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Chapter 3: Induction & Pattern Recognition

Induction is pattern recognition -- an
inference based on limited observational or
experimental data -- and pattern recogni-
tion is an addictively exhilarating acquired
skill.

Of the two types of scientific inference,
induction is far more pervasive and useful
than deduction (Chapter 4). Induction usu-
ally infers some pattern among a set of ob-
servations and then attributes that pattern to
an entire population. Almost all hypothesis
formation is based consciously or subcon-
sciously on induction.

Induction is pervasive because people
seek order insatiably, yet they lack the op-
portunity of basing that search on observa-
tion of the entire population. Instead they
make a few observations and generalize.

Induction is not just a description of

observations; it is always a leap beyond the data -- a leap based on circumstantial evidence. The leap
may be an inference that other observations would exhibit the same phenomena already seen in the
study sample, or it may be some type of explanation or conceptual understanding of the observa-
tions; often it is both. Because induction is always a leap beyond the data, it can never be proved. If
further observations are consistent with the induction, then they confirm, or lend substantiating
support to, the induction. But the possibility always remains that as-yet-unexamined data might dis-
prove the induction.

In symbols, we can think of confirmation of our inductive hypothesis A as: A=B, B, .. A (ie.,
A implies B; B is observed and therefore A must also be true or present). Such evidence may be
inductively useful confirmation. The logic, however, is a deductive fallacy (known as affirming the
consequent), because there may always be other factors that cause B. Although confirmation of an
induction is incremental and inconclusive, the hypothesis can be disproved by a single experiment,
via the deductive technique of modus tollens: A=B, -B, ..-A (i.e., A implies B; B is not observed
and therefore A must not be true or present).

Scientific induction requires that we make two unprovable assumptions, or postulates:

* representative sampling. Only if our samples are representative, or similar in behavior to the
population as a whole, may we generalize from observations of these samples to the likely behavior
of the entire population. In contrast, if our samples represent only a distinctive subset of the popu-
lation, then our inductions cannot extend beyond this subset. This postulate is crucial, it is usually
achieved easily by the scientist, and yet it is often violated with scientifically catastrophic results. As
discussed more fully in the previous chapter, randomization and objective sampling are the paths to
obtaining a representative sample; subjective sampling generates a biased sample.

¢ uniformity of nature. Strictly speaking, even if our sample is representative we cannot be cer-
tain that the unsampled remainder of the population exhibits the same behavior. However, we as-
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sume that nature is uniform, that the unsampled remainder is similar in behavior to our samples, that
today’s natural laws will still be valid tomorrow. Without this assumption, all is chaos.

* & *

Types of Explanation

Induction is explanation, and explanation is identification of some type of order in the universe.
Explanation is an integral part of the goal of science: perceiving a connection among events, deci-
phering the explanation for that connection, and using these inductions for prediction of other
events. Some scientists claim that science cannot explain; it can only describe. That claim only per-
tains, however, to Aristotelian explanation: answering the question “Why?” by identifying the pur-
pose of a phenomenon. More often, the scientific question is “How?” Here we use the inclusive
concept of explanation as any identification of order.

Individual events are complex, but explanation discerns their underlying simplicity of relation-
ships. In this section we will consider briefly two types of scientific explanation: comparison (anal-
ogy and symmetry) and classification. In subsequent sections we will examine, in much more detail,
two more powerful types of explanation: correlation and causality.

Explanation can deal with attributes or with variables. An attribute is binary: either present or
absent. Explanation of attributes often involves consideration of associations of the attribute with
certain phenomena or circumstances. A variable, in contrast, is not merely present or absent; it is a
characteristic whose changes can be quantitatively measured. Explanations of a variable often in-
volve description of a correlation between changes in that variable and changes in another variable.
If a subjective attribute, such as tall or short, can be transformed into a variable, such as height, ex-
planatory value increases.

The different kinds of explanation contrast in explanatory power and experimental ease. Easiest
to test is the null hypothesis that two variables are completely unrelated. Statistical rejection of the
null hypothesis can demonstrate the likelihood that a classification or correlation has predictive
value. Causality goes deeper, establishing the origin of that predictive ability, but demonstration of
causality can be very challenging. Beyond causality, the underlying quantitative theoretical mecha-
nism sometimes can be discerned.

* & *

Comparison is the most common means of identifying order, whether by scientists or by lay
people. Often, comparison goes no farther than a consideration of the same characteristic in two
individuals. Scientific comparison, however, is usually meant as a generalization of the behavior of
variables or attributes. Two common types of comparison are symmetry and analogy.

Symmetry is a regularity of shape or arrangement of parts within a whole -- for example, a cor-
respondence of part and counterpart. In many branches of science, recognition of symmetry is a
useful form of pattern recognition. To the physicist, symmetry is both a predictive tool and a stan-
dard by which theories are judged.

In his book on symmetry, physicist Hermann Weyl [1952] said: “Symmetry, as
wide or as narrow as you may define its meaning, is one idea by which man through
the ages has tried to comprehend and create order, beauty, and perfection.”

I’ve always been confident that the universe’s expansion would be followed by a
contraction. Symmetry demands it: big bang, expanding universe, gravitational decel-
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eration, contracting universe, big crunch, big bang, . . . No problem of what happens
before the big bang or after the big crunch; an infinite cycle in both directions. The
only concern was that not enough matter had been found to generate sufficient grav-
ity to halt the expansion. But dark matter is elusive, and I was sure that it would be
found. Now, however, this elegant model is apparently overthrown by evidence that
the expansion is accelerating, not decelerating [Schwarzschild, 2001]. Symmetry and
simplicity do not always triumph.

Analogy is the description of observed behavior in one class of phenomena and the inference
that this description is somehow relevant to a different class of phenomena. Analogy does not nec-
essarily imply that the two classes obey the same laws or function in exactly the same way. Analogy
often is an apparent order or similarity that serves only as a visualization aid. That purpose is suffi-
cient justification, and the analogy may inspire fruitful follow-up research. In other cases, analogy
can reflect a more fundamental physical link between behaviors of the two classes. Either type of
analogy can bridge tremendous differences in size or time scale. For example, the atom and the so-
lar system are at two size extremes and yet their orbital geometries are analogous from the stand-
points of both visualization and Newtonian physics. Fractals, in contrast, also describe similar
physical phenomena of very different sizes, but they go beyond analogy by genetically linking dif-
ferent scales into a single class.

Analogy is never a final explanation; rather it is a potential stepping-stone to greater insight and
hypothesis generation. Unfortunately, however, analogy sometimes is misused and treated like firm
evidence. The following two examples illustrate the power of exact analogy and the fallacy of re-
mote analogy.

Annie Dillard [1974] on the analogy between chlorophyll and hemoglobin, the
bases of plant and animal energy handling: “All the green in the planted world con-
sists of these whole, rounded chloroplasts wending their ways in water. If you analyze
a molecule of chlorophyll itself, what you get is one hundred thirty-six atoms of hy-
drogen, carbon, oxygen, and nitrogen arranged in an exact and complex relationship
around a central ring. At the ring’s center is a single atom of magnesium. Now: If
you remove the atom of magnesium and in its exact place put an atom of iron, you
get a molecule of hemoglobin.”

Astronomer Francesco Sizi’s early 17th century refutation of Galileo’s claim that
he had discovered satellites of Jupiter [Holton and Roller, 1958]:

“There are seven windows in the head, two nostrils, two ears, two eyes and a
mouth; so in the heavens there are two favorable stars, two unpropitious, two luminar-
ies, and Mercury alone undecided and indifferent. From which and many similar
phenomena of nature such as the seven metals, etc., which it were tedious to enumer-
ate, we gather that the number of planets is necessarily seven.”

Comparison often leads to a more detailed explanation: classification. Classification can ex-
tract simple patterns from a mind-numbing quantity of individual observations, and it is also a
foundation for most other types of scientific explanation. Classification is the identification of
grounds for grouping complexly divergent individuals into a single class, based on commonality of
some significant characteristic. Every individual is different, but we need and value tools for coping
with this diversity by identifying classes of attributes. Indeed, many neurobiologists have concluded
that people never experience directly the uniqueness of individual objects; instead, we uncon-
sciously fit a suite of schemata, or classifications, to our perceptions of each object (Chapter 6).
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A class is defined arbitrarily, by identifying a minimal number of characteristics required for
inclusion in the class. Recognizing a scientifically useful classification, however, requires inductive
insight. Ideally, only one or a few criteria specify a class, but members of the class also share many
other attributes. For example, one accomplishes little by classifying dogs according to whether or
not they have a scar on their ear. In contrast, classifying dogs as alive or dead (e.g., based on pres-
ence/absence of heartbeat) permits a wealth of generally successful predictions about individual
dogs. Much insight can be gained by examining these ancillary characteristics. These aspects need
not be universal among the class to be informative. It is sufficient that the classification, although
based on different criteria, enhances our ability to predict occurrence of these typical features.

