
NDN Technical Report NDN-0053. http://named-data.net/techreports.html
Revision 1: May 15, 2017

1

A Survey of Distributed Dataset Synchronization
in Named Data Networking

Wentao Shang,∗ Yingdi Yu,∗ Lijing Wang,† Alexander Afanasyev,∗ and Lixia Zhang∗
∗UCLA, †Tsinghua University

{wentao,yingdi,aa,lixia}@cs.ucla.edu, wanglj11@mails.tsinghua.edu.cn

Abstract—Distributed synchronization of a shared dataset
(sync for short) provides a powerful abstraction for connection-
agnostic multiparty communication in NDN. In recent years, sev-
eral sync protocols have been proposed, each featuring different
design choices in data naming, namespace representation, and
state propagation mechanisms, which lead to different design
tradeoffs. In this report, we survey these protocols and, through
detailed analysis and side-by-side comparisons, highlight their
commonalities and fundamental differences. We also articulate
the remaining issues that must be addressed to make the sync
protocols available to more applications, shedding the light on
future work directions in this important area of NDN architecture
research.

I. INTRODUCTION

Named Data Networking (NDN) [1], [2] is a proposed
new Internet architecture that shifts the communication model
from host-centric, as in today’s TCP/IP networks, to data-
centric. At the network layer, NDN provides a simple yet
powerful communication primitive that allows a data consumer
to send an Interest packet with a name or name prefix and
retrieve a Data packet which is named under that prefix and
can be verified. While the Interest-Data exchange primitive
has significantly narrowed the semantic gap between the
application layer and the network layer in today’s TCP/IP
network architecture, it is cumbersome to use directly to build
distributed applications that often involve some form of data
or state sharing and synchronization among multiple parties.
For example, file sharing, collaborative editing, and group
messaging all collect and distribute state and data among
groups of participants. However, with the TCP/IP architecture,
whenever communication involves more than two parties, the
applications have to either establish multiple TCP connections
between the peers or rely on (at least logically) centralized
infrastructure to support multiparty communication.

The data-centric nature of the NDN architecture provides
a foundation for distributed dataset synchronization (sync for
short) as an important layer of abstraction for reliable mul-
tiparty communication on top of the Interest-Data exchange
primitives. Distributed applications and services that use sync
can easily publish data in a shared dataset maintained by
the sync protocol without worrying about how others would
discover the newly available data, and can easily consume
up-to-date information without worrying about how and from
where to get it. This use of NDN sync to provide reliable
data-centric communication differs from data retrieval via a
TCP connection in three fundamental ways. First, it naturally

supports data retrieval among multiple parties, while TCP
supports data exchange between two parties only. Second,
it does not require all communicating parties to be inter-
connected at the same time as TCP does. Third, it does not care
from where the data is returned since the security is attached
to the data instead of its container or communication channel.

NDN can achieve distributed dataset synchronization by
synchronizing the namespace of the shared dataset among
a group of distributed nodes (called sync nodes), thanks to
the unique and secured binding between name and content.
To share new data, a producing (side of) applications injects
its names into the dataset. After learning the new names,
the consumer (sides of) application decides whether to fetch
the new data according to its own needs and available re-
sources. One may view sync as playing a transport layer
role in the NDN architecture, bridging the gap between the
functionality required by the distributed applications and the
one-Interest-one-Data datagram retrieval semantics offered by
NDN network-layer primitives.

In this report, we present a survey of the distributed data
synchronization protocols that have been developed for the
NDN architecture in recent years. They include CCNx 0.8
Sync [3], iSync [4], CCNx 1.0 Sync [5], ChronoSync [6],
RoundSync [7], and PSync (or PartialSync) [8]. We identify
three most important questions in a sync protocol design, and
examine each of the above protocols by how it answers these
design questions, to extract common design patterns as well
as differences in the approaches. We conclude this survey with
a discussion on a set of identified remaining issues.

II. EXISTING SYNC PROTOCOLS OVER NDN

In this section, we examine the set of existing sync protocols
that have been developed for the NDN architecture. Our goal
is to extract common design patterns for NDN sync protocols
and identify different design choices and tradeoffs made in
different protocols. Our analysis focuses on the following key
design aspects:

a) Data naming: Thanks to the unique binding between
names and immutable data object in NDN, a shared dataset
can be uniquely identified by the namespace containing the
hierarchical names of all data packets in the dataset. There-
fore the dataset synchronization problem in NDN is conve-
niently reduced to the synchronization of the corresponding
namespace. The sync protocol may directly synchronize the
application data names, or leverage the sequential naming



2

convention to simplify the dataset namespace (and encapsulate
the application data names if necessary).

b) Namespace representation: The data structure that
represents the state of the shared dataset namespace is often
referred to as the sync state. Every sync node keeps a local
copy of the sync state and uses the sync protocol to keep
up with the changes generated by other nodes in the sync
group. This requires the sync state to encode the namespace
without loss of information and allow sync nodes to detect
and reconcile the differences in the shared namespace between
distinct states.

c) State sync mechanism: Each node participating in
a sync group may publish new data in the shared dataset at
any time. The sync protocol should ensure the other nodes in
the group can receive the new data and reach agreement on
the state of the dataset. The state synchronization mechanism
therefore needs to enable the nodes to (1) learn about the
updates as soon as possible and (2) detect and reconcile
inconsistency in the sync state caused by other factors such as
packet loss and/or network partition.

To support dataset synchronization inside a group, the sync
protocol also requires a group communication namespace for
the sync nodes to publish and exchange protocol messages. To
achieve group communication, the protocol may rely on the
underlying network to provide multicast capability (which is
the case in all existing sync protocols), or explore other group
rendezvous mechanisms such as structured communication
(e.g., Distributed Hash Table [9]) and epidemic dissemina-
tion [10]. Note that the design of the group communication
mechanism is outside the scope of the sync protocol (and
therefore not the focus of our analysis), but may have a
significant impact on the protocol design choices. Section III-A
discusses the group rendezvous issue and different sync com-
munication models in more detail.

