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Over the past decade, there has been much progress towards improved
phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo
(DSMC) method, which provides a probabilistic physical simulation of gas flows. These
improvements have largely been based on the work of the originator of the DSMC method,
Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics
modeling and a reduction in time to solution. These allow for an expanded range of possible
solutions in altitude and velocity space. NASA’s current production code, the DSMC
Analysis Code (DAC), is well-established and based on Bird’s 1994 algorithms written in
Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the
C++ programming language using object-oriented and data-oriented design paradigms to
facilitate the inclusion of the recent improvements and future development activities. The
development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are
described, and performance comparisons are made with DAC.

I. Introduction

S originally implemented, the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic

physical simulation of gas flows, had strict limitations because of grid size, time step, number of simulated
particles per cell, etc., causing simulations to have long run times even on many CPU’s, especially for near-
continuum conditions (100’s of hours on thousands of CPU’s). However, with the introduction of modified DSMC
algorithms[1], simulations can be made more quickly while using fewer numbers of simulated particles, for some
cases. Also, since fewer numbers of particles are required for a given flow, the range of Knudsen numbers that can
readily be simulated has been extended further into the continuum regime. The new algorithms improve the DSMC
method by focusing on physical accuracy and computational efficiency. Some improvements in the past have
included additions such as conservative species weighting[2] and the use of virtual sub-cells[3]. The new algorithms
include features such as nearest neighbor collisions excluding the previous collision partner, separate collision and
sampling cells, automatically adaptive grid and variable time steps, a modified no-time counter procedure for
collisions, and discontinuous and event-driven physical processes. Further algorithm development has included
improvements to axisymmetric simulations[4] and extensions to the recently proposed Quantum-Kinetic (Q-K)
reaction model[5] to include internal energy levels[6-8] and charged species[8, 9].

In addition to the recent algorithmic improvements, the capability to solve highly energetic flows, including
ionization and radiation, is needed. These flows are generally characterized by high velocity entry into a planetary
atmosphere or the atmosphere of a natural satellite, but can also include simulations of ion propulsion systems for
satellites. Although solution methods for these flows have been developed for DSMC simulations[10-17], none are
currently available to NASA for large-scale problems involving many particles in flows approaching continuum
conditions. In addition, there is a need in the future for an efficient, two-way coupled solution of flows containing
both continuum and rarefied/transitional regions. There have been several recent advances in this area both for
coupled CFD/DSMC simulations[18] and hybrid particle schemes[19, 20].

The current production DSMC algorithm employed by NASA and many other organizations is the DSMC
Analysis Code (DAC)[21, 22]. DAC was developed jointly by teams at the NASA Langley Research Center and
Johnson Space Center and was recognized in 2002 with the NASA Software of the Year Award. It has a long
history of support of both manned missions[23, 24] and planetary missions[25]. The DSMC algorithms used in
DAC are based on those developed by Bird[26], which have mostly been either revised or superseded by the newer
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algorithms. In addition, DAC was written in Fortran 77, and has proven challenging to implement the new
algorithms, let alone including additional physics modules.

In order to take advantage of the new algorithms and physics modules, and because of the difficulties listed
above regarding upgrading DAC, the development of a new DSMC code has begun using the C++ programming
language. Extensive use of Object-Oriented Design (OOD) practices is being built into the proposed new code.
OOD provides a clear modular structure for programs and makes it easy to maintain and modify existing code as
new objects can be created with small differences to existing ones. In addition to employing OOD, which only
focuses on the interaction of objects, Data-Oriented Design (DOD) shifts the perspective from the objects to the
data. When considering DOD, the data type used, how it is laid out in memory, and how it will be read and
processed must be taken into account when designing the program. The remainder of the current paper outlines the
organization of the proposed new DSMC code and how OOD and DOD are incorporated into its design. The
performance of the proposed new code is then compared to that of DAC for flow over a sphere at various conditions,
the Mars Reconnaissance Orbiter in air, and the Orion Crew Module on a single processor/single core. In addition
to efficiency comparisons, additional features of the proposed code will be outlined.