Classes are subjectively chosen, but they are defined according to objective criteria. If the crite-
ria involve presence or absence of an attribute (e.g., use of chlorophyll), definition is usually
straightforward. If the criteria involve a variable, however, the definition is more obviously subjective
in its specification of position (or range of positions) along a continuum of potential values.

A classification scheme can be counterproductive [Oliver, 1991], if it imposes a perspective on
the data that limits our perception. A useful classification can become counterproductive, when new
data are shoved into it even though they don’t fit.

Classifications evolve to regain utility, when exceptions and anomalous examples are found.
Often these exceptions can be explained by a more restrictive and complex class definition. Fre-
quently, the smaller class exhibits greater commonality of other characteristics than was observed
within the larger class. For example, to some early astronomers all celestial objects were stars.
Those who subdivided this class into ‘wandering stars’ (planets and comets) and ‘fixed stars’
would have been shocked at the immense variety that later generations would discover within these
classes.

Each scientist applies personal standards in evaluating the scope and size of a classification.
The ‘splitters’ favor subdivision into small subclasses, to achieve more accurate predictive ability.
The ‘lumpers’ prefer generalizations that encompass a large portion of the population with reason-
able but not perfect predictive accuracy. In every field of science, battles between lumpers and split-
ters are waged. For many years the splitters dominate a field, creating finer and finer classifications
of every variant that is found. Then for a while the lumpers convince the community that the pen-
dulum has swung too far and that much larger classes, though imperfect, are more worthwhile.

A class can even be useful though it has no members whatsoever. An ideal class exhibits be-
havior that is physically simple and therefore amenable to mathematical modeling. Even if actual
individual objects fail to match exactly the defining characteristics of the ideal class, they may be
similar enough for the mathematical relationships to apply. Wilson [1952] gives several familiar
examples of an ideal class: physicists often model rigid bodies, frictionless surfaces, and incom-
pressible fluids, and chemists employ the concepts of ideal gases, pure compounds, and adiabatic
processes.

* & *

Coincidence

Classifications, like all explanations, seek meaningful associations and correlations. Sometimes,
however, they are misled by coincidence.

“A large number of incorrect conclusions are drawn because the possibility of
chance occurrences is not fully considered. This usually arises through lack of proper
controls and insufficient repetitions. There is the story of the research worker in nu-
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trition who had published a rather surprising conclusion concerning rats. A visitor
asked him if he could see more of the evidence. The researcher replied, ‘Sure, there’s
the rat.”” [Wilson, 1952]

Without attention to statistical evidence and confirmatory power, the scientist falls into the most
common pitfall of non-scientists: hasty generalization. One or a few chance associations between
two attributes or variables are mistakenly inferred to represent a causal relationship. Hasty generali-
zation is responsible for many popular superstitions, but even scientists such as Aristotle were not
immune to it. Hasty generalizations are often inspired by coincidence, the unexpected and improb-
able association between two or more events. After compiling and analyzing thousands of coinci-
dences, Diaconis and Mostelle [1989] found that coincidences could be grouped into three classes:

e cases where there was an unnoticed causal relationship, so the association actually was not a
coincidence;

* nonrepresentative samples, focusing on one association while ignoring or forgetting exam-
ples of non-matches;

* actual chance events that are much more likely than one might expect.

An example of this third type is that any group of 23 people has a 50% chance of at least two
people having the same birthday.

Coincidence is important in science, because it initiates a search for causal relationships and
may lead to discovery. An apparent coincidence is a perfectly valid source for hypotheses. Coinci-
dence is not, however, a hypothesis test; quantitative tests must follow.

The statistical methods seek to indicate quantitatively which apparent connections between vari-
ables are real and which are coincidental. Uncertainty is implicit in most measurements and hy-
pothesis tests, but consideration of probabilities allows us to make decisions that appropriately
weigh the impact of the uncertainties. With suitable experimental design, statistical methods are able
to deal effectively with very complex and poorly understood phenomena, extracting the most fun-
damental correlations.

* * %*

Correlation

“Every scientific problem is a search for the relationship between variables.”
[Thurstone, 1925]

Begin with two variables, which we will call X and Y, for which we have several measurements.
By convention, X is called the independent variable and Y is the dependent variable. Perhaps X
causes Y, so that the value of Y is truly dependent on the value of X. Such a condition would be
convenient, but all we really require is the possibility that a knowledge of the value of the independ-
ent variable X may give us some ability to predict the value of Y.

& & *

To introduce some of the concerns implicit in correlation and pattern recognition, let’s begin
with three examples: National League batting averages, the government deficit, and temperature
variations in Anchorage, AK.
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Example 1: highest annual batting average in the National League.

51771117 U717
A

Count

320 340 360 380 400 420 910 320330340 350 360 370 380 390
highest annual batting average, highest annual batting average,
1901-1990 1930-1990

440
B | | | |

Ta
B
)
>
|
]

[WN]
[o))
=
|
]

300 | | | |
1900 1920 1940 1960 1980
year
Figure 8. Highest annual batting average in the National League. Plotting results
versus time (B) shows that the overall distribution for 1901-1990 (A) is skewed by
periods of unusually low and high averages before 1930. Results for 1930-1990 (C)
are more normally distributed.

We consider here the maximum batting average obtained by any National League player in each
of the years 1901-1990. Because batting average is a time series, data certainly are not independent
and we must beware of temporal trends. If we were to ignore the possibility of temporal trends, we
would conclude that the data exhibit moderately normal behavior (Figure 8a), with slight positive
skewness and, according to Chauvenet’s criterion, one anomalously high value of 424 that could be
excluded. Ignoring temporal trends, we would predict at a 68% confidence level (10) that the maxi-
mum 1991 batting average would be 352+21 (Table 6).

Plotting batting average versus time (Figure 8b), however, we see immediately that the depar-
tures from the mean were nonrandom. Batting averages decreased rapidly during 1901-1919,
peaked during 1921-1930, and decreased gradually since then. What accounts for these long-term
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trends? I am not enough of a baseball buff to know, but I note that the 1921-1930 peak is domi-
nated by Rogers Hornsby, who had the highest average in 7 of these 10 years. Often in such analy-
ses, identification of a trend’s existence is the first step toward understanding it and, in some cases,
toward preventing it.

Of course, substantial ‘noise’, or annual variation, is superimposed on these long-term trends.
Later in this section, we will consider removal of such trends, but here we will take a simpler and
less satisfactory approach: we will limit our data analysis to the time interval 1931-1990. We
thereby omit the time intervals in which secular (temporal) trends were dominant. If this shorter in-
terval still contains a slight long-term trend, that trend is probably too subtle to jeopardize our con-
clusions.

For 1931-1990 batting averages (Figure 8c), skewness is substantially less than for the larger
dataset, and no points are flagged for rejection by Chauvenet’s criterion. The standard deviation is
reduced by one third, but the 95% confidence limits are only slightly reduced because the decrease
in number of points counteracts the improvement in standard deviation.

Confining one’s analysis to a subsample of the entire dataset is a legitimate procedure, if one
has objective grounds for defining the subset and if one does not apply subset-based interpretations
to the overall population. Obviously it would be invalid to analyze a ‘subset’ such as batting aver-
ages less than 400. Will the 1991 maximum batting average be 347+15 as predicted by the 1931-
1990 data, or will there be another Rogers Hornsby?
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Example 2: U.S. government deficit as a percentage of outlays, for 1960-1989.

Again we are dealing with a
time series, so the flowchart of
Figure 4 recommends that our
first step is to plot deficit percent-
age versus time (Figure 9b). Such
a plot exhibits a strong secular
trend of increasing deficit per-
centage, on which is superposed
more  ‘random’  year-to-year
variations. In other words, the
major source of variance in defi-
cits is the gradual trend of in-
creasing deficit, and annual varia-
tions are a subsidiary effect. Be-
cause our data are equally spaced
in time, the superposition of these
two variances gives a blocky,
boxcar-like appearance to the
histogram (Figure 9a), with too
little tail. If the secular trend were
removed, residuals would exhibit
a more bell-shaped distribution.

If we ignore the secular trend,
nonparametric statistics are more
appropriate for this dataset than
are parametric statistics. However,
ignoring the major source of vari-
ance in a dataset is almost always
indefensible. Instead, a secular
trend can be quantified and used
to refine our understanding of a
dataset. Later in this chapter, we
will return to this example and
determine that secular trend.
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Example 3: Monthly averages of temperature for Anchorage, Alaska.
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Figure 10. Monthly average temperatures (°F) for Anchorage, Alaska. A histogram display (A) of these
data is useless. The pattern of temperature changes needs to be viewed versus time, in either a linear
plot (B) or polar plot (C).

