
Practical Complexity Cube Attacks on Round-Reduced Keccak
Sponge Function

Itai Dinur1, Pawe l Morawiecki2,3, Josef Pieprzyk4 Marian Srebrny2,3, and Micha l Straus3

1 Computer Science Department, École Normale Supérieure, France
2 Institute of Computer Science, Polish Academy of Sciences, Poland

3 Section of Informatics, University of Commerce, Kielce, Poland
4 Queensland University of Technology, Brisbane, Australia

Abstract. In this paper we mount the cube attack on the Keccak sponge function. The cube attack,
formally introduced in 2008, is an algebraic technique applicable to cryptographic primitives whose output
can be described as a low-degree polynomial in the input. Our results show that 5- and 6-round Keccak
sponge function is vulnerable to this technique. All the presented attacks have practical complexities and
were verified on a desktop PC.

Keywords: Keccak, SHA-3, sponge function, cube attack

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) announced a public contest
aiming at the selection of a new standard for a cryptographic hash function. In 2012, after 5 years of
intensive competition, the winner was selected. The new SHA-3 standard will be Keccak hash function
[8]. In fact, Keccak is a family of sponge functions [7] and it can be used not only as a hash function,
but also for generating an infinite bit stream, making it suitable to work as a stream cipher or a
pseudorandom bit generator.

In this paper we present attacks on scaled-down Keccak variants, in which the number of rounds
is reduced from the full 24. We use the cube attack — an algebraic technique which exploits a low
degree polynomial representation of a given cryptographic primitive. This attack is particularly efficient
against round-reduced Keccak variants, as the degree of a single Keccak round is only 2. This was
already demonstrated by [13], where the cube attack was applied with low complexity to 4-round
Keccak. Furthermore, the low algebraic degree of a Keccak round was exploited in more theoretical
attacks (with a much higher complexity) such as [1, 6]. In this paper, however, we are interested in
practical results, and describe cube attacks and cube testers (which are extensions of the cube attack)
on up to 6-round Keccak (and a slightly stronger version containing 6.5 rounds), thus reaching two
more rounds than [13].

All the presented attacks have practical complexities and were verified on a desktop PC. Table 1
shows the state-of-the-art regarding practical complexity attacks on Keccak sponge function.

Table 1: Best known practical attacks on the Keccak sponge function. All the reported attacks are on the 1600-bit state
variant.

Rounds Mode Type of attack Reference

2 hash function preimage [11, 14]
4 hash function collision [9]
4 MAC key recovery [13]
5 MAC key recovery Section 4.1
6 stream cipher key recovery Section 4.2

The paper is organized as follows. First, we present a brief description of the cube attack high-
lighting the key ideas of this technique. Then, a description of the Keccak Sponge Function is given.
Next, in Section 4, our cube attack on Keccak is presented. Finally, Sections 5 shows how to use a
cube tester to detect a non-random behavior for the 6.5-round variant of the Keccak permutation.

2 Cube Attacks

The cube attack is a chosen plaintext key-recovery attack, which was formally introduced in [10] as
an extension of higher order differential cryptanalysis [12] and AIDA [15]. Since its introduction, the
cube attack was applied to many different cryptographic primitives such as [2, 4, 13]. Below we give a
brief description of the cube attack, and refer the reader to [10] for more details.

The cube attack assumes that the output bit of a cipher is given as a black-box polynomial
f : Xn → {0, 1} in the input bits (variables). The main observation used in the attack is that when
this polynomial has a (low) algebraic degree d, then summing its output over 2d−1 inputs in which a
subset of variables (i.e., a cube) of size d − 1 ranges over all possible values, and the other variables
are fixed to some constant, yields a linear function (see the theorem below).

Theorem 1. (Dinur, Shamir) Given a polynomial f : Xn → {0, 1} of degree d. Suppose that 0 < k < d
and t is the monomial x0 . . . xk−1. Write the function as

f(x) = t · Pt(x) +Qt(x)

where none of the terms in Qt(x) is divisible by t. Note that degPt ≤ d− k. Then the sum of f over
all values of the cube (defined by t) is∑

x′=(x0,...,xk−1)∈Ct

f(x′, x) = Pt(1, . . . , 1︸ ︷︷ ︸
k

, xk, . . . , xn−1)

whose degree is at most d− k (or 1 if k = d− 1), where the cube Ct contains all binary vectors of the
length k.

In Appendix D we give a simple combinatorial proof of this theorem. Algebraically, we note that
addition and subtraction are the same operation over GF (2). Consequently, the cube sum operation
can be viewed as differentiating the polynomial with respect to the cube variables, and thus its degree
is reduced accordingly.

2.1 Preprocessing (Offline) Phase

The preprocessing phase is carried out once per cryptosystem and is independent of the value of the
secret key.