We summarize the commonalities and differences among
the six protocols in Table I. In the rest of this section,
we describe each sync protocol by focusing on the three
design aspects mentioned above. At the end of the section we
give a brief summary that highlights common design patterns
and provide preliminary comparison on the efficiency issues
including synchronization delay and protocol message size.
(An extended evaluation of existing sync protocols will be
reported in future revisions.)

A. CCNx 0.8 Sync

The CCNx 0.8 Sync protocol [3] is the earliest synchro-
nization solution proposed for the NDN/CCN architecture as
a service module of the ccnr repo daemon. CCNx 0.8 Sync
allows a set of repos to synchronize a shared data collection
that contains data with arbitrary application names. The set
of data names under a common collection prefix is organized
into a tree structure called the sync tree (see Fig. 1), where a
node in that tree may store a single data name (i.e., a leaf )
or a list of (leaf and non-leaf) nodes. The structure of the
sync tree is determined by the order in which the data names
are added to the collection, which is independent from the
canonical ordering of the data names.

Min: /a/b/1
Max: /a/c/d/7

/a/b/1

Min: /a/b/1
Max: /a/b/5

Min: /a/c/1
Max: /a/c/d/7

/a/b/5 /a/c/1 /a/c/d/7 Min: /a/c/d/1
Max: /a/c/d/2

/a/c/d/1 /a/c/d/2

Collection prefix: /a

NodeHash = H1 NodeHash = H2

H3 H4 H5 H6
NodeHash = H7

H8 H9

RootHash = H0

Fig. 1: Example of a sync tree in CCNx 0.8 Sync

Each node in the sync tree is associated with a hash value:
the value of the leaf node is simply the hash of the name stored
in that node; the value of the non-leaf node is recursively
computed as the arithmetic sum of the hashes of all its
children. In other words, the hash value of a node is the
sum of the hashes of all data names contained in the sub-tree
under that node. For example, in Fig. 1, H3 = Hash(/a/b/1),
H2 = H5+H6+H7, and H0 = H1+H2. The root hash (H0 in
Fig. 1) then provides a summary of the entire namespace (i.e.,
sum of all data name hashes). Note that the sum of hashes is
not a cryptographically strong summary: in certain cases two
sync trees may store different sets of names but happen to
have the same root hash.

Any producer connected to a repo can publish new data into
the data collection at any time. The sync module in the repo
daemon (called sync agent) keeps track of the insertions of
new data and updates the sync tree accordingly, adjusting the
hash values along the path from the new leaf node to the root.
For example, in Fig. 1 the insertion of a new data “/a/c/d
/2” (marked as the red dashed square at the bottom right) will
cause the sync agent to update the node hashes H7 and H2,
eventually propagating the change up to the root hash H0.

The sync agent periodically advertises the latest root hash
by sending a RootAdvice Interest to all the other repos that
store the same data collection. The RootAdvice Interest name
starts with a multicast prefix for the sync tree, which is shared
by all repos and different from the collection prefix, followed
by the current root hash of the sync tree. When a sync agent
receives a remote root hash that is different from its own, it
replies to this RootAdvice with its own root hash. The sync
agent who receives a RootAdvice reply will send a NodeFetch
Interest, which is also named under the multicast prefix of the
sync tree, to the replying repo to retrieve the list of hashes
for all the children under the root node of the remote sync
tree. The NodeFetch process is recursively applied to all the
nodes in the sync tree, skipping those with the same hash
value between local and remote, until all nodes with different
hash values have been visited. Once it learns the names of the
new data from the leaf nodes, the sync agent can fetch those
data from the remote repo via normal Interest-Data exchange
and insert that data to its local copy of the data collection. An
example of the synchronization process in CCNx 0.8 Sync
(triggered by the update to the sync tree shown in Fig. 1) is
illustrated in Fig. 2. Note that while we show the sync protocol
messages only between two repos for clarity, the RootAdvise



3

TABLE I: Comparison of existing sync protocols in NDN

CCNx 0.8 Sync iSync CCNx1.0 Sync ChronoSync RoundSync PSync

Synchronized
Namespace Arbitrary names Arbitrary names Arbitrary names Node prefix +

seq#
Node prefix +

seq#
Stream prefix +

seq#

Sync state
representation Hash tree IBF of hashes

of names

Manifest
storing names
or digests of

data

List of {prefix :
seq#}

List of {prefix :
seq#} + round

log

IBF of hashes
of names with
highest seq#

State change
detection

Data replying
to RootAdvice
Interest with

local root hash

Interest
carrying digest

of IBF

Interest
carrying hash
of manifest

Data replying
to Sync Interest

with updates

Sync Interest
carrying digest

of current round

Data replying
to Sync Interest
with new IBF

State update
retrieval

NodeFetch
Interest

retrieving child
node hashes

Interest
retrieving IBF

content

Interest
retrieving
manifest

Data replying
to Sync Interest

with updates

Data replying
to Data Interest
with updates in
current round

Data replying
to Sync Interest
with new IBF

Repo1 Repo2

steady state
RootHash = H0 RootHash = H0

Time Time

New data /a/c/d/2
RootHash = H0’

RootAdvice: H0

RootAdvice reply: H0’

NodeFetch: H0’

NodeFetch reply: H1, H2’

NodeFetch: H2’

NodeFetch reply: H5, H6, H7’

NodeFetch: H7’

NodeFetch reply: H8, H9

NodeFetch: H9

NodeFetch reply: /a/c/d/2

RootAdvice: H0’

Update sync tree
RootHash = H0’

steady state

Request Data: /a/c/d/2

Reply: {content…}

Fig. 2: Synchronization in CCNx 0.8 sync

and NodeFetch Interests actually carry multicast prefix and
will be received by all repos storing the same data collection.

One problem in the update propagation mechanism in
CCNx 0.8 Sync is that when multiple repos publish new
data simultaneously, there will be more than one reply to a
RootAdvice Interest and only one of them will be returned to
the Interest issuer. In such case, the sync agent who sends the
initial RootAdvice Interest need to issue additional Interests to
fetch other replies. The proposed solution is to attach exclude
filters to the Interest to list the root hashes of the remote sync
trees that have already been received. This ensures that each
unique remote sync tree is examined only once for missing
data.