II.  General Concepts of Object-Oriented and Data-Oriented Design with Application to DSMC

A. Object-Oriented Design

Object-Oriented Design has many advantages over conventional, procedural programming approaches. OOD
provides a clear modular structure for programs, which is ideal for defining abstract data types where
implementation details are hidden within the object and the object has a clearly defined interface to the rest of the
program. OOD also makes it easy to maintain and modify existing code as new objects can be created with
relatively small differences to existing objects.

Objects are the basic run-time entities in an object-oriented system. Programming is analyzed in terms of objects
and the nature of communication between them. When a program is executed, objects interact with each other by
sending messages. Different objects can also interact with each other without knowing the details of their data or
code. An object is created from a class definition and any number of objects can be created from a single class
definition. Of particular interest to the current application are the ideas of inheritance and polymorphism.
Inheritance is the process by which objects can acquire the properties of objects of other classes. In OOD,
inheritance provides reusability, like adding additional features to an existing class without modifying the original
class. This is achieved by deriving a new class from the existing one. The new class will have the combined
features of both classes. Polymorphism means the ability to take more than one form. An operation may exhibit
different behaviors in different instances. The behavior depends on the data types used in the operation.
Polymorphism is extensively used in implementing inheritance.

When considering OOD with regards

to a DSMC algorithm, base classes for ~ ¢'@ss bParticle

various objects of interest, such as short int pNum; /% Particle number x/
particles, cells, species, etc., must be short int lastColl; /* Particle number of last

. ’ ’ ’ ” collision partner */
designed to be general enough to take float *vars; /% Variables for base particle
advantage of inheritance. For example, g—§= X,Y,2

A . -5: u,v,w
derlveq data types for. particles have the 6,7 db. tine %/
potential to streamline memory and  public:

ot bParticle(); /* Class constructor */

.Comml.mlcatlon. ove?rheads . by not ~bParticle(); /* Class destructor */
including particle information on a /% Class I/0 %/
species-by-species basis that is not Voig Wrisilj'{l?;):

. . vold readrite();
requlred for that spemes (e.g. argon .does /* Public access to private variables x/
not need rotational or vibrational float getX(int &i);
information while molecular nitrogen ‘;‘Eégtsg;ﬁﬂ}]t&&l‘bfloat val);
does). In addition, since derived data void setU(int &i, float val);
types potentially have different required flqgt giﬁgfﬁ {; ¢ val)
. . . vold se oat val);
information, each derlveq class must be float getTime();
able to perform its own input/output and void setTime(float val);

communications operations. A simple
example of what a base particle class
might look like is presented in Figure 1.

by
Figure 1. Example of OOD particle base class.
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B. Data-Oriented Design

Simply using OOD practices, however, (lass bparticle

can lead to random memory access patterns unsigned short int npart; /% Number of particles */

: _Ori unsigned short int arraylLen;/x Array length */
and.cons'tant caghe misses. Data-Oriented short int %pNum; J% Particle number %/
Design is a different way to approach short int *lastColl; /% Particle number of last
program design that addresses these issues. collision partner */
P d 1 . f float xkvars; /*x Variables for base particle

rocedural  programming  focuses  on 0-2: x,y,2
procedure calls as its main element, and 3-5: u,v,w
OOD deals primarily with objects. The ... . 6,7: dt, time */
main focus of these approaches is code: bParticle(); /% Class constructor */
simply procedures (or functions) in one ~bParticle(); /% Class destructor */
. . void resize(int len); /* Resize particle arrays */
case, and grouped code associated with int newParticle(); /% Add particle %/
some internal state in the other. DOD shifts /¥ Semove particli 1(‘rom simulat)ion */
. : void removeParticle(int &prtNum);
the? perspective qf programming from /% Class 1/0 /
objects to the data itself: the type of data, void writeFile();
... . . - void readFile();
how it is laid out in memory, ar.ld how it will /* Public access to private variables */
be read and processed during program float getX(int &prtNum, int &i);
execution. void setX(int &prtNum, int &i, float val);
. float getU(int &prtNum, int &i);
A gO(')d" example of 'the use Of DOD is void setU(int &prtNum, int &i, float val);
the definition of a particle container class float getDt(int &prtNum);
: : : ; void setDt(int &prtNum, float val);
and is presented in Figure 2 Notlce that, float getTime(int &prthum);
compared to the OOD class in Figure 1, the void setTime(int &prtNum, float val);

new particle class now contains an extra
dimension to the previous definition of
particle variables/arrays. This arrangement
allows for rapid traversal through the
particle variables because the data are
located in contiguous memory locations.

Y
Figure 2. Example of DOD particle base class.

III.  Organization of Code

The design of the new DSMC code must be flexible, allowing for the addition of various physical models in the
future with minimal changes to the original code. To achieve this, a base class has been created for each major
portion of the code, as described below.

A. Manager

The manager class is the main interface for the new DSMC code. It sets up and creates all other classes and their
derived types. It also organizes all input/output operations. Its implementation allows for future development and
interaction of various simulation types.

B. Simulation

Currently, the only type of simulation is strictly a DSMC simulation. However, one can imagine future derived
simulation classes such as CFD, PIC, or radiation capabilities that can be easily included. Of particular importance
in the simulation class is the advanceTimeStep() function. This sequences the move/collide/sample routines typical
of DSMC codes. Again, this function can be redefined for derived classes and instructions on how to solve a system
of equations can be included in the sequence of instructions.

C. Time Scheme

A separate class to handle simulation timing variables was created to take advantage of different time stepping
schemes. There are currently three derived time schemes. The first is that of DAC where all particles are moved
and collide at each time step and the time step can vary from cell to cell. The second time scheme follows the
scheme that Bird’s DS(n)V codes implement[1]. In this scheme, each particle has its own time and time step, as do
the cells, and the simulation time is advanced by the minimum flow field time step. The particles are moved such
that, on average, the particles in a flow cell are at the same time as the flow cell. Collisions are performed in a flow
cell when the flow cell time falls half of the flow cell time step behind the simulation time. The last time scheme is
that of Laux[27]. It is similar to Bird’s scheme, however each flow cell is assigned a “time zone” that is a multiple
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of the minimum flow field time step. The time steps are then advanced in the individual flow cells when their “time
zone” is processed.

D. Gas Properties

The gas properties class contains all data pertaining to the simulation gas. This includes bulk flow properties,
particle weighting information, species information, interaction parameters, reaction information, etc. The base
species class stores the species number, charge, diameter, mass, and free stream number fraction. Derived species
classes then store rotational, vibrational, and/or electronic data as well as recombination energy and ionization
energy where applicable. The interaction class describes how the particles interact with each other (hard sphere,
variable hard sphere[28], variable soft sphere[29], etc.). Parameters that depend on the interaction model are
calculated within the class and include the mean free path, mean collision rate, deflection angles, collision cross
section, and particle relaxation parameters. The reaction class defines reaction parameters and then calculates the
probability of a reaction occurring. Current reaction models include the total collision energy (TCE) model of
Bird[30] and the quantum kinetic (Q-K) model of Bird[1, 5], but other models can be added in the future.

E. Grid and Geometry

The current grid and geometry classes are structured similarly to that of DAC. The major difference is that they
are now organized in terms of OOD. The geometry is represented as a watertight triangulated surface where each
surface element is an object containing all pertinent local information. The grid is a two- or three-level Cartesian
grid made up of grid cell objects that can be divided into IxJxK children grid cells. The grid cells contain
information about flow type, node number (for MPI implementation), limiting coordinates, pointers to children cells
(if Level 1 or 2), pointers to flow cells (if Level 3), and any surfaces contained in the grid cell. The grid is also sent
particles to be moved from the flow cells so that the flow field does not have to know what type of grid is being
used. Additionally, future implementations may include unstructured grids so that the current structured multi-level
Cartesian system may be replaced.

F. Flow Field

The flow field keeps track of overall sampled quantities and a pointer to the flow cells. The flow cells organize
the particles and buffered particles across the grid cells and retain sampled information. The flow cells have been
separated from the grid cells because of the possibility of multiple cut cells in a grid cell. The base flow cell class
only allocates memory for the basic geometric information and samples for velocity. Derived flow cell classes then
add sampling for rotation, vibration, and electronic energies and then also for electron energy when ionization is
being considered. In addition to OOD, the flow cells are designed such that they conform to DOD as well so that
the sampling procedures are streamlined.

G. Particles

The base particle class stores the position, velocity, time, time step, species, particle number and last collision
partner. Derived particle classes are then defined for combinations of rotational, vibrational, and electronic energy.
Charged particles included linked electron velocity. Again, as presented in Figures 1 and 2, the particle class
adheres to both OOD and DOD practices.

IV. Comparisons with DAC

Since DAC is the current standard DSMC algorithm used at NASA and many other government and industry
locations, it will be used as the benchmark for comparison to the new DSMC code. Great care was taken to make
sure that the simulations being run by each code were as similar as possible.

A. Sphere

The first test case was a 0.2 m diameter sphere in either argon, nitrogen (N) or air (O, N», O, N, and NO with
23.7% O, and 76.3% N,) with various simulation flags turned on (see Table 1). For all test cases, the number
density was 1.2x10% /m’, the velocity was 5100 m/s, the free stream temperature was 190 K, and the wall
temperature was constant at 500 K. Full accommodation was assumed for collisions with the wall and a fully
catalytic wall boundary condition was employed for the single case with chemistry turned on. For all simulations,
the bounding box for the flow field was 1.4 m in each direction with 50 cells in each direction. The simulation time
step was 2.543x10° s with a global particle weighting factor of 2.634x10'. Generally, for the simulations of
interest discussed above, multiple processors are utilized for faster computation time. However, to focus on

4
American Institute of Aeronautics and Astronautics



Table 1. List of cases for comparison.
Case Gas Collisions Rotation Vibration Chemistry

1 Ar

Ar
N,
Air
Air
Air

X X

U AW
XX KX

X
X

ol

Table 2. Ratios of time to number of steps and average time step.

Case S1 Case S2 Case S3 Case S4 Case S5 Case S6
(MAP/DAC) (MAP/DAC) (MAP/DAC) (MAP/DAC) (MAP/DAC) (MAP/DAC)
1,000 Steps 0.851 0.818 0.891 0.632 0.772 0.779
5,000 Steps 0.935 0.916 0.968 0.727 0.879 0.881
10,000 Steps 0.992 0.972 1.004 0.768 0.933 0.920
Avg. over last 1.076 1.044 1.058 0.803 1.001 0.965

100 Steps

algorithmic speed comparisons, the comparisons made in this study are on a single processor/single core of a
MacBook Pro with a 2.7 GHz Intel Core i7 processor. A single unadapted run of 10,000 time steps (5,000 steady-
state samples) was run for each condition and code.

The results of the comparisons are compiled in Table 2. The first three rows of the table list the ratios of time
required to get to the specified number of time steps between MAP and DAC. The fourth row lists the ratio of
average time step taken over the last one hundred time steps between MAP and DAC. For the single species
simulations (Cases 1-3), the performance of the proposed code began around 15% faster than DAC and then,
towards the end of the 10,000 time steps, plateaued to around 6-7% slower than DAC. The increased efficiency at
the beginning of the simulation is because MAP is structured around the flow cells (Level II cells in DAC) and logic
is in place to exclude flow cells without any particles from being processed in the collision and sampling
subroutines. However, for the single species cases, the speed comparison of 6-7% slower than the benchmark code
is quite favorable considering that an object-oriented code is being compared to a procedural code. Without the
DOD considerations, the proposed code was around three times slower than DAC. This clearly demonstrates that
the inclusion of DOD is very important when designing a computational code with OOD and the current design of
the new code is nearly as efficient as DAC for single species flows.

The real advantage of the proposed code’s structure around the flow cell and other DOD considerations is clearly
demonstrated when multi-species simulations (Cases
S4-S6) are considered. The collisionless air 150 ‘ 2108
simulation (Case S4) was around 44% faster than the o ° o
corresponding  simulation using DAC. The ° . s = ; 2510°
comparison to DAC becomes somewhat less favorable 0 " 2 '
when internal energy (Case S5) and chemistry (Case
S6) are included in the simulation, but the proposed
code is still around 15% faster than DAC for these
cases. As mentioned above, the increased speed is
primarily due to the layout of the particle data and
sampling arrays. For each flow cell, all the particle 50
data for the cell is located in contiguous memory for : :
reduced cache misses. The same goes for the flow cell =
sampling arrays in the sampling subroutine. Again, an L
OOD code can be quite efficient if DOD 0
considerations are observed while the flexibility and
upgradability of the OOD code are still maintained. A
comparison of surface pressue and total heat transfer ~ Figure 3. Comparison of surface pressure and total
distributions are presented in Figure 3 and free stream  heating for case S6.
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translational temperatures are presented in Figure 4 for
case S6. Considering the coarse nature of the flow

