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The Kђѐѐюј SHA-3 submission

1 Defining Kђѐѐюј

Kђѐѐюј is defined in [12]. It is a family of sponge functions with members Kђѐѐюј[r, c] char-
acterized by two parameters:

• bitrate r,

• capacity c.

The sum r + c determines the width of the Kђѐѐюј- f permutation used in the sponge con-
struction and is restricted to values in {25, 50, 100, 200, 400, 800, 1600}.

The sponge construction uses r + c bits of state, of which r are updated with message
bits between each application of Kђѐѐюј- f during the absorbing phase and output during
the squeezing phase. The remaining c bits are not directly affected by message bits, nor are
they taken as output.

Kђѐѐюј allows one to choose its security parameter c independently from the output
length. We express our security claim for Kђѐѐюј in [12, Section “Security claim…”] as a flat
sponge claim [6]. This type of claim implies that the expected success probability of any aĴack
should be not higher than that for a random oracle plus the so-called RO differentiating
advantage N2/2cclaim+1. The value cclaim is called the claimed capacity and fully determines
the claimed security level of the variable-output-length function.

The design philosophy underlying Kђѐѐюј is the hermetic sponge strategy: adopting the
sponge construction using a permutation that should not have structural distinguishers [6].
In this approach, we can make a flat sponge claim with claimed capacity cclaim equal to the
parameter c in the construction and trade in claimed security level for speed by increasing c
and decreasing r accordingly.

2 Proposals for the SHA-3 standard

In [20], NIST requires the candidate algorithms to support at least four different output
lengths n ∈ {224, 256, 384, 512} with associated security levels. Hence, we define the fol-
lowing four fixed-output-length variants (where ⌊⌋n indicates truncation to the first n bits):

• n = 224: ⌊Kђѐѐюј[r = 1152, c = 448]⌋224

• n = 256: ⌊Kђѐѐюј[r = 1088, c = 512]⌋256

• n = 384: ⌊Kђѐѐюј[r = 832, c = 768]⌋384

• n = 512: ⌊Kђѐѐюј[r = 576, c = 1024]⌋512

In addition, we propose Kђѐѐюј[] (with default parameters), where the user may truncate
the output at the desired output length.

There are other valid parameter choices and other possible ways of using the Kђѐѐюј
family, which we now discuss.

2.1 LeĴing the user choose the output length

In many use cases of hash functions the output length is determined by the application.
This is the case for key derivation functions and several important public key signature and
key establishment schemes, for instance the widely used RSA padding schemes [16, 17]. In
those cases, either the output must be truncated or an additional construction called mask
generating function (MGF) must be applied to provide longer outputs [16, 17].
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Consider a protocol to be designed with the requirement of a specific digest length ℓ.
When using a hash function family that consists of a set of instances with different output
lengths and ℓ is not among them, one must first choose an instance and either truncate or
specify an MGF construction. When using a variable-output-length hash function, no such
choice must be made and it suffices to truncate the output to the desired length. The advan-
tage of a variable-output-length hash function becomes even more important if a protocol or
application requires digests whose length is a parameter of the protocol.

2.1.1 What about the security level?

Traditionally, hash function users expect a security level that matches its output length: 2n/2

for collision-resistance and 2n for (second) pre-image resistance. As a consequence of the
flat sponge claim, a variable-output-length hash function with a claimed capacity cclaim shall
resist to any aĴack with complexity below 2cclaim/2, but nothing is claimed above this level.
Hence, the value 2cclaim/2 acts as a ceiling for the security level.

This ceiling poses no problem if high enough. For instance, the ceiling is at 2288 in the
case of Kђѐѐюј[], as it has capacity c = 576. Consider an application where we need a 512-
bit output. Traditionally, a (second) pre-image resistance level of 2512 would be expected,
while for Kђѐѐюј[] with output truncated to 512 bits a security level of only 2288 is claimed.
However, the difference between these two security levels is purely philosophical with no
practical implications whatsoever. By translating these computation complexities into phys-
ical quantities such as time or energy, both are simply out of reach and will remain so in the
foreseeable future [4].

2.1.2 What about diversification?

A single function for all output lengths may pose problems when a scheme requires that dif-
ferent output lengths are generated with different hash function instances. Diversification
is actually a requirement that may arise for other aspects than different output lengths. A
scheme or protocol may require different hash function instances even if their output lengths
are the same. Diversification can be established at very small cost using a well-established
technique called domain separation. Domain separation is an efficient means to construct dif-
ferent function instances from a single underlying function. If the underlying function is
secure, the derived functions can be considered as independent functions.

One can implement domain separation by appending or prepending different constants
to the input for each of the function instances: fi(M) = Kђѐѐюј(M||Ci) or fi(M) = Kђѐѐюј(Ci||M).
As a concrete example, one can use a convention based on namespaces such as described in
[6, Section “Domain separation”].

2.2 LeĴing the user choose the capacity

For standardization, one option is to impose a small set of (or just a single instance of) pa-
rameter values. Another option is to allow the user to freely choose them. We consider in
particular the case where a user can freely choose the capacity of Kђѐѐюј with r = 1600 − c
so that the width of Kђѐѐюј- f is fixed. In this section, we describe the advantages and dis-
advantages of this option.

As explained in [6], the hermetic sponge strategy allows the user to trade in speed for
claimed security, or vice versa, by choosing the capacity. Relative performance estimates for
various (r, c) pairs are listed in Table 1.
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r c Relative performance
576 1024 ÷1.778
832 768 ÷1.231
1024 576 1
1088 512 ×1.063
1152 448 ×1.125
1216 384 ×1.188
1280 320 ×1.250
1344 256 ×1.312
1408 192 ×1.375

Table 1: Relative performance of Kђѐѐюј[r, c] with respect to Kђѐѐюј[].

If the user decides to lower the capacity to c = 256, providing a claimed security level
equivalent to that of AES-128, the performance will be 31% greater than for the default value
c = 576. If the user wants an output truncated to 512 bits to provide the traditionally ex-
pected (second) pre-image resistance of 2512 by seĴing the capacity to c = 1024, she can do
this at the cost of a performance decreased by 78%.

A variable capacity can also result in important efficiency gain in applications dealing
with (mostly) short messages. Consider for example an application with messages that are
exactly 1024 bits long. The padding will extend these messages by 2 bits resulting in a two-
block message and hence applying Kђѐѐюј[] results in two calls to Kђѐѐюј- f . If we decrease
the capacity by 2 bits to 574 (still providing an astronomical security level), a paddedmessage
fits in a single block and only one call to Kђѐѐюј- f must be made.

Another important use case of variable capacities is the duplex construction. Here the
block length of the modes that run on top of the duplex construction is a few bits shorter
than the bitrate. By increasing the bitrate by a few bits (thus reducing the capacity by the
same amount), a block length that is a multiple of 8, 32 or 64 can be maintained. If the initial
capacity is high enough (e.g., 576 bits) reducing it by a few bits does not result in a noticeable
reduction in security.

In [4] we provide a simple application to help determine the capacity value and output
length given required security levels for collision-resistance and (second) pre-image resis-
tance.

2.2.1 What about the bound on theRO differentiating advantage?

The proven upper bound on the RO differentiating advantage of [3] assumes the capacity
is fixed and does not as such apply to a set of sponge functions calling the same underlying
function with different capacity values. However, for the padding function used in Kђѐѐюј,
we have proven in [6] that the RO differentiating advantage of the set is upper bound by
that of the member with the lowest capacity.

2.2.2 What about the implementation cost?

An argument against tunable parameters in a standard is that it makes implementations
more expensive, as they usually have to support all parameter values to fully implement
the standard. However, for Kђѐѐюј, the main implementation cost is for the Kђѐѐюј- f [1600]
permutation that is the same for all capacity values. The additional cost of the variable ca-
pacity value consists of the required support for the configurable bitrate r determining the
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length of the message blocks to be XORed into the state. The cost of supporting a variable
capacity value with a fixed state width is therefore quite limited.

2.2.3 What about the burden of choice for the user?

Another argument against tuneable parameters in a standard is that it puts the burden of
choice on the hash function user, typically a designer of a protocol or scheme. In particu-
lar, the choice of the capacity value determines a ceiling to the security level that the sponge
function provides and one could argue that the user usually does not have the responsibility
or the expertise to make that choice. In our opinion, the security claim of Kђѐѐюј is easy to
understand and the user can be guided in the choice of the capacity by some simple recom-
mendations. For example, one could fix a maximum capacity value cmax and recommend
taking a capacity depending on the output length n. The capacity would be c = 2n when
n < cmax/2 and c = cmax when n ≥ cmax/2.

3 Rationale

In Kђѐѐюј, there are basically three security-relevant parameters that can be varied: the
width b of Kђѐѐюј- f , the capacity c, limited by c < b, and the number nr of rounds in
Kђѐѐюј- f . The parameters of the proposals of Section 2 have been chosen for the follow-
ing reasons.

• b = 1600: The width of the Kђѐѐюј- f permutation is chosen to support all required
capacity values using the same permutation. See Section 3.1 for further discussions.

• c = 2n: For the fixed-output-length candidates, we chose a capacity equal to twice
the output length n. This is the smallest capacity value such that there are no generic
aĴacks with expected complexity below 2n.

• c = 576: For Kђѐѐюј[]with default parameters, we chose a rate value that is a power of
two and a capacity not smaller than 512 bits and such that their sum equals 1600. This
results in r = 1024 and c = 576. This capacity value precludes generic aĴacks with
expected complexity below 2288.

• nr = 24: The value of nr has been chosen to have a good safety margin and still good
performance, as detailed in Section 4.2.

3.1 Rationale for proposing Kђѐѐюј- f [1600]

All Kђѐѐюј members we propose for standardization make use of the same permutation:
Kђѐѐюј- f [1600]. A single implementation of this permutation supports all the proposed
variants, hence reducing cost, for instance, in hardware implementations. Furthermore, the
choice of Kђѐѐюј- f [1600] favors 64-bit CPUs and yet remains efficient on 32-bit (and smaller)
processors.

SoĞware implementations of Kђѐѐюј- f use bitwise Boolean operations and (cyclic) shiĞs
on CPU words. A typical implementation maps each lane to a CPU word, resulting in the
state of Kђѐѐюј represented in 25 words of 64 bits each. The choice of the lane size there-
fore favors CPUs with the corresponding word size. Specifically, the implementation of
Kђѐѐюј- f [1600] on a 64-bit CPU can exploit 64-bit wide Boolean operations and 64-bit rota-
tions.
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Because of the bit-oriented design of Kђѐѐюј- f , other approaches are possible. For in-
stance, Kђѐѐюј- f [1600] can be efficiently implemented on a 32-bit CPU by using the bit in-
terleaving technique [13]. Note that the use of, for example, modular addition would have
prevented the bit interleaving technique.

Some families of hash functions make use of two distinct compression functions, one ori-
ented to 32-bit words and one to 64-bit words, in order to provide different output lengths
and/or security levels. A full implementation on a given platform of such a family includes
two separate compression functions, and hence at least one of the two will have a word
length different from that of the CPU. In contrast, all Kђѐѐюј members we propose for stan-
dardization can be implemented with a single permutation Kђѐѐюј- f [1600] that thanks to
bit interleaving can work with either 25 words on a 64-bit CPU or 50 words on a 32-bit CPU.

In terms of memory footprint, Kђѐѐюј- f [1600] requires 200 bytes of RAM for the state
and some working memory [13]. The sponge construction allows implementations to XOR
themessage block into the state directly, relieving the application from dedicating amemory
area for it. This optimization applieswhere the hashingAPI is composed of functions such as
Init, Update and Final. In general a message queue must be allocated, which can be avoided
for sponge functions or similar.

The choice of width 1600 allows for a high bitrate even for high capacity values. For
instance, Kђѐѐюј can process 800 more input bits per evaluation of Kђѐѐюј- f [1600] than
of Kђѐѐюј- f [800] when c is fixed. However, the designer of an application on a memory-
constrained device may opt for a smaller state size by using an alternate set of parameters.
Kђѐѐюј[r = 288, c = 512] for instance uses 100 bytes of RAM. And if 256 bits of capacity are
enough for such an application, Kђѐѐюј[r = 144, c = 256] uses only 50 bytes. Similar ideas
apply to hardware implementations, where Kђѐѐюј- f [800] and Kђѐѐюј- f [400] can be seen
as compact alternatives. Using a smaller width has a price, though, as it requires to support
another Kђѐѐюј- f permutation. This may be acceptable if such an application is exceptional
or operates in a rather closed system, freeing the standard from supporting anything else
other than Kђѐѐюј- f [1600].

4 Safety margin

In this section, we explain how the safety margin in Kђѐѐюј can be increased or decreased
simply by changing the number of rounds in Kђѐѐюј- f and explain why we think the nom-
inal number of rounds provide a high safety margin. Finally, we describe two techniques
to build a safe mode into Kђѐѐюј implementations at liĴle additional cost, which one could
migrate to in the hypothetical case that a weakness in Kђѐѐюј is found.

4.1 Changing the number of rounds

The number of rounds of the Kђѐѐюј- f permutations is defined and fixed in [12] and reflects
the trade-off between performance and safety margin made in the design. Nevertheless,
the specifications make it easy to define Kђѐѐюј with an increased or decreased number of
rounds. With the exception of the addition of a round constant, the rounds are identical. As
the round constants are defined for any number of rounds, it is sufficient to modify the total
number of rounds in the specifications.

So, someone who would like to use Kђѐѐюј but does not feel comfortable with its safety
margin can simply adopt a version with more rounds. Someone who feels that Kђѐѐюј has
an excessive safety margin can adopt a version with fewer rounds.
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4.2 The safety margin with the nominal number of rounds

As reflected in our estimates for the safety margin against different types of aĴack, we think
Kђѐѐюј- f has about twice as many rounds (24 vs 13) as strictly required for Kђѐѐюј to stand
up to its security claim, for any choice of the capacity.

In [12, Section “Choice of parameters: the number of rounds”], we estimate the number
of rounds that is sufficient to provide resistance against four types of distinguisher or aĴack.
For the proposals of Section 2, i.e., using b = 1600, these estimates translate as follows:

• Kђѐѐюј- f distinguisher below 2b/2: 21 rounds;

• Kђѐѐюј distinguisher: 13 rounds;

• Inner collision: 11 rounds;

• State recovery: 11 rounds.

4.3 Migration path in the presence of a deployed standard

We expect a hash standard to be ubiquitous both in soĞware and dedicated hardware imple-
mentations. If a weakness is discovered that has a real-world security impact, it is beneficial
to have an affordable migration path towards a version without this weakness. On the NIST
SHA-3 mailing list Ron Rivest [18, 2-Aug-2009] and other researchers proposed having a se-
curity parameter (e.g., the number of rounds) to be determined by the user. Disadvantages of
this approachwere discussed and themost important ones are the increased implementation
cost due to the additional parameter, the burden of having to choose the security parameter
value by the hash function user and the risk of denial-of-service aĴacks. Moreover, the sup-
port of a smooth choice for the security parameter may actually introduce new weaknesses,
as observed by Stefan Lucks in his message to the NIST SHA-3 mailing list [18, 3-Aug-2009].

In the most lightweight version of this approach the security parameter would have only
two values: one nominal value and one high-security value (e.g., tripling the number of
rounds). In case of emergency, it would then be possible to migrate to the high-security
value. We describe here two methods for migrating to a more secure version that applies to
Kђѐѐюј without impact on the hash function implementation itself.

Both methods we propose consist of an input pre-processing step. In all use cases the
input to a sponge function is a bitstring, typically made of message bits and possible key
bits. AĞer padding, the input consists of a sequence of r-bit blocks. Before presenting it
to the sponge construction, this input can then be expanded by inserting bytes with fixed
values in certain places. Depending on where these bytes are inserted, this has an effect
similar to reducing the rate of the sponge function or multiplying the number of rounds of
the underlying permutation.

The first option is to reduce the effective bitrate from r bits to r − δ bits by inserting aĞer
every input block of r − δ bits a block of δ bits equal to zero. This reduces the number of bits
an aĴacker can exploit from r to r − δ. Note that with this approach the hermetic sponge
strategy is abandoned as the effective capacity is increased while the claimed capacity stays
fixed.

The second option is to multiply the effective number of rounds of the underlying per-
mutation by a factor α by inserting aĞer every input block of r bits α − 1 blocks of r bits with
fixed andwell-defined values. The α applications of the underlying permutation interleaved
with the application of the fixed blocks, can then be seen as a single permutation with α as
many rounds as the original one and with the fixed-value blocks as round constants. As it
is generally expected that increasing the number of rounds increases the safety margin with
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respect to almost all aĴacks, this provides a migration path to a security fix in case of a hypo-
thetical securityweakness. In this case the hermetic sponge strategy can bemaintained as the
single permutation with α as many rounds is assumed to have no structural distinguishers.

Both methods have the advantage of leaving Kђѐѐюј- f untouched, which limits the cost
of migrating should the need occur.

5 Usage

In a sponge function, the input is like a white page: It does not impose any specific structure
to it. Additional optional inputs (e.g., key, nonce, personalization data) can be appended or
prepended to the input message according to a well-defined convention, possibly under the
hood of diversification as proposed in [6, Section “Domain separation”].

Kђѐѐюј supports all the possible applications of sponge functions and duplex objects de-
scribed in [6, Chapters “Sponge applications” and “Duplex applications”]. These include
hash function, randomized hash function, hash function instance differentiation, slow one-
way function, parallel and tree hashing, mask generating function, key derivation function,
deterministic random bit generator, reseedable pseudo random bit sequence generator, mes-
sage authentication code (MAC) function, stream cipher, random-access stream cipher and
authenticated encryption.

5.1 Backward compatibility with old standards

In addition to the functionality natively provided by sponge functions, we describe how to
provide backward compatibility with old standards when required.

5.1.1 Input block length and output length

Several standards that make use of a hash function assume it has an input block length and a
fixed output length. A sponge function supports inputs of any length and returns an output
of arbitrary length. When a sponge function is used in those cases, an input block length and
an output length must be chosen. We distinguish two cases.

• For the four SHA-3 candidates where the digest length is fixed, the input block length
is assumed to be the bitrate r and the output length is the digest length of the candidate
n ∈ {224, 256, 384, 512}.

• For an instance with variable-length output, the output length n must be explicitly
chosen to fit a particular standard. Since the input block length is usually assumed to
be greater than or equal to the output length, the input block length can be taken as an
integer multiple of the bitrate, mr, to satisfy this constraint.

5.1.2 Initial value

Some constructions thatmake use of hash functions assume the existence of a so-called initial
value (IV) and use this as additional input. In the sponge construction the root state could
be considered as such an IV. However, for the security of the sponge construction it is crucial
that the root state is fixed and cannot be manipulated by the adversary. If Kђѐѐюј sponge
functions are used in constructions that require it to have an initial value as supplementary
input, e.g., as in NMAC [1], this initial value shall just be pre-pended to the regular input.
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5.1.3 HMAC

HMAC [1, 25] is fully specified in terms of a hash function, so it can be applied as such using
one of the Kђѐѐюј candidates. It is parameterized by an input block length and an output
length, which we propose to choose as in Section 5.1.1 above.

Apart from length extension aĴacks, the security of HMAC comes essentially from the
security of its inner hash. The inner hash is obtained by prepending the message with the
key, which gives a secure MAC. The outer hash prepends the inner MAC with the key (but
padded differently), so again giving a secure MAC. Of course, it is also possible to use the
generic MAC construction given in [6], which requires only one application of the sponge
function.

From the security claim in [12], a PRF constructed usingHMAC shall resist a distinguish-
ing aĴack that requiresmuch fewer than 2c/2 queries and significantly less computation than
a pre-image aĴack.

5.1.4 NIST and other relevant standards

The following standards are based either generically on a hash function or on HMAC. In all
cases, at least one of the Kђѐѐюј candidates can readily be used as the required hash function
or via HMAC.

• IEEE P1393 [16] requires a hash function for a key derivation function (X9.42) and a
mask generating function (MGF-hash). Note that the MGF-hash construction could be
advantageously replaced by the arbitrarily-long output mode of Kђѐѐюј[].

• PKCS #1 [17] also requires a hash function for a mask generating function (MGF1).

• The key derivation functions in NIST SP 800-108 [26] rely on HMAC.

• The key derivation functions in NIST SP 800-56a [22] are generically based on a hash
function.

• The digital signature standard (DSS) [19] makes use of a hash function with output
size of 160, 224 or 256 bits. Output truncation is permiĴed so any of the five Kђѐѐюј
candidates can be chosen to produce the 160 bits of output.

• In the randomized hashing digital signatures of NIST SP 800-106 [21], the message is
randomized prior to hashing, so this is independent of the hash function used. With a
sponge function, this can also be done by prepending the randomvalue to themessage.

• The deterministic random bit generation (DRBG) in NIST SP 800-90 [23] is based on
either a hash function or on HMAC. Note that an efficient and simple DRBG can be
implemented based on a sponge function [6]

6 Implementations

In [11], we propose a reference implementation in C, which covers the instances of Section 2,
namely, based on Kђѐѐюј- f [1600] and r a multiple of 64 bits. It also implements the duplex
construction, without restrictions on r.

In addition, KђѐѐюјTќќљѠ can serve as a reference implementation in C++ [9]. All the
members Kђѐѐюј[r, c] can be instantiated, including those based on the smaller permutation
widths, and without restrictions on the values of r and c.

All the implementation-related aspects are treated in [13].
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6.1 Bit and byte numbering

In this section, we detail the mapping between the bits of the input to the Kђѐѐюј sponge
functions, and their representation in the SHA-3 API defined by NIST [24]. The bits of the
input message M are numbered from i = 0 to i = |M| − 1. When the bits are gathered in
bytes, it implies the equivalent numbering i = ibit + 8ibyte with 0 ≤ ibit < 8.

In our internal convention, ibit = 0 indicates the least significant bit (LSB) of a byte while
ibit = 7 indicates the most significant one (MSB) [13]. The NIST convention [24] is different:
The bits of a byte are numbered from 0 for theMSB to 7 for the LSB. To be compatiblewith the
API convention outside and with our convention inside, the following formal bit-reordering
is performed on the input bit string M before it is processed:

• For all bytes that contain 8 bits, position ibit + 8ibyte is mapped to position 7 − ibit +
8ibyte.

• For the last byte if it contains p < 8 bits, position ibit + 8ibyte is mapped to position
(p − 1)− ibit + 8ibyte.

This mapping is bĳective and does not affect the security.
In practice, the above operation cancelswith the change of convention, so there is nothing

to do, except:

• For the last byte if it contains p < 8 bits, the bits are shiĞed by 8 − p positions towards
the LSB (i.e., to the “right”).

The rationale behind this convention can be found in [13].

7 Change history

In this section, we summarize the changes from the round 1 to the round 2 proposals, then
from the round 2 to the round 3 proposals.

7.1 From round 1 to round 2

From round 1 to round 2, we made the following changes.

• We changed the number of rounds of Kђѐѐюј- f from 12 + ℓ to 12 + 2ℓ.

• We changed the capacity and bitrate of the four fixed-output-length candidates. For
each of them we set the capacity to twice the output length.

7.2 From round 2 to round 3

For round 3, we made the following changes.

• We shortened and simplified the padding rule. The new padding rule is the pad10∗1
rule [6].

• We removed the diversifier parameter d.

• We removed the restriction on the supported values of r. Previously, the bitrate r could
only take values that aremultiple of 8 bits. Now all the values 0 < r ≤ b are supported.

Note that we made no changes to Kђѐѐюј- f .
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7.3 Rationale for changing the padding rule

As explained in [6], the sponge construction offers protection against generic aĴacks if the
padding rule is sponge-compliant, i.e., it is injective and ensures that the last block is different
from the all-zero block. The simplest padding rule that satisfies these requirements is the
simple padding pad10∗.

Kђѐѐюјuses the samepermutationwith different bitrates. In this case, sponge-compliance
is not sufficient anymore to offer protection against generic aĴacks. To overcome this, the
bitratewas explicitly encoded in the padding rule of the round 1 and round 2 proposals. This
way, the security of a set of sponge functions using of the same permutation was formally
proved to be equal to that of its member with the smallest capacity.

In [6] we prove that the padding rule pad10∗1 also satisfies this property. It is simpler
to describe and to implement than the rounds 1-2 padding rule. It is also more efficient, as
it appends a minimum of 2 bits instead of 25. For long messages, the gain is negligible, but
short messages can be 3 bytes longer for the same number of calls to Kђѐѐюј- f . This aspect
is especially relevant when using the duplex construction.

7.4 Rationale for removing the diversifier parameter

In the round 1 proposal, some fixed-output-length candidates shared the same bitrate value.
Hence, the diversifier was added to the padding rule to ensure diversification between the
different fixed-output-length candidates. This addressed a requirement expressed by NIST
on the hash forum mailing list [18, 23-Jun-2008], that a hash function with a given output
length should not be the prefix of another one with larger output length.

Starting from the round 2 proposal, all the fixed-output-length candidates have differ-
ent bitrates, hence making the diversifier parameter useless for this requirement. Of course,
diversification between functions using the same bitrate is still possible, as discussed in Sec-
tion 2.1.2.

7.5 Rationale for removing restrictions on the bitrate

In the round 1 and 2 proposals, the bitrate was encoded in terms of bytes in the padding
rule. Furthermore, the padding rule was designed only for bitrates multiple of 8 bits. With
the simpler padding rule pad10∗1, this restriction is no longer needed.

A bitrate multiple of 8 bits is a natural choice for sponge functions in most usage scenar-
ios. Without it, undesirable intra-byte bit shuffling is going to happen on the input blocks.

For a duplex object, however, the situation is different [6]. The duplex construction ac-
cepts input blocks up to the maximum duplex rate ρmax, which is just two bit shorter than
the bitrate, ρmax = r − 2. Furthermore, some modes that run on top of the duplex construc-
tion can make use of a frame bit. The application-level block size is therefore reduced by
2 or 3 bits. To ensure that the application-level block size ρ is a multiple of 8, 32 or 64 bits,
the bitrate must be chosen to be 2 or 3 modulo 8, 32 or 64. For instance, r = 1026 allows a
maximum duplex rate of ρmax = 1024 bits, and r = 1027 ensures that the block size of the
duplex-based authenticated encryption scheme SѝќћєђWџюѝ is conveniently 1024 bits.

7.6 Rationale for not changing the number of rounds

In September 2009, we increased the number of rounds from 18 to 24 in Kђѐѐюј- f [1600] due
to our adoption of the hermetic sponge strategy [6] and our wish to keep a safety margin
against all distinguishers [5].
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The zero-sum distinguishers recently found by Boura, Canteaut and De Cannière and by
Duan and Lai distinguish the 24 rounds of Kђѐѐюј- f [1600] from a randomly-chosen permu-
tation, although without implying a distinguisher on Kђѐѐюј itself [14, 15]. Not increasing
the number of rounds, strictly speaking, contradicts the hermetic sponge strategy. Still, we
decided to stick the number of rounds specified by 12 + 2ℓ due to the fact that these dis-
tinguishers can in no way be used to aĴack Kђѐѐюј for many reasons. One of them is that
the required number of queries, something like 21575, is not only extremely high but also
way above the claimed security of Kђѐѐюј. Hence, it is easy to prove that it has no impact
on its security, as detailed in[12, Section “Zero-sum distinguishers”] and in [6, Section “The
usability of structural distinguishers”].

According to our estimates (see Section 4.2), the current nominal number of rounds al-
ready provides a comfortable safety margin.

8 NIST requirements

In this section, we provide a mapping from the items required by NIST to the appropriate
sections in this and other documents.

• Requirements in [20, Section 2.B.1]

– The complete specifications can be found in [12, Chapter “Kђѐѐюј specifications”].
– Design rationale: a summary is provided in [12, Chapter “Design rationale sum-
mary”], with pointers to sections with more details.

– Any security argument and a preliminary analysis: this is the purpose of the doc-
ument [12].

– Tunable parameters: a summary is provided in Section 3, with pointers to sections
with more details.

– Recommended value for each digest size: see [12, Section “Choice of parameters:
the number of rounds”] for the number of rounds and Section 2 for the other
parameters.

– Bounds below which we expect cryptanalysis to become practical: this can be
found in Section 4.2.

• Requirements in [20, Section 2.B.2]

– For themeasured efficiency on various platforms, we refer to the eBASH and XBX
benchmarks [2, 27].

– We also refer to [13] for more information on the implementation aspects and to
[7, 8] for summaries of hardware and soĞware performance figures.

– The speed estimate on the reference platform can also be found in eBASH [2, e.g.,
machine cobra].

• Requirements in [20, Section 2.B.3]

– The known answer and Monte Carlo results can be found in [10].

• Requirements in [20, Section 2.B.4]

– The expected strength of Kђѐѐюј is stated in [12, Section “Security claim…”].
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– The link between the security claim and the expected strength criteria listed in
[20, Section 4.A] can be found in [6, Sections “Sponge functions used as a hash
function” and “Implications of the bound on the RO differentiating advantage”].

– Other pseudo random functions (PRF) constructions: somemodes of use are pro-
posed in [6, Section “Modes of use…”].

• Requirements in [20, Section 2.B.5]

– We formally state that we have not inserted any trapdoor or any hiddenweakness
in Kђѐѐюј. Moreover, we believe that the structure of the Kђѐѐюј- f permutation
does not offer enough degrees of freedom to hide a trapdoor or any other weak-
ness.

• Requirements in [20, Section 2.B.6]

– Advantages and limitations: a summary is provided in [12, Chapter “Design ra-
tionale summary”], with pointers to sections with more details.
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