A side-effect of the CCNx 0.8 Sync algorithm, which
compares the local and remote sync trees and updates the
local state to be the union of the two, is that the repo cannot
remove any data once it is added to the data collection. This
is because the algorithm cannot distinguish the case where
a repo intentionally removed a piece of received data from
the case where the repo has never received the data before.
As a result, the data collection maintained by CCNx 0.8 Sync
must be monotonically growing, which creates usability issues
with the applications who generate a large mount of data and
need to perform garbage collection periodically to reclaim the
storage. For example, when the NDNVideo application [11]
was deployed on top of CCNx repo to publish live video
streams, the system administrator had to cleanup the data and
restart all repo instances every day at midnight in order to
avoid overwhelming the storage of the repo server.

B. iSync

iSync [4] is a direct optimization on top of the CCNx
0.8 Sync design. Like in CCNx 0.8 Sync, it supports the
synchronization of shared data with application names. To
represent the sync state more efficiently, iSync uses Invertible
Bloom Filter (IBF) [12] to store all the names from the shared
dataset in compressed form. Since the IBF can only store fixed-
length items, the data names must be first mapped to fixed-
length IDs (generated from the hash of the names) before
they are added to the IBF. A bi-directional mapping table
is maintained by every sync node so that it can recover the
original NDN names from the IDs.

Different from CCNx 0.8 Sync,1 iSync uses “digest broad-
cast” Interests (equivalent to the RootAdvise Interest in CCNx)
to advertise its current state to other nodes periodically, rather
than a solicitation for different sync states. Since the encoded
size of the IBF is typically very big, the advertisement Interest
carries only the digest of the current IBF from the sending
node. When a node receives a digest different from its own,
it sends another Interest to request the corresponding IBF
content. After it receives the IBF from a remote node, the

1The original iSync paper [4] describes the CCNx 0.8 Sync protocol
differently compared to the official specification [3] released in the CCNx
source code package.



4

Repo1 Repo2

steady state

Root IBF Digest = D0 Root IBF Digest = D0

Time Time

Publish new data
Root IBF Digest = D1

Sync Interest: D0

Sync Interest: D1

Interest for root IBF

with digest D1

Reply with root IBF

Interest for collection IBF

Reply with collection IBF

Interest for actual name of

the new item in IBF

Reply with actual name

Interest for new data using

actual data name

Reply with new data

Sync Interest: D1

Update sync state
Root IBF Digest = D1

steady state

Fig. 3: Synchronization process in iSync

node subtracts its own IBF from the remote IBF and extracts
individual IDs from the resulting “diff” IBF. Once the sync
node extracts all new IDs, it issues Interests to request the
original NDN names corresponding to those IDs and then
fetches the new data using the original names. An example
of the synchronization process in iSync is shown in Fig. 3.

Note that the iSync node does not expect any reply to
the initial advertisement Interest it sends. It therefore gets
around the issue with multiple replies generated for the same
broadcast or multicast Interest. Note that this causes imbalance
in the Interest-Data packet flow in the network. Assuming the
number of advertisement Interests is negligible compared to
the total network traffic, the impact can be a tolerable amount
of waste of PIT entries that eventually expire and get removed.

A major limitation in the IBF data structure is that it can
losslessly encode up to a certain number of items, beyond
which some of the stored items cannot be extracted. Unfor-
tunately, it is not uncommon that during the synchronization
process the set difference between the namespace of some
sync nodes may contain too many IDs that cannot be encoded
in the IBF in a lossless fashion. iSync provides several ways
to control the size of the set difference at multiple levels in
the protocol design. First, the shared dataset is divided into
multiple collections that host data for different applications;
each collection maintains its own IBF independently from
others. Second, iSync protocol enforces each node to period-
ically advertise its local sync state and resolve the difference,
which bounds the delay of the data propagation and the size
of the set difference between any two nodes. Third, iSync
creates multiple local IBFs to record the small-step changes
during each sync period; if the advertised IBF (called global

IBF) contains too many changes, the sync node can fetch the
local IBFs instead and perform more fine-grained difference
reconciliation.

C. CCNx 1.0 Sync

The design proposal of CCNx 1.0 Sync [5] abandons the
CCNx 0.8 Sync design and adopts a simple manifest-based
solution.2 The manifest packets are named under a routable
data collection prefix announced by every sync node, followed
by the hash of the manifest and segment numbers. The
manifest contains the SHA256 hashes or the exact names of all
data objects in the shared data collection. When the SHA256
hashes are used, the names of the data objects are constructed
by appending the hash value to the same data collection prefix
in the manifest name. The application-layer data (with real
application names) may be encapsulated in those data objects.

Each sync node uses Interest packets to advertise the hash
of its local catalog manifest when it generate new data.
The advertisement Interests are also named under the data
collection prefix and forwarded to all sync nodes announcing
that prefix. They have short lifetime and do not retrieve any
data. To increase the possibility that all nodes can receive the
advertisement, the node repeats the advertisement Interest once
or twice within a few seconds after the first advertisement
is sent. Once a node receives a different hash, it should
also advertise its own hash under the control of some gossip
protocol (with random backoff and duplicate suppression). It
then sends out Interests to retrieve the corresponding (possibly
segmented) manifest packets, compares the names listed in
the manifest with its local namespace, and then retrieves
the missing data over the network. This approach is similar
to iSync but without the benefit of efficient encoding and
differentiation provided by the IBF data structure.

D. ChronoSync

ChronoSync [6] attempts to improve efficiency of dataset
synchronization by utilizing naming conventions. In particular,
each ChronoSync node publishes data that contain application-
layer messages under its own unique name prefix. This prefix
also serves as an identifier for the node in the sync group
and is aligned with the topological prefix of the access
network for each node. The name of the data is constructed
by concatenating the node prefix with a sequence number
that starts from zero and gets incremented by one for each
new data published by the sync node. Although in theory the
sequence number could wrap around if represented by fixed-
size integers, in practice it is usually not a big issue: for a sync
node publishing data at the rate of 1000 packets per second,
it takes more than half a billion years for a 64-bit sequence
number to wrap around; even with 32-bit integer representation
it still takes about 50 days for the sequence number to wrap
around, which provides enough time for the sync group to
garbage-collect the previous data.

