405
us-ascii 405

check-passthrough 190
chroot settings 383
ciphers, TLS Rollback option 337
classpathprefix 85
client name mapping example 135
clients

lists of accesses 121
requests 184

command line, asadmin from 423
command-line interface

name mapping, monitoring 134
shutting down the Administration Server 50
starting the Administration Server 48

commands
asadmin 416
license 43

commits See transactions, commits
community string, with SNMP agent 167
components, MDB, See MDB
concurrent access, asadmin 432
concurrent connections

virtual servers, quality of service 160
CONFIG 98, 170, 174, 175

master agent, editing 175
configuration files, about 42
connection factories

defined 252
JNDI 252
URL 257

Section C

500 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

Connection object 252
connection pooling

about 282
datasource object 268

connection sharing 284
connection validation 283
ConnectionQueue 151

monitoring ConnectionQueueBucket
attributes 148

monitoring HTTP server elements 145
ConnectionQueue attributes

monitoring 146
ConnectionQueueBucket

monitoring HTTP server elements 145
ConnectionQueueBucket monitoring attributes 148
connections, shareable or non-shareable 227
connector modules

attributes 457
deployment directory structure 345

connector-module 457
container-managed transactions 227
containers

EJB, responsibilities 210
MDB 306
Web, about 201

context-root 204
control settings, viewing Administration Server 53
conventions used in this guide 20
conversational state 211
CORBA, about 329
COSNaming service 250
Count200 through Count503 152
Count2xx through Count5xx 152
CountAsyncAddrLookups 149
CountAsyncLookupsInProgress 149
CountAsyncNameLookups 149
CountBytesReceived 152
CountBytesTransmitted 152
CountCacheEntries 149
CountCacheHits 149
CountCacheMisses 149
Countcalls 153
CountConfigurations

monitoring Process attributes 147
CountConnections 149
CountContentHits 151
CountContentMisses 151
CountEntries 150
CountFlushes 150
CountHits 150
CountInfoHits 151
CountInfoMisses 151
CountMisses 151
CountOpenConnections 152
CountOpenEntries 150
CountOther 152
CountOverflow

monitoring ConnectionQueueBucket
attributes 148

CountQueued 148
monitoring ConnectionQueueBucket

attributes 148
CountRefusals 150
CountRequests 152, 153
CountThreads 148
CountThreadsIdle 148
CountTimeouts 150
CountTotalConnection

monitoring ConnectionQueueBucket
attributes 148

CountTotalQueued
monitoring ConnectionQueueBucket

attributes 148
cp367 405
cp819 405
create-acl command 433
create-authdb command 433
create-auth-realm command 433
create-custom-resource command 433
create-domain command 59, 433
create-file-user command 433
create-http-listener command 378, 433
create-http-qos command 365, 384, 433
create-iiop-listener command 433
create-instance command 78, 433
create-javamail-resource command 433

Section D

Index 501

create-jdbc-connection-pool command 279, 433
create-jdbc-resource command 269, 281, 433
create-jmsdest command 327, 433
create-jms-resource command 328, 434
create-jndi-resource command 434
create-jvm-options command 85, 434
create-lifecycle-module command 355, 434
create-mime command 367, 434
create-persistence-resource command 434
create-profiler command 434
create-ssl command 434
create-virtual-server command 380, 434
cron 105

scheduling execution of logadm 111
cron-based log rotation 109
crontab 109
crontab, entry format 110
custom resources

about 253
attributes 451
creating 253

customer support, contact information 26
custom-resource 451

D
daemon

native SNMP, restarting 171
data store 260
databases

administering and monitoring via CLI 238
connection validation 276
JDBC API 265
JNDI names 244
naming services 273
resource manager 223
resource references 245
three-tier access model 266
two-tier access model 266

DataSource 252
DataSource object 267
debug 72

debug mode
starting the application server instance 72

default handlers
subsystem logging 102

default HTTP listener
Administration Server 54
HTTP server 377

default option values 464
default web module 383
delete-acl command 434
delete-authdb command 434
delete-auth-realm command 434
delete-custom-resource command 434
delete-domain command 61, 434
delete-file-user command 434
delete-http-listener command 380, 434
delete-http-qos command 365, 384, 434
delete-iiop-listener command 434
delete-instance command 79, 434
delete-javamail-resource command 434
delete-jdbc-connection-pool command 434
delete-jdbc-resource command 434
delete-jmsdest command 328, 434
delete-jms-resource command 328, 434
delete-jndi-resource command 434
delete-jvm-options command 85
delete-lifecycle-module command 356, 434
delete-mime command 367, 435
delete-persistence-resource command 435
delete-profiler command 435
delete-ssl command 435
delete-virtual server command 435
delete-virtual-server command 386
deploy command 352, 435
deploydir command 352, 435
deploying

COSNaming service with 251
directory structure 344
disabling 350
dynamic 350
EJB JAR modules 355
individual modules 354
lifecycle modules 355

Section E

502 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

redeployment 350
RMI/IIOP clients 357
runtime environments 346
using Administration interface 353
using asadmin 352
using Sun ONE Studio 353
WAR modules 354

deployment descriptors
entries 293
J2EE standard 341
Sun ONE Application Server 342
transaction attributes 231

deployment, hot
deploying an application at server runtime,

without restart 206
destinations, for JMS messages, See JMS destinations
Developer’s Guide to Web Applications

documentation, description 25
directives, configuring logging 117
directories, additional document 396
directory structure, deployment 344
disable command 435
disabling deployed applications or modules 350
discardmanualchanges 80
display-license command 43, 435
distributed and local transactions 225
distributed transactions 268
DnsBucket

monitoring attributes 149
monitoring HTTP server elements 145

DnsBucket attributes 149
document directories

additional 396
primary 374, 396, 478
restricting content publication 401

document footer, setting 406
document preferences

default MIME type, specifying a 403
directory indexing 402
index filenames 402
parsing the accept language header 382
server home page 403
virtual servers, setting 401

document root 374, 478
setting 396

documentation
overview of manuals 24

documents
lists of those accessed in log 121

domain directory 58
domain registry

recreating 63
domains

administrative, about 57
administrative, creating and deleting if non-root

users 60
configuring 58
creating 59

domains.bin 60
domains.lck 60
dotted names, asadmin 437
DTD files

application XML 342
dynamic deployment 350
dynamic redeployment

redeploying an existing application without a
server restart 205

dynamic reloading 350

E
EJB

activation 209
cache settings, configuring 217
MDB pool settings, configuring 219
module attributes 455
passivation 209
pool settings, configuring 217
references 247
settings, configuring 216
types 210

