
Achieving Resilient Data Availability in Wireless
Sensor Networks

Xin Xu, Haitao Zhang, Tianxiang Li and Lixia Zhang
Computer Science Department, University of California, Los Angeles

Email: xinxu129, haitao, tianxiang, lixia@cs.ucla.edu

Abstract—Currently, most Wireless Sensor Networks (WSNs)
utilize sleeping mechanisms to conserve energy, which introduces
the problem of data availability. To address this problem, we de-
signed DSSN, a Dataset Synchronization protocol for WSN with
Sleeping sensors over Named Data Networking (NDN). DSSN
divides sensors into groups, each has a shared dataset; through
dataset synchronization within each group, DSSN ensures that
the group’s latest dataset is always accessible from its active
sensors. DSSN utilizes State Vector to enable reliable dataset
synchronization, and utilizes NDN’s Interest aggregation and Data
caching to optimize energy consumption. We evaluated DSSN
through extensive simulation experimentation, and our results
show that DSSN ensures data availability close to 100% under
various network conditions with negligible overhead.

I. INTRODUCTION

Energy consumption is one of the most important issues
in wireless sensor networks (WSNs) with battery-powered
sensors. WSNs usually adopt sleeping mechanisms to conserve
energy and extend network lifetime. Therefore each sensor can
be in one of the two states at any time: active or sleep. In active
state, a sensor communicates with other sensors to make its
data available; in sleeping state, a sensor turns off its radio
and stops communication, making its data unavailable.

One way to solve this problem is to let a sensor replicate
its Data with other active sensors before it goes to sleep.
Named Data Networking (NDN) [1], [2], a proposed Internet
architecture, can greatly facilitate data replication in WSN.
NDN replaces TCP/IP’s host-oriented communication model
with a data-centric communication model, enabling retrieval of
named Data regardless of its location. Motivated by NDN’s
attractive feature, NDN+CoCa [3] developed a distributed
cooperative Data caching solution over NDN to improve WSN
data availability. However, [3] performs best-effort caching
rather than reliable data replication, thus it ensures data
availability only to certain extent.

In this paper, we present DSSN, a dataset synchronization
protocol for WSN with sleeping sensors over NDN, which
enables reliable data replication in WSN. The design of DSSN
is inspired by VectorSync [4], where each producer names
its Data by a unique prefix and a monotonically increasing
sequence number; such naming convention enables the use of
a sequence number vector to represent one’s knowledge about
the shared dataset in a compact way. However different from
VectorSync which assumes that all nodes would be online,
DSSN must operate reliably even when not all the sensors are
active at any given time. Therefore, DSSN removes the group

management mechanism of VectorSync, which requires con-
sensus from all the group members; instead DSSN performs
dataset state synchronization by explicitly enumerating sensor
names together with their data sequence numbers, which we
call State Vector. Compared to Summary Vector in [5], which
has an unique identifier associated with each message, DSSN
State Vector uses a sensor ID plus data sequence number pair
to represent all the data produced by one sensor. DSSN also
makes use of NDN’s Interest aggregation and Data caching
to reduce packet transmissions, and adopts mechanisms for
collision avoidance, to lower its own energy consumption in
a wireless environment.

The rest of this paper is organized as follows. Section II
gives an overview of NDN and gives assumptions we make
in WSN. Section III describes the DSSN protocol design in
detail. Section IV presents the simulation results and analysis
on the performance of DSSN. Section V discusses our future
work. Section VI concludes the paper.

II. BACKGROUND

This section introduces the NDN architecture, a summary
of distributed dataset synchronization protocols in NDN, and
a WSN example used in this paper.