Let us denote public variables (variables controlled by the attacker e.g., a message or a nonce) by
v = (v1, . . . , vd−1) and secret key variables by x = (x1, . . . , xn). An output (ciphertext bit, keystream
bit, or a hash bit) is determined by the polynomial f(v, x), and we denote∑

v∈Ct

f(v, x) = L(x)

for some cube Ct, where L(x) is called the superpoly of Ct. Assuming that the degree of f(v, x) is d,
then according to the main observation

L(x) = a1x1 + . . .+ anxn + c

In the preprocessing phase we find linear superpolys L(x) which eventually help us build a set of
linear equations in the secret variables. We interpolate the linear coefficients of L(x) as follows

– find the constant c =
∑

v∈Ct
f(v, 0)

– find ai =
∑

v∈Ct
f(v, 0, . . . , 1︸︷︷︸

xi

, 0, . . . , 0)) = ai

We note that in the most general case, the full symbolic description of f(v, x) is unknown and
we need to estimate its degree d using an additional complex preprocessing step. This step is carried
out by trying cubes of different dimensions, and testing their superpolys L(x) for linearity. However,
as described in our specific attacks on Keccak, the degree of f(v, x) can be easily estimated in our
attacks, and thus this extra step is not required.

2.2 Online Phase

The online phase is carried out after the secret key is set. In this phase, the attack exploits the ability
the choose the values of the public variables v: For each cube Ct, the attacker computes the binary
value bt by summing over the cube Ct. ∑

v∈Ct

f(v, x) = bt

For a given cube Ct, bt is equal to the linear expression L(x) determined in the preprocessing
phase, therefore a single linear equation is obtained

a1x1 + . . .+ anxn + c = bt.

Considering many different cubes Ct, the attacker aims at constructing a sufficient number of linear
equations. If the number of (linearly independent) equations is equal to a number of secret variables,
the system is solved by Gaussian elimination.5

2.3 Cube Testers

The notion of cube testers was introduced in [2], as an extension of the cube attack. Unlike standard
cube attacks, cube testers aim at detecting non-random behaviour (rather than performing key re-
covery), e.g., by observing that the cube sums are always equal to zero, regardless of the value of the
secret key. We note that zero-sum distinguishers (proposed in [1], and applied to the Keccak permu-
tation in several other papers) are closely related to cube testers, but they assume that the attacker
has the power to choose the public variables at the middle of the permutation (rather than only at
the beginning, as in standard attack models).

3 Keccak Sponge Function

Keccak is a family of sponge functions [7]. It can be used as a hash function, but can also generate an
infinite bit stream, making it suitable to work as a stream cipher or a pseudorandom bit generator. In
this section, we provide a brief description of the Keccak sponge function to the extent necessary for
understanding the attacks described in the paper. For a complete specification, we refer the interested
reader to the original specification [8].

A sponge function works on an internal state, divided according to two main parameters r and c,
which are called bitrate and capacity, respectively. Initially, the (r+ c)-bit state is filled with 0’s, and
the message is split into r-bit blocks. Then, the sponge function processes the message in two phases.

5 More generally, one can use any number of linearly independent equations in order to speed up exhaustive search for
the key.

In the first phase (also called the absorbing phase), the r-bit message blocks are XORed into the
state, interleaved with applications of the internal permutation. After all message blocks have been
processed, the sponge function moves to the second phase (also called the squeezing phase). In this
phase, the first r bits of the state are returned as part of the output, interleaved with applications of
the internal permutation. The squeezing phase is finished after the desired length of the output digest
has been produced.

Keccak is a family of sponge functions defined in [8]. The state of Keccak can be visualized as an
array of 5×5 lanes, where each lane is a 64-bit string in the default version (and thus the default state
size is 1600 bits). Other versions of Keccak are defined with smaller lanes, and thus smaller state sizes
(e.g., a 400-bit state with a 16-bit lane). The state size also determines the number of rounds of the
Keccak-f internal permutation, which is 24 for the default 1600-bit version.

All Keccak rounds are the same except for round-dependant constants which are XORed into the
state. Below there is a pseudo-code of a single round. In the latter part of the paper, we often refer to
the algorithm steps (denoted by Greek letters) described in the following pseudo-code.

Round(A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)

D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)

A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

ρ step forall (x,y) in (0...4,0...4)

A[x,y] = rot(A[x,y], r[x,y]),

π step forall (x,y) in (0...4,0...4)

B[y,2*x+3*y] = A[x,y],

χ step forall (x,y) in (0...4,0...4)

A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),

ι step
A[0,0] = A[0,0] xor RC

return A }

All the operations on the indices shown in the pseudo-code are done modulo 5. A denotes the
complete permutation state array and A[x,y] denotes a particular lane in that state. B[x,y], C[x],
D[x] are intermediate variables. The constants r[x,y] are the rotation offsets, while RC are the round
constants. rot(W,m) is the usual bitwise rotation operation, moving bit at position i into position
i+m in the lane W (i+m are done modulo the lane size). θ is a linear operation that provides diffusion
to the state. ρ is a permutation that mixes bits of a lane using rotation and π permutes lanes. The
only non-linear operation is χ, which can be viewed as a layer of 5-bit S-boxes. Note that the algebraic
degree of χ over GF (2) is only 2. Finally, ι XORes the round constant into the first lane.