The histogram of monthly temperatures in Anchorage (Figure 10a) is strongly bimodal, with
equal-sized peaks at 10-25° and at 45-60°. Skewness is zero because the two peaks are equal in
size, so the mean is close to the median and both are a good estimate of the true average. Many bi-
modal distributions have one dominant peak, however, causing a distribution that is skewed and bi-
asing both the mean and median.

Nonparametric statistics are much more appropriate here than parametric statistics. Neither is an
acceptable substitute for investigation of the causes of a bimodal distribution. For this example, the
answer lies in the temporal trends. Again we have a time series, so a plot of temperature versus time
may lend insight into data variability. Months of a year can define an ‘ordinal’ scale: order along a
continuum is known but there is neither a time zero nor implicitly fixed values. Here I simply as-
signed the numbers 1-13 to the months January-December-January for plotting, keeping in mind
that the sequence wraps around so that January is both 1 and 13, then I replaced the number labels
with month names (Figure 10b). A circular plot type known as polar coordinates is more appropri-
ate because it incorporates wraparound (Figure 10c).

Consider the absurdities of simply applying parametric statistics to datasets like this one. We
calculate that the average temperature is 35.2° (i.e., cold), but in fact the temperature almost never is
cold. It switches rapidly from cool summer temperatures to bitterly cold winter temperatures. Con-
sidering just the standard deviation, we would say that temperature variation in Anchorage is like
that in Grand Junction, Colorado (16.8° versus 18.7°). Considering just the mean temperature, we
would say that the average temperature of Grand Junction (52.8°) is similar to that of San Francisco
(56.8°). Thus temperatures in Grand Junction, Colorado are statistically similar to those of San
Francisco and Anchorage!

& & *

Crossplots
Crossplots are the best way to look for a relationship between two variables. They involve
minimal assumptions: just that one’s measurements are reliable and paired (x;, y;). They permit use

of an extremely efficient and robust tool for pattern recognition: the eye. Such pattern recognition
and its associated brainstorming are a joy.
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Crossplot interpretation, like any subjective pattern recognition, is subject to the ‘Rorschach ef-
fect’: the brain's bias toward ‘seeing’ patterns even in random data. The primary defense against
the Rorschach effect is to subject each apparent pattern to some quantitative test, but this may be
impractical. Another defense is to look at many patterns, of both random and systematic origins, in
order to improve one’s ability to distinguish between the two.

Galison [1985] described the application of this approach in the bubble-chamber
experiments at Berkeley. A computer program plotted histograms not only of the
measured data but also of randomly generated pseudo-datasets. The investigator had
to distinguish his datasets by recognizing which histograms had significant peaks.
Louis Alvarez said that this program prevented many mistaken discovery claims and
later retractions. Figure 2 makes me empathize with the problem faced by these parti-
cle physicists.
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Figure 11. The hazards of extrapolation are shown by these plots of percentage of high school
students who have smoked cigarettes. The apparent upward trend for 1975-1978 may be an
artifact of less accurate data prior to 1982.

Data dispersion is inevitable with crossplots, and awareness of this dispersion is essential to
crossplot interpretation. For example, consider the change through time of the percentage of Ameri-
can high school seniors who have ever smoked a cigarette. Figure 11a shows that this percentage
increased from 73.6% to 75.3% in the three years from 1975 to 1978. If I were foolish enough to
extrapolate from these two measurements, I could estimate that by the year 2022 100% of high
school students will have tried cigarettes. The flaws are that one has no estimate of the errors im-
plicit in these measurements and that extrapolation beyond the range of one’s data is hazardous. As
a rule of thumb, it is moderately safe to extrapolate patterns to values of the independent variable
that are perhaps 20% beyond that variable’s measured range, but extrapolation of Figure 11a to
2022 is more than an order of magnitude larger than the data range.

Figure 11b shows the eight subsequent determinations of percentage who have tried cigarettes.
From this larger dataset it is evident that the apparent pattern of Figure 11a was misleading, and the
actual trend is significantly downward. Based on these later results, we might speculate that one or
both of the first two measurements had an error of about two percent, which masked a steady and
possibly linear trend of decreasing usage. Alternatively, we might speculate that usage did increase
temporarily. Is the steady trend of the rightmost seven points a result of improved polling tech-
niques so that errors are decreased? Examination of such crossplots guides our considerations of
errors and underlying patterns.

& & *
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Crossplots can hide or reveal patterns. Plotting technique affects the efficiency of visual pattern
recognition. Scientists are accustomed to a suite of plotting conventions, and they may be distracted
if asked to look at plots that depart substantially from these conventions. I thank Open University
[1970] for reminding me of some of the following plotting hints, which I normally take for granted.
Figure 12 illustrates the effect of a few of these factors.

* Plot the dependent variable (the one
whose behavior you hope to predict
from the other variable) on the verti-
cal axis, and plot the independent
variable on the horizontal axis.

* Choose an aspect ratio for the plot
that maximizes information (e.g., if
we are examining the changes in Y
values throughout a long time series,
then the horizontal X axis can be
much longer than the vertical Y axis).

¢ Plot variables with values increas-
ing to the right and upward.

* Choose simple scale divisions, usu-
ally with annotated major divisions
and with tics for simple subdivisions
(e.g., range of 20-40 with annotation
interval of 5 and tic spacing of 1).

* Choose a total plot range for each
variable that is as small as possible,
subject to these two restrictions:
simple scale divisions and inclusion
of all data points.

* Make an exception to the previous
hint by including major meaningful
scale divisions such as zero or 100%,
only if this inclusion requires a rela-
tively small expansion of the plot
range.

* Plot data points as solid or open
circles or crosses.

¢ If more than one dataset is included
on the same plot, use readily distin-
guishable symbols.

e [abel each axis with the variable
name and its units.

o If data are a time series, connect the
points with line segments. If they are
independent, fit a line or curve
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through the data, not connecting line segments.

* If possible, transform one or both variables so that the relationship between them is linear (e.g.,
choose among linear, semilog, and log-log plots).

Individual scientific specialties routinely violate one or more of the hints above. Each specialty
also uses arbitrary unstated conventions for some plotting options:

* whether to frame the plot or just use one annotated line for each axis;
» whether to use an internal grid or just marginal tics on the frame or lines;

» whether to put tics on one or both sides, and whether to put them inside or outside the plot frame.
% % %

Extrapolation and Interpolation:

If a relationship has been established between variables X and Y, then one can predict the value
of Y; at a possibly unmeasured value of X;. The reliability of this prediction depends dramatically

on where the new X; is with respect to the locations of the X; that established the relationship. Sev-
eral rules of thumb apply to interpolation and extrapolation:

* interpolation to an X; location that is between closely spaced previous X; is relatively safe,
* interpolation between widely spaced previous X; is somewhat hazardous,
* extrapolation for a short distance (<20% of the range of the previous X;) is somewhat hazardous,

* extrapolation for a great distance is foolhardy, and

* both interpolation and extrapolation are much more reliable when the relationship is based on in-
dependent data than when it is based on non-independent data such as a time series.

For example, when we saw the pattern of temporal changes in the U.S. deficit, the data appeared
to fit a trend of increasing deficit rather well, so one should be able to extrapolate to 1991 fairly re-
liably. However, extrapolation ability is weaker for a time series than for independent events. As I
am typing this, it is January 1991, the U.S. has just gone to war, Savings & Loans are dropping like
flies, the U.S. is in a recession, and a deficit as small as the extrapolated value of 22% seems hope-
lessly optimistic. In contrast, when you read this, the U.S. budget hopefully is running a surplus.

As another example, we have already examined the changes with time of cigarette smoking
among high school students, and we concluded that extrapolation from the two points of Figure 11a
was foolhardy. With the data from Figure 11b, we might extrapolate beyond 1989 by perhaps 2-3
years and before 1975 by perhaps one year; the difference in confidence between these two ex-
trapolations is due to the better-defined trend for 1983-1989 than for 1976-1980. Because these
data are from a time series, any extrapolation is somewhat hazardous: if cigarette smoking were
found in 1990 to be an aphrodisiac, the 1983-1989 pattern would immediately become an obsolete
predictor of 1990 smoking rates. If there were such a thing as a class of 1986.5, then interpolation
for the interval 1983-1989 would be very reliable (error <0.5%), because of extensive data coverage
and small variance about the overall trend. In contrast, interpolation of a predicted value for some of
the unsampled years in the interval 1975-1980 would have an error of at least 1%, partly because
data spacing is larger but primarily because we are unsure how much of the apparent secular change
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is due to measurement errors. If we knew that the first three measurements (in 1975, 1978, & 1980)
constituted random scatter about the same well-defined trend of 1983-1989, then surprisingly it
would be more accurate to predict values for these three years from the trend than to use the actual
measurements.

An extreme example of the differ- 6 | I I

ence between extrapolation and inter-
polation for time series is world popu- 5
lation (Figure 13). The validity of in-
terpolated population within the last
2000 years depends on how much one
trusts the simple pattern of Figure 13.
The prolonged gap between 1 A.D. and
1650 conceivably could mask excur-
sions as large as that of 1650-present,
yet we know independently from his-
tory that such swings have not oc-
curred. The combination of qualitative
historical knowledge and the pattern of o | | |

Figure 13 suggests that even the Black 0 500 1000 1500 2000
Death, which killed a large proportion year (A.D.)

of the population, caused less total  Figure 13. Growth in world population during the last
change than is now occurring per dec- 2000 years.

ade. For purposes of defining the trend

and for interpolation, then, both the distance between bracketing data points and the rate of change
are important. Thus the great increase in sampling density at the right margin of Figure 13 is en-
tirely appropriate, although a single datum at about 1000 A.D. would have lent considerable im-
provement to trend definition.
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Extrapolation of world population beyond the limits of Figure 13 is both instructive and a mat-
ter of world concern. Predicting populations prior to 1 A.D. would be based on very scanty data, yet
it appears that values would have been greater than zero and less than the 1 A.D. value of 0.2 bil-
lion. In contrast, extrapolation of the pattern to future populations suggests that the world popula-
tion soon will be infinite. Reality intervenes to tell us that it is impossible for the pattern of Figure
13 to continue for much longer.

The three examples above are atypical in that they all are time series -- measurements of tempo-
ral changes of a variable. Interpolation, extrapolation, and indeed any interpretation of a time series
is ambiguous, because time is an acausal variable. Often one can hypothesize a relationship between
two variables that lends confidence to one’s interpretation. In contrast, the source of variations
within a time series may be unmeasured and possibly even unidentified.

The challenge of avoiding the confounding effect of time is present in all sciences. It is particu-
larly acute within the social sciences, because some variables that might affect human behavior are
difficult to hold constant throughout an experiment. For example, consider the relationship between
height and weight of boys, shown in Figure 14a. The relationship is nonlinear, and we might be
tempted to extrapolate that a 180-cm-high boy could be as much as twice as heavy as a 160-cm-
high boy. Clearly neither height nor weight is normally distributed, and in fact it would be absurd to
speak of the average height or weight of boys, unless one specified the boys’ age. Figure 14a is
actually based on a tabulation for boys of different ages. Age is the causal variable that controls
both height and weight and leads to a correlation between the two. Both change systematically but
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nonlinearly with age (Figures 14b and 14c¢): early growth is dominantly in height and later growth
is dominantly in weight, leading indirectly to the pattern of Figure 14a.
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Figure 14. The relationship between average weight and height of boys (A) is indirect, caused by
dependence of both on age (B & C).

Time series in particular, and nonindependent sampling in general, jeopardize interpolation and
especially extrapolation. Nonlinearities are also a hazard, and we shall explore their impacts more
fully in the subsequent section. First, however, let us assume the ideal correlation situation -- inde-
pendent sampling and a linear relationship. How can we confidently and quantitatively describe the
correlation between two variables?

* * %*

Correlation Statistics

The type of test appropriate for identifying significant correlations depends on the kind of
measurement scale. For classification data, such as male and female responses to an economic or
psychological study, a test known as the contingency coefficient searches for deviations of observed
from expected frequencies. For ranked, or ordinal, data where relative position along a continuum is
known, the rank correlation coefficient is appropriate. Most scientific measurement scales include
not just relative position but also measurable distance along the scale, and such data can be analyzed
with the correlation coefficient or rank correlation coefficient. This section focuses on analysis of
these continuous-scale data, not of classification data.

Suppose that we suspect that variable Y is linearly related to variable X. We need not assume
existence of a direct causal relationship between the two variables. We do need to make the three
following assumptions: first, that errors are present only in the Y;; second, that these errors in the Y;

are random and independent of the value of X;; and third, that the relationship between X and Y (if

present) is linear. Scientists routinely violate the first assumption without causing too many prob-
lems, but of course one cannot justify a blunder by claiming that others are just as guilty. The sec-
ond assumption is rarely a problem and even more rarely recognized as such. The third assumption,
that of a linear relationship, is often a problem; fortunately one can detect violations of this assump-
tion and cope with them.

The hypothesized linear relationship between X; and Y; is of the form: Y = mX+b, where m is

the slope and b is the Y intercept (the value of Y when X equals zero). Given N pairs of measure-
ments (X;,Y;) and the assumptions above, then the slope and intercept can be calculated by linear

regression, from:
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m = [NZX; Y- (EX)EY)VINZX2-(ZX;)?]
b = [RYDEXD)-EX;Y)EX)VINZX2-(ZX;)2]

Most spreadsheet and graphics programs include a linear regression option. None, however,
mentions the implicit assumptions discussed above.

Linear regression fits the line that minimizes the squares of the residuals of Y; deviations from

the line. This concept is illustrated in Figure 15a, which shows a linear regression of leading Na-
tional League batting averages for the years 1901-1920. This concept of minimizing the squares of
Y; deviations is very important to remember as one uses linear regression, for it accounts for several
characteristics of linear regression.
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Figure 15. Linear regression (in this case of National League maximum batting average vs. time)
minimizes the sum of squares of Y residuals (shown by vertical lines in A). Regression residuals
(observed minus predicted values of Y'), shown in B, are assumed to vary randomly about an average
of zero and as a function of X (year).

First, we now understand the assumption that only the Y; have errors and that these errors are

random, for it is these errors or discrepancies from the trend that we are minimizing. If instead the
errors were all in the X;, then we should minimize the X; instead (or, much easier, just rename vari-

ables so that Y becomes the one with the errors).

Second, minimizing the square of the deviation gives greatest weighting to extreme values, in the
same way that extreme values dominate a standard deviation. Thus, the researcher needs to investi-
gate the possibility that one or two extreme values are controlling the regression. One approach is to
examine the regression line on the same plot as the data. Even better, plot the regression residuals --
the differences between individual ¥; and the predicted value of Y at each X;, as represented by the

vertical line segments in Figure 15a. Regression residuals can be plotted either as a function of X;
(Figure 15b) or as a histogram.

Third, the use of vertical deviations accounts for the name linear regression, rather than a name
such as linear fit. If one were to fit a trend by eye through two correlated variables, the line would be
steeper than that determined by regression. The best-fit line regresses from the true line toward a
horizontal no-fit line with increases of the random errors of Y. This corollary is little-known but
noteworthy; it predicts that if two labs do the same type of measurements of (X;, Y;), they will obtain

different linear regression results if their measurement errors are different.
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Fitting a linear regression does not imply that the obtained trend is significant. The correlation
coefficient (R) measures the degree to which two variables are linearly correlated. We have seen
above how to calculate the slope m of what is called the regression of Y on X: Y=mX+b. Con-
versely, we could calculate the slope m' of regression of X on Y: X=m'Y+b'. Note that we are aban-
doning the assumption that all of the errors must be in the Y;. If X and Y are not correlated, then

m=0 (a horizontal line) and m'=0 (a vertical line), so the product mm'=0. If the correlation is per-
fect, then m=1/m', or mm'=1. Thus the product mm' provides a unitless measure of the strength of
correlation between two variables [ Young, 1962]. The correlation coefficient (R) is:

R=(mm")** = [NEX,Y;-EX)EY)IL{INEX2-(EX;)2]05¢[NZY 2-(ZY,;)2]0-5}

The correlation coefficient is always between -1 and 1. R=0 for no correlation, R=-1 for a per-
fect inverse correlation (i.e., increasing X decreases Y), and R=1 for a perfect positive correlation.

What proportion of the total variance in Y is accounted for by the influence of X? RZ?, a positive
number between 0 and 1, gives that fraction.

Whether or not the value of R indicates a significant, or non-chance, correlation depends both
on R and on N. Table 7 gives 95% and 99% confidence levels for significance of the correla-
tion coefficient. The test is called a two-tailed test, in that it indicates how unlikely it is that uncor-
related variables would yield either a positive or negative R whose absolute value is larger than the
tabulated value. For example, linear regression of federal budget deficits versus time gives a high
correlation coefficient of R=0.76 (Figure 9C). This pattern of steadily increasing federal budget
deficits is significant at >99% confidence; for N=30, the correlation coefficient only needs to be
0.463 for the 99% significance level (Table 7).

Table 7: 95% and 99% confidence levels for significance of the correlation coefficient [Fisher and
Yates, 1963].

N: 3 4 5 6 7 8 9 10 11 12
Ry: 0997 095 0.878 0.811 0.754 0.707 0.666 0.632 0.602 0.576
Ry,: 1 099 0.959 0917 0.874 0.834 0.798 0.765 0.735 0.708

N: 13 14 15 16 17 18 20 22 24 26
Ry: 0553 0.532 0.514 0497 0482 0468 0444 0.423 0.404 0.388
Ry: 0.684 0.661 0.641 0.623 0.606 0.59 0.561 0.537 0.515 0.496

N: 28 30 40 50 60 80 100 250 500 1000
Ry,: 0374 0361 0312 0.279 0.254 022 0.196 0.124 0.088 0.062
Ry: 0479 0463 0402 0361 0.33 0.286 0.256 0.163 0.115 0.081

Table 7 exhibits two features that are surprising. First, although we have already seen that N=2
gives us no basis for separating signal from noise, we would expect that N=3 or 4 should permit us
to determine whether two variables are significantly correlated. Yet if N=3 or 4 we cannot be confi-
dent that the two variables are significantly correlated unless we find an almost perfectly linear cor-
relation and thus an R of almost 1 or -1. Second, although we might accept that more pairs of (X;,

Y;) points would permit detection of subtler correlations, it is still remarkable that with N>200 a cor-
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relation can be significant even if R is only slightly larger than zero. With practice, one can tenta-
tively identify whether two variables are significantly correlated by examining a crossplot, and Fig-
ure 16 is provided to aid that experience gathering. With very large N, however, the human eye is
less able to identify correlations, and the significance test of Table 7 is much more reliable.

7 30— T

N=100 o 'O
6 u | 25+ -
5 ] 20 _
4 — _
15 -
3 —
5 1 710 -
° fa M| | L O | | |
1 707 3 5 B S R S
4 5 N=20 | | 25 sz[} | |
R=0.72 o _ o
AL 06 G | [R=0.20 o c
3 1, 201 .
o o O
oL oo i o> ©©
2 — o I5 © O —
o
1_ —
o
| | nl &)
1 2 3 2 o1 2 3 4 101 3 3 A

Figure 16. Examples of strong (R=0.88), moderate (R=0.71), and weak (R=0.21) correlations,
for N=100 points (top plots) and N=20 (bottom). Note that the linear regression line regresses
toward horizontal as the correlation coefficient 1s reduced; only for the strongest correlation

1s this line as steep as would be drawn subjectively. All correlations except for that at lower
right are significant at the 95% confidence level.

There is an adage: “One doesn’t need statistics to determine whether or not two variables are
correlated.” This statement not only ignores scientists’ preference for quantitative rather than
qualitative conclusions; it is simply wrong when N is very small or very large. When N is very small
(e.g., N<6), the eye sees correlations that are not real (significant). When N is very large (e.g.,
N>200), the eye fails to discern subtle correlations.

& & *

Nonlinear Relationships

The biggest pitfall of linear regression and correlation coefficients is that so many relationships
between variables are nonlinear. As an extreme example, imagine applying these techniques to the
annual temperature variation of Anchorage (Figure 10b). For a sinusoidal distribution such as this,
the correlation coefficient would be virtually zero and regression would yield the absurd conclusion
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that knowledge of what month it is (X) gives no information about expected temperature (¥). In
general, any departure from a linear relationship degrades the correlation coefficient.

The first defense against nonlinear relationships is to transform one or both variables so that the
relation between them is linear. Taking the logarithm of one or both is by far the most common
transformation; taking reciprocals is another. Taking the logarithm of both variables is equivalent to

fitting the relationship Y=bX™ rather than the usual Y=b+mX. Our earlier plotting hint to try to ob-
tain a linear relationship had two purposes. First, linear regression and correlation coefficients as-
sume linearity. Second, linear trends are somewhat easier for the eye to discern.

A second approach is to use a nonparametric statistic called the rank correlation coefficient.
This technique does not require a linear correlation. It does require a relationship in which increase
in one variable is accompanied by increase or decrease in the other variable. Thus the technique is
inappropriate for the Anchorage temperature variations of Figure 10b. It would work fine for the
world population data of Figure 13, because population is always increasing but at a nonlinear rate.
To determine the rank correlation coefficient, the steps are:

1) assign a rank to each X; of from 1 to N, according to increasing size of X;
2) rank the Y; in the same way;
3) subtract each X; rank from its paired Y; rank; we will call this difference in rankings d;;
4) determine the rank correlation coefficient r, from
r=1-[6(2d;2)]/[N(N2-1)].

The rank correlation coefficient r is much like the linear correlation coefficient R, in that both
have values of -1 for perfect inverse correlation, O for no correlation, and +1 for perfect positive cor-
relation. Furthermore, Table 7 above can be used to determine the significance of r in the same way
as for R.

For example, the world population data of Figure 13 obviously show a close relationship of
population to time. These data give a (linear) correlation coefficient of R=0.536, which is not sig-
nificant according to Table 7. Two data transforms do yield correlations significant at the 99% con-

fidence level: an exponential fit of the form Y=b+10™X (although this curve fit underestimates cur-
rent population by more than 50%), and a polynomial fit of the form Y=b+m;X+m,X2 (although it

predicts that world population was much less than zero for 30-1680 A.D.!). In contrast, the rank
correlation coefficient is r=1.0, which is significant at far more than the 99% confidence level.

Nonlinearities are common; the examples that we have just seen are a small subset. No statisti-
cal algorithm could cope with or even detect the profusion of nonlinear relationships. Thus I have
emphasized the need to make crossplots and turn the problem of initial pattern recognition over to
the eye.

Nonlinearities can be more sudden and less predictable than any of those shown within the pre-
vious examples. Everyone knows this phenomenon as ‘the straw that broke the camel's back’; the
scientific jargon is ‘extreme sensitivity to initial conditions’. Chaos, a recent physics paradigm, now
is finding such nonlinearities in a wide variety of scientific fields, particularly anywhere that turbu-
lent motion occurs. The meteorologist originators of chaos refer to the ‘Butterfly Effect’: today’s
flapping of an Amazon butterfly’s wings can affect future U.S. weather. Gleick [1987] gives a re-
markably readable overview of chaos and its associated nonlinearities.
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Due to extreme nonlinearities, a causal variable can induce a totally different kind of result at
low concentration than at high concentration. An example is that nitroglycerin is a common medica-
tion for heart problems, yet the patient never explodes! Low concentrations of some causal variables
can have surprisingly large effects, through development of a feedback cycle. Such a cycle, for ex-
ample, is thought to account for the mechanism by which minute oscillations in the earth’s orbit
cause enormous fluctuations in global climate known as ice ages and interglacial stages. Extreme
nonlinearities are the researcher’s bane.

* & *

Correlation Conclusions

* Correlation can describe a relationship, but it cannot establish causality.

* Many variables have secular trends, but the correlation with time is indirect: secular change in a
possibly unidentified causal variable causes the measured dependent variable to exhibit secular
change.

* Crossplots are the most robust and reliable way to look for a relation between variables.

* Statistical correlation techniques assume independent measurements, so they must be used with
caution when measurements are not independent (e.g., time series or grouped data).

e Interpolation between independent measurements is safe, but interpolation between non-
independent measurements is risky.

* Extrapolation beyond the range of previous measurements is usually risky.
* Linear regression and the correlation coefficient R assume a linear relationship between variables.
* Examination of regression residuals is needed, to detect systematic mismatches.

* Nonlinearity can complicate relationships among variables enormously.
% £ %

Perspectives on Causality

“Felix qui potuit rerum cognoscere causas.”
(Happy is he who has been able to learn the causes of things) [Virgil, 70-19 B.C.]

Causality is a foundation of science, but it is not a firm foundation. Our concept of causality has
been transformed more than once and it continues to evolve.

During the classical Greek period, to seek causes meant to seek the underlying purposes of
phenomena. This concept of causality as purpose is identified with Aristotle, but Aristotle was an
advocate rather than an initiator of this focus. The search for underlying purpose is also a religious
concern, and the overlap between science and religion was correspondingly greater in ancient
Greece than in modern times. Perhaps the religious connotation partly explains the shift away from
Aristotelian causality during the last few centuries, but I suspect that the decisive factor was the
growing scientific emphasis on verifiability. Greek science felt free to brainstorm and speculate
about causes, but modern science demands tests of speculations. Testing purposes is much less
feasible than testing modern associative causality. Modern scientific concern about purpose is con-
fined primarily to some aspects of biology and social science. Even most of these questions (e.g.,
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“what is the purpose of brain convolutions?”) refer not to an underlying plan but to function or
evolutionary advantage.

Hume [1935] redefined causality in more pragmatic terms. His definition of a cause is “an ob-
ject precedent and contiguous to another, and where all objects resembling the former are placed in
like relations of precedency and contiguity to those objects that resemble the latter.” We can for-
give Hume’s constipated wording, I hope, on the grounds that definitions, like legal jargon, must be
unambiguous and yet comprehensive. In other words, systematic (nonrandom) proximity in both
space and time implies causality, and the event that occurs first is considered to be the cause of the
second event. If event B is commonly preceded by an association with event A, then event A is a
cause of event B. Note that neither requires the other: A may not be the only type of event that can
cause B, and other conditions may be needed before A can cause B. We will consider these vari-
ables of causality and their tests in a later section on Mill’s canons.

Lenzen [1938] used the example of Newtonian physics to demonstrate that even Hume’s care-
ful definition has exceptions. Cause does not always precede effect, as is evidenced by the fact that
force causes simultaneous acceleration, not delayed acceleration. Cause and effect need not be con-
tiguous, as is evidenced by the fact that gravitational attraction acts over millions of miles (else the
earth would go careening away from the sun and off into space). To me, these exceptions are incon-
sequential. Hume’s causality is meant to be a pragmatic concept, and a principle that is almost al-
ways useful should not be discarded for the purity of a void.

If causality is to be limited to the observable and testable as Hume’s concept is, then several fa-
miliar attributes of causality may have to be stripped away: Aristotelian interest in purpose, the in-
evitability or necessity of an effect given a cause, and concern with underlying (unobservable)
mechanisms [Boyd, 1985]. We are left with a sterile association between events, firmly founded in
observations but lacking deeper understanding of processes. One twentieth-century philosophical
school reached a similar conclusion with different logic: causality is nonunique -- one ‘cause’ can
generate several paths and different causes can lead to the same ‘effect’ -- so causality should be
confined to associations. Physicist Victor Weisskopf often said that causality is simply connec-
tions. A philosophical movement called logical positivism skirted this limitation by emphasizing that
deduction from natural laws can provide a causal explanation of observations.

For the Sufis, cause-and-effect is a misguided focus on a single thread in the tapestry of inter-
twined relationships. They illustrate this lesson with the parable of the hanged man [Shah, 1972],
which we can recast as follows:

In 212 B.C., in his home in Syracuse, while working a math problem, Archimedes
was killed by a Roman soldier. What caused his death? Was it that his applied scien-
tific contributions — in the form of novel defensive weapons — were no defense against
treason? Was it that the leader of the victorious invaders, in giving the order to leave
the house of Archimedes alone, failed to assure that individual soldiers attended to the
order? Was it that Archimedes, when commanded by a soldier to leave his home, was
so preoccupied by his math problem that he refused to let even the fall of a city dis-
tract him? Or was it simply that the soldier had had a hard day, exhausting his pa-
tience for the cranky stubbornness of an old man?

& & *

Causality or pattern — is the choice a cultural one rather than innate? And if it is cultural, what
about related fundamental scientific assumptions: comparison, linear thought, and time? A provoca-
tive perspective on these questions was provided by Lee’s [1950] classic study of the language of
the Trobriand Islanders, a virtually pristine stone-age culture of Southeast Asia. Her goals were to
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extract both cultural information and fundamental insights into their thought patterns and “codifi-
cation of reality”. She did not assume that reality is relative; she did assume that different cultures
can categorize or perceive reality in different ways, and that language provides clues to this percep-
tual approach.

The Trobriand language has no adjectives; each noun contains a suite of implicit attributes, and
changing an attribute changes the object or noun. The Trobriand language has no change, no time,
no distinction between past and present. Lacking these, it also lacks a basis for causality, and indeed
there is no cause-and-effect. Absences of adjectives, change, and time distinctions are aspects of a
broader characteristic: the virtual absence of comparisons of any kind in Trobriand language or
world-view. There is no lineal connection between events or objects.

The Trobriand culture functions well without any of these traits that we normally consider es-
sential and implicit to human perception. So implicit are these assumptions that Bronislaw Mali-
nowski studied the Trobriand Islanders without detecting how fundamentally different their world-
view is. Not surprisingly, he was sometimes frustrated and confused by their behavior.

The Trobriand people use a much simpler and more elegant perceptual basis than the diverse
assumptions of change, time distinctions, causality, and comparison. They perceive patterns, com-
posed of “a series of beings, but no becoming” or temporal connection. When considering a pat-
terned whole, one needs no causal or temporal relationships; it is sufficient merely to identify ingre-
dients in the pattern.

“Trobriand activity is patterned activity. One act within this pattern brings into
existence a pre-ordained cluster of acts. . . pattern is truth and value for them; in fact,

acts and being derive value from the embedding pattern. . . To him value lies in
sameness, in repeated pattern, in the incorporation of all time within the same point.”
[Lee, 1950]

During the last 12,000 years an ice age has waned, sea levels have risen, and climates have
changed drastically. Plant and animal species have been forced to cope with these changes. Since
the development of agriculture about 12,000 years ago, human progress has been incredibly fast.
Biological evolution cannot account for such rapid human change; cultural evolution must be re-
sponsible. Perhaps the Trobriand example lends some insight into these changes. A Trobrian-
desque world-view, emphasizing adherence to pattern, might have substantial survival value in a sta-
ble environment. In contrast, climatic stress and changing food supplies favored a different world-
view involving imagination and choice. Only in rare cases, such as the Trobriand tropical island, was
the environment stable enough for a Trobriand-style perspective to persist.

The Trobriand world-view is in many ways antipodal to that upon which scientific research is
based. Yet it is valid, in the same sense that our western world-view is valid: it works (at least in a
stable environment). And the viability of such an alien perspective forces us to recognize that some
of our fundamental scientific assumptions are cultural: our concepts of causality, comparison, and
time may be inaccurate descriptions of reality.

* * *

Scientific causality transcends all of these restricted concepts of causality. It does not abandon
concern with inevitability or with underlying mechanisms. Instead it accepts that description of
causal associations is intrinsically valid, while seeking fundamental conceptual or physical princi-
ples that explain these associations.

Different sciences place different emphases on causality. The social sciences in general give a
high priority to identifying causal relationships. Physical sciences often attempt to use causality as a
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launching point for determining underlying theoretically-based quantitative relationships. Possibly
this difference reflects the greater ease of quantifying and isolating variables in the physical sci-
ences. Such sweeping generalizations are simplistic, however -- economics is an extremely quanti-
tative social science.

All concepts of cause-and-effect assume that identical sets of initial conditions yield identical
effects. Yet, quantum mechanics demonstrates that this fundamental scientific premise is invalid at
the scale of individual atoms. For example, radioactive decay is intrinsically unpredictable for any
one atom. If certainty is impossible at the atomic level, the same must be true for larger-scale phe-
nomena involving many atoms. Werner Heisenberg, a champion of atomic-scale indeterminacy, car-
ried this logic to a conclusion that sounds almost like a death knell for causality [Dillard, 1974]:
“method and object can no longer be separated. The scientific world-view has ceased to be a scien-
tific view in the true sense of the word.”

Some non-scientists have seized on Heisenberg’s arguments as evidence of the inherent limita-
tions of science. Heisenberg’s indeterminacy and the statistical nature of quantum mechanics are
boundary conditions to causal description of particle physics, but not to causal explanation in gen-
eral. Particle physicists emphasize that virtual certainty can still be obtained for larger-scale phe-
nomena, because of the known statistical patterns among large numbers of random events. The
pragmatic causality of scientists finds atomic indeterminacy to be among the least of its problems.
Far more relevant is the overwhelming complexity of nature. Heisenberg may have shaken the
foundations of science, but few scientists other than physicists felt tremors in the edifice.

It seems that a twentieth-century divergence is occurring, between theoretical concepts of cau-
sality and the working concepts used by scientists. One can summarize the differences among these
different concepts of causality, using the following symbols:

A is the cause,

B is the effect,

=> means ‘causes’,

=> means ‘does not necessarily cause’,

.. means ‘therefore’,

A, is an individual observation of A, and
A is average behavior of A.

The different concepts of causality are then:

Aristotle: A=B, in orderto . ..

Hume: If A,then B; or A, ..B

logical positivist: theory C predicts ‘A, ..B’, & observation confirms it
Quantum mechanics: A; => B;,yet A= B

scientific consensus: If A, then probably B, possibly because . . . .

Scientists’ working concept of causality remains unchanged, effectively useful, and moderately
sloppy: if one event frequently follows another, and no third variable is controlling both, then infer
causality and, if feasible, seek the underlying physical mechanism. Ambiguities in this working
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concept sometimes lead to unnecessary scientific debates. For example, the proponent of a causal
hypothesis may not expect it to apply universally, whereas a scientist who finds exceptions to the
hypothesis may announce that it is disproved.

* & *

The logician’s concept of causality avoids the ambiguity of the scientist’s concept. Logicians
distinguish three very different types of causality: sufficient condition, necessary condition, and
a condition that is both necessary and sufficient.

If several factors are required for a given effect, then each is a necessary condition. For the ex-
ample of Archimedes’ death, both successful Roman invasion and his refusal to abandon his math
problem were necessary conditions, or necessary causal factors. Many necessary conditions are so
obvious that they are assumed implicitly. If only one factor is required for a given effect, then that
factor is a sufficient condition. If only one factor is capable of producing a given effect, then that
factor is a necessary and sufficient condition. Rarely is nature simple enough for a single necessary
and sufficient cause; one example is that a force is a necessary and sufficient condition for accel-
eration of a mass.

Hurley [1985] succinctly describes the type of causality with which the scientist often deals:

“Whenever an event occurs, at least one sufficient condition is present and all the
necessary conditions are present. The conjunction of the necessary conditions is the
sufficient condition that actually produces the event.”

For the most satisfactory causal explanation of a phenomenon, we usually seek to identify the
necessary and sufficient conditions, not a single necessary and sufficient condition. Often the re-
searcher’s task is to test a hypothesis that N attributes are needed (i.e., both necessary and suffi-
cient) to cause an effect. The scientist then needs to design an experiment that demonstrates both
the presence of the effect when the N attributes are present, and the absence of the effect whenever
any of these attributes is removed.

Sometimes we cannot test a hypothesis of causality with such a straightforward approach, but
the test is nevertheless possible using a logically equivalent statement of the problem. The following
statements are logically equivalent [Hurley, 1985], regardless of whether A is the cause and B is the
effect or vice versa (with -A meaning ‘not-A’ and = meaning ‘is equivalent to’):

A is a necessary condition for B

= B is a sufficient condition for A

=IfB,then A (ie., B, .. A)

= If A is absent, then B is absent (i.e., -A, ..-B)

= Absence of A is a sufficient condition for the absence of B
= Absence of B is a necessary condition for absence of A.

& & *

Mill’s Canons: Five Inductive Methods

John Stuart Mill [1930], in his influential book System of Logic, systematized inductive tech-
niques. The results, known as ‘Mill's Canons’, are five methods for examining variables in order to
identify causal relationships. These techniques are extremely valuable and they are routinely used in
modern scientific experiments. They are not, however, magic bullets that invariably hit the target.
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The researcher needs to know the strengths and limitations of all five techniques, as each is most
appropriate only in certain conditions.

A little jargon will aid in understanding the inductive methods. Antecedent conditions are those
that ‘go before’ an experimental result; antecedent variables are those variables, known and un-
known, that may affect the experimental result. Consequent conditions are those that ‘follow with’
an experimental result; consequent variables are those variables whose values are affected by the
experiment. In these terms, the inductive problem is expressed as seeking the antecedent to the con-
sequent of interest, i.e., seeking the causal antecedent. In considering the inductive methods, a useful
shorthand is to refer to antecedent variables with the lower-case letters a, b, c, . . . and to refer to
consequent variables with the upper-case letters Z, Y, X, . . .

Mill’s Canons bear 19th-century names, but the concepts are familiar to ancient and modern
people in less rigorous form:

a must cause Z, because:
* whenever I see Z, I also find a (the method of agreement);
e if [ remove a, Z goes away (the method of difference);

» whether present or absent, a always accompanies Z (the joint method of agreement and differ-
ence);

¢ if I change a, Z changes correspondingly (the method of concomitant variations);

¢ if I remove the dominating effect of b on Z, the residual Z variations correlate with a (the
method of residues).

Each of the five inductive methods has strengths and weaknesses, discussed below. The five
methods also share certain limitations, which we will consider first.

Mill was aware that association or correlation does not imply causality, regardless of inductive
method. For example, some other variable may cause both the antecedent and consequent (h=>c,
h=7, .. ¢ correlates with Z, but c=>7). Thus Mill would expand the definition of each method
below, ending each with an escape clause such as “or the antecedent and result are connected
through some fact of causation.” In contrast, I present Mill’s Canons as methods of establishing
relationships; whether the relationships are directly causal is an independent problem.

When we speak of a causal antecedent, we usually think of a single variable. Instead, the ‘causal
antecedent’ may be a conjunction of two or more variables; we can refer to these variables as the
primary and facilitating variables. If we are aware of the facilitating variables, if we assure that they
are present throughout the experiment, and if we use the inductive methods to evaluate the influence
of the primary variable, then success with Mill’s Canons is likely. If we are unaware of the role of
the facilitating variables, if we cannot turn them on and off at will, or if we cannot measure them,
then we need a more sophisticated experimental design.

Method of Agreement

If several different experiments yield the same result, and these experiments have only one
factor (antecedent) in common, then that factor is the cause of the observed result. Symbolically,
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abc=7, cde=7Z, cfg=7, ...c=7; or abc=7ZYX, cde=7ZW, cfg=7ZVUT, ..c=Z. The method of
agreement is theoretically valid but pragmatically very weak, for two reasons:

* almost never can we be certain that the various experiments share only one common factor. We
can increase confidence in the technique by making the experiments as different as possible (except
of course for the common antecedent), thereby minimizing the risk of an unidentified common vari-
able; and

* some effects can result from two independent causes, yet this method assumes that only one cause
is operant. If two or more independent causes produce the same experimental result, the method of
agreement will incorrectly attribute the cause to any antecedent that coincidentally is present in both
experiments. Sometimes the effect must be defined more specifically and exclusively, so that differ-
ent causes cannot produce the same effect.

It is usually safest to restate the method of agreement as: if several different experiments yield
the same result, and these experiments appear to have only one antecedent factor in common, then
that factor may be the cause of the observed result. Caution is needed, to assure that the antecedent
and result are not both controlled by some third variable, that all relevant factors are included, and
that the effect or result is truly of the same kind in all experiments. Time is a variable that often con-
verts this method into a pitfall, by exerting hidden control on both antecedents and results. Ideally,
the method of agreement is used only to spot a possible pattern, then a more powerful experimental
design is employed to test the hypothesis.

Method of Difference

If a result is obtained when a certain factor is present but not when it is absent, then that factor
is causal. Symbolically, abc=7Z, ab=-7Z, ..c=7Z; or abc=ZYXW, ab=YXW, ..c=Z. The
method of difference is scientifically superior to the method of agreement: it is much more feasible
to make two experiments as similar as possible (except for one variable) than to make them as dif-
ferent as possible (except for one variable).

The method of difference has a crucial pitfall: no two experiments can ever be identical in all
respects except for the one under investigation. Thus one risks attributing the effect to the wrong
factor. Consequently, almost never is the method of difference viable with only two experiments;
instead one should do many replicate measurements.

The method of difference is the basis of a powerful experimental technique: the controlled ex-
periment. In a controlled experiment, one repeats an experiment many times, randomly including or
excluding the possibly causal variable ‘c’. Results are then separated into two groups -- experiment
and control, or c-variable present and c-variable absent -- and statistically compared. A statistically
significant difference between the two groups establishes that the variable ¢ does affect the results,
unless:

¢ the randomization was not truly random, permitting some other variable to exert an influence; or
* some other variable causes both ¢ and the result.

During his long imprisonment, the scientist made friends with a fly and trained it
to land on his finger whenever he whistled. He decided to carry out a controlled ex-
periment. Twenty times he whistled and held out his finger; every time the fly landed
there. Then he pulled off the fly’s wings. Twenty times he whistled and held out his
finger; not once did the fly land there. He concluded that flies hear through their
wings.
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Joint Method of Agreement and Difference

If a group of situations has only one antecedent in common and all exhibit the same result, and
if another group of similar situations lacks that antecedent and fails to exhibit the result, then that
antecedent causes the result. Symbolically, abc=7ZYX, ade=7ZWYV, and afg=7ZUT; bdf=YWU
and bceg=XVT, .".a="7Z.

This method is very similar to the methods of agreement and of difference, but it lacks the sim-
ple, simultaneous pairing of presence or absence between one antecedent and a corresponding re-
sult. Effectively, this method treats each ‘situation’ or experiment as one sample in a broader ex-
periment demonstrating that whenever a is present, Z results, and whenever a is absent, Z is absent.
The method makes the seemingly unreasonable assumption of ‘all other things being equal’; yet
this assumption is valid if the experiment is undertaken with adequate randomization.

Method of Concomitant Variations

If variation in an antecedent variable is associated systematically with variation in a conse-
quent variable, then that antecedent causes the observed variations in the result. Symbolically,
abc=7, abAc=AZ, ...c=7; or abc=WXYZ, abAc=WXYAZ, ..c=7.

The method of concomitant variations is like a combination of the methods of agreement and
difference, but it is more powerful than either. Whereas the methods of agreement or difference
merely establish an association, the method of concomitant variations quantitatively determines the
relationship between causal and resultant variables. Thus the agreement and difference methods
treat antecedents and consequents as attributes: either present or absent. The method of concomitant
variations treats them as variables.

Usually one wants to know whether a relationship is present, and if so, what that relationship is.
This method simultaneously addresses both questions. Furthermore, nonlinear relationships may
fail the method of difference but be identified by the method of concomitant variation. For example,
a method-of-difference test of the efficacy of a medication might find no difference between medi-
cated and unmedicated subjects, because the medicine is only useful at higher dosages.

A quantitative relationship between antecedent and result, as revealed by the method of con-
comitant variation, may provide insight into the nature of that relationship. It also permits compari-
son of the relative importance of various causal parameters. This technique, however, is not immune
to two limitations of the two previous methods:

* determination that a significant relationship exists does not prove causality; and

* other variables must be prevented from confounding the result. If they cannot be kept constant,
then their potential biasing effect must be circumvented via randomization.

The correlation techniques described earlier in this chapter exploit the method of concomitant
variations.

Method of Residues

If one or more antecedents are already known to cause part of a complex effect, then the other
(residual) antecedents cause the residual part of the effect. Symbolically, abc=WXYZ, ab=WXY,
L=
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As defined restrictively above, this method is of little use because it assumes that every poten-
tially relevant antecedent is being considered. Yet a pragmatic method of residues is the crux of
much empirical science: identify the first-order causal relationship, then remove its dominating ef-
fect in order to investigate second-order and third-order patterns.

The method of residues provided a decisive confirmation of Einstein’s relativity:
the theory accurately predicted Mercury’s orbit, including the residual left unex-
plained by Newtonian mechanics. Another example is the discovery of Neptune,
based on an analysis of the residual perturbations of the orbit of Uranus. Similarly,
residual deviations in the orbits of Neptune and Uranus remain, suggesting the exis-
tence of a Planet X, which was sought unsuccessfully with Pioneer 10 and is still being
looked for [Wilford, 1992b].

The archaeological technique of sieving for potsherds and bone fragments is well
known. Bonnichsen and Schneider [1995], however, have found that the fine residue
is often rich in information: hair. Numerous animal species that visited the site or were
consumed there can be identified. Human hair indicates approximate age of its donor
and dietary ratio of meat to vegetable matter. Furthermore, it can be radiocarbon
dated and may even have intact DNA.

& & *

The five inductive methods establish apparent causal links between variables or between attrib-
utes, but they are incomplete and virtually worthless without some indication of the confidence of
the link. Confidence requires three ingredients:

* aquantitative or statistical measure of the strength of relationships, such as the correlation sta-
tistics described earlier in this chapter;

» discrimination between causal correlation and other sources of correlation, which is the subject
of the next section; and

* an understanding of the power or confirmation value of the experiment, a subject that is dis-
cussed in Chapter 7.

The five inductive methods differ strikingly in confirmatory power. The Method of Difference
and the Method of Concomitant Variations are the most potent, particularly when analyzed quanti-
tatively with statistics. The Method of Agreement is generally unconvincing. Unfortunately, an indi-
vidual hypothesis usually is not amenable to testing by all five methods, so one may have to settle
for a less powerful test. Sometimes one can recast the hypothesis into a form compatible with a
more compelling inductive test.

* * *

Correlation or Causality?

Causality needs correlation; correlation does not need causality. The challenge to scientists is to
observe many correlations and to infer the few primary causalities.

Mannoia [1980] succinctly indicates how direct causal relationships are a small subset of all
observed correlations. Observed statistical correlations (e.g., between A and B) may be:
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* accidental correlations (1 of 20 random data comparisons is ‘significant’ at the 95% confidence
level);

* two effects of a third variable that is causal and possibly unknown (X=A & X=B);

e causally linked, but only indirectly through intervening factors (A=X;=X,=B, or
B=X=X,=A); or

* directly causally related (A=B or B=A).

Earlier in this chapter, we examined quantitative measures of correlation strength and of the sig-
nificance of correlations. Only an inductive conceptual model, however, can provide grounds for
assigning an observed correlation to one of the four categories of causality/correlation. No quanti-
tative proof is possible, and the quantitative statistical measures only provide clues.

Many factors affect or ‘cause’ change in a variable. Usually, our interest in these factors de-
creases with decreasing strength of correlation between the causal variables A; and the effect B. In

general, we judge the relative importance of various causal variables based on two factors: the
strength of correlation and the rate of change dB/dA;. High correlation strength means that much of

the observed variation in effect B is somehow accounted for by variation in possible causal variable
A;. High rate of change means that a substantial change in effect B is associated with a modest

change in causal variable A;. However, rate of change alone can be misleading, for the total natural
range of two causal variables A; and A, may be so different that dB/dA could be larger than
dB/dA, and yet A, causes more variation in B than A; does. Earlier in this chapter, we employed the

correlation coefficient as a quantitative measure of correlation strength and the linear-regression
slope as a measure of rate of change.

If one has three variables (C, D, and E) that are correlated, correlation strength can be used to
infer likely relationships among them. Statistical techniques such as path analysis and analysis of
covariance are best for determining these interconnections, but we will confine the present discus-
sion to a more qualitative consideration of the problem. For example, suppose the correlation
strengths among C, D, and E are as follows: C/D strong, D/E strong, and C/E weak. Probably, the
weak relationship C/E is a byproduct of the two stronger correlations C/D and D/E, each of which
may be causal. Direct causal connections (A=>B) usually generate much stronger correlations than
indirect ones (A=X;=X,=B). Extraneous factors affect each of the steps (A=X;, X=X, and
X,=>B) of the indirect correlation, thus weakening the overall correlation between A and B. Note,

however, that relative strengths of correlations cannot establish causality; they only provide evidence
about relative proximity of links among variables. For example, the pattern of C/D strong, D/E
strong, and C/E weak could result either from C=D=F or from E=D=C.

Many surveys of U.S. voting patterns have shown that those who vote Republican
have, on average, more education than Democratic voters. Does this mean that educa-
tion instills Republican voting, or perhaps that higher intelligence inspires both
greater education and Republican voting? Hoover [1988] uses this example to illus-
trate how social sciences need to beware of correlations induced by an unidentified
third variable. More detailed and well-controlled surveys demonstrate that family
wealth is the third variable: children of wealthier families tend to acquire a higher
level of education and to be wealthier than average, and the voting pattern of wealthier
individuals is more likely to be Republican than Democratic.

& & *
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The following two examples illustrate the challenge of identifying the causality that manifests as
correlation: the investigators had to design experiments to tease out this causal pattern. In both ex-
amples, epidemiological studies of a large population were used to identify a statistical association
between a pair of variables.

What is the effect of electromagnetic radiation on health? In one study, pregnant
women who used video terminals more than 20 hours per week had twice as many
miscarriages as did other kinds of female office workers. The authors of the study
cautioned, however, that radiation was not necessarily the cause of this difference. For
example, the video-intensive jobs might be more stressful.

A statistical study of Denver children found that those who had lived near power-
distribution lines were twice as likely to get cancer than other children. This study was
criticized for its uncontrolled variables, so other investigators conducted a follow-up
study designed to be much better controlled and more diagnostic. Contrary to the re-
searchers’ expectations, the new result was virtually the same as the original, so many
scientists concluded that electromagnetic radiation really does seem to affect health.
Note the origin of this change in opinions: the combination of a recognizably skepti-
cal scientist and a tighter experiment [Stevens, 1992b].

Compelling scientific evidence is required, because of the potentially staggering
human and economic impacts if a causal link between electromagnetic radiation and
health were confirmed. A synthesis of more than one hundred studies demonstrates
that health impacts are generally negligible [Derry, 1999], but scientific concerns per-
sist, particularly regarding possible long-term effects of cell phones.

Is there a genetic predisposition to alcoholism? Research on this question exem-
plifies the problem of distinguishing between acquired and inherited characteristics.
One of the most successful ways to attack such problems is by studying adopted chil-
dren. For example, 30-40% of adopted children of alcoholics become alcoholics,
compared to only 10% of the general population. This result constitutes good evi-
dence for a genetic origin, but only because it was confined to children of alcoholic
fathers; it is conceivable that an alcoholic mother could pass along an acquired de-
pendence to her fetus, as occurs with heroin.

In a different type of experiment, H. Begleiter found a much higher incidence of
certain deficiencies in thinking and remembering among alcoholics than among non-
alcoholics. Some of these deficiencies disappeared after the subjects stopped drinking,
but others persisted for years. Was this evidence of permanent damage caused by al-
cohol? The author considered a radical alternative hypothesis: instead of the brain de-
ficiency being caused by drinking, it preceded the drinking and was a trait among
those most likely to become alcoholics. In studies of children, he found that 30-35%
of the sons of alcoholic fathers had the deficiency, although only 1% of a control
group did [Kolata, 1992a].

Rare scientists (e.g., Bauer, 1994) claim that the continuing debates about acquired vs. inherited
characteristics illustrate deficiencies of sociology. Many non-scientists interpret the debates as re-
vealing the fallibility of scientists. Instead, this research exemplifies the inductive ingenuity of those
scientists who can recognize the possibility of a pattern among incredible complexity, then design a
test that successfully isolates the primary variables.