A. Named Data Networking

Named Data Networking (NDN) architecture utilizes the
fetching model to communicate. Consumers request Data by
sending an Interest which carries the name, or the prefix, of the
desired Data. The Data naming is unique, hierarchical struc-
tured, and semantically meaningful. An Interest is forwarded
based on names. NDN Forwarding Daemon (NFD) [6] running
on every NDN node implements NDN’s forwarding logic.
When forwarding an Interest, NFD first check its Content
Store (CS) for previously cached Data matching the Interest
name. If a match is found, NFD returns the cached Data and
stops forwarding process. If no match is found, NFD looks up
its Pending Interest Table (PIT), which lists all the Interests
received recently but not yet satisfied, and the interfaces where
it was received from. If a matching Interest is found in the
PIT, NFD aggregates the Interests. Otherwise NFD adds the
newly received Interest in the PIT. Then it looks up the
forwarding table (FIB) containing next hop information and
applies a forwarding strategy to forward the Interest. The Data
is returned to the consumer by following reversely along the

path used to forward the Interest. The returned Data is also
cached by the routers in its CS along the transmission path.

B. Distributed Dataset Synchronization in NDN

Dataset sync is an important concept in the NDN architec-
ture. [7] summarizes three key design aspects of existing sync
protocols, which is the basis for the DSSN protocol design.

1) Group Communication Namespace: A shared group
communication namespace is required for members to ex-
change messages for data synchronization. Messages sent to
this namespace should be received by all other members in
the same group, in the absence of packet loss.

2) Dataset State Representation: Sync is conducted in
group. Each member in a sync group keeps a local set of
dataset shared with other members. Each member also keeps
a local dataset state, which represents its local knowledge of
the shared dataset namespace, i.e., what Data is in the shared
dataset. Thus the node can determine the previously unaware
data by comparing dataset states with others.

3) Dataset Synchronization Mechanism: Each member in
the sync group can generate new Data in its shared dataset
at any given time, causing a difference in the dataset state
among group members. A sync protocol needs to notify
other members of the dataset state update and provide a
mechanism for them to synchronize their dataset states to
achieve an overall agreed dataset state. After dataset state
synchronization, a member could then fetch some or all of
the dataset update based on its own desire.

C. A WSN Example

To facilitate explanations, we use an example scenario
throughout this paper. Assuming in each room of UCLA
Boelter Hall, there are a number of wireless temperature
sensors powered by capacity-limited batteries. To conserve
energy, sensors switch between active modes and sleeping
modes by applying sleeping strategies. We also assume that
all sensors in the same room and adjacent rooms can directly
communicate with each other via WiFi channel, and there is no
sensor failure problem. Figure 1 shows details of the example.

Boelter Hall

Room 4809 Room 4806

Room 4802 Room 4804

Sink Node

Fig. 1. Boelter Hall Example. Due to space limitation, it only shows 4 rooms
and 5 sensors in room 4809. The sensors in Room 4809 can directly talk to
all sensors in Room 4809, 4806 and 4802. Sensors generate temperature data
every 1 - 8 seconds. There is a sink node which is responsible for collecting
sensing data from all sensors in the building every 5 minutes. Data can be
transmitted from sensors to the sink node hop by hop.

III. DSSN DESIGN

In this section, we design DSSN for the example to maintain
availability of all temperature data at any time, including those
generated by sensors in sleeping states. We first generally il-
lustrate the DSSN synchronization process, and then elaborate
DSSN’s key features for optimization in WSN scenarios.

A. Sensor Grouping

In the example, we split sensors into groups based on their
room numbers, for example, sensors in 4809 are in the same
group. For two considerations, DSSN only realizes dataset
synchronization inside groups, but not in the entire WSN.
First, it largely reduces the amount of data a sensor needs
to replicate, thus lowering energy consumption by decreasing
packet transmissions. Second, per the assumption, sensors in
the same group can directly communicate with each other,
thus DSSN design does not need to consider network partition
problem, or sensors forward others’ DSSN packets.