In this paper we refer to the linear steps θ, ρ, π as the first half of a round, and the remaining
steps χ and ι as the second half of a round.

Keccak Working as MAC The Keccak sponge function can be used in keyed mode providing
many different functionalities. One of these functionalities is a hash-based message authentication
code (MAC), which is used for verifying the data integrity and the authentication of a message. A
hash-based algorithm for calculating a MAC involves a cryptographic hash function in combination
with a secret key. A typical construction is HMAC proposed by Bellare et al. [5]. However, for the
Keccak hash function, the nested approach of HMAC is not needed and in order to provide a MAC
functionality, we simply prepend the secret key to the message.

4 Cube Attack on Keccak Sponge Function

We describe key-recovery attacks on round-reduced Keccak, when it is used as a MAC and in the
stream cipher mode.

4.1 Attack on 5-round Keccak Working as MAC

We attack the default variant of Keccak with a 1600-bit state (r = 1024, c = 576), where the number
of rounds is reduced to 5. The key size and authentication tag are both 128 bits long — typical values
for MAC applications. We assume that the attacker can calculate any MAC for a chosen message, and
aims to recover the 128-bit secret key.

In this attack, the 1600-bit state consists of 128 secret variables (the secret key) and 128 public
variables (message variables). The remaining bits are set to ‘0’, except for the padding. The attacker
collects MACs for chosen 128-bit messages and then deduces the secret key from the collected message-
MAC pairs.

As previously noted, we exploit the property that the algebraic degree of a single round of the
Keccak permutation is only 2. Therefore, after 5 rounds the algebraic degree is at most 25 = 32.

128-bit key || 128-bit message

pad

5-round
Keccak-f[1600]

128-bit MAC

Fig. 1: Settings for the key-recovery attack on 5-round Keccak generating a MAC.

Preprocessing Phase As the algebraic degree of 5 Keccak rounds is at most 32, then for any cube
of 31 variables, the superpoly only consists of linear terms. Thus, we can avoid the step of testing
the superpolys for linearity. On the other hand, the superpolys can be constants, which are not useful
for key-recovery attacks (as they do not contain information about the key). This typically occurs
due to the slow diffusion of variables into the initial rounds, which causes the algebraic degree of the
examined output bits to be less than the maximal possible degree of 32.

To find useful cubes for out attack, we randomly picked 31 out of the 128 public variables and
checked whether the superpoly consists of any secret variables or it is constant. With this simple

strategy, we were able to find 117 linearly independent expressions (superpolys) in a few days on a
desktop PC. The search was somewhat more complex than expected, as we observed that only 20−25%
of the superpolys were useful (i.e., non-constant). On the other hand, we observed that in many cases,
for a given cube, if we examine different outputs (with their corresponding superpolys), we can find
many superpolys and shorten the search time. In Appendix A we give the cubes chosen for the attack.

Online Phase

In the online phase, the attacker computes the actual binary value of a given superpoly by summing
over the outputs obtained from the corresponding cube. There are 19 cubes used in this attack, each
cube with 31 variables. Thus, the attacker obtains 19 · 231 ∼= 235 outputs for 5-round Keccak. Having
computed the values of the superpolys, the attacker constructs a set of 117 linearly independent
equations, and recovers the full 128-bit secret key by guessing the values of 11 additional linearly
independent equations. In total, the complexity of the online phase is dominated by 235 Keccak calls
(the linear algebra complexity and the additional 211 guesses can be neglected).

4.2 Attack on 6-round Keccak Working in Stream Cipher Mode

A direct extension of the attack to 6 rounds seems infeasible as we would deal with polynomials of
approximate degree 26 = 64 and it is very unlikely to find (in reasonable time) cubes with linear
superpolys. However, one more round can be reached by exploiting an additional property of Keccak:
as χ operates on the rows independently, if a whole row (5 bits) is known, we can invert these bits
through ι and χ from the originally given output bits.

On the other hand, 128 output bits (a generated MAC) are not sufficient for inversion — these
bits do not allow us to uniquely calculate any bit at the input. Considering longer MACs, e.g., 320-bit
MACs, makes the attack setting somewhat artificial. However, we can still attack the Keccak sponge
function working in a different mode, where the attacker has access to more output bits, such as the
stream cipher mode.