The sync node maintains a 2-level “flat” sync tree, as is
shown in Fig. 4, with each leaf containing the data prefix

2The authors are not aware of any real implementation of this new design.



5

Root Digest = D0

Prefix = /a
Seq# = 100

Node A

Prefix = /b
Seq# = 50

Node B

Prefix = /c
Seq# = 21

Node C

Prefix = /d
Seq# = 89

Node D

Node Digest 
= D1

Node Digest 
= D2

Node Digest 
= D3

Node Digest 
= D4

Fig. 4: Example of a sync tree in ChronoSync

and the latest sequence number of each producer in the sync
group. Each leaf is associated with the digest calculated over
node’s prefix and the latest sequence number. The root of
the tree maintains the digest of concatenation of leaf digests
canonically ordered by the corresponding prefix names. Since
the naming convention is to publish data with continuously
increasing sequence numbers (starting from zero), this sync
tree is essentially a condensed representation of the namespace
containing all the data ever published in the group, and the root
digest is a short summary of the dataset.

ChronoSync nodes maintain long-lived Sync Interests in
the network by transmitting a new Sync Interest immediately
when the previous one expires or gets satisfied. The long-lived
Interest stays in the pending Interest table of the forwarders
in the network so that any reply to the Sync Interest can be
returned to every node in the group as soon as it is generated.
The Sync Interest name starts with the multicast sync group
prefix and carries the current root digest of the sender’s local
sync tree. The Sync Interest serves two important purposes:
first, it advertises the sender’s digest in the group so that other
nodes can detect inconsistency in the sync state; second, it
solicits the next state changes generated on top of the state
identified by the digest carried in the Sync Interest.

In the steady state, all nodes generate identical state digests
and send out the same Sync Interest that is aggregated by the
NDN forwarders. When some node publishes new data and
increments its sequence number, instead of replying to the
long-lived Sync Interest with its new root digest as in CCNx
0.8 Sync, the node replies with the name of its newly published
data (i.e., the node prefix and the sequence number).3 This
Sync Reply is efficiently delivered to all the other nodes in
the group, following the multicast tree built by the pending
Sync Interest. After they receive the reply, the nodes update
their local sync tree, recompute the root digest, and then send
out Sync Interests carrying the new digest. An example of the
synchronization process in ChronoSync is shown in Fig. 5.

To allow efficient state reconciliation, each ChronoSync
node maintains a limited log of historical digests and the
corresponding dataset states. If some node is lagging behind
in the synchronization process and sends out a Sync Interest
with a digest that has been observed by other nodes, these
sync nodes can respond with all the data published in the
group since that digest is announced. Note that when multiple

3If multiple data packets are generated, the Sync Reply carries only the
largest sequence number of all new data.

Node A Node B Node C Node D

/a /b /c /d

Seq = 100 Seq = 50 Seq = 21 Seq = 89 Steady state

Sync Interest: D0 Sync Interest: D0 Sync Interest: D0 Sync Interest: D0

New data /a/101
Root Digest = D1

Sync Reply: /a/101

Steady state
Update

sync tree

Sync Interest: D1 Sync Interest: D1 Sync Interest: D1 Sync Interest: D1

Update
sync tree

Update
sync tree

Time Time

Fig. 5: Synchronization process in ChronoSync

sync nodes reply to the Sync Interest carrying a previous
digest (potentially with different sets of updates if they are
not synchronized), at most one of those relies will be received
by the sender of that Interest. Nevertheless, the reply helps
speed up the synchronization process of the Interest sender
who is trying to catch up with the rest of the group.

There are several cases where a node may receive Sync
Interests with unrecognized digests. In the first case, a node
may receive a Sync Interest with an updated digest before
receiving the Sync Reply that triggered the update. To handle
that situation, ChronoSync injects a random delay to process
the Sync Interest with unknown digest at a later time, expect-
ing to receive the corresponding Sync Reply while waiting.

In the second case, multiple Sync Replies can be generated
in response to the same Sync Interest, if multiple nodes publish
new data at the same time. However, because of NDN’s flow
balance property, nodes will receive no more than one reply
to the Sync Interest. As a result, nodes may receive different
data items, compute multiple different state digests, and start
announcing them in the sync group.

The third and a more complicated case arises if the network
is partitioned for a long period of time and then reconnected.
The sync nodes in different partitions have cumulated multiple
updates to the sync tree, leading to a sequence of digests that
are unrecognizable to the nodes in other partitions.

ChronoSync can handle simple cases when the nodes di-
verge by at most one Sync Reply by resending the previous
Sync Interest with exclude filters that contain the implicit
digests of the received Sync Replies. However, if multiple
changes have been applied to the sync state at some node, the
mechanism using exclude filters will not be able to retrieve
the diverging sync replies generated by every node (see II-E
for detail). In such cases, ChronoSync falls back to a recovery
mechanism: when a node observes an unknown digest, it will
send out a special Recovery Interest containing the unknown
digest; the nodes who recognize that digest will reply with
the complete information about its sync tree, rather than the
specific changes that lead to that digest; when the requesting
node gets the reply, it will merge the received sync tree into
its local sync tree by taking the higher sequence number from
both trees for each sync node.

To support more complex naming conventions with richer



6

embedded semantics (e.g., for trust management), application
can use ChronoSync together with “one level of indirection.”
In other words, application-defined data names (and the data
itself if the size is small) can be encapsulated in the data
packets managed by the sync layer. This can be realized either
directly or with the help of sync-managed actions that describe
objects added or removed from the application data collection,
such as updated files a distributed file system or messages in
a chat room.