EJB container
about 208
attributes 442
attributes that can be monitored 216
configuring the log level 214
responsibilities 210

EJB JAR file 340

Section F

Index 503

EJB JAR modules
deploying 355

ejb-container 101, 442
EJBContext 231
ejb-jar.xml 248
ejb-jar.xml deployment descriptor 342
ejb-link element 248
ejbLoad 232
ejb-module 455

monitoring object type 138
ejb-name element 248

mapping 258
EJBObject 210
ejb-ref-name element 248
enable command 435
enabled attribute 205
Enterprise Edition

Application Server 7 23
Enterprise Java Bean container

about 208
Enterprise Java Beans

entity beans, about 212
message-driven beans 213
session beans, about 211
types 210

entity beans
about 212
bean-managed transactions not allowed 234
handling data access via JDBC 210
transactions 231

entity-bean
monitoring object type 139

environment classpath
ignore 83

environment commands, asadmin 419
environment entries 247
environment variables

AS_ADMIN_PREFIX 427
asadmin 464
ASADMIN_HOST 421
ASADMIN_INSTANCE 421
ASADMIN_PASSWORD 421
ASADMIN_PORT 421
ASADMIN_SECURE 421

ASADMIN_USER 421
Error directive 186
error log file 117
Error qos-error 158
error responses, customizing 403
ErrorLogDateFormat 117
escape characters, asadmin 424
event log file

viewing 119
event variables

traps 162
Event Viewer

monitoring events (Windows 2000 Pro) 124
events, viewing (Windows 2000 Pro) 124
exceptions

rolling back transactions 231
execution-time-millis 144
exit status, asadmin 430
export command 419, 435
external repositories, accessing 256
external resources

about 253
creating 255

F
factory objects 248
fail-all-connections property 283
FATAL 99
file cache 362
file manipulation, remote

enabling 397
FINE 98
FINER 98
FINEST 98
FlagAsyncEnabled 149
FlagCacheEnabled 149
FlagEnabled 150
FlagProfilingEnabled

monitoring HTTP server attributes 146
FlagVirtualServerOverflow

Section G

504 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

monitoring HTTP server attributes 146
flat transactions, J2EE 226
flexanlg 414

use and syntax 122
FractionSystemMemoryUsage

monitoring Process attributes 147

G
get command 435

asadmin 426
monitoring data 133

getUserTransaction 234

H
hard links, definition 398
help

Administration interface 39
asadmin utility 429

help command 435
home page 403
home.html 402
Hosts 151
hosts attribute

checking against subject pattern 374
hot deployment

deploying an application at server runtime,
without restart 206

htaccess files 398
HTML, server-parsed, setting up 407
htpasswd utility 414
HTTP 184

monitoring 129
HTTP listeners 370

acceptor threads, specifying number 54
Administration Server 54
attributes 457
creating 377
http-listener-1 370, 377

settings 54
SSL/TLS security settings, activating 54

HTTP server
monitorable attributes 144

HTTP server attributes
monitoring 145

HTTP server elements
monitoring 144

HTTP server monitorable attributes 144
HTTP service

attributes 448
HTTP/1.1 protocol 184
http-listener 379, 457
http-server

monitoring attribute names 139
monitoring object type 138

http-server.http-listener 457
http-service 81, 448

I
ibm367 405
ibm819 405
Id 151

monitoring ConnectionQueue attributes 146
monitoring HTTP server attributes 146

idle-timeout-in-seconds 142, 143, 220
IIOP listener

attributes 446
creating 335
ports 338
SSL/TLS settings 337

IIOP service
attributes 445

IIOP, about 330
iiop-listener 446
iiop-service 102, 445

monitoring object type 138
IIS

web server plugin, configuring for 193
web server plugin, configuring to use 194

index filename 402

Section I

Index 505

index.html 402
in-flight transactions 238
inflight-tx 141
INFO 98

default log level 97
INIT 178
init.conf 80, 187

global variable settings at start-up 366
termination timeout 73

initial naming context 250
initialBeansInPool 216
init-passthrough 188
inittab 47, 71, 73

editing 74
restarting servers automatically 74
starting the server with 73

install-license command 43, 435
instances

application server
about 68
accessing 42

interactive asadmin 419
Interfaces 151
internal daemon log rotation 105
IP addresses, in HTTP listeners 370
IP-address-based virtual servers 372
isFrozen 141
iso_646.irv

1991 405
iso_8859-1 405

1987 405
iso-2022-jp 404
iso646-us 405
iso-8859-1 404
iso-ir-100 405
iso-ir-6 405
isolation 222
iwsCpuID 163
iwsCpuIdleTime 163
iwsCpuKernelTime 163
iwsCpuTable 163
iwsCpuUserTime 163
iwsInstanceContact 163

iwsInstanceCount200 (through 404) 164
iwsInstanceCount2xx - 5xx 163
iwsInstanceCount3xx 163
iwsInstanceCount4xx (& 5xx) 164
iwsInstanceCount503 166
iwsInstanceCountOther 164
iwsInstanceDeathCount 163
iwsInstanceDescription 163
iwsInstanceId 163
iwsInstanceInOctets 163
iwsInstanceLoad15MinuteAverage 164
iwsInstanceLoad1MinuteAverage 164
iwsInstanceLoad5MinuteAverage 164
iwsInstanceLocation 163
iwsInstanceNetworkInOctets 164
iwsInstanceNetworkOutOctets 164
iwsInstanceOrganization 163
iwsInstanceOutOctets 163
iwsInstanceRequests 163
iwsInstanceStatus 163
iwsInstanceTable 163
iwsInstanceUptime 163
iwsInstanceVersion 163
iwsListenAddress 166
iwsListenId 166
iwsListenPort 166
iwsListenSecurity 166
iwsListenTable 166
iwsProcessConnectionQueueCount 165
iwsProcessConnectionQueueMax 165
iwsProcessConnectionQueueOverflows 166
iwsProcessConnectionQueuePeak 165
iwsProcessConnectionQueueTotal 165
iwsProcessId 165
iwsProcessKeepaliveCount 166
iwsProcessKeepaliveMax 166
iwsProcessTable 165
iwsProcessThreadCount 165
iwsProcessThreadIdle 165
iwsThreadPoolTable 166
iwsVsCount200 (through 404) 165
iwsVsCount2xx - 5xx 165