We now describe a reasonable attack setting on 6-round Keccak. We attack the default variant of
Keccak with 1600-bit state, r = 1024, c = 576. The state is initialized with a 128-bit key concatenated
with a 128-bit public Initialization Vector (IV). After a single Keccak permutation call, a 1024-bit
keystream is extracted and used to encrypt a plaintext via bitwise XOR (as shown in Figure 2).

128-bit key || 128-bit IV

pad

6-round
Keccak-f[1600]

keystream

plaintext

ciphertext

Fig. 2: 6-round Keccak used in the stream cipher mode

As we assume that the attacker can obtain the keystreams for various choices of IVs, it is a similar
scenario to the previous attack on the 5-round Keccak MAC. On the other hand, the attacker now

possesses 1024 output bits (keystream bits) and is able to invert them through ι and χ. Consequently,
the final nonlinear step χ can be omitted and the cube attack is reduced to 5.5 rounds, for which the
output bits have a manageable polynomial degree of at most 32 (The first half a round is linear and
does not increase the polynomial degree, hence 5.5 rounds in total.)

We executed the preprocessing phase in a similar way to the one described for the 5-round attack.
We were able to find 128 linearly independent superpolys using 25 cubes (listed in Appendix B). This
gives an online attack complexity of 231 · 25 ∼= 236.

4.3 Attack on State-reduced 6-round Keccak Working as MAC

The Keccak sponge function can also work on smaller states which may be useful for lightweight
cryptography. We attacked the Keccak MAC operating on a 400-bit state with an 80-bit key. As the
state is smaller, 128 bits of MAC (output bits) cover the complete rows in the state and we are able to
invert these rows through ι and χ. Therefore, we could attack the 6-round Keccak MAC in practical
time.

During the preprocessing phase, we found 80 linearly independent superpolys using 18 cubes. This
allows to recover the 80-bit secret key with complexity 231 · 18 ∼= 235. It is interesting to note that,
compared to the previous attacks, the superpolys consist of many more secret variables. It is due to
a faster diffusion of variables into the smaller state. Examples of the cubes chosen for this attack are
given in Appendix C.

5 Practical Complexity Cube Tester for 6.5-round Keccak Permutation

In this section we show how to construct a practical cube tester for the 6.5-round Keccak permutation.
As the expected algebraic degree for 6-round Keccak is 64, such an attack may seem at first impractical
to mount on a desktop PC (without exploiting some internal invertibility properties, as in the previous
section). However, if we carefully choose the initial state and exploit a special property of θ, we can
considerably reduce the output degree after 6 rounds and keep the complexity practical.

The exploited (well-known) property of θ is that its action depends only on the column parities
(and not on the actual values of the 5 bits inside each column). Thus, if we place the cube variables
in such a way that all the column parities are constants for all values of the cube variables, then θ
will not diffuse these variables throughout the state. Moreover, as ρ and π only permute the bits in
the state, it is easy to choose the cube variables such that after the linear part of the round, they do
not interact with each other through the subsequent non-linear χ layer. Consequently, the algebraic
degree of the polynomial in the cube variables remains 1 after the first round, and it is at most 32
after 6 rounds.

Thus, we choose a cube of 33 variables (as shown in Figure 3), while the remaining bits of the input
state are set to arbitrary constants (some of which are potentially unknown secret variables). Since the
degree of the output polynomials in the cube variables after 6 rounds is only 32, the cube sum of any
output bit after 6 rounds is equal to zero, which is a clear non-random property. Moreover, we can add
a (linear) half of a round and obtain a 6.5-round distinguisher using the same cube. Furthermore, if
we assume that we can obtain sufficiently many output bits in order to partially invert the non-linear
layer (as in the previous section), we can extend the attack to 7 rounds in practical time. Note that
the distinguishing attack works regardless of the number of secret variables, their location, or their
values.

Finally, we note that a direct application of this cube tester for a key recovery is not straightforward,
and (unlike the previous attacks) requires testing superpolys for linearity (in fact, linear superpolys
are not guaranteed to exist).

33-bit cube

first half a round

Fig. 3: The initial state of a cube tester and the transition through the first linear part of the round (θ, ρ, π steps)

6 Conclusion

We mounted the cube attack on the Keccak sponge function and showed that 5- and 6-round variants
are vulnerable to this technique. In particular, we attacked the Keccak MAC and the variant working
in the stream cipher mode. We also reported results on a state-reduced variant of Keccak, and since
the full-round version of this variant has fewer than 24 rounds, it also provides a (slightly) smaller
security margin against our attacks. Finally, we described the 6.5-round cube tester — a testable way
to exhibit a non-random behaviour of the permutation.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and
Hamsi. Tech. rep., NIST mailing list (2009)

2. Aumasson, J.P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round md6 and
trivium. In: FSE. pp. 1–22 (2009)

3. Aumasson, J.P., Khovratovich, D.: First Analysis of Keccak, http://131002.net/data/papers/AK09.pdf
4. Bard, G.V., Courtois, N., Nakahara, J., Sepehrdad, P., Zhang, B.: Algebraic, AIDA/Cube and Side Channel Analysis

of KATAN Family of Block Ciphers. In: INDOCRYPT. pp. 176–196 (2010)
5. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash functions: the HMAC construction.