E. RoundSync

The recognition of the ChronoSync problem in scenarios
with many simultaneous data generation led to development
of the RoundSync [7] protocol. Specifically, one of the causes
of the problem is the overloaded function of Sync Interests:
(1) to detect different states among the sync nodes and (2)
to retrieve the updates from other nodes. As a result, the
Sync Replies carrying the updates to the shared dataset will be
named after the previous Sync Interest name which contains
the digest of the corresponding sync state. If a node generates
Sync Replies on top of a diverged state (e.g., in the scenario
with partitioned sync group), nodes with different states will
not be able to derive the name for those Sync Replies and
therefore cannot send Interests to retrieve them. Merging the
diverged sync states will only create new set of sync states,
potentially contributing in further divergence of the states.
To re-synchronize in this case, ChronoSync must rely on a
recovery mechanism to receive the entire sync state.

To address this problem, RoundSync divides the synchro-
nization process into rounds, updates semantics of the Sync
Interest, and introduces the new type of Interest packet called
Data Interest. The RoundSync’s Sync Interest, augmented with
the round number information, serves only as a notification
mechanism (similar to iSync) to inform other sync nodes about
the state in the round. When the divergence is detected, the
nodes can request the data in the round using the predictably
named Data Interests, i.e., names of Data Interests do not
include state digest but only the round number. Therefore,
published data within a specific round can be retrieved even if
the states are not fully synchronized. The replies to the Data
Interest have the same functionality as the Sync Reply in the
original ChronoSync design, i.e., they carry the node’s prefix
and sequence number of the newly published data. In addition,
RoundSync mandates that a sync node can publish at most one
data packet in each round and must move to a new round when
it receives new data published by others in the current round.
This helps reduce the chances of state divergence caused by
simultaneous data production.

For example in Fig. 6, a sync node may start publishing
data at round 11 even though it is still trying to synchronize
with other nodes at round 10 or earlier. If multiple nodes
publish data in the same round simultaneously, they will detect
the inconsistency through Sync Interest and then send Data
Interests with exclude filters to retrieve those Data Interest
replies. Since there will be at most one reply from each node
in a single round, the exclude filter mechanism will allow the
nodes to eventually retrieve all updates.

Node A Node B Node C Node D

/a /b /c /d

Seq = 100 Seq = 50 Seq = 21 Seq = 89

Data Interest:
Round# = 10

New data /a/101
Round Digest = D0

Data Interest Reply:
/a/101 Update

sync state
Sync Interest: D0 Sync Interest: D0 Sync Interest: D0 Sync Interest: D0

Update
sync state

Update
sync state

Time Time

Round 10
Data Interest:
Round# = 10

Data Interest:
Round# = 10

Data Interest:
Round# = 10

Round 11
Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Fig. 6: Synchronization process in RoundSync

RoundSync maintains digest for each round in a rounds log
table. To allow nodes who missed the Sync Interests in earlier
rounds to detect and recover the missing data, RoundSync also
computes cumulative digests that covers the entire dataset as
observed in a round and is piggybacked in the Data Interest
replies of future rounds. Upon receiving a different cumulative
digest for some round that is long before the node’s current
round, the sync node sends out a Recovery Interest to fetch the
full sync state and the current round number S from the node
who generated that cumulative digest, instead of retrieving
missing data round-by-round (which may take a long time).
After receiving the reply, the node merges the received dataset
with its own, discards the rounds log entries for the rounds
before S and resumes normal RoundSync operation for the
rounds after S.

F. PSync

PSync [8] (a.k.a. PartialSync) was originally designed for
the consumers to synchronize a subset of a large data col-
lection with a single producer. The data packets published
by the producer are organized into data streams which are
identified by the unique stream prefixes. Like in iSync, PSync
also employs IBF to represent the namespace by storing the
hash of the names (called KeyID) in the fixed-length slot of
the IBF. However, PSync also adopts the naming convention
in ChronoSync and RoundSync that data packets from the
same stream are ordered by the continuous sequence numbers.
Therefore the IBF only needs to store the latest data name from
each stream. This further reduces the amount of information
stored by the IBF and allows the applications to choose a
smaller IBF size that can be transmitted more efficiently over
the network.

To support the synchronization of a subset of the producer’s
data (a.k.a., partial sync), PSync introduces the subscription
list to encode the prefixes of the data streams that the consumer
is interested in.4 The subscription list is a Bloom Filter (BF)

4PSync allows the consumers to specify their subscription only at the
granularity of data streams.



7

ProducerConsumer1 Consumer2

Publish: /S1, /S2 Subscribe: /S2Subscribe: /S1

New data:
/S1/100
/S2/57
IBF = IBF2

Local state:
/S1/98
IBF = IBF0

Local state:
/S2/56
IBF = IBF1

Sync Interest: IBF0

Reply: NewIBF = IBF2

NewData = {/S1/100}

Sync Interest: IBF1

Reply: NewIBF = IBF2NewData = {/S2/57}
Update state:

/S1/100
IBF = IBF2

Update state:
/S2/57
IBF = IBF2

Time Time

Fig. 7: Synchronization process in PSync

that stores the hashes of those stream prefixes. The size of
the Bloom Filter is determined by the total number of streams
a consumer may subscribe to and the false positive rate the
consumer is willing to accept. Special cases like empty and
full subscription may be encoded more efficiently with special
markers.

During the sync process, the consumer keeps a local copy
of the producer’s IBF which indicates the data it has received
so far. To sync up with the producer and retrieve new data,
the consumer maintains long-lived Sync Interest whose name
contains the local IBF copy and the consumer’s subscription
list. When the producer publishes new data, it first subtracts the
IBF in the pending Sync Interest from its new IBF, and extracts
the KeyIDs of the new data packets that have not been received
by the consumer yet. Then the producer checks whether the
stream prefixes of those new data packets are included in the
consumer’s subscription list (subject to certain false positive
rate). Finally the producer generates a Sync Reply containing
the original names of the new data packets in the subscribed
streams and also its latest IBF. Upon receiving the Sync Reply,
the consumer updates its local IBF copy with the received IBF,
and sends out Interests to fetch the new data. An example of
the synchronization process in PSync is shown in Fig. 7.