Section J

506 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

iwsVsCount503 166
iwsVsCountOther 165
iwsVsId 164
iwsVsInOctets 164
iwsVsOutOctets 164
iwsVsRequests 164
iwsVsTable 164

J
J2EE

transactional applications 225
transactions 222
Web Container, about 201

J2EE applications
EJB specification 304
JMS, and 304
message-driven beans, See MDB
resources 241
services 241

J2EE Connectors
resource manager 224

J2EE modules
definition 340
dynamic reloading 350
naming 343
runtime environment 346

Java Database Connectivity (JDBC) API
for data access via entity beans 210

Java Message Service, See JMS
Java Virtual Machine, See JVM
java.sql.Connection 234
java.util.Properties 209
java-config 444
JavaMail

Folder objects 289
JAF 290
Message class 288
Message subclass 289
Session class 290
Store class 289

JavaMail API
about 286

message handling 287
JavaMail resources

about 286
attributes 453
configuration parameters 291

JavaMail Sessions
configuring 295
creating 294
deployment descriptors 293
resource factory 248

javax.ejb.EJBContext 234
javax.ejb.EntityBean 209
javax.ejb.EntityContext 209
javax.ejb.MDBContext 209
javax.ejb.SessionBean 209
javax.ejb.SessionContext 209
javax.ejb.SessionSynchronization 209
javax.sql.DataSource 225
javax.sql.XADataSource 225
JDBC

API 210, 242, 265
connection factories 248
connections 271
DataSource object 242
datasources 242, 267
transactions 284
URLs 272

JDBC connection pools
attributes 450
connection validation 276, 283
creating 273
fail-all-connections property 283
monitoring 284
pool settings 275
properties 275
transaction isolation 276

JDBC resources
attributes 449
creating 269
registering 269

jdbc-connection-pool 280, 450
monitoring attribute names 141
monitoring object type 138

jdbc-resource 449
JMS

Section K

Index 507

about 300
administered objects See JMS administered

objects
API, list of specifications 213
destinations, See JMS destinations
message consumers 303
message delivery models 301
message listeners 306
message producers 303
message structure 302
message-driven beans 213
messaging system concepts 300
physical destinations, See JMS destinations
programming model 302
provider, built-in 306
provider, See JMS provider
resources, See JMS administered objects
service, built-in 306
Service, See JMS Service
specification 300, 302
system architecture 301

JMS administered objects
about 304
attributes 452
connection factory 310
destination 310
managing 321

JMS destinations 243
about 309
managing 318
queues 309
topics 309

JMS provider
about 299, 307
native 299, 313
resource manager 224

JMS Service
administration of 314
administration tools 313
architecture 311
attributes 440
built-in 312, 313
configuring 315
disabling 313
external 313
MQ administered objects, and 312
MQ client runtime, and 312

MQ Message Server, and 312
jms-max-messages-load 142
jms-ping command 328, 435
jms-resource 328, 452
jms-service 102, 328, 440
JNDI

architecture 243
connection factories 252
custom resources, creating 253
external repositories 256
external resources, creating 255
JMS administered objects, and 310
lookup method 243
lookup names 344
lookups 304
lookups and associated references 245
MDB and 306
names 244
resource attributes 450

jndi-resource 450
JVM

attributes 444
debug options 72
options 83
settings

configuring 82, 84
JVM Profiler

attributes 463
configuring via Administration interface 84

K
KeepaliveBucket

monitoring HTTP server elements 145
keepmanualchanges 80

L
latin1 405
library, shared, using 358
license commands 43

Section L

508 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

lifecycle modules
attributes 462
deploying 355

lifecycle-module 462
list command 435

monitoring 132
list-acls command 435
list-authdbs command 435
list-auth-realms command 435
list-components command 435
list-custom-resources command 435
list-domains command 61, 435
listen sockets, See HTTP listeners
listener, HTTP

editing 54
list-file-groups command 436
list-file-users command 436
list-http-listeners command 378, 436
list-iiop-listeners command 436
list-instances command 436
list-javamail-resources command 436
list-jdbc-connection-pools command 280, 436
list-jdbc-resources command 282, 436
list-jmsdest command 328, 436
list-jms-resources command 328, 436
list-jndi-resources command 436
list-lifecycle-modules command 356, 436
list-mimes command 367, 436
list-persistence-resources command 436
list-profilers command 436
list-sub-components command 436
list-virtual-servers command 436
Load15MinuteAverage

monitoring HTTP server attributes 146
Load5MinuteAverage

monitoring HTTP server attributes 146
LoadMinuteAverage

monitoring HTTP server attributes 146
local and distributed transactions 225
local option 422
local transaction optimization 225
location 204

log analyzer
archiving server logs prior to use 122
flexanlg, use and syntax 122
running 122
running from command line 122

log archive file format 104
log files

access 117
archiving 104
configuring 121
error 117
virtual servers 376

log levels
about 97
ALERT 98
configuring, EJB container 214
order of severity 98
table of 98
used for syslog configuration 99

log rotation
cron-based 109
internal daemon 105
internal-daemon 105
performing (four methods) 105
scheduler 106

log service attributes 447
file 114
level 114
log-stderr 115
log-stdout 114, 115
use-system-logs 115

log service element 101
LOG_ALERT 99
LOG_CRIT 99
LOG_DEBUG 99
LOG_ERR 99
LOG_INFO 99
LOG_WARNING 99
logadm 107
logadm.conf

location and sample of 107
logchecker 109
LogFlushInterval 117
logging

about 90

Section M

Index 509

access file, viewing 117
Application Client Container (ACC) 103
client side 103
command-line options override logadm.conf