CryptoBytes 2(1), 12–15 (1996)
6. Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak? NIST mailing list (2010), http://ehash.iaik.

tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges, http://sponge.noekeon.org/CSF-0.
1.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document, http://

keccak.noekeon.org/Keccak-main-2.1.pdf

9. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) Fast
Software Encryption, Lecture Notes in Computer Science, vol. 7549, pp. 442–461. Springer Berlin Heidelberg (2012)

10. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: EUROCRYPT. pp. 278–299 (2009)
11. Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security margin evaluation of SHA-3 contest finalists

through SAT-based attacks. In: 11th Int. Conf. on Information Systems and Industrial Management. LNCS, vol.
7564. Springer Berlin Heidelberg (2012)

12. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R., Costello, DanielJ., J., Maurer, U.,
Mittelholzer, T. (eds.) Communications and Cryptography, The Springer International Series in Engineering and
Computer Science, vol. 276, pp. 227–233. Springer US (1994)

13. Lathrop, J.: Cube Attacks on Cryptographic Hash Functions. Master’s thesis, Rochester Institute of Technology
(2009)

14. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round keccak. In: Bernstein, D., Chatterjee,
S. (eds.) Progress in Cryptology INDOCRYPT 2011, Lecture Notes in Computer Science, vol. 7107, pp. 236–254.
Springer Berlin Heidelberg (2011)

15. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryptology ePrint Archive,
Report 2007/413 (2007)

Appendix

A

Table 2: Cubes and corresponding superpolys used in the attack on 5-round Keccak MAC.

cube: 128,130,131,139,145,146,147,148,151,155,158,160,161,163,164,165,185,186,189,190,193,196,205,212,220,225,229,238,242,245,249

superpoly output bit superpoly output bit

x77 7 1 + x110 13
1 + x113 15 x25 31
1 + x103 42 1 + x105 69
x44 84 x123 87
1 + x100 96 1 + x104 100
x17 112 x38 + x51 71
1 + x7 + x19 91 1 + x80 + x122 113
x17 + x68 + x116 114
cube: 128,129,134,135,138,139,141,151,154,155,157,166,168,171,175,180,191,193,198,202,203,206,209,214,216,222,223,225,239,246,247

superpoly output bit superpoly output bit

1 + x50 7 1 + x124 16
1 + x109 19 x92 20
1 + x101 30 1 + x85 35
x15 37 1 + x67 53
1 + x4 55 1 + x90 76
1 + x126 94 1 + x84 95
1 + x33 108 x6 112
1 + x78 122 1 + x48 124
x39 + x99 27 x68 + x117 115
1 + x23 + x87 119 1 + x27 + x50 + x81 121
cube: 129,134,135,139,140,146,159,166,170,171,174,176,179,180,182,184,188,192,193,200,202,207,208,212,214,219,225,234,243,248,252

superpoly output bit

x40 100
cube: 128,132,134,136,137,139,140,155,158,159,161,162,166,168,175,177,179,183,185,189,195,209,210,211,214,234,239,247,249,251,253

superpoly output bit superpoly output bit

x13 9 x72 22
cube: 128,136,144,145,152,154,164,170,171,173,182,187,190,192,194,198,200,201,205,212,215,217,220,227,230,234,240,242,245,249,253

superpoly output bit superpoly output bit

x76 90 x39 113
cube: 133,134,138,139,140,141,152,153,156,157,158,163,166,170,171,173,189,194,207,215,216,221,231,234,235,238,241,250,253,254,255

superpoly output bit superpoly output bit

1 + x119 115 1 + x35 121
cube: 130,135,139,140,143,147,150,165,169,172,179,181,182,186,193,197,205,209,219,226,228,230,231,233,234,238,239,240,245,246,252

superpoly output bit

x107 25
cube: 132,137,139,140,143,147,152,158,161,163,165,169,171,182,184,186,187,190,192,198,199,200,223,227,229,233,239,242,244,245,246

superpoly output bit superpoly output bit

1 + x88 3 1 + x49 + x94 19
cube: 135,136,141,145,150,156,158,160,161,165,169,170,172,177,186,189,190,197,201,204,211,212,213,226,228,240,241,242,250,251,254