B. Naming and Security

Figure 2 shows group, sensor, and data naming in the
example, note that it only shows room 4809 and its 5 sen-
sors. NDN adopts a hierarchical structured and semantically
meaningful naming convention. Boelter Hall is named “/edu
/ucla/boelter”, reflecting its affiliation. To uniquely identify
each group and ease intra-group communication, each group
is named “building name + room number”, for example,
room/group 4809 is named “/edu/ucla/bolter/4809”. Same
as VectorSync, each sensor names its Data with its unique
name and a monotonically increasing sequence number, i.e.,
“sensor name + sequence number”. To reflect group affiliation
and make name unique, each sensor is manually assigned a
unique ID (e.g. A, B, C, D, E), and named “group name
+ sensor ID”. For example, sensor A is named “/edu/ucla
/boelter/4809/A”, and the latest Data generated by it is “/edu
/ucla/boelter/4809/A/128”.

Our design model utilizes standard NDN security features.
All Data packets are signed by sensors at their generation
time. All sensors and the sink node have trust relationships
established with each other.

Boelter Hall: /edu/ucla/boelter
Sink Node

Room 4809:
/edu/ucla/boelter/4809

/edu/ucla/boelter/4809/A

/edu/ucla/boelter/4809/C

/edu/ucla/boelter/4809/E

/edu/ucla/boelter/4809/D

/edu/ucla/boelter/4809/B

Data Packets

/edu/ucla/boelter/4809/A/1
…

 /edu/ucla/boelter/4809/A/128

/edu/ucla/boelter/4809/D/1
…

 /edu/ucla/boelter/4809/D/129

/edu/ucla/boelter/4809/B/1
…

 /edu/ucla/boelter/4809/B/127

/edu/ucla/boelter/4809/E/1
…

 /edu/ucla/boelter/4809/E/127

Fig. 2. Group, Sensor, and Data Naming in Boelter Hall Example

C. Time to Sync Data

In theory, any active sensor could request for dataset
synchronization at any time. However, to minimize packet
transmissions and lower energy consumption, an active sensor

should do so only before it goes to sleep. First, this guarantees
that there is no Data stored only in sleeping sensors. Second,
as the union of datasets stored on all active sensors covers the
entire shared dataset, i.e., data availability is 100%, there is
no synchronization needed at other time points.

D. Dataset Synchronization

This section illustrates DSSN from three key design aspects
mentioned in Section II-B, and takes sensor sleeping into
account. We also show an dataset synchronization example.

1) Group Communication Namespace: In the example,
each group has already got a communication namespace “/edu
/ucla/boelter/<room number>”. To ease group communica-
tion, every sensor sends and receives Interests and Data under
its group namespace through one-hop multicast, so other
sensors in the same group can receive all its packets and it
can receive the packets of all the other sensors, in the absence
of packet loss. The packet is sent via multicast face, layer 2
send frames using broadcast address, layer 3 multicasts using
group name to do packet filtering.

2) Dataset State Representation: Since the sequence num-
ber of each sensor’s Data increments monotonically, we could
represent a sensor’s knowledge about its group’s dataset using
a State Vector. A State Vector is a vector of [sensor ID :
sequence number] pairs, where sensor ID represents a sensor
in the group, and sequence number is the latest sequence
number the State Vector owner knows of Data generated
by that sensor. The [sensor ID : sequence number] pair
allows the State Vector to explicitly list group members and
distinguish each member in the list, thus avoiding the need to
have a separate group membership management mechanism
as required in VectorSync [4]. Note that, a sensor has the
knowledge about a dataset, i.e., a State Vector, does not mean
it has fetched all Data packets in the dataset, whether and
when to fetch a specific Data packet is a separate problem.
Figure 3 shows an example of the State Vector [A:128, B: 127,
D: 129, E: 127], which is owned by sensor A in room 4809.

/edu/ucla/boelter/4809/A/1

A: 128 B: 127

[A: 128, B: 127, D: 129, E: 127]State
Vector

Shared
Dataset /edu/ucla/boelter/4809/A/128

……
/edu/ucla/boelter/4809/B/127

/edu/ucla/boelter/4809/B/1
……

/edu/ucla/boelter/4809/D/1

/edu/ucla/boelter/4809/D/129

/edu/ucla/boelter/4809/D/1

/edu/ucla/boelter/4809/D/127
…… ……

D: 129 E: 127

Fig. 3. Sensor A’s State Vector. Sensor A has the knowledge about Data
of B, D, E and itself. The latest sequence number sensor A knows of Data
published by itself is 128, and 127 for B, 129 for D, 127 for E.