options 109
components and subsystems, configuring 115
components and subsystems, list of 115
configuring attributes via Administration

interface 114
configuring via administrative interface 112
configuring via command line interface 111
directives, configuring 117
event file, viewing 119
features and functions 89
messages

information provided 90
preferences 121
redirecting application and server log output 104
UNIX 91
using syslog 92
virtual server instances 100
web container, default behavior 206
Windows 91

log-service 102, 103, 447
log-virtual-server-id 101
long options 464

M
mail-resource 453
managed objects 162, 167
Management 235
management information base (MIB)

defines managed objects 162
master agent

CONFIG file, editing 175
SNMP 161
SNMP, enabling and starting 174
SNMP, installing 170, 171, 174
SNMP, manually configuring 175
SNMP, starting 178
SNMP, starting on another port 174
starting on a nonstandard port 178

maxBeansInCache 216

max-beans-in-cache 143
maxBeansInPool 216
MaxByteTransmissionRate 152
MaxCacheEntries 149
MaxConnections 149
MaxEntries 150
MaxHeapCacheSize 150
MaxMmapCacheSize 150
MaxOpenConnections 152
MaxOpenEntries 150
max-pool-size 142
MaxProcs

monitoring HTTP server attributes 146
MaxQueued 149

monitoring ConnectionQueueBucket
attributes 148

MaxThreads 148
monitoring HTTP server attributes 146

MaxVirtualServers
monitoring HTTP server attributes 146

MDB
about 213, 305
deployment descriptor 306
JNDI and 306
transactions 231, 234

MDB container
about 306
attributes 442

MDB pool settings
configuring for EJBs 219

mdb-container 102, 442
message brokers, See MQ brokers
message listeners 303, 306
message, log

information provided 90
message-driven beans, See MDB
message-driven-bean

monitoring object type 139
MessageListener 213
messaging

asynchronous 299
JMS See JMS

meta-data connection validation 283

Section M

510 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

metric interval
time used in traffic calculations 154

Microsoft Internet Information Services
configuring to use web server plugin 192

MIME types
attributes 459
charset parameter 404
creating new file 367
definition 367
definition and accessing page 487
editing definitions 367
specifying a default 403
virtual server settings, configuring 381
with virtual servers 381

mime, dotted name 459
minBeansInCache 216
minBeansInPool 216
Mode 151

monitoring Process attributes 147
monitoring 148, 149, 150, 151

about 127
additional subsystems and components 129
bean-cache attributes 142
bean-method attributes 143
CacheBucket 145
CLI name mapping 134
client name mapping, example 135
ConnectionQueue 145
ConnectionQueue server attributes 146
ConnectionQueueBucket 145
ConnectionQueueBucket attributes 148
ConnectionQueueBucket ConnectionQueue

attribute 148
ConnectionQueueBucket CountOverFlow

attribute 148
ConnectionQueueBucket CountQueued

attribute 148
ConnectionQueueBucket CountTotalConnection

attribute 148
ConnectionQueueBucket CountTotalQueued

attribute 148
ConnectionQueueBucket MaxQueued

attribute 148
ConnectionQueueBucket PeakQueued

attribute 148

ConnectionQueueBucket TicksTotalQueued
attribute 148

container subsystems 130
DnsBucket 145
FlagProfilingEnabled 146
FlagVirtualServerOverflow 146
HTTP 129
HTTP server attributes 144, 145
HTTP server elements 144
http-server attributes 139
Id 146
JDBC connection pools 284
jdbc-connection-pool attributes 141
KeepaliveBucket 145
Load15MinuteAverage 146
Load5minuteAverage 146
LoadMinuteAverage 146
MaxProcs 146
MaxThreads 146
MaxVirtualServers 146
Node Process attribute 147
object types 137
ORB service 131
orb-connection attributes 141
orb-thread attributes 141
Pid Process attribute 147
process 145
process attributes 140, 147
Process CountConfigurations attribute 147
Process FractionSystemMemoryUsage

attribute 147
Process SizeResident attribute 147
Process SizeVirtual attribute 147
Profile 145
Profile attributes 147
ProfileBucket 145
quality of service (QOS) 131
RateBytesReceived 146
RateBytesTransmitted 146
RequestBucket 145
SecondsRunning 146
server 144
SNMP 128
statistics 128
Thread 145
ThreadPool 145
ThreadPool attributes 147

Section N

Index 511

ThreadPoolBucket 145
TicksPerSecond 146
TimeStarted 146
TimeStarted Process attribute 147
transaction service 131
transaction-service attributes 141
using asadmin to extract data 132
using get command 133
using list command 132
VersionServer 146
VirtualServer 145
virtual-server attributes 140

MQ
about
administered objects 310
administration tools 310
brokers 307
client runtime 309
documentation, web site location 26
integration with Sun ONE Application

Server 311
message server 307
messaging system, parts of 307
resource manager 224

multimode 418, 436
multiple server pools

configuring 195

N
NameTrans 186
naming

COSNaming 250
initial context 250
J2EE modules 343
JNDI and resource reference 245
JNDI lookup 344
services 273
standards 343

native SNMP daemon
restarting 171

network management station (NMS) 160
about 161

nice 383

non-interactive asadmin 419
nsfc.conf

file cache settings 362
numBeansCreated 216
numBeansDestroyed 216
numBeansInPool 216
num-beans-in-pool 142
num-expired-sessions-removed 143
num-passivation-errors 143
num-passivations 143
num-passivation-success 143
numThreadsWaitaing 216
num-threads-waiting 142

O
obj.conf file 80

set up SAFs for using quality of service 155
template 373
virtual server 373

object types, monitoring 137
ObjectType 186
ObjectType-class 190
online documentation

web site location 24
online help

Administration interface, accessing 39
asadmin utility 429

onMessage 139, 231
operands, asadmin 417
optimization, local transaction 225
options 416

boolean 416
default values 464

ORB
attributes 445
configuring 332
functionality of bundled 331
IIOP listener configuration 335
introduction 330
listener attributes 446
service, monitoring 131

Section P

512 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

thread pools 334
orb

dotted name 445
monitoring object type 138

orb-connection
monitoring attribute names 141
monitoring object type 138

orblistener 446
orb-thread-pool

monitoring attribute names 141
monitoring object type 138

P
package-appclient utility 414
passivation 209
password file option 421
password file, loading on startup 401
password.conf 69
PathCheck 186
PeakQueued 149

monitoring ConnectionQueueBucket
attributes 148

performance
dynamic reloading 350
using quality of service (QOS) 131

persistence
about 259
bean-managed 212
container-managed 212
data store and 260
entity beans 261

persistence manager
creating 263
factory resource attributes 452
role of 260

persistence-manager-factory-resource 452
Pid

monitoring Process attributes 147
PidLog 117
pipe, with asadmin 424
pkgadd 43

Platform Edition
Application Server 7 23

plugin, web server
See web server plugin

pool settings
EJB, configuring 217

PooledConnection object 268
pool-resize-quantity 142
pools, multiple server

configuring 195
ports

HTTP listener 371
IIOP listener 338

PR_Recv()/net_read 159
PR_Send()/net_write 159
PR_TransmitFile 159
preferences, log

setting 121
primary document directory, setting 374, 396, 478
process

attribute 144
monitoring attribute names 140
monitoring attributes 147
monitoring HTTP server elements 145
monitoring object type 138

Process element 144
product line

overview, Application Server 7 22
Profile 153

monitoring attributes 147
monitoring HTTP server elements 145

Profile element 144
ProfileBucket

monitoring HTTP server elements 145
ProfileBucket element 144
profiler 85

attributes 463
dotted name 463

programming, JMS programming model 302
protocol data units (PDUs) 167
proxy agent, SNMP 170

installing 170
starting 171

public directories

Section Q

Index 513

configuring 399

Q
qos-error, Error 158
qos-handler, AuthTrans 158
quality of service 154

concurrent connections, virtual servers 160
configuring 155
configuring for HTTP server 363
example 154
monitoring 131
only HTTP bandwidth for application level

measured 158
set up SAFs in obj.conf for using 155
using 131
virtual servers, configuring settings for 383

queues, See JMS destinations

R
ra.xml deployment descriptor 342
RAR files 340
RateBytesReceived

monitoring HTTP server attributes 146
RateBytesTransmitted 152

monitoring HTTP server attributes 146
rc.2.d, starting the server with 73
recompute interval 154
reconfig command 64, 80, 280, 427, 436
Recovery, Transaction 226
redeploying applications 350
registry, domains

recreating 63
reloading, dynamic 350
remote file manipulation

enabling 397
RemoteException 230
removal-timeout-in-seconds 219
request processing, for virtual servers 374

RequestBucket
monitoring HTTP server elements 145

requests
how server handles 184
methods 184
steps in handling 186

Resource Adapter 223
resource environment references 249, 258
resource manager

database 223
definition 223
J2EE Connectors 224
JMS provider 224
transaction 224

Resource RAR files 340
resource references 245, 257
resources

custom 253
external 253
JMS, See JMS administered objects
monitoring object type 138

res-sharing-scope 227
restart-instance command 76, 436
restartserv 76
restricting symbolic links 398
RMI

introduction 330
RMI/IIOP clients

deploying 357
rollbacks, See transactions, rollbacks
root

monitoring object type 138
root directories

installation, conventions for 21
runtime environments 346

S
SAF

auth-passthrough 188
check-passthrough 190
init-passthrough 188
service-passthrough 189

Section S

514 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

sagt 170
sagt, command for starting Proxy SNMP agent 171
scheduler log rotation

archive log files 106
scheduler link 106

schedulerd 106
script, asadmin 424
SecondsMaxAge 150
SecondsRunning

monitoring HTTP server attributes 146
SecondsTimeouts 150
security service

attributes 448
security, asadmin 432
security-service 102, 448
Server element 144
server instance

adding 78
deleting 78

server logs 122
server.log 90

default log level 97
default logging 91
example 91

server.xml 80, 96, 101, 104, 235, 349, 361, 370
default web application 205
settings that do not require a restart 81

server.xml file
attributes 104

server1 68
server-parsed HTML 407
servers

configuration attributes 464
monitoring HTTP server elements 144
request handling 184
restarting (Unix) 73
restarting manually (Unix) 47, 71
starting 73
stopping 50
stopping manually 50
stopping manually (Unix) 71

Service 186
service-passthrough 187, 188, 189
Services Control Panel

starting the Administration Server 48
session beans

about 211
instance variables, synchronizing 233
stateful 211
stateless 211
synchronizing instance variables 233
transactions 231, 232

sessions
and dynamic reloading 350
JMS messaging 303

SessionSynchronization 232, 233
set command 426, 436
setAutoCommit 234
setRollbackOnly 231
settings

Administration Server, accessing 51
Java Virtual Machine (JVM), configuring 82

SEVERE 98
shared library, using 358
short options 464
show-component-status command 436
show-instance-status command 81, 436
shutdown command 50, 436
Simple Network Management Protocol (SNMP)

introduction 160
single sign-on, about 206
singlemode 418
SizeHeapCache 150
SizeMmapCache 150
SizeResident

monitoring Process attributes 147
SizeVirtual

monitoring Process attributes 147
SMUX 169
SNMP

community string 167
community strings, configuring 167
daemon, restarting 171
GET and SET messages 166
master agent 161

enabling and starting 174
installing 170, 171, 174
manually configuring 175

Section S

Index 515

starting 178
starting on another port 174

monitoring 128
native daemon, restarting 171
proxy agent

about 170
installing 170
starting 171

setting up on a server 168
Simple Network Management Protocol,

introduction 160
subagent 161
subagent, enabling 180
trap 167

snmpd, command for restarting native SNMP
daemon 171

soft (symbolic) links 398
Solaris 8 and 9 package-based, non-evaluation,

unbundled installations
document conventions for default installation

directories 22
Solaris 9 bundled installations

configuring 33
document conventions for default installation

directories 21
specify

log file 116
log level 116
transaction log location 116

SSL/TLS
HTTP listener settings 54
IIOP listener settings 337
using with virtual servers 375

standalone-ejb-module
monitoring object type 139

Standard Edition
Application Server 7 23

start-appserv command 437
start-domain command 48, 62, 437
starting the server 73
start-instance command 70, 72, 437
startserv 71

starting the Administration Server 47
state, virtual server 382
stateful-session-bean

monitoring object type 139
stateless-session-bean

monitoring object type 139
statistics

monitoring 128
quality of service bandwidth lost when server

reconfigured dynamically 159
settings for measuring traffic 154

status, application server instance 81
stderr 91, 104
stdout 91, 104
steady-pool-size 142
stop-appserv command 50, 437
stop-domain command 50, 62, 437
stop-instance command 70, 437
stopping the server 50
stopserv 71

shutting down the Administration Server 50
stronger ciphers 409
subagent

SNMP 161
SNMP, enabling 180

subsystem
logging control, at the 101
logging default handlers 102

summary
monitorable attribute 140

Sun customer support 26
Sun ONE Message Queue, See MQ
Sun ONE Studio

about 42
deploying with 353

sun-acc.xml 103
sun-application.xml deployment descriptor 343
sun-application-client.xml deployment

descriptor 343
sun-cmp-mapping.xml deployment descriptor 343
sun-ejb-jar.xml deployment descriptor 343
sun-passthrough.properties 195

sample file 196
sun-web.xml 204
sun-web.xml deployment descriptor 343
support, customer

Section T

516 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

contact information 26
symbolic (soft) links, definition 398
symbolic links, restricting 398
syntax, asadmin 416
sysContact 175, 176
sysLocation 175, 176
syslog

info used to identify Application Server
messages 95

log levels used for configuration 99
logging 92
message

example 96
syslog.conf 92

configuring to store less severe messages 93
example of configured file 94

syslogd 92
system RC scripts

restarting the server automatically 75
System.getCurrentTimeInMillis 237

T
table connection validation 283
termination timeout

init.conf 73
setting 73

Thread
monitoring attributes 151
monitoring HTTP server elements 145

thread pools
information you specify to add 365
ORB 334

ThreadPool
monitoring attributes 147
monitoring HTTP server elements 145

Thread-pool 148
ThreadPoolBucket

monitoring attributes 148
monitoring HTTP server elements 145

thread-pool-size 141
three-tier database access 266

TicksDispatch 153
TicksFunction 153
TicksPerSecond

monitoring HTTP server attributes 146
TicksTotalQueued

monitoring ConnectionQueueBucket
attributes 148

timeout, termination
setting 73

timeStamp 237
TimeStarted 151

monitoring HTTP server attributes 146
monitoring Process attributes 147

TLS Rollback option
ciphers 337

tools
available for administration functions 32

topics See JMS destinations
total-beans-created 142
total-beans-destroyed 142
total-beans-in-cache 143
total-connections-timed-out 141
total-inbound-connections 141
total-num-calls 143
total-num-errors 143
total-num-success 144
total-outbound-connections 141
total-threads-waiting 141
total-tx-completed 141
total-tx-inflight 141
total-tx-rolled-back 141
traffic

settings, counting statistics for 154
Transaction Manager 222
transaction resource manager 224
transaction service

administering via asadmin 153
attributes 441
freezing and unfreezing examples 239
monitoring 131

transactional User Application 223
TransactionRequiredException 229
transactions

Section U

Index 517

administering with Administration interface 235
afterBegin method example 233
afterCompletion method example 233
attributes 228, 494
bean-managed 215
commits 215
consistency 222
container-managed 227
databases, administering and monitoring using

asadmin 238
distributed 268
entity beans 231
flat, J2EE 226
in-flight 238
introduction 221
J2EE 222
local and distributed 225
local optimization 225
Mandatory attribute 229
message-driven beans 231, 234
monitoring 239
Never attribute 230
NotSupported attribute 230
recovery 226
required attribute 229
RequiresNew attribute 229
rollbacks 215, 231, 239
session beans 232
Supports attribute 230
user application 223

transactionsCompleted 236
transaction-service 102, 441

monitoring attribute names 141
monitoring object type 138

transactionsInFlight 237
transactionsRecovered 236
transactionsRolledBack 236
traps

messages containing event variables 162
SNMP 167

two-tier database access 266

U
ulimit 69
undeploy command 353, 437
unset command 420, 437
update-file-user command 437
URL connection factory resources 257
URL forwarding, configuring 406
URL-host-based virtual servers 372
URLs, JDBC 272
us 405
usage, asadmin 431
us-ascii 404
User Application, transactional 223
user directories

configuring 399
customizing 399

user transaction references 250
UserTransaction object 250
use-system-logging 93

V
variables

event
traps 162

global
settings in init.conf 366

verifier utility 341, 414
version command 437
VersionServer

monitoring HTTP server attributes 146
viewing events 124
virtual servers

acceptor threads 371
attributes 203, 460
concurrent connections, quality of service 160
configuring MIME settings 381
configuring web containers to deploy web

applications 203
creating 380
default 373

Section W

518 Sun ONE Application Server 7 • Administrator’s Guide • September 2003

default configuration example 387
default web application 205
deleting 386
deploying 387
document preferences, setting 401
editing general settings 384
HTTP listeners 370
HTTP listeners, creating 377
intranet hosting example 390
introduction 369
log files 376
logging instances 100
mass hosting example 392
public directories, configuring to use 399
quality of service, configuring settings 383
request processing 374
secure server example 388
setting additional document directories 396
single sign-on 206
state 382
types 372
using access control 376
using quality of service 131
using SSL 375