superpoly output bit superpoly output bit

1 + x111 10 x66 42
x5 118
cube: 130,135,138,140,141,146,153,155,165,170,178,199,200,206,209,214,218,222,223,224,226,228,231,232,233,238,243,251,252,253,255

superpoly output bit superpoly output bit

x91 16 1 + x34 99
cube: 128,129,130,132,137,142,152,153,155,160,164,165,166,175,187,196,200,201,205,212,217,221,222,226,228,235,237,242,243,246,252

superpoly output bit superpoly output bit

x96 16 1 + x57 19
1 + x70 94 x53 96
x30 113 x3 + x43 22
1 + x42 + x106 30 x63 + x67 91

x26 + x49 + x113 76
cube: 128,129,135,137,140,145,150,152,162,163,164,166,170,175,179,181,186,187,198,202,209,216,220,221,222,230,234,240,241,245,248

superpoly output bit superpoly output bit

1 + x46 0 1 + x83 8
x118 19 x64 27
x49 32 1 + x3 51
x58 63 1 + x114 66
1 + x24 74 x38 82
1 + x65 90 1 + x125 92
1 + x16 102 x87 119
x71 121 x0 + x24 31
x1 + x72 34 x32 + x45 + x66 + x104 23
cube: 129,130,136,142,149,153,156,157,159,165,166,173,175,181,188,190,193,194,195,205,209,211,219,221,225,234,239,245,247,253,254

superpoly output bit superpoly output bit

x80 7 1 + x47 12
x8 20 1 + x97 72
1 + x86 120 x59 + x119 32
1 + x62 + x107 76 x29 + x42 111
cube: 131,132,134,136,138,142,143,147,152,158,165,167,171,172,173,180,186,196,206,208,213,214,217,219,226,233,235,237,239,250,251

superpoly output bit superpoly output bit

x74 5 x102 16
1 + x10 47 x19 49
1 + x11 57 x69 69
1 + x127 79 x2 101
x112 116
cube: 135,138,142,149,151,153,156,162,163,165,166,173,174,178,182,187,188,192,193,210,214,218,219,221,228,235,237,238,243,252,255

superpoly output bit superpoly output bit

x81 30 1 + x75 121
x79 + x98 22
cube: 136,137,141,145,148,152,155,157,162,166,169,184,186,188,189,203,204,209,210,214,217,221,223,225,227,229,237,243,247,248,252

superpoly output bit superpoly output bit

1 + x52 61 1 + x95 79
1 + x115 93 1 + x60 98
x117 117 1 + x14 + x78 44
x28 + x66 62 1 + x37 + x112 72
1 + x41 + x104 106 x85 + x108 113
cube: 128,131,133,134,145,146,147,150,151,154,161,163,164,168,174,180,181,190,198,203,205,206,209,217,224,225,232,245,247,248,255

superpoly output bit superpoly output bit

1 + x18 24 1 + x82 25
x73 53 x42 77
x48 + x61 89
cube: 130,131,133,134,135,145,148,151,153,164,165,179,180,189,191,193,194,199,207,214,221,222,224,225,229,231,237,239,246,253,255

superpoly output bit superpoly output bit

1 + x93 11 1 + x89 47
1 + x32 + x95 + x100 31
cube: 138,141,156,157,164,166,180,184,185,188,189,194,196,198,201,203,204,212,214,215,216,220,222,230,232,238,240,247,248,249,251

superpoly output bit superpoly output bit

1 + x12 23 1 + x56 119

B

Table 4: Cubes and corresponding superpolys found for 5.5 rounds, used in the attack on the 6-round Keccak working
in the stream cipher mode.

cube: 128,133,134,137,138,145,153,154,155,157,158,161,175,180,182,187,191,192,195,199,206,208,211,220,227,229,245,247,249,251,252

superpoly output bit superpoly output bit

x76 1 1 + x64 13
x41 17 x106 28
1 + x85 38 1 + x32 46

1 + x10 49 x0 70
x109 71 1 + x121 73
1 + x25 88 x96 91
1 + x35 95 1 + x68 97
x42 106 x72 111
x26 112 1 + x34 123
x116 125
cube: 128,132,134,135,139,144,149,154,155,156,157,159,168,171,181,184,191,195,201,211,217,225,226,229,231,232,234,239,240,247,248

superpoly output bit superpoly output bit

x67 18 1 + x81 20
1 + x97 23 1 + x87 42
1 + x66 43 1 + x108 48
1 + x80 61 1 + x88 103
1 + x95 111 x78 114
x91 119
cube: 131,136,137,138,141,143,154,156,160,164,170,173,178,180,183,185,188,193,201,202,217,221,225,231,239,243,244,245,249,250,251

superpoly output bit superpoly output bit

x92 19 1 + x105 24
x33 45 x101 54
x89 74 1 + x126 107
cube: 128,130,138,143,144,145,147,159,162,163,169,170,177,178,179,180,184,185,189,195,200,207,208,216,220,221,222,242,243,252,255