An important feature in the PSync design is that each
consumer maintains its own data consumption and subscription
status. The producer, on the other hand, does not maintain
per-consumer state, which significantly reduces the amount of
data stored by the producer. If multiple producers are serving
the same set of data streams, the consumers may send Sync
Interests via anycast to get replies from any producer that is
available online, assuming that these producers have run sync
protocols among themselves to sync up their dataset. However,
this stateless producer design introduces two additional costs:
first, the Sync Interest and Sync Reply need to carry the IBF
and the subscription list (BF) which will bloat the size of the
Interest name up to hundreds of bytes; second, the producer
needs to generate Sync Replies in real-time for each Sync

Interest since it does not remember the previous consumption
status of each consumer and cannot pre-generate the next Sync
Reply.

Although it was initially designed for producer-consumer
synchronization, PSync can support multi-producer distributed
dataset synchronization (like other sync protocols discussed
in this paper) where each sync node is both producer and
consumer at the same time. This is achieved by having every
sync node subscribe to all data streams published by every
other node. However, in this “full synchronization” mode each
node only needs to maintain a single IBF which represents the
state of the whole dataset, rather than keeping a separate IBF
for each node in the group. In addition, the Sync Interests need
to be forwarded via multicast to the entire group so that any
node who has produced new data can respond with a reply
that carries the updates.

G. Summary

From the previous discussion, we can see that a few
common design patterns have arisen in the key design as-
pects among the existing NDN sync protocols. ChronoSync,
RoundSync, and PSync have adopted the sequential data nam-
ing conventions, i.e., naming the data packets using sequence
numbers under a common name prefix for each producer or
data stream, to simplify the representation of the shared dataset
namespace. Having continuous and monotonically increasing
sequence numbers in the data name allows the cumulative data
collection generated by the same producer or in the same data
stream to be summarized by the highest sequence number. This
reduces the amount of information that needs to be encoded
in the sync state and also simplifies the protocol design since
the sync protocol needs to only focus on synchronizing the
latest sequence numbers rather than the whole namespace.

The existing sync protocols have used a variety of data
structures to represent the sync state. All of those data
structures provide lossless encoding of the data names (or
the hashes of the names) in the shared dataset. CCNx 0.8
Sync and CCNx 1.0 Sync enumerate the dataset namespace
in the hierarchical sync tree and the manifest, respectively. To
reconcile the set difference, the sync nodes simply compare
the content in the sync tree or the manifest and then retrieve
the missing data from the remote nodes. ChronoSync and
RoundSync also enumerate the dataset namespace by listing
the latest sequence numbers from all data producers in the
sync state. State reconciliation is achieved by comparing the
sequence number of each producer between the local and
remote sync states and taking the maximum as the latest
sequence number. iSync and PSync use IBF to compress the
dataset namespace and perform set reconciliation using IBF
subtractions. However, due to the limited IBF capacity, both
iSync and PSync have to provide means for controlling the
size of the set difference between different nodes.

The existing sync protocols typically use one of the two
communication models for propagating the information about
the new data published in the sync group. The first model
is to use multicast Interests to advertise the summary of the
sync state changes (e.g., digest of the updated sync state),



8

which serves as a notification to prompt other nodes in the
sync group to retrieve detailed information about the changes.
The second model is to have the sync nodes send “long-
lived” Interests to each other (typically using multicast) to
pre-establish the return path for the data packet that carries
the information about the sync state changes. The “long-lived”
Interests essentially become a “one-packet” subscription to the
sync state updates generated in the future.

It is often difficult to compare the efficiency of different
sync protocols because it usually depends on the application
scenarios and the implementation choices. Table II compares
the existing NDN sync protocols on a few important perfor-
mance metrics. One metrics is the data dissemination delay,
i.e., the number of round-trips necessary for propagating
new data to other nodes. In CCNx 0.8 Sync and iSync, the
synchronization process is triggered periodically based on an
internal sync timer. Once the process starts, the number of
round-trips required to retrieve all updates from a remote node
in CCNx 0.8 Sync depends on the depth of the sync tree,
while in iSync the process usually finishes within 3.5 RTT,
unless the number of changes exceed the capacity of the global
IBF in which case the nodes need to retrieve additional “local
IBFs”. CCNx 1.0 Sync triggers the synchronization process
when there is new data published in the dataset, and the data
dissemination delay depends on how the nodes retrieve the
segmented manifest (e.g., sequentially or pipelined).

ChronoSync and RoundSync achieve optimal synchroniza-
tion delay when there is no simultaneous data publishing.
If multiple nodes generate Sync Replies at the same time,
the protocols need additional round-trips to retrieve all Sync
Replies using Interests with exclude filters. Therefore the
worst-case RTT will be proportional to the number of si-
multaneous updates in the group, which is bounded by the
number of data publishing nodes in the group. PSync achieves
the data dissemination delay of 1.5 RTT because the Sync
Interests carry specific information about the state of the
consumer, which allows the producer to reply with specific
changes without spending additional round-trip to request
more information. Note that both ChronoSync and PSync
require maintaining long-lived Sync Interests in the network
so that the replies can be propagated to other nodes as soon
as possible. This leads to the overhead of keeping long-lived
soft state in the forwarders’ PIT (with one PIT entry per sync
group).

Another performance metrics is the packet size of the
sync protocol messages, which reflects the network bandwidth
requirement of the sync communication. Here we mainly focus
on the encoding size of the sync state (or state updates) carried
in the Interest and/or Data packets. For iSync and PSync,
the size of the IBF that summarizes the dataset namespace
depends on the size of the hash function output and the data
publishing rate of the applications. In a typical implementation
that uses 64-bit hash functions and 32-bit counter values, the
size of each slot in the IBF is 20 bytes. For an IBF with
capacity of 20 items (i.e., allowing at most 20 items to be
extracted successfully), the encoded size of the IBF [12] is
around 1.5 * 20 * 20 = 600 bytes. Once the size of the IBF
is chosen, all Interest and Data packets carrying the IBF will

have the same size even if the number of updates is lower
than the maximum capacity. Note that PSync usually requires
a smaller IBF than iSync because the sequential data naming
simplifies the namespace and effectively bounds the number of
changes by the number of data prefixes. This enables PSync
to carry the IBF directly in the Sync Interest. In iSync, the
number of changes within an Interest period depends on the
data publishing rate and is unbounded, therefore requiring a
larger IBF to accomodate bursty data publishing events.