VirtualServer
monitoring attributes 151
monitoring HTTP server elements 145

virtual-server 385, 460
monitoring attribute names 140
monitoring object type 138

virtual-server attribute 144
VirtualServer element 144

W
waiting-thread-count 141
WAR files 340, 383
WAR modules, deploying 354
WARNING 98
watchdog 77
web applications 340

elements of 203
with virtual servers 383

web container
attributes 443
default logging behavior 206
deploying web applications within virtual

servers 203
introduction 201
web application deployment 205

web module attributes 456
web server plugin

about 183
adding 191
configuring 187
configuring Microsoft Internet Information

Services 192
IIS, configuring to use 194
init.conf 187

web.xml deployment descriptor 342
web-container 81, 102, 443
WEB-INF directory 204
web-module 456

attributes 204
wscompile utility 415
wsdeploy utility 415

X
XATransaction mode 224
x-euc-jp 405
x-mac-roman 405
x-sjis 404

	Administrator’s Guide
	Contents
	About This Guide
	What’s In This Guide?
	How This Guide Is Organized
	Part I: Server Basics and Administering Global Settings
	Part II: Managing an Individual Server Instance
	Part III: Managing HTTP Server Features and Virtual Servers
	Part IV: Appendixes

	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Line Overview
	Platform Edition
	Standard Edition
	Enterprise Edition

	Using the Documentation
	Product Support

	Getting Started with Sun ONE Application Server Administration
	About Sun ONE Application Server
	Configuring the Bundled Solaris Version
	Creating an Administrative Domain
	Starting the Administration Server
	Creating an Application Server Instance
	Deploying Applications

	Using the Administration Interface
	Accessing the Administration Interface
	Using Tabs
	Using Buttons
	Accessing Online Help
	Exiting the Administration Interface

	Using the Command-line Interface
	Accessing the Administration Server
	Accessing Application Server Instances
	Using Sun ONE Studio
	About Configuration Files
	Using the License Commands

	Setting Administration Server Preferences
	About the Administration Server
	Starting the Administration Server
	Using the startserv Script
	Using the Command-Line Interface
	Using the Services Window (Windows)
	Using the Start Menu (Windows)

	Shutting Down the Administration Server
	Shutting Down Using the Administration Interface
	Shutting Down Using the stopserv Script
	Shutting Down Using the Command-Line Interface
	Shutting Down Using the Services Window (Windows)

	Accessing the Administration Server Settings
	Viewing Administration Server Control Settings
	Applying Changes to the Administration Server
	Editing HTTP Listener Settings for the Administration Server
	Setting SNMP, Logging, and Security Preferences

	Configuring Administrative Domains
	About Administrative Domains
	Implementing Administrative Domains
	Directory Structure
	Process/Port Structure

	Configuring Domains
	Creating Domains
	Deleting Domains
	Listing Domains
	Starting Domains
	Stopping Domains

	Recreating the Domain Registry

	Using Application Server Instances
	About Application Server Instances
	Starting and Stopping an Application Server Instance
	Using the Start and Stop Buttons in the Administration Interface
	Using the start-instance and stop-instance Commands
	Using the Windows Services (Windows)
	Using the startserv and stopserv Scripts

	Starting the Application Server Instance in Debug Mode
	Setting the Termination Timeout
	Restarting an Application Server Instance Automatically (UNIX)
	About Restarting Automatically
	Restarting Automatically with /etc/inittab (UNIX)
	Restarting Automatically with the System RC Scripts (UNIX)

	Restarting an Application Server Instance Manually (UNIX)
	Restarting the Server Instance Using the Restart Button (UNIX)
	Restarting the Server Instance Using the restart-instance Command (UNIX)
	Restarting the Server Instance Using the restartserv Script (UNIX)

	About the Watchdog
	Adding an Application Server Instance
	Deleting an Application Server Instance
	Applying Changes to an Application Server Instance
	Viewing Application Server Instance Status
	Configuring JVM Settings
	Configuring General Settings
	Configuring Path Settings
	Configuring JVM Options
	Configuring the JVM Profiler
	Configuring JVM Settings Using the Command-Line Interface

	Configuring Logging Setting and Monitoring Settings
	Changing Application Server Instance Advanced Settings

	Using Logging
	About Logging
	Logging on the UNIX and Windows Platform
	Default Logging in server.log
	Logging Using syslog
	Logging Using the Windows eventlog

	Using Log Levels
	About Log Levels
	Log Levels Used for syslog Configuration

	About Virtual Servers and Logging
	About Loggers
	About Client Side Logging
	Redirecting Application and Server Log Output
	Log File Management
	Internal-daemon Log Rotation
	Scheduler Based Log Rotation
	Rotation Using Solaris logadm Utility
	Rotation Using Solaris “cron” Utility

	Configuring Logging Through the Command-line Interface
	Configuring Logging Through the Administration Interface
	Configuring the Log Service
	Configuring Logging for Application Server Components and Subsystems
	Configuring the Directives for Error Logging

	Viewing the Access Log File
	Viewing the Event Log File
	Setting Log Preferences
	Running the Log Analyzer
	Viewing Events (Windows 2000 Pro)

	Monitoring the Sun ONE Application Server
	About Monitoring the Sun ONE Application Server
	Statistics
	SNMP
	HTTP Server Monitoring
	Application Components and Subsystems Monitoring
	Quality of Service (QOS)

	Extracting Monitoring Data Using the CLI
	The list --monitor Command
	The get --monitor Command
	CLI Name Mapping
	HTTP Server Monitorable Objects

	Administering the Transaction Service Using the CLI
	Using HTTP Quality of Service
	Quality of Service Example
	Configuring Quality of Service (QOS)
	Required Changes to the obj.conf File
	Known Limitations to Quality of Service

	About SNMP
	Network Management Station (NMS)
	Management Information Base (MIB) Objects
	SNMP Messages
	SNMP Trap Destinations
	SNMP Agent Community

	Setting Up SNMP
	Using a Proxy SNMP Agent (UNIX/Linux)
	Installing the SNMP Master Agent

	Enabling and Starting the SNMP Master Agent
	Starting the Master Agent on Another Port
	Manually Configuring the SNMP Master Agent
	Editing the Master Agent CONFIG File
	Defining sysContact and sysLocation Variables
	Configuring the SNMP Subagent
	Starting the SNMP Master Agent
	Enabling the Subagent

	Configuring the Web Server Plugin
	About the Web Server Plugin
	Handling Client Requests
	HTTP Basics
	Steps in the Request Handling Process

	Web Server Plugin Configuration
	The Web Server Plugin SAF Reference
	init-passthrough
	auth-passthrough
	service-passthrough
	check-passthrough

	Using the Web Server Plugin
	Configuring Microsoft IIS To Use the Web Server Plugin
	Configuring the Web Server Plugin for IIS
	Configuring IIS to Use the Web Server Plugin
	Configuring Multiple Server Pools
	Sample sun-passthrough.properties File

	Configuring Apache Web Server
	Minimum Requirements

	Configuring J2EE Containers
	About the Web Container
	Understanding the Web Container’s Role
	Web Application Configuration
	Web Application Deployment
	Single Sign-on Facility
	Logging the Web Container

	About the EJB Container
	Understanding the EJB Container’s Role
	Configuring the EJB Container

	Using Transaction Services
	What Is a Transaction?
	Transactions in J2EE
	Transactional Resource Managers
	Databases
	JMS Providers
	J2EE Connectors

	Local and Distributed Transactions
	Container-Managed Transactions
	Transaction Attributes
	Setting Transaction Attributes
	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean’s Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Bean-Managed Transactions
	Transaction Service Administration
	Administering Transactions Using the Administration Interface
	Administering Transactions Using the Command-Line Interface

	Configuring Naming and Resources
	About J2EE Naming Services and Resources
	JDBC Datasources
	Java Mail Sessions
	JMS Destinations

	About Java Naming and Directory Interface (JNDI)
	JNDI Architecture
	J2EE Naming Services
	Naming References and Binding Information
	Naming References in J2EE Standard Deployment Descriptor
	JNDI Connection Factories

	About Persistence Manager Resources
	What is Persistence?
	The Role of the Persistence Manager
	Pre-Deployment Bean Configuration
	Creating a New Persistence Manager

	About JDBC Resources
	About the JDBC API
	About Database Access Models
	About JDBC Datasources
	About JDBC Connections
	About JDBC Transactions

	About Java Mail Resources
	About the JavaMail Message-handling Process
	About the Architectural Components of JavaMail
	About JavaBeans Activation Framework (JAF)
	About JavaMail Configuration Parameters
	J2EE Deployment Descriptor for JavaMail Session References
	Entries in Sun ONE Application Server Deployment Descriptor
	Creating a New JavaMail Session
	Configuring Advanced Resource Properties

	Using the JMS Service
	About JMS
	Basic Messaging System Concepts
	The JMS Specification
	Message-driven Beans

	The Built-in JMS Service
	About Sun ONE Message Queue (MQ)
	Integration of MQ with Sun ONE Application Server

	Administration of the Built-in JMS Service
	Configuring the JMS Service
	Managing Physical Destinations
	Managing Administered Object Resources
	Administering the Built-in JMS Service Using the Command-Line Interface

	Configuring the Server For CORBA/IIOP Clients
	About Support for CORBA/IIOP Clients
	About Interoperabillity
	About the ORB
	About the RMI/IIOP Functionality
	About the Authentication Process

	Configuring the ORB
	To Perform General ORB Configuration
	To Configure IIOP Listener For the ORB

	Deploying Applications
	About J2EE Modules
	About J2EE Applications
	J2EE Standard Descriptors
	Sun ONE Application Server Descriptors
	Naming Standards
	Deployment Directory Structure
	Runtime Environments
	About Classloaders
	Deploying Modules and Applications
	Deployment Names and Errors
	The Deployment Life Cycle
	Tools for Deployment
	Deployment of Module or Application
	Deploying a WAR Module
	Deploying an EJB JAR Module
	Deploying a Lifecycle Module
	Deploying an RMI/IIOP Client
	Deploying a J2EE CA Resource Adapter
	Deploying Static Content
	Access to Shared Frameworks

	The Application Deployment Descriptor Files

	Configuring HTTP Features
	About the HTTP Features
	Configuring the File Cache
	Tuning Your Server for Performance
	Configuring HTTP Quality of Service
	Adding and Using Thread Pools
	Editing Advanced Settings
	Configuring MIME Types

	Using Virtual Servers
	Virtual Servers Overview
	HTTP Listeners
	Virtual Servers
	The obj.conf File
	Virtual Server Selection for Request Processing
	Document Root

	Using Sun ONE Application Server Features with Virtual Servers
	Using SSL with Virtual Servers
	Using Access Log Files and Server Log Files
	Using Access Control with Virtual Servers
	Using CGIs with Virtual Servers

	Creating and Configuring HTTP Listeners
	Creating an HTTP Listener
	Editing HTTP Listener Settings
	Deleting an HTTP Listener

	Creating and Configuring Virtual Servers
	Creating a Virtual Server
	Editing Virtual Server Settings
	Deleting a Virtual Server

	Deploying Virtual Servers
	Example 1: Default Configuration
	Example 2: Secure Server
	Example 3: Intranet Hosting
	Example 4: Mass Hosting

	Managing Virtual Server Content
	Changing the Document Root
	Setting Additional Document Directories
	Enabling Remote File Manipulation
	Using htaccess
	Restricting Symbolic Links (UNIX)
	Customizing User Public Information Directories (UNIX)
	Configuring Public Information Directories
	Restricting Content Publication
	Loading the Entire Password File on Startup

	Setting the Document Preferences
	Entering an Index Filename
	Selecting Directory Indexing
	Specifying a Server Home Page
	Specifying a Default MIME Type

	Customizing Error Responses
	Changing the International Character Set
	Setting the Document Footer
	Configuring URL Forwarding
	Setting up Server-Parsed HTML
	Setting Cache Control Directives
	Using Stronger Ciphers

	Using the Command Line Interface
	About the Command Line Interface
	About the asadmin Utility
	About Ant Tasks
	About Other Command Line Utilities

	Using asadmin
	Understanding the Command Syntax
	Using Singlemode and Multimode
	Using Interactive and Non-Interactive Options
	Using the Environment Commands
	Using the Password File Option
	Running asadmin Locally or Remotely
	Using Command Line Invocations
	Using Escape Characters
	Using get and set Commands
	Using Help
	Viewing Output and Errors

	Security Considerations
	Concurrent Access Considerations
	Command Reference
	List of Commands
	List of Dotted Names and Attributes
	Dotted Names Used in asadmin
	Attributes
	Long and Short Option Formats, Default Values, and Environment Variable Equivalents

	Third Party Copyright Notices
	Glossary
	Index