06l field grid, the comparisons are quite favorable.
041 Level T, (K) B. Mars Reconnaissance Orbiter
10 10000 ' The Mars Reconnaissance Orbiter (MRO)
] g gggg represents a typical satellite in an aerobraking
Tl 7 700 configuration (Figure 5). This vehicle design is typical
~ H g gggg of many of the programs that NASA supports. For the
ool 4 4000 current comparison, free stream conditions typical of
Tfo8 3000 those at 250 km in Earth atmosphere (n = 1.96x10",
i "13 ﬁggg T = 1059 K, Xo, = 0.0106, Xy, = 0.2028,
i Xo = 0.7866) at 6 km/s were assumed with a surface
o6k temperature of 300 K. Diffuse surface collisions were
N P (Y TR [P (RO N D assumed with no catalytic recombination.

06 -0.4 0.2 2 0.4 0.6

?((m)o' The results of this comparison once again
Figure 4. Comparison of flow field translational showcase. the DOD nature of MAP.. The ratio of the
temperatures for case S6 between DAC (black) and ~ average time step over the last 100 timesteps between
MAP (red).

Figure 5. Typical satellite aerobraking Figure 6. Ratio of total heating rate between MAP
configuration  represented by the Mars and DAC for the Mars Reconnaissance Orbiter.
Reconnaissance Orbiter.

MAP and DAC for this simulation was 0.578. The global
distribution of the ratio of total heating between MAP and DAC is
presented in Figure 6 where most of the variation was under 1%.
The differences in heating were above £1% where the number of
samples were limited by either shadowing or small surface triangles.
These differences would be expected to decrease as the surface
sample size increased. The ratio of drag and pitch coefficients was
1.0004 and 1.0007, respectively.

C. Orion

Another important class of vehicle is the blunt reentry body,
exemplified by the Orion Crew Module (see Figure 7). This vehicle
class is particularly interesting for demonstrating the advantages of
MAP due to the additional physics included in the proposed code.
These new features will be discussed in the following sections. For
the current comparisons to DAC, the three cases examined can be Figure 7. Computational geometry of
examined in Table 3 and were selected from Reference [31]. the Orion Crew Module.
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Table 3. Orion Crew Module Simulations.

Case 01 02 03
Altitude (km) 120 105 105
n. (1/m%) 5.21x10"7 4.98x10" 4.98x10"
T.. (K) 368.0 211.0 211.0
U.. (km/s) 7.6 7.6 12.3
Xoz 0.08451 0.15280 0.15280
X2 0.73271 0.78187 0.78187
Xo 0.18278 0.06533 0.06533
Kn. ps 0.601 0.0629 0.0629
T, (K) 567.0 760.0 877.0

Table 4. Ratios of time to number of steps and average time step for Orion Crew Module.

Case 01 02 03
5000 Steps 0.790 0.853 0.824
10,000 Steps 0.794 0.862 0.840
20,000 Steps 0.801 0.874 0.849
30,000 Steps 0.803 0.881 0.852

Avg. over last

100 Steps 0.802 0.904 0.881

Table 5. Ratios of force in the X-direction and pitching moment for Orion Crew Module.

Case 01 02 03
Cx 1.000 1.000 1.000
Cn 1.000 0.999 0.999

Comparisons between the MAP and DAC results are presented in Tables 4 and 5 for simulation timing and
forces and moments, respectively. Once again, as presented in Table 4, MAP performs better for the three
simulations examined here, ranging from 10-20% faster than the corresponding DAC simulation. Table 5 presents
the ratio of the force along the X-axis and the pitching moment between MAP and DAC. The results agree to within
+0.1%.

