+++ to secure your transactions use the Bitcoin Mixer Service +++

 

Aller au contenu

Électricité

Un article de Wikipédia, l'encyclopédie libre.
Arcs électriques dans un ciel bleu allant des nuages au sol.
La foudre est l'un des phénomènes électriques les plus impressionnants qui existent.

L’électricité est l'ensemble des phénomènes physiques associés à la présence et au mouvement de la matière qui possède une propriété de charge électrique. L'électricité est liée au magnétisme, les deux faisant partie du phénomène de l'électromagnétisme, tel que décrit par les équations de Maxwell. Divers phénomènes courants sont liés à l'électricité, notamment la foudre, l'électricité statique, le chauffage électrique, les décharges électriques.

La présence d'une charge électrique, qui peut être positive ou négative, produit un champ électrique. Le mouvement de cette charge représente un courant électrique, qui produit un champ magnétique. Lorsqu'une charge est placée à un endroit où le champ électrique est non nul, une force s'exerce sur elle. L'ampleur de cette force est donnée par la loi de Coulomb. Si la charge électrique se déplace dans le champ, celui-ci exerce un travail sur la charge. Nous pouvons donc parler de potentiel électrique en un certain point de l'espace, qui est généralement mesuré en volts.

L'électricité est au cœur de nombreuses technologies modernes. L'énergie électrique est un vecteur énergétique, qui utilise le courant électrique pour alimenter des équipements. En électronique, elle est aussi un vecteur d'information, exploité dans les circuits électriques impliquant des composants électriques actifs tels que les tubes électroniques, les transistors, les diodes, les circuits intégrés, ainsi que les technologies d'interconnexion passives associées.

Les phénomènes électriques sont étudiés depuis l'Antiquité, les progrès dans la compréhension théorique sont restés quasi nuls jusqu'aux XVIIe et XVIIIe siècles. La théorie de l'électromagnétisme est développée au XIXe siècle et, à la fin de ce siècle, les ingénieurs électriciens commencent à utiliser l'électricité à des fins industrielles et résidentielles. L'expansion rapide de la technologie électrique à cette époque a transformé l'industrie et la société, devenant la force motrice de la deuxième révolution industrielle. L'extraordinaire polyvalence de l'électricité lui permet d'être utilisée dans un nombre presque illimité d'applications, dont le transport, le chauffage, l'éclairage, les communications et l'informatique. La production d'électricité est en conséquence un secteur industriel clef de nombreux États.

Histoire[modifier | modifier le code]

Premières théories[modifier | modifier le code]

Dessin de la tête d'un homme barbu aux cheveux ébouriffés.
Thalès est le premier homme connu à avoir conduit des recherches au sujet de l'électricité.

Bien avant que l'électricité ne soit connue, l'être humain connaît les chocs provoqués par les poissons électriques. Des textes de l'Égypte antique datant de font référence à ces poissons comme « Tonnerre du Nil », et les décrivent comme les « protecteurs » de tous les autres poissons. Les poissons électriques sont de nouveau signalés des millénaires plus tard par des naturalistes et des médecins grecs, romains et arabes[1]. Plusieurs auteurs de l'Antiquité, tels que Pline l'Ancien et Scribonius Largus, attestent de l'effet anesthésiant des chocs électriques délivrés par les Malaptéruridés et les Torpediniformes, et savent que ces chocs peuvent se propager le long d'objets conducteurs[2]. Les patients souffrant de maladies telles que la goutte ou de maux de tête sont invités à toucher des poissons électriques dans l'espoir que la puissante secousse les guérisse[3].

Les cultures antiques du pourtour méditerranéen savent que certains objets, tels que des baguettes d'ambre, peuvent être frottés avec de la fourrure de chat pour attirer des objets légers comme des plumes. Thalès fait une série d'observations sur l'électricité statique vers , à partir desquelles il croit que la friction rendrait l'ambre magnétique, contrairement à des minéraux comme la magnétite, qui n'auraient pas besoin d'être frottés[4],[5],[6],[7]. Selon une théorie controversée, les Parthes auraient eu des connaissances en galvanoplastie, d'après la découverte, en 1936, de la pile électrique de Bagdad, qui ressemble à une cellule galvanique, bien qu'il ne soit pas prouvé que l'artefact soit de nature électrique[8].

Premières recherches et étymologie[modifier | modifier le code]

L'électricité n'est guère plus qu'une curiosité intellectuelle pendant des millénaires, jusqu'en 1600, lorsque le scientifique anglais William Gilbert écrit De Magnete, dans lequel il étudie minutieusement l'électricité et le magnétisme, en distinguant l'effet de la magnétite de l'électricité statique produite par le frottement de l'ambre[4]. Il invente le nouveau mot latin electricus, tiré de « d’ambre » ou « comme l'ambre », de ἤλεκτρον / ḗlektron, le mot grec pour « ambre », pour désigner la propriété d'attirer de petits objets après avoir été frottés[9]. Cette association donne naissance aux mots anglais « electric » et « electricity », qui apparaissent pour la première fois dans l'ouvrage Pseudodoxia Epidemica de Thomas Browne en 1646 et sont plus tard empruntés par le français pour former « électrique » et « électricité »[10],[11].

Découverte des principaux effets[modifier | modifier le code]

Portrait en demi-longueur d'un homme chauve, un peu corpulent, vêtu d'un costume trois-pièces.
Benjamin Franklin a mené des recherches approfondies sur l'électricité au XVIIIe siècle.

D'autres travaux sont menés au XVIIe siècle et au début du XVIIIe siècle par Otto von Guericke, Robert Boyle, Stephen Gray et Charles François de Cisternay du Fay[12]. Plus tard, Benjamin Franklin mène des recherches approfondies sur l'électricité, vendant ses biens pour financer ses travaux. En , il aurait attaché une clé métallique au bas de la corde d'un cerf-volant humidifié et aurait fait voler l'ensemble dans un orage[a],[13]. Une succession d'étincelles sautant de la clé au dos de sa main démontre alors que la foudre était de nature électrique[14]. Il explique également le comportement apparemment paradoxal de la bouteille de Leyde en tant que dispositif de stockage de grandes quantités de charges électriques positives et négatives[15],[12].

Portrait à l'huile en demi-longueur d'un homme en costume sombre.
Les découvertes de Michael Faraday ont constitué la base de la technologie des moteurs électriques.

En 1791, Luigi Galvani publie sa découverte du bioélectromagnétisme, démontrant que l'électricité est le moyen par lequel les neurones transmettent des signaux aux muscles[16],[17],[12]. La pile voltaïque d'Alessandro Volta en 1800, constituée de couches alternées de zinc et de cuivre, fournit aux scientifiques une source d'énergie électrique plus fiable que les machines électrostatiques utilisées auparavant[16],[17]. La reconnaissance de l'électromagnétisme, l'unité des phénomènes électriques et magnétiques, est due à Hans Christian Ørsted et André-Marie Ampère en 1819-1820. Michael Faraday invente le moteur électrique en 1821, et Georg Ohm analyse mathématiquement les circuits électriques en 1827[17]. L'électricité et le magnétisme sont définitivement liés par James Clerk Maxwell, notamment dans son ouvrage On Physical Lines of Force en 1861 et 1862[18].

En 1887, Heinrich Hertz découvre que des électrodes éclairées par un rayonnement ultraviolet créent plus facilement des étincelles électriques[19],[20]. En 1905, Albert Einstein publie un article expliquant les données expérimentales de l'effet photoélectrique comme étant le résultat de l'énergie lumineuse transportée en paquets quantifiés discrets, dynamisant les électrons[21].

Industrialisation et arrivée de l'électronique[modifier | modifier le code]

Si le début du XIXe siècle a vu des progrès rapides dans le domaine de la science électrique, c'est la fin du XIXe siècle qui voit les plus grands progrès dans le domaine de l'électrotechnique. Grâce à des personnes telles qu'Alexander Graham Bell, Ottó Bláthy, Thomas Edison, Galileo Ferraris, Oliver Heaviside, Ányos Jedlik, William Thomson, Charles Algernon Parsons, Werner von Siemens, Joseph Swan, Reginald Fessenden, Nikola Tesla et George Westinghouse, l'électricité passe du statut de curiosité scientifique à celui d'outil essentiel de la vie moderne, et participe également à la deuxième révolution industrielle[22],[23].

Le premier dispositif à semi-conducteurs est le « détecteur de crystal », utilisé pour la première fois dans les années 1900 dans les récepteurs radio[24]. L'électronique à l'état solide s'impose ensuite avec l'émergence des transistors. Le premier transistor fonctionnel, un transistor à contact ponctuel à base de germanium, est inventé par John Bardeen et Walter Houser Brattain aux laboratoires Bell en 1947, suivi par le transistor bipolaire en 1948[25],[26]. Ces premiers transistors sont des dispositifs relativement volumineux et difficiles à fabriquer en masse[27]. Ils sont suivis par le transistor à effet de champ à grille métal-oxyde (MOSFET) à base de silicium, inventé par Mohamed M. Atalla et Dawon Kahng aux laboratoires Bell en 1959[28]. Il s'agit du premier transistor véritablement compact qui peut être miniaturisé et produit en masse pour une large gamme d'utilisations, ce qui conduit à la révolution du silicium et à ce qui est défini par certains comme une nouvelle époque historique : l'ère de l'information[29],[30],[31]. Le MOSFET est depuis devenu le dispositif le plus fabriqué de l'histoire[32]. L'électronique participe ainsi activement à la troisième révolution industrielle, notamment grâce au développement de l'automation mais aussi grâce aux progrès qu'elle a permis dans la communication[33],[34],[35].

Concepts[modifier | modifier le code]

Charge électrique[modifier | modifier le code]

Un dôme en verre transparent possède une électrode externe qui est reliée, à travers le verre, à une paire de feuilles d'or. Une tige chargée touche l'électrode externe et fait se repousser les feuilles.
Une charge sur un électroscope à feuilles d'or provoque une répulsion visible des feuilles.

La présence d'une charge donne lieu à une force électrostatique : les charges exercent une force l'une sur l'autre, un effet qui est déjà connu, mais pas compris, dans l'Antiquité. Une boule légère suspendue à une ficelle peut être chargée en la touchant avec une tige de verre qui a elle-même été chargée en la frottant avec un tissu. Si une seconde balle est chargée par la même tige de verre, on constate qu'elle repousse la première : la charge éloigne les deux balles. Deux boules chargées par une tige d'ambre frottée se repoussent également. En revanche, si une boule est chargée par une tige de verre et l'autre par une tige d'ambre, les deux boules s'attirent. Ces phénomènes sont étudiés à la fin du XVIIIe siècle par Charles-Augustin Coulomb, qui déduit que la charge se manifeste sous deux formes opposées. Cette découverte conduit à l'axiome bien connu : les objets de même charge se repoussent et les objets de charge opposée s'attirent[36].

La force agit sur les particules chargées elles-mêmes, d'où la tendance de la charge à se répartir le plus uniformément possible sur une surface conductrice. L'ampleur de la force électromagnétique, qu'elle soit attractive ou répulsive, est donnée par la loi de Coulomb, qui relie la force au produit des charges et qui a une relation inverse au carré avec la distance qui les sépare[37]. La force électromagnétique est très puissante, juste derrière l'interaction forte, mais, contrairement à cette dernière, elle agit sur toutes les distances[38],[39]. Par rapport à la force gravitationnelle, beaucoup plus faible, la force électromagnétique qui éloigne deux électrons est 1042 fois supérieure à l'attraction de la gravitation qui les rapproche[40].

Une charge provient de certains types de particules subatomiques, dont les porteurs les plus connus sont les électrons et les protons. Une charge électrique donne naissance à une force électromagnétique, l'une des quatre forces fondamentales de la nature. La charge est une quantité conservée, c'est-à-dire que la charge nette au sein d'un système électriquement isolé restera toujours constante, quels que soient les changements qui se produisent dans ce système[41]. Au sein du système, la charge peut être transférée entre corps, soit par contact direct, soit par passage le long d'un matériau conducteur, tel qu'un fil[42].

La charge des électrons et des protons étant de signe opposé, une quantité de charge peut être exprimée comme étant négative ou positive. Par convention, la charge portée par les électrons est considérée comme négative, et celle des protons comme positive, une coutume qui trouve son origine dans les travaux de Benjamin Franklin[43]. La quantité de charge est généralement désignée par le symbole Q et exprimée en coulombs[44] ; chaque électron porte la même charge d'environ −1,602 2 × 10−19 coulomb. Le proton a une charge égale et opposée, soit +1,602 2 × 10−19 coulomb. La charge est possédée non seulement par la matière, mais aussi par l'antimatière, chaque antiparticule portant une charge égale et opposée à sa particule correspondante[45].

La charge peut être mesurée par un certain nombre de moyens, l'un des premiers instruments étant l'électroscope à feuille d'or, qui, bien qu'il soit encore utilisé pour des démonstrations en classe, a été remplacé par l'électromètre électronique[42].

Courant électrique[modifier | modifier le code]

Le mouvement d'une charge électrique est connu sous le nom de courant électrique, dont l'intensité est généralement mesurée en ampères. Le courant peut être constitué de n'importe quelle particule chargée en mouvement ; le plus souvent, il s'agit d'électrons, mais toute charge en mouvement constitue un courant. Le courant électrique peut traverser certaines choses, les conducteurs électriques, mais ne traversera pas un isolant électrique[46],[47],[48].

Par convention historique, un courant positif est défini comme circulant de la partie positive d'un circuit vers la partie négative. Le courant défini de cette manière va alors dans le « sens conventionnel ». Le mouvement des électrons dans un circuit électrique est ainsi considéré comme allant dans la direction opposée à celle du « sens conventionnel », les électrons étant chargés négativement[49].

Deux fils de métal forment un V inversé. Un arc électrique d'un blanc orangé aveuglant circule entre leurs extrémités.
Un arc électrique fournit une démonstration énergétique du courant électrique.

Le processus par lequel le courant électrique traverse un matériau est appelé conduction électrique, et sa nature varie en fonction de celle des particules chargées et du matériau qu'elles traversent. Parmi les exemples de courants électriques, on peut citer la conduction métallique, où les électrons circulent dans des conducteurs tel que le métal, et l'électrolyse, où les ions (atomes chargés) circulent dans des liquides ou dans des plasmas (étincelles électriques). Alors que les particules elles-mêmes peuvent se déplacer assez lentement, parfois avec une vitesse de dérive moyenne de seulement quelques fractions de millimètre par seconde, le champ électrique qui les anime se propage lui-même à une vitesse proche de celle de la lumière, permettant aux signaux électriques de passer rapidement le long des fils[50],[51].

Un courant provoque plusieurs effets observables, qui permettent de reconnaître sa présence. En 1800, William Nicholson et Anthony Carlisle découvrent que l'eau peut être décomposée par le courant d'une pile voltaïque, un processus maintenant connu sous le nom d'électrolyse de l'eau. Leurs travaux sont ensuite largement développés par Michael Faraday en 1833. Le courant traversant une résistance provoque un échauffement localisé, un effet que James Prescott Joule étudie mathématiquement en 1840[52]. L'une des découvertes les plus importantes concernant le courant est faite accidentellement par Hans Christian Ørsted en 1820, lorsque, alors qu'il prépare une conférence, il voit le courant dans un fil perturber l'aiguille d'une boussole magnétique. Il découvre ainsi l'électromagnétisme, une interaction fondamentale entre l'électricité et le magnétisme[53]. Le niveau des émissions électromagnétiques générées par un arc électrique est suffisamment élevé pour produire des interférences électromagnétiques qui peuvent nuire au fonctionnement des équipements adjacents[54].

Dans les applications techniques ou domestiques, le courant est souvent décrit comme étant soit un courant continu (DC), soit un courant alternatif (AC). Ces termes font référence à la façon dont le courant varie dans le temps. Le courant continu, tel qu'il est produit par exemple à partir d'une batterie et requis par la plupart des appareils électroniques, est un flux unidirectionnel de la partie positive d'un circuit vers la partie négative[55]. Si, comme c'est le cas le plus souvent, ce flux est transporté par des électrons, ceux-ci se déplacent dans la direction opposée. Le courant alternatif est un courant qui s'inverse de manière répétée ; il prend presque toujours la forme d'une onde sinusoïdale[56]. Le courant alternatif est donc pulsé dans un conducteur sans que la charge ne se déplace sur une distance nette dans le temps. La valeur moyenne dans le temps d'un courant alternatif est nulle, mais il fournit de l'énergie dans un sens puis dans l'autre. Le courant alternatif est affecté par des propriétés électriques qui ne sont pas observées en régime permanent de courant continu, comme l'inductance et la capacité[57].

Champ électrique[modifier | modifier le code]

Point marqué d'un + avec des flèches qui s'éloignent en toutes directions.
Lignes de champ émanant d'une charge positive au-dessus d'un conducteur plan.

Le concept de


We need Your Support. Make a Donation now! or