In contrast, ChronoSync and RoundSync require only the
updates to be propagated in reply to the Sync Interests and
Data Interests, respectively. Those update data packets contain
the prefix and the latest sequence number from each producer
who has published new data. Assuming the average size
of the data name (i.e., prefix + sequence number) is 40
bytes, the maximum content size of the update is 40 * N,
where N is the number of producers in the sync group. In
practice, not all producers will be publishing at the same
time and the size of the update packets is typically smaller
than in the IBF-based approaches. The Sync Interests and
Data Interests in ChronoSync and RoundSync usually carry
the current state digest only. However, when simultaneous
data publishing happens, the nodes need to send additional
Interests with exclude filters that enumerate the implicit digests
of all the previously received replies. This may cause the size
of the Interest packets to grow linearly with the number of
simultaneous replies.

In CCNx 0.8 Sync, the size of the NodeFetch reply packets
is proportional to the number of children under the requested
node in the sync tree; also, the protocol requires multiple
NodeFetch packets to resolve all the differences. In CCNx 1.0
Sync, the size of the manifest is proportional to the number
of the included data names, representing either a complete
shared dataset or serving as (hierarchical) links to manifests
(or manifests of manifests) of sub-datasets.

III. OPEN ISSUES

In this section we discuss open research issues in distributed
data synchronization in NDN that have not been addressed by
the existing sync protocols. By inspecting the range of design
choices in those open areas, we hope to shed light on the
directions for future work.

A. Group Rendezvous

The group communication model in the sync protocols has
created challenges for the routing scalability in the NDN
network, because the sync protocol typically relies on Interest
multicast to deliver the state change notification to every node
in the group. Supporting Interest multicast via routing would
require the per-application multicast prefixes be announced by
all networks where the sync nodes reside, which is usually not
feasible for large networks hosting many sync groups. One so-
lution currently under our investigation is to utilize a multicast
overlay that contains a number of dedicated rendezvous points
in the network. Those rendezvous points are responsible for
collecting and delivering the Sync Interests via the overlay to
every sync node. Another solution to the scalable multicast



9

TABLE II: Comparison of existing NDN sync protocols on common performance metrics

CCNx 0.8 Sync iSync CCNx 1.0 Sync ChronoSync RoundSync PSync

Data
dissemination

delay

Interest period
+ tree walk

Interest period
+ 3.5 RTT (+

RTT to retrieve
local IBFs)

Depending on
how to retrieve

manifest
segments

Min is 0.5
RTT; can be

long with
simultaneous

publishing

Min is 1.5
RTT; can be

long with
simultaneous

publishing

1.5 RTT
(assuming a

single producer)

Interest
overhead Periodic Periodic One per update Long-lived

Interest Two per update Long-lived
Interest

Factors
affecting

Interest size
Node hash IBF digest Manifest digest State digest (+

exclude filter)
Round digest (+
exclude filter)

IBF +
subscription list

Factors
affecting

Data content
size

Number of
children under
the requested

node

IBF size
(depending on
the number of

new data)

Size of the
entire dataset

Number of
names with
new seq#

Number of
names with new
seq# in a round

IBF size +
number of
names with
new seq#

problem is to establish some communication topology in the
sync group, e.g., using Distributed Hash Table (DHT) [9], so
that the Sync Interests can be propagated via that topology in
a peer-to-peer fashion. The third solution is to leverage viral
propagation (also called epidemic dissemination) [10], where
each node disseminate new data via NDN sync to its one-
hop neighbors (e.g., nodes within the coverage of the wireless
signal) and the neighbors further propagate the data until all
nodes in the network have received it. The viral propagation
model is suitable for disruptive and ad hoc environments where
it is infeasible to establish stable communication structure or
deploy infrastructural support for multicast.

B. Data management

A sync node usually stores two types of information locally:
the data generated by the applications, and the internal state
(or metadata) created by the protocol itself. There are several
practical issues related to the management of the dataset
and protocol state that may have significant impact on the
operations of the applications running on top of sync.

1) Data sharing: To improve the data availability, every
sync node should be able to serve the entire dataset, including
the data published by other nodes, to the consumers. For
example, in a group chat application like ChronoChat [13],
a user who join the chat room late may want to retrieve some
of the earlier chat messages published by other users, even if
those users have long left the chat room. In that scenario it
is beneficial if the current users in the chat room could store
and serve the data published by the past users.

The challenge here is that the application data generated
by different peers can be named under the unicast prefixes
of different nodes.5 To fetch the shared data from non-
authoritative peers, a sync node can utilize the Forwarding
Hint [14] mechanism. When a node wants to retrieve some
historical data published by a node that is no longer reachable,
it may issue Interests with the forwarding hint field carrying
one or more unicast network prefixes of the current group
members. The NDN forwarders will use the forwarding hint

5Having all sync nodes publish data in a shared application namespace
(identified by a common multicast application prefix) would require support
for Interest anycast in the network.

to direct the Interest toward one of the existing nodes in the
group.

2) Data archiving: Long-running applications often accu-
mulate a large amount of data. When a new sync node joins the
application, it may take a long time to bootstrap the node by
fetching the data objects in the shared dataset piece-by-piece.
To improve the efficiency of application data transfer, it may
be needed to consolidate the data into a single archive file.
For example, if the application publishes “actions” through
the sync protocol to modify its data (e.g., editing files in a
shared folder), the archive file may contain only the latest
version of the application data that reflects all the changes
made by the users. This mechanism shares a similar spirit
with the compaction process in Log-Structured Merge (LSM)
databases [15] that coalesces multiple disjoint DB tables into a
larger sorted table in order to speed up the lookup operations.

The archive file could be published under the application
namespace and segmented into multiple large data packets
that can fit into the Maximum Transmission Unit (MTU) of
the underlying network. If necessary, the archive data may
be stored permanently in dedicated repos without incurring
additional storage cost for the sync nodes. Consumers who are
interested in the historical data may send pipelined Interests
(with the Forwarding Hint as described earlier) to fetch the
entire archive file from the sync nodes or the application repos.

3) Data sharding: As the application continues to generate
new data, the size of the whole dataset may exceed the
storage size of each individual node. If the application requires
permanent storage of all data ever published by the users, the
shared dataset needs to be sharded across the sync nodes for
storage scalability. One way to achieve that is to build a data
sharding service on top of the sync protocol using consistent
hashing [16] or Distributed Hash Table (DHT) techniques to
divide the data namespace among the sync nodes. When a sync
node receives notification of a new data packet, it consults
the data sharding service to decide whether it is responsible
for storing that data. If the data falls into its local shard,
the node will subsequently retrieve the data and store a local
copy; otherwise, it simply updates the local sync state without
fetching the data. Note that the sync nodes are still able to
sync up with each other even if each of them maintains only
a subset of the shared data because the sync state is solely



10

based on the namespace of the dataset.6

C. Group membership management

Having a consistent view of the group membership among
the nodes in the distributed system is a prerequisite for a lot of
useful functions such as system snapshot, garbage collection,
access control, and strong consistency guarantee. For example,
to generate a group-wide snapshot of the published data, the
sync protocol needs to collect the latest data publishing state
from every node in the group; to safely garbage-collect some
historical data from the shared dataset, the sync protocol needs
to make sure that all nodes in the group have received that data.

Existing sync protocols do not explicitly manage the mem-
bership information for the sync group. CCNx 0.8 Sync and
iSync do not have the concept of “sync group” at all: the
sync state (sync tree and IBF, respectively) does not reflect the
identities of the repos that are maintaining the shared dataset.
ChronoSync maintains the list of current participants in the
sync group via the sync tree, but does not require the sync
nodes to have a consistent view of the group while synchroniz-
ing with each other. If a sync node receives a new data object
produced by a node that is not in its current sync tree, the
receiving node will extend its sync tree by adding the producer
node into it. Consequently, existing NDN applications running
on top of the sync protocols (e.g., ChronoChat) currently
have to implement custom group membership management
solutions at the application layer.

D. Consistency and data ordering

Consistency in distributed systems has been extensively
studied for decades. Strong consistency models such as lin-
earizability [17] enforce a global total ordering of events
observed by every node in the system. Weaker consistency
models relax on the ordering requirements in different ways.
In particular, a system with eventual consistency is allowed
to diverge and expose inconsistent states during the system
execution, as long as it eventually resolves the inconsistency.

We must keep in mind two important factors in all con-
sistency discussions: a) the definition of consistency varies
among different applications, and b) there exists a tradeoff be-
tween consistency and availability. The primary goal of NDN
sync is to facilitate multi-party data-centric communication in
a distributed system, on top of which the applications can
implement different consistency models as application-layer
services to meet their semantic requirements. Therefore all ex-
isting NDN sync protocols support only the weak consistency
model that favors availability over consistency: they allow
sync nodes to publish new data at any time and propagate
the data to other nodes asynchronously. In the absence of new
data generation and permanent network failure, all sync nodes
will eventually receive all data packets published by others.
Applications with strong consistency requirements can always
establish a consistent ordering on the data generated in the
sync group using various algorithms and protocols developed
in the distributed systems area.

6Note that this requires the implementation of the sync protocol to decouple
namespace synchronization from data fetching.

IV. CONCLUSION

This paper presents an overview of the distributed dataset
synchronization problem in NDN and a survey on the existing
sync protocols. By summarizing and comparing their protocol
design, we articulate the different design choices made in
the existing sync protocols together with their advantages and
limitations. We also discusses open issues that have not been
fully addressed in the previous works. By writing this survey
paper, we hope that new sync protocols developed in the future
can benefit from the past experience and address the open
problems with innovative ideas.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1345318 and CNS-1629922.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings
of the 5th ACM International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2009, pp. 1–12.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, pp. 66–73, Jul. 2014.

[3] ProjectCCNx, “CCNx Synchronization Protocol,” CCNx 0.8.2 docu-
mentation, 2012. [Online]. Available: https://github.com/ProjectCCNx/
ccnx/blob/master/doc/technical/SynchronizationProtocol.txt

[4] W. Fu, H. Ben Abraham, and P. Crowley, “Synchronizing Namespaces
with Invertible Bloom Filters,” in Proceedings of the ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems
(ANCS), May 2015, pp. 123–134.

[5] M. Mosko, “CCNx 1.0 Collection Synchronization,” Apr 2014.
[Online]. Available: http://www.ccnx.org/pubs/hhg/4.7%20CCNx%201.
0%20Collection%20Synchronization.pdf

[6] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proceedings of
the 21st IEEE International Conference on Network Protocols (ICNP),
Oct 2013, pp. 1–10.

[7] P. de-las Heras-Quirós, E. M. Castro, W. Shang, Y. Yu, S. Mastorakis,
A. Afanasyev, and L. Zhang, “The Design of RoundSync Protocol,”
NDN Project, Technical Report NDN-0048, April 2017.

[8] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data
Synchronization for Named Data Networking,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), May
2017.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proceedings of the 2001 SIGCOMM Conference, 2001, pp.
149–160.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing (PODC),
1987, pp. 1–12.

[11] D. Kulinski and J. Burke, “NDN Video: Live and Prerecorded Streaming
over NDN,” NDN Project, Technical Report NDN-0007, September
2012.

[12] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the Difference?: Efficient Set Reconciliation Without Prior Context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, 2011, pp. 218–
229.

[13] Z. Zhu, C. Bian, A. Afanasyev, V. Jacobson, and L. Zhang, “Chronos:
Serverless Multi-User Chat Over NDN,” NDN Project, Technical Report
NDN-0008, October 2012.

[14] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure Namespace Mapping to Scale NDN Forwarding,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.



11

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2006, pp. 205–218.

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching

Protocols for Relieving Hot Spots on the World Wide Web,” in Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), 1997, pp. 654–663.

[17] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, Jul. 1990.