V. Other Code Features

In addition to efficiency, there are other features that have been included in MAP that are currently unavailable
in DAC. The addition of these features was greatly facilitated by the OOD nature of MAP, as it will the
implementation of additional physics features in the future. As mentioned previously, the blunt nature of the Orion
Crew Module is ideal for exemplifying the additional features in MAP and will be used throughout this section at
the O3 free stream conditions listed in Table 3.

A. Internal Energy
It is standard to include both rotational and
vibrational internal energy modes in both CFD and  Taple 6. Ratios of time to number of steps and

DSMC simulations. They are  necessary for the average time step for Orion Crew Module with
accurate computation of fluid dynamics and the  ¢Jectronic energy included

resulting forces and heating on vehicle surfaces. Casc MAP/MAP;
However, it has been shown[32] that the inclusion of 5000 Steps 1.120
electronic energy levels[8] is also necessary for flows 10,000 Steps 1116

of sufficient energy, as is already done with CFD codes. 20’000 Steps 1117
Currently only DS1 and MAP include electronic energy 30’000 Steps 1115
levels among DSMC codes. ; '

Avg. last
The timing ratios presented in Table 6 compare the \i%ooggp:s 1.082

MAP simulation with electronic energy levels included
to the MAP solution without electronic energy levels
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Figure 8. Comparison of translational temperature  Figure 9. Resultant electronic temperature.
with (red) and without (black) electronic energy
levels included.

included (Case O3 above) at 105km altitude and 12.3 km/s. The timing results indicate that there is about a 10%
speed penalty when electronic energy levels are considered. Figure 8 depicts what happens to the flow field
translational temperature when the electronic energy levels are considered. As expected, the addition of the new
energy mode has reduced the free stream translational temperature and shock stand-off distance, as shown in Figure
8. The resultant electronic temperature is then as shown in Figure 9.

B. Chemistry Modeling

The most widely used chemistry model used in DSMC is the Total Collision Energy (TCE) model[30] of Bird.
This is currently the only model available in DAC and is also included in MAP. More recently, the Quantum-
Kinetic model[5] was introduced by Bird and has since been extended by Liechty[8] to include reactions including
charged species. The Q-K model is an additional model available in MAP.

C. Electric Field Modeling

The electric field model implemented in the current study is a hybrid of Bird’s model[10] and that of Boyd[33].
In this model, the electron particles are moved along with their associated ion during the movement portion of the
DMSC algorithm. However, the electrons retain their individual velocity components, which are used in the
collision portion of the DSMC algorithm. Neither the electrons nor ions actually experience an electric field, in that
their velocity components are not adjusted to account for a field. The resultant flow field electron temperature and
molar fraction are presented in Figures 10 and 11, respectively.

Tk Ko
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11000 [iTinsl]
10000 [iLicra
=l [elxee )
= ﬁ = gﬁs
E- 8060 E 601
N 5000 ] Q0005
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Figure 10.  Resultant electron temperature. Figure 11.  Resultant electron molar fraction.
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D. Collision Procedure

The current collision procedure[1] in DS(n)V and DAC does not take into account separate species collision
rates. While this should, on average, reproduce the correct species collision rates, a more rigorous treatment of the
Boltzmann equation can be obtained by separating the species as described by Nanbu[34]. This collision procedure
has been included in MAP and can be chosen as a pre-processing option, however there is a performance penalty
since the algorithms must now loop over species as well. However, this penalty for neutral species is negated when
ionized flows are considered because of the inclusion of electrons into the flow. The time spent in the collision
algorithm decreases significantly in this case because the number of pair selections decreases.

E. Spatial Discretization

As is done in DAC, the initial grid of the proposed
code is a uniform Cartesian grid with one or more Level
II cells per Level I cell (depending on the prescribed
number of Level I cells and the free stream mean free
path). The procedure for adapting the grid in DAC is to
first obtain a solution on the initial grid, perform an
adaptation as a post-processing step, and begin a new
solution on the adapted grid. This procedure is repeated
until the flowfield is resolved down to the local mean
free path (the number of real particles per simulated
particle is allowed to vary by Level I cell). The
proposed code, however, adapts the grid dynamically.
The proposed code currently does not vary the number
of real particles per simulated particle, but this is a
feature that will be included as it is required for some
applications. An example adapted grid can be seen in
Figure 12.

L1
10

Figure 12.  Grid adapted to the local hard sphere
mean free path.

F. Temporal Discretization

As mentioned previously, several time stepping
schemes have been implemented in the proposed code.
These fall into two classes: time accurate and non-time
accurate schemes. The time accurate schemes are those
of Bird[1] and Laux[27], however the primary
development effort has focused on the implementation
of Bird’s scheme. As in Bird’s DS(n)V codes, the local
time step is assigned to each individual flow cell and is
dynamically adapted as the solution progresses. There
is logic included in the algorithm then that determines
when the particles are to be moved (based upon the
global and local times) and when the particles are to be
collided within the collision cells (which are also the
flow cells in the proposed code currently).

The original time stepping scheme of DAC is time 5 oy m) £ 10
accurate before the first grid adaptation (whlch occurs Figure 13.  Local time step adapted to the local
upon the completion of the first complete solution), and mean collision time or transit time.
then is not time accurate as each Level I cell has its own
time step and is processed at each global time step
increment. The proposed code includes this non-time accurate simulation capability, however the time step is
dynamically adapted as the solution progresses and is not limited to the Level I cell but each flow cell can have its
own time step (flow cells are assigned to Level II cells). The local time step is based on the minimum of the mean
collision time or mean transit time. If time accuracy is not a requirement, the non-time accurate scheme can be
significantly faster than the time accurate schemes. An example adapted grid can be seen in Figure 13. The quality
of time adaptation, especially near the body, is currently degraded slightly due to the lack of ability to dynamically

Z{m)
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adapt the number of particles per cell (there are too few particles). As mentioned previously, this will be added in
future versions of the code.

G. Parallel Implementation

While MAP was written with parallel implementation in mind, the current study has focused on the serial
implementation of MAP and DAC in an attempt to minimize the computation time for each separate algorithm
(move, collide, sample, etc.). Future studies will examine the performance of the parallel implementations of the
codes.

VI. Conclusion

With the introduction of new DSMC algorithms and the perceived need for a new suite of physics modules, it
has been determined that a new production DSMC code for NASA may need to be introduced that has the flexibility
to incorporate all of the algorithms and physics currently available and also to expand the code’s capabilities in the
future. The C++ programming language was chosen for the present study because of its wide acceptance as a
scientific, object-oriented programming language. Fundamentals of object-oriented design and data-oriented design
were considered in the creation of the new DSMC code to take advantage of both flexibility and speed/memory
requirements.

Comparisons have been made between DAC, the current production DSMC code at NASA, and the proposed
code, MAP. When comparing single species simulations for a sphere, MAP is between 6-7% slower than DAC.
However, the real advantage of MAP’s design around the flow cell and other data-oriented design considerations is
clearly demonstrated when multi-species simulations are considered. For rarefied (mostly collisionless) flows, MAP
is as much as 44% faster than DAC. For simulations where collisions, internal energy and chemistry are considered
for the multi-species simulations, the efficiency decreases slightly, but MAP is still 10-20% faster than DAC.
Comparisons of free stream and surface properties have shown that the two codes produce the same results.

In addition to the speed comparisons, a list of additional features has been presented for the proposed code. In
order to decrease the total time to the final solution, MAP has the ability to dynamically adapt the flow field grid and
local time step. MAP also has the option to include electronic energy levels in addition to rotational and vibrational
energy levels as well as a charge-neutral electric field modeling scheme for weakly ionized flows. In addition, the
recently proposed Quantum-Kinetic chemistry model is also included as an option, as well as the ability to more
accurately represent inter-species collisions by separating the species and computing collisions on a species-to-
species basis. Although not discussed in this paper, MAP also has the ability to run in parallel computing
environments.

With challenging missions on the horizon, such as high-mass payload delivery to Mars and high velocity entry
into planetary and satellite atmospheres, the need for expanded capabilities in a rarefied gas dynamics solver is
evident. A code that is efficient and easily updated is going to be a requirement. While current, well established
DSMC codes still perform the jobs they were originally designed to do well, they have proven difficult to update to
meet future challenges. The proposed code MAP has been shown to meet these requirements by making use of both
object-oriented and data-oriented design paradigms.
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