3) Dataset Synchronization Mechanism: A sensor re-
questing to start the synchronization process is called a
sync-requester, other active sensors in the same group
are sync-responders. When knowledge about the group’s
dataset is not synced up among all sensors in the group,
different sensors may have different State Vectors. Moti-
vated by this, the dataset synchronization consists of two
steps. First, the sync-requester sends a SYNC Interest,

which is named “/[group-name]/sync/[sync-requester-id]
/[encoded-sync-requester-state-vector]”. The last com-
ponent is used to announce the sensor’s latest State Vector, so
that other active sensors in the group can learn the new Data
by deducting its own State Vectors with the sync-requester’s,
and update its State Vectors by merging the two.1 See the
following example for how to perform deducting and merging.
Second, each sync-responders constructs pending Interest list
for new Data and sends them to fetch Data.

4) Dataset Replication Success Notification: As discussed
in section III-C, a sync-requester only starts the dataset
synchronization process before going to sleep. A sync-
requester can only go to sleep after it confirms that its dataset
has been replicated successfully. This is achieved when a
sync-responder, which has fetched all the missing Data from
the sync-requester, sends SYNCACK Interest “/[group-name]
/syncACK/[sync-requester-id]/[encoded-sync-requester-

state-vector]/[sync-responder-id]”to the sync-requester,
and the sync-requester receives the SYNCACK Interest.

A sync-requester can go to sleep after receiving the first
SYNCACK, ensuring that one sync-responder has fetched all
its Data, or go to sleep later, ensuring more than one sync-
responders have fetched all its Data. Those different choices
do not affect data availability, because each active sensor does
not necessarily contain all Data published by the group; as
long as the union of active sensors’ local dataset covers Data
of the entire group, including Data generated by sleeping sen-
sors, the sink node can always retrieve all Data successfully2.
Based on when, or say, after how many SYNCACK Interests
are received, the sync-requester goes to sleep, DSSN could
achieve different replication levels: replicate its Data on one
or more active sensors. More replications will bring higher
data reliability, but at the same time increase average data
replication time. The tradeoff between the two is discussed
in Section IV. Figure 4 illustrates the dataset synchronization
process.

E. Handling Packet Loss

Packet loss happens frequently in WSN. In our scenario, it
is mainly caused by collision3 and intermittent connectivity.

1) Collision Avoidance: We make use of two types of
timers, delay timer (DT for short) and waiting timer (WT for
short), aiming to maintain only one Interest-Data exchange
round at any given time. DT is a random timer used to delay
packet transmission in order to reduce collision rate. WT is
set for the sensor to wait for replied Data before sending
consecutive messages and retransmitting the same Interest.

First, each sensor has a DT for each Interest or Data to be
sent out; if the DT times out, it sends out the Interest or Data.
Second, after sending out an Interest, a sensor sets a WT for
receiving the corresponding Data; if a sensor’s WT times out,
which means either the Interest or the Data was lost, it sets a

1Per the assumptions, all sync-responders can receive the SYNC Interest.
2Assume network connectivity can be guaranteed.
3Since all packets are transmitted through multicast channel, lower layers

cannot handle collision perfectly.

Active

Sleeping

Sleeping

Sync-requestor

Active

State Vector = [A: 127, B: 127, C: 129, D: 127, E: 128]

2. A receives SYNC Interest. A’s pending Interest list:

 Updates State Vector = [A: 128, B: 128, D: 130, E: 128].

D-130

5. A receives ‘B-128’ data. Remove from pending Interest list.

B-128

B-128

1. Sync Interest:

/edu/ucla/boelter/4809/sync/B

/[encoded-B-state-vector]

4. D
ata:

/edu/ucla
/boelter/4809/B/128A

D

E

B

C

3. Send Interest:/edu/ucla/boelter/4809/B/128

3. Send Interest:

/edu/ucla/boelter/4809/B/128

State Vector =
[A: 128, B: 127, D: 129, E: 127]

2. C receives SYNC Interest. C’s pending Interest list:

 Updates State Vector = [A: 127, B: 128, C: 129, D: 130, E: 128].

5. C receives ‘B-128’ data. Remove from pending Interest list.

State Vector =
[A: 127, B: 128, D: 130, E: 128]

E-128

D-130 E-128

D-130D-128 D-129B-128

B-128
D-128 D-129 D-130

Fig. 4. Data Synchronization Process. There are 5 sensors in room 4809.
D and E are sleeping, A, B, and C are active. B is the sync-requester, A
and C are sync-responders. Their State Vectors are shown in the figure. B
first sends SYNC Interest named “/edu/ucla/boelter/4809/sync/B/[encoded-B-
state-vector]”. Upon receiving B’s SYNC Interest, A and C generate pending
Interest lists representing the missing Data needed to be fetched and then
update their State Vectors. Next A and C start to send the Interest for ‘B-128’.
After they receive data sent back from B, they remove Interest for ‘B-128’
from pending Interest lists and start to fetch the next missing Data. When
either A (or C)’s pending Interest list is empty, it sends a SYNCACK Interest:
“/edu/ucla/boelter/4809/syncACK/B/[encoded-B-state-vector]/A”, to inform B
that its Data has been synced up successfully. Then B goes to sleep.

DT for its own next packet (either Interest retrasmission, see
Section III-E2, or a new packet) to be sent out.

Before a sensor’s DT or WT times out, if it receives an
Interest or a Data, it should act accordingly, as shown in Figure
5. (1) If the sensor receives an Interest from other sensors
before its DT or WT times out, which means another sensor
initialized a new Interest-Data exchange round, it cancels the
current DT or WT. If the sensor has the Data requested by the
Interest, it sets a new DT for sending out the requested Data.
If the sensor does not have the Data requested by the Interest,
it adds the Interest in its PIT, and sets a WT for receiving the
corresponding Data. (By doing this, sensors interested in the
same Data avoids sending the same Interest to fetch the Data.
We call this Interest Suppression). (2) If the sensor receives
a Data from other sensors before its DT or WT times out,
which means another Interest-Data exchange round has just
finished, it cancels its DT or WT, and sets a new DT for the
next Interest, entering the next Interest-Data exchange round.

Delay Timer (DT) Wait Timer (WT)

(1) Cancel Current DT or WT
(2) Check if it has the Data requested by Interest?
 Yes: set a new DT for sending out the requested Data
 No: add Interest in PIT, set a WT for receiving the corresponding Data
(1) Cancel Current DT or WT
(2) Sets a new DT for the next Interest, entering the Interest-Data
exchange round.

Interest

Data

Before
TimeoutPacket

Received

Fig. 5. Handling Different Messages before Timer Timeout

2) Recovering from Packet Loss: Collision avoidance
mechanisms reduces the probability of collision but not elim-
inates it; meanwhile, there are other factors leading to packet
loss like intermittent connectivity, which may be the result of
obstacles located between two sensors, and radio interference

from other electronic devices such as microwave oven.
DSSN utilizes Interest retransmission mechanism to resolve

this problem. NDN adopts the communication model of fetch-
ing Data by names; it is the consumers’ responsibility to
ensure that they have received the requested Data packets
successfully. Therefore, in DSSN design, if a sensor doesn’t
receive the Data it requested for, it needs to retransmit the
corresponding Interest.

IV. PERFORMANCE EVALUATION

This section uses a prototype implementation to evaluate
the performance of DSSN.

A. Implementation and Simulations

The prototype is implemented on ndnSIM (version 2.3)
[8]. To implement collision prevention and retransmission
mechanisms, we changed NFD packet processing logic.

DSSN is tested with a single sensor group, where the num-
ber of sensors ranges from 5 to 15. All sensors communicate
with each other directly using IEEE 802.15.4 2.4GHz radio
transceivers. Each active sensor publishes Data periodically,
between 1s to 8s. The average Data packet size is 570 bytes
and the average Interest packet is 274 bytes. To guarantee
that sensors generate enough Data packets and have enough
dataset synchronization rounds, each single simulation lasts
20 minutes. To simulate packet loss, we configure sensors to
randomly drop received packets at a pre-configured error rate.

A simple sleeping strategy is adopted. Every 4 seconds,
a sensor wakes up and another sensor goes to sleep; the
number of active sensors is either 4 (3 sync-responders and
1 sync-requester) or 3 (if the sync-requester goes to sleep).
A sync-requester goes to sleep when it receives the number
of SYCACK Interest it needs, or when it is time for another
sensor to wake up. To maintain balanced per-sensor accumu-
lative sleeping time, sensors take turns to wake up and go to
sleep, periodically, according to pre-defined orders. With this
sleeping strategy, each time a sensor wakes up, it works for
12∼16s (12s for normal working, the reset for replicating data
before going to sleep), then goes back to sleep again.

B. Evaluations

1) Data Availability and Data Replication Time Overhead:
We define data availability (DA) to be the ratio of the number
of Data packets available in active sensors to the total number
of Data packets published by the group; data replication time
(DRT) to be the time a sensor spends on replicating its data
before going to sleep, or say, the time between a sensor sends
the first SYNC Interest and it receives a certain number of
SYNCACK Interests and then goes to sleep; data replication
time overhead (DRTO) to be the ratio of a sensor’s DRT to
its total working time. We explore how DA and DRTO are
affected by packet loss rate, group size, and DT threshold4.

Figure 6 shows the cumulative distribution function (CDF)
of DRT under different packet loss rates. The red lines

4DT threshold: DT is determined by a random timed-out number between
0ms to threshold. WT is always set to DT threshold + 3.

represent DRT when sync-requesters go to sleep after receiving
the first SYNCACK, and the green lines represent DRT when
sync-requesters go to sleep after receiving the last SYNCACK.
They show that, DRT (thus DRTO, as DRTO = DRT / 12 ∼ 16)
after receiving the last SYNCACK is approximately 5 times
of that of after receiving the first SYNCACK. As DRTO is
around 1.28% and 6.2% after receiving the first and the last
SYNACK respectively, DA is close to 100% in both situations,
and there is no sensor failure (per our assumption), in order
to lower DRTO by not sacrificing DA (thus saving more
energy), sync-requesters should go to sleep after receiving the
first SYNCACK. Therefore, in following experiments, sync-
requesters go to sleep after receiving the first SYNCACK.

(a) 0% Packet Loss (b) 1% Packet Loss

(c) 5% Packet Loss (d) 10% Packet Loss

Fig. 6. SYNCACK Delay under Different Packet Loss Rates (group size =
10, DT threshold = 50ms, WT = 53ms)

Figure 7 shows DA under different packet loss rates. Even
if packet loss rate is 10%, DSSN still achieves nearly 100%
DA, meaning that DSSN can handle packet loss well.

Packet Loss 0% 1% 5% 10%
Data Availability 100% 100% 99.9627% 99.9213%

Fig. 7. Data Availability under Packet Loss Rates (group size = 10, DT
threshold = 50ms, WT = 53ms, sync-requesters go to sleep after receiving
the first SYNCACK)

With packet loss = 0%, DT threshold = 50ms, WT =
53ms, and sync-requesters go to sleep after receiving the first
SYNCACK, DA and DRTO are calculated for group size
ranging from 5 to 15. Results show that DA remains around
99.94% to 100% for different group sizes. DRTO keeps almost
unchanged at 1.28%, because in the sleeping strategy, if a
sync-responder is not the newly wake-up sensor, the size of its
pending Interest list is small and not influenced much by group
size, thus it can retrieve all missing data within a relatively
stable time period, leading to a stable and small DRTO.

Figure 8 shows DA and DRTO under different DT thresh-
olds. According to Figure 8(a), when DT threshold is smaller
than 10ms, DA cannot reach 100%, because packet colli-
sion happens a lot, replication of a Data packet will fail if

maximum retransmission time is reached; when DT threshold
is larger than 10ms and smaller than 300ms, DA is nearly
100% as when DT threshold is larger, collision possibility
is lower; however, when DT threshold continues to increase,
DA decreases again, since average Interest/Data exchange
round becomes longer, sync-responders can not retrieve all
missing data before the sync-requester go to sleep (caused
by a new sensor wakes up). Figure 8(b) shows that DRTO
increases, starting from lower than 1%, with the DT threshold
and finally approaches 25% (25% is the limit of DRTO; if a
sync-requester goes to sleep when a new sensor wakes up, then
DRTO = 4 / (4 + 4 * 3) = 25%). Based on those analysis, to
guarantee DA (close to 100%) while have small DRTO (lower
than 3.5%), DT threshold should be 10 ∼ 100ms.

(a) Data Availability (b) Data Replication Time Overhead

Fig. 8. DT Threshold’s Influence (group size = 10, WT = DT threshold +
3ms, sync-requesters go to sleep after receiving the first SYNCACK)

Last, we explored the trade-off between DA and DRTO. To
this end, we set a Sync Timer (ST) for each sync-requester:
it requests to sync data, and goes to sleep after its ST times
out instead of receiving SYNCACKs. Figure 9 shows when
ST’s value increases from 50ms to 450ms (DRTO increases
by 800%, from 0.415% to 3.61%), DA raises by approximately
3.5%. Therefore, if 100% DA is not required, we can lower
energy consumption by not sacrificing much DA.

2) Collision Prevention and Interest Suppression: With
group size = 10, packet loss = 0%, and sync-requesters go
to sleep after receiving the first SYNCACK, we evaluate
our collision prevention and Interest suppression mechanisms.
To evaluate the performance of DSSN’s collision prevention
mechanisms, we calculated the retry rate - the ratio of re-
transmissions to the total packet transmissions. We found that
as the DT threshold increases from 3ms to 60ms, the retry
rate decreases from 30.5% to 2.17%. This shows that a proper
DT threshold can greatly reduce packet collision. To evaluate
DSSN’s Interest suppression mechanisms, we calculated the
suppression rate - the ratio of the number of suppressed
Interests to the total of sent-out Interests - with DT threshold =
50ms and WT = 53 ms. Results show that Interest suppression
rate is 24.38%, indicating that DSSN saves many redundant
and needless Interest transmissions.

C. Summary

Simulation results show that, by adopting collision pre-
vention and Interest suppression mechanisms, if sensors go
to sleep after receiving the first SYNCACK, DSSN could
achieve DA close to 100% with negligible overhead, under

different packet loss rates (0%∼10%), group sizes (5∼10),
DT thresholds (10ms∼100ms).

Fig. 9. ST’s Influence (group size = 10, DT threshold = 50ms, WT = 53ms,
packet loss rate = 0%, sync-requesters go to sleep after STs time out)

V. FUTURE WORK

Although the initial design of DSSN has achieved the
expected performance, there are still several tasks need to be
completed to make DSSN a success. We discuss each issue
below, offering a brief description of each challenge, together
with proposed ideas to address them.

1) Avoid More Communication Collision: DSSN has colli-
sion avoidance mechanisms for its own transmissions, which
is proven to work well through experiments. However, DSSN
traffic may still collide with other communications, such as
DSSN traffic of adjacent groups. We should extend DSSN’s
design and implementations to include more collision preven-
tion mechanisms for handling those collision problems.

2) Relax Radio Coverage Limitation: For simplicity, DSSN
assumes that each sensor is able to directly communicate with
all other sensors in the same group, and sensors communi-
cates through one-hop multicast. However, if this assumption
doesn’t hold true, the existence of sleeping sensors may break
network connectivity within groups. One solution is to design
a sleeping strategy to make sensors go sleep intellectually
without disturbing intra-group network connectivity.