superpoly output bit superpoly output bit

x82 1 x48 2
x45 14 1 + x37 20
x110 48 1 + x13 68
1 + x83 88 1 + x127 110
cube: 136,138,139,141,142,144,152,154,158,162,163,169,177,187,189,195,196,201,207,209,214,218,221,224,228,234,236,239,240,243,244

superpoly output bit superpoly output bit

1 + x65 5 x86 6
1 + x4 9 1 + x70 10
x54 12 1 + x22 14
1 + x58 18 1 + x55 27
x104 34 x40 35
1 + x39 36 x28 40
x53 53 1 + x21 68
x99 69 x1 89
x100 95 x20 115
x52 116 x31 121
x23 + x65 11
cube: 128,131,132,137,142,145,147,148,154,155,163,174,176,180,190,192,195,197,199,207,215,217,220,228,232,233,235,238,239,241,247

superpoly output bit superpoly output bit

x57 0 1 + x38 13
x7 15 1 + x117 33
x69 50 1 + x9 62
x77 72 x46 74
1 + x30 82 1 + x75 89
1 + x60 118
cube: 128,131,136,138,142,143,148,151,153,155,158,159,160,163,177,180,186,187,189,192,193,195,198,223,229,231,236,247,248,254,255

superpoly output bit superpoly output bit

1 + x98 9 x122 37
x102 52 1 + x114 58
1 + x79 61 1 + x113 65
x118 68 x24 74
x61 77 x43 104
cube: 129,138,144,161,162,163,164,170,171,176,183,188,190,193,197,200,205,207,212,214,215,216,219,226,227,231,233,239,247,251,252

superpoly output bit

x29 116
cube: 132,133,140,145,153,157,163,164,165,168,170,171,175,197,198,204,209,210,214,220,222,227,228,233,234,237,239,240,244,247,249

superpoly output bit superpoly output bit

x62 10 1 + x71 17

x3 69 1 + x84 78
x123 82 x63 117
cube: 137,138,147,149,155,156,157,163,168,171,183,192,194,195,197,201,202,204,205,208,211,216,217,218,220,226,227,228,229,247,252

superpoly output bit

x19 102
cube: 128,129,131,134,137,141,142,146,148,152,161,171,175,178,180,192,193,198,200,202,203,207,208,209,216,218,223,224,236,243,255

superpoly output bit superpoly output bit

x6 46 x8 61
x17 103 1 + x124 126
cube: 128,132,140,142,145,148,152,157,162,164,168,175,177,185,187,190,194,195,196,199,200,203,204,214,219,223,231,237,239,248,250

superpoly output bit superpoly output bit

x103 24 1 + x94 30
1 + x56 75
cube: 140,141,144,146,151,153,154,157,158,162,165,168,170,176,202,204,206,219,220,226,227,230,232,234,238,241,242,243,244,250,251

superpoly output bit

1 + x12 104
cube: 128,135,136,137,146,150,168,171,178,180,184,189,193,197,198,207,212,214,215,217,218,219,220,227,230,233,236,240,241,246,247

superpoly output bit superpoly output bit

x125 62 1 + x27 89
cube: 129,132,146,151,152,160,161,165,169,182,184,187,197,198,203,204,211,215,219,228,229,231,233,239,240,246,247,248,249,253,255

superpoly output bit

1 + x120 127
cube: 129,131,134,138,139,141,147,149,155,170,175,181,185,186,198,200,202,204,207,208,217,223,235,236,240,241,242,244,246,247,253

superpoly output bit superpoly output bit

1 + x47 2 1 + x15 5
1 + x93 17 x16 19
x44 65 1 + x115 124
x59 127
cube: 135,138,141,143,146,149,155,156,160,167,177,181,184,190,191,194,201,210,220,223,227,234,235,237,242,244,246,249,250,253,254

superpoly output bit superpoly output bit

1 + x90 11 x14 44
1 + x119 67 1 + x111 114
cube: 132,133,134,138,139,143,150,153,154,159,170,173,178,181,183,194,198,200,207,211,215,228,230,237,238,240,241,245,249,250,254

superpoly output bit superpoly output bit

x36 67 x74 82
cube: 130,134,137,138,150,155,161,164,165,168,169,172,173,174,177,178,183,184,187,192,199,212,213,215,220,223,225,230,232,235,236

superpoly output bit superpoly output bit

1 + x2 101 x112 112
cube: 130,132,138,142,152,157,158,159,167,170,175,177,181,183,185,186,192,199,203,206,207,218,220,231,236,239,244,245,246,247,254

superpoly output bit

x18 44
cube: 134,137,138,140,143,144,146,149,152,155,162,164,180,183,185,186,196,202,207,217,221,224,235,237,239,246,248,249,251,253,254