3) Experiment DSSN with Different Sleeping Strategies: As
described in Section IV, we have tested DSSN under a simple
sleeping strategy. We believe that DSSN should be insensitive
to sleeping strategies; that is, it can ensure data availability
with negligible overhead under different sleeping strategies.
But this needs to be verified through further experimentations.

4) Ensure Higher-level Security: DSSN ensures packet
security by signing them at generation time, so receivers can
verify them based on application trust models. To protect
DSSN from other attacks, further work is needed to enumerate
all potential security threats and examine how well NDN’s
built-in security mechanisms can fence of such attacks.

5) Address Scalability Concern of State Vector: Our experi-
ence suggests that State Vector can keep dataset synchronized
among a group of sensors even under adverse conditions.
However, because State Vector explicitly lists all data sources
in a group, one must address its scalability concern when
groups grow large in size. Organizing sensors into a hierarchy
of groups seems a simple and promising direction that we plan
to explore next.

6) Making Use of Wireless MAC Layer Functions: Previous
work [9] have studied the potentials of making use of Layer
2 built-in functions through the dynamic mapping of MAC

address to NDN faces, and the benefits of using Layer 2
unicast and error handling. In this paper, our goal is for
multiple nodes, each acting as consumer and producer to sync
data, thus we make use of Layer 2 broadcast transmission
within each group to provide high redundancy. Given wireless
channel is broadcast by nature, future Layer 2 designs should
also consider better support for broadcast transmission.

VI. CONCLUSION

This paper presents DSSN, a dataset synchronization pro-
tocol over NDN, which ensures data availability for WSN
with sleeping sensors. DSSN provides reliable dataset syn-
chronization in face of intermittent sensor availability due to
their sleeping cycles. DSSN utilizes a naming convention of
numbering each sensor’s data by a monotonically increasing
sequence number, simplifying the dataset state representation
as a compact State Vector, which could be used to efficiently
synchronize the dataset of a sensor group.

Our simulation evaluation results show that DSSN is able
to ensure data availability close to 100% without introducing
much network traffic and energy consumption. This work pro-
vides insight for NDN Sync protocol design in environments
with intermittent connectivity. Because the State Vector used in
DSSN explicitly lists data sources and their current state, it en-
ables fast and effective dataset state synchronization despite of
packet losses or state inconsistency between sensors, a unique
advantage over the previous NDN Sync protocol designs. We
believe that our experience with DSSN provides a stepping
stone into resilient dataset synchronization protocol designs
for environments with intermittent connectivity, including ad
hoc networking or delay/disruption tolerant scenarios.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1629922, and CNS-1719403.

REFERENCES

[1] L. Zhang, et al., “Named Data Networking (NDN) project,” NDN,
Technical Report NDN-0001, 2010.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[3] O. Hahm, E. Baccelli, T. Schmidt, M. Wählisch, C. Adjih, and L. Mas-
soulié, “Low-power internet of things with ndn & cooperative caching,”
in ACM 4th ACM Conference on Information-Centric Networking, 2017.

[4] W. Shang, A. Afanasyev, and L. Zhang, “VectorSync: Distributed dataset
synchronization over Named Data Networking,” NDN, Technical Report
NDN-00, 2018.

[5] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” 2000.

[6] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang,
Y. Huang, J. P. Abraham, S. DiBenedetto et al., “NFD Developer’s
Guide,” TR NDN-0021, University of California, Los Angeles, 2014.

[7] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A Survey of
Distributed Dataset Synchronization in Named Data Networking,” NDN,
Technical Report NDN-0053, 2017.

[8] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution of ndnSIM:
An open-source simulator for NDN experimentation,” ACM SIGCOMM
Computer Communication Review, vol. 47, no. 3, pp. 19–33, 2017.

[9] P. Kietzmann, C. Gündoğan, T. C. Schmidt, O. Hahm, and M. Wählisch,
“The need for a name to mac address mapping in ndn: Towards quanti-
fying the resource gain,” in ACM 4th Conference on Information-Centric
Networking, 2017.