superpoly output bit superpoly output bit

x50 7 x5 102
x73 111
cube: 130,131,132,134,136,140,143,148,149,151,165,166,174,182,184,190,192,195,204,205,220,221,223,226,228,234,241,242,243,245,251

superpoly output bit

1 + x51 21
cube: 134,142,143,146,147,152,160,161,170,172,173,175,181,182,183,191,200,202,205,207,213,220,221,223,226,228,232,237,238,243,248

superpoly output bit

1 + x11 82
cube: 141,143,146,155,156,159,162,167,171,172,173,174,177,179,180,182,184,199,203,204,206,207,208,209,219,222,228,241,242,250,253

superpoly output bit

1 + x107 50
cube: 131,132,133,140,149,155,156,160,163,168,174,178,182,185,186,195,196,204,213,215,216,224,225,231,232,234,236,237,245,252,253

superpoly output bit

1 + x49 61

C

Table 6: Example cubes and corresponding superpolys found for the 5.5-round variant with the reduced (400-bit) state.
Cubes were used in the attack on the 6-round Keccak MAC.

cube: 80,82,84,85,87,90,91,96,102,105,109,110,111,116,119,122,128,130,133,134,136,139,140,141,145,146,147,149,153,156,159

superpoly output bit superpoly output bit

1 + x1 + x2 + x8 + x11 + x12 + x16 + x17 +
x18 + x19 + x20 + x31 + x35 + x37 + x40 + x41
+ x50 + x52 + x62 + x65 + x69 + x71 + x74 +
x79

29 x2 + x4 + x5 + x16 + x17 + x20 + x22 + x24 +
x28 + x34 + x40 + x42 + x43 + x44 + x47 + x49
+ x51 + x52 + x53 + x54 + x56 + x60 + x61 +
x62 + x67 + x69 + x72 + x73 + x75 + x78

98

x0 + x2 + x4 + x7 + x8 + x10 + x11 + x13 +
x14 + x16 + x17 + x20 + x23 + x26 + x28 + x30
+ x31 + x32 + x34 + x35 + x36 + x39 + x41 +
x43 + x46 + x49 + x52 + x54 + x56 + x63 + x76

79

cube: 80,82,89,90,91,92,98,99,103,110,111,118,121,122,123,125,126,128,130,132,133,135,136,137,140,145,148,154,155,157,159

superpoly output bit superpoly output bit

x6 + x8 + x9 + x10 + x11 + x15 + x17 + x21 +
x29 + x34 + x35 + x43 + x47 + x48 + x50 + x56
+ x57 + x58 + x59 + x60 + x67 + x68 + x69 +
x72 + x77

45 x0 + x1 + x3 + x9 + x12 + x13 + x14 + x15 +
x16 + x22 + x26 + x30 + x31 + x34 + x36 + x41
+ x42 + x45 + x47 + x49 + x53 + x61 + x64 +
x67 + x69 + x73 + x74 + x77

42

x0 + x1 + x2 + x3 + x4 + x8 + x10 + x11 +
x14 + x16 + x20 + x22 + x24 + x26 + x33 + x34
+ x35 + x37 + x39 + x44 + x52 + x53 + x56 +
x61 + x62 + x63 + x64 + x70 + x72 + x73 + x78

12

D

Proof. We can write the values of the polynomial as follows: for all the values of the cube Ct

f(0, . . . , 0, xk, . . . , xn−1) = 0 · Pt(0, . . . , 0, xk, . . . , xn−1) +Qt(0, . . . , 0, xk, . . . , xn−1)

f(0, . . . , 1, xk, . . . , xn−1) = 0 · Pt(0, . . . , 1, xk, . . . , xn−1) +Qt(0, . . . , 1, xk, . . . , xn−1)

...

f(1, . . . , 1, xk, . . . , xn−1) = 1 · Pt(1, . . . , 1, xk, . . . , xn−1) +Qt(1, . . . , 1, xk, . . . , xn−1)∑
x′=(x0,...,xk−1)∈Ct

f(x′, x) = Pt(1, . . . , 1, xk, . . . , xn−1) + 0(?)

As shown above if we sum up all the terms with Pt then there is only case when product of the bits of the cube is equal
to 1. Now we need to show that the sum of Qt over the cube is zero. Qt itself is a sum of monomials. Each monomial
may

– have all the variables different from x0, . . . , xk−1. This monomial is sum up 2k times (even number) so its contribution
is zero,

– overlap on `-bits of the cube (` < k). This means that the monomial contains a ` variables of the cube. This monomial
becomes zero when at least one variable is zero (there are 2k − 2k−` such vectors). If all variables are one, then it
gets added up 2k−` times and as this is even number (or k − ` ≥ 1), it is equal to zero.

This completes the proof. �

