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The problem of enumerating the number of topologies which
can be formed from a finite point set is considered both
theoretically and computationclly. Certain fundamental results

" are established, leading to an algorithm for enumerating finite

topologies, and computed results are given for n = 7. An
interesting side result of the computationai work was the un-
earthing of a theoretical error which had been induced into the
literature; ihe use of the computer in combinatorics represents,
chronologically, an early application, and this side result
underscores its continuing usefulness in this area.

Tt seems to have become an almost classic remark that
there are no interesting problems concerning topologies on
a finite number of points. To a topologist this may be true;
however, from a combinatorial point of view, 1t is interest-
ing to determine how many different topologies there are on
n points.

A word of explanation is in order. There are really two
distinct, although related, enumeration problems: either
we may consider the points as distinguished (the labeled
case), or we may only count the number of homeomorph-
ism classes of topological spaces (the unlabeled case).

Our object is to enumerate the labeled topologies with n
points. A finite topology is characterized axiomatically by
taking a prescribed collection of the subsets of a set V with
n points as open, such that the union and intersection of
two open sets are open, as are the empty set and V itself.
A “labeled topology” has its points labeled with the inte-
gers 1, 2, - -+, n. Two labeled topologies are called homeo-
morphic if there is a 1-1 correspondence between their
point sets which preserves open sets. By an “unlabeled
topology” or just a topology is meant a homeomorphism
class of labeled topologies.

In this paper, we establish certain fundamental results

* Present address: National Institutes of Health, Bethesda, Md.

1 Department of Mathematics. This author’s work was supported
in part by the U. 8. Air Force Office of Scientific Research under
grant AF-AFOSR-74-65.

Volume 10 / Number 3 / May, 1967

— 9%
S A R A A SRR T [035'

LM Ce Y

LA T O A R R

M. STUART LYNN, Editor

leading to an algorithm for enumerating finite topologies
and give computed results for n < 7. A side result of this
computational work was to unearth an error which had
previously appeared in the literature (see section on To-
Topologies), perhaps underscoring the continuous useful-
ness of the computer in combinatorics.

Topologies and Transitive Digraphs

The enumeration of labeled topologies will be formu-
lated with the help of a lemma, anticipated by Krish-
namurthy [6], who expressed the observation in terms of
matrices. We use the terminology of directed graphs given
in [4]. A labeled digraph D has its set V of n points labeled
with the integers 1, 2, - -+, n. As usual, D is {ransitwe if
whenever the (directed) lines wv and vw are in D, so is uw.
Let Q(v) denote the set of all points of D which can reach
» along a directed path. Thus when D is transitive, Q(v) is
the set of points adjacent to v, and in particular v € Q)
since the point v itself may be regarded as a path of length
0 from v to v.

Lesyma 1. There is a 1-1 correspondence between the
labeled topologies with n poinls and the labeled transitive
digraphs with n points. ,

Proor. With any topology 7', one can associate a di-
graph D(T) as follows. The point set of D(T) is that of T.
For two distinet points » and v of T, » will be adjacent to
v in D(T) provided w is in every neighborhood of » (open
set containing v). Clearly D(T) is transitive, and is
uniquely determined by 7'

We next show that to each labeled transitive digraph D

~ withn points, there corresponds a unique labeled topology.

Define T(D) as that topology with the same point set as
D, in which the basic open sets are all sets Q(v), v € V.
Since D is transitive, Q(v) consists of » and all points
adjacent to it. By definition then, every open set in T(D)
is of the form Q(W) = UQ(w), w € W, for some set W of
points. We now show that 7' (D) is indeed a topology. By
definition, it is immediate that the union of two open sets
is open. It is sufficient to show that the intersection of two
open sets is open if we prove it for two basic open sets
Q(v;) and Q(v:). Consider the set of points v adjacent to
both »; and v, . By transitivity, this set is the union of all
the sets Q(») for v € Q(»n) N Q(v2), and hence is open.

To establish a 1-1 correspondence, it only remains to
observe that D(T(D)) = D, whichis a direct consequence
of the defining constructions.

It is easy to see that this lemma Is still valid when we
replace the word “labeled” by “unlabeled,” or equiva-
lently omit the word “labeled” from the lemnu.
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A loop is a directed line joining a point to itself. By defi-
pition [4, p. 9], a digraph has no loops. A relation is reflexive
if every point has a loop. Obviously it makes no difference

the number of transitive relations whether every point

%s a loop or no point does, and this holds both for the
labeled and unlabeled cases.

CoroLLARY. For any posuive integer m, there are equally
many topologies, transitive digraphs, and reflexive transitive
relations on n points. »

We might remark that it has been pointed out by both
Davis [1] and Harary [2] that the enumeration of transi-
tive digraphs is a particularly intractable problem.

To-Topologies

We note that, from the defining relations, a labeled
topology T is To (i.e., given two distinct points, there
exists an open set containing one but not the other) if and
only if D(T) is acyclic (has no directed cycles); the same
also holds true for the unlabeled case. In this section, we
prove our main theorem that expresses the number of
labeled topologies on m points in terms of the numbers of
Te-topologies on m points (m = 1, -+, n).

Let us digress momentarily, however, to note that a
transitive digraph is acyelic if and only if it is oriented
(asymmetric). It appears to have been indicated in the
literature (see [3] for example) that the number of acyclic,
oriented, unlabeled digraphs is

1 2n

- =100 W
this result having been inferred from a result suggested by
Wine and Freund [8] and proved by L. Moser. In fact,
although the authors of [8] would (in other terminology)
appear to have wished to enumerate acyclic, oriented,
unlabeled digraphs, they actually enumerated only a sub-
set of these. Thus, for example, the digraph consisting of
two disjoint oriented lines would not be included in their
enumeration.

This error was first brought to light by the fact that if
~» is the number of acyclic, oriented, labeled digraphs with
e T L Oy G o st SRS

OAct ! :
n points, then in particular (see Table 1), vs > (_57_ (162) ,

whereas the right-hand side should have been an upper
bound for vs . This emphasizes, perhaps, a familiar and
useful aspect of the computer in combinatorial research.

Returning to the main theme of this paper, we first state
two lemmas which are given in [4]. For brevity, we will use
transgraph to mean a transitive digraph.

Lemma 2. Every strong component of a transgraph is
complele and symmelric.

TABLE I
€ - |+ 2 3 4 5 6 7
i AT | 29 355 6942 209 527 9 535 241
1 ) 19 219 4231 130 023 6 129 859
296 Communications of the ACM

Lemma 3. The condensalion of a transgraph with .
strong components 1s itsclf an acyclic transgraph on m points.

Now let € denote the set of all labeled transgraphs on
n points with m strong components, and let us write ',
for CM, the set of all labeled, acyclic transgraphs on »
points. Correspondingly, we let ¢, denote the sct of al]
unlabeled, acyclic transgraphs on 7 points. Let ¢’ ¢ ¢/
be an isomorphism class, containing | C"| labeled trans.
graphs; we may clearly represent ¢’ by removing the
integer labels from any labeled transgraph C ¢ . We
shall call the process of assigning distinct integer labels to
the “points” of € one of labeling C"; thus there are | ¢’}
ways of doing this. As mentioned in Harary and Read [5],
the number s(C”) of symmetries (or automorphisms) of ¢’
is in fact given by

o n!
|C|-———s(0). , (2)
Now consider any partition of V,, = {1, 2, ---, n} into

m parts, m < n. It is shown in Riordan [7, p. 9] that there
are S(n, m) such partitions, where S(n, m) is a Stirling
number of the second kind. An admissible (m, n) labeling
of an unlabeled transgraph €' € C. is determined by
assigning to each of the m points of ¢’ one of the parts of
a given partition of V, into m parts. Thus, there arc
S(n, m) | C"|, different admissible (m, n) labelings of ¢
Furthermore, each such admissible (m, n)-labeled ¢’ can
be mapped into a unique labeled transgraph C' € o, ¢
being that labeled transgraph on = points whose condensa-
tion is some member of C’, and which is labeled so that the
labels in the rth strong component (in any order, by
virtue of Lemmas 2 and 3) are precisely those integers
which appear in that part.of the partition of V, which is
assigned to the 7th point of C’.

" Such a mapping is clearly 1-1 and onto. Hence, if there
are vy transgraphs in the set C and ym = 437 the
number of (acyeclic) transgraphs in Cn , then
¥ = 3 8m,m)|C| = S,m) 3 |C|

C'eCm’ c'eCm’
= S(n, m)¥Ym .

We have thus proved the main result.

TaEOREM 1. If 7, 15 the number of labeled topologies on
n points, and vm 1s the number of labeled acyclic transgraphs
on m points, then

Th = i:l S(n, m)ym . (3)

In the next section we shall indicate how (3) has been
used as the basis for an algorithm to compute 7, forn = 7

Algorithm

The algorithm basically consists of inductively comput-
ing all the adjacency matrices of the acyelic transgraphs
in C, from those in C_; , and then using (3) to obtain 7 -
This males use of the fact (see [4]) that, if C € Cy and v
is any point of C, then the digraph C'—v is also transitive
and acyclic; that is, C — v € Cay . We also note that if
CeC,and A = A(C) denotes the adjacency matrix of
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¢, then, from the transitivity of C,

. (1 + A = [ + 4]F (4)
+Aave, as in [3], the notation [M ¥ denotes the opecration
L;placing all nonzero entries of a matrix M by 1. Con-
versely, it may be secn that if the associated digraph, C,
of a null-diagonal, binary matrix, 4, of order n satisfying
(4) is acyclic, then C € Cr.

The above remarks then form the basis for the following
femma in which 8 denotes the transpose of column vector

LemMa 4. If a null-diagonal, binary malriz A = (ai;)
of order m is partitioned in the form
A«
A= , (5)
g0
where Ay 1s a square malriz and «, B are column veclors of
order n—1, then the associated digraph C of A belongs to
C. if and only if:
(i) the associaled digraph of A; belongs to Cpa 5
(i) a5 =0 (1=4, j=n—1)
implies aB; = 0(1 £ 4,5 = n—1);
(i) @i = 01 =7 = n—1)
implies ajo; = 0(1 £ 7 = n—1);
(iv) B; = 0(1 < j < n—1)
implies a8 = 0(L £ 7 = n—1);
(v) D is acyclic.
Lemma 4 has been directly used to derive an algorithm
ta_compute the adjacency matrices of all transgraphs in

jor n < 7, noting that in bordering matrices such as
Ay in (5), we do not have to consider all possibilities for
« and B, but only those with mner product «"-8 = 0,
else we should contradict (v) by producing directed cycles
of length 2. We also note that in testing for (v) by the
usual process of successively deleting null rows and corre-
sponding columns of A as far as possible, we always at-
tempt to delete the last row at any stage before any other
row, since if this ever becomes null, the remaining sub-
matrix is clearly acyclic since its associated digraph is a
subgraph of an acyclic digraph by (1).

Essentially using these ideas, the values for 7, and va
shown in Table I have been computed’ on the IBM 7094
computer of the UCLA Western Data Processing Center.
It is to be regretted that v. appears to grow at essentially
the same rate as . since this prevents further enumeration
for reasons of both time and space. In fact, since it can
easily be shown that there are

sm) = 3 (1) =0 (6)
labeled digraphs on n points containing no path of length
greater than 1, and since these are clearly transitive and
acyclic, then merely by considering the largest terms in

(6))
n! 2(’) > ya = 8(n) 2 8(n) (7)

1 The authors would like to thank J. Fl. Beeman in this connection
for his invaluable assistance in programming this algorithm as well
as for contributing several ideas to its success. :
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2kY /o . : R
(k>(2 —1)‘_+(k?_]"1>[(2 — ¥

+ @@= 1D, i = 2k,

(2’0[‘;“ 1) [(zk___ l)k+l+ (2k+1_1)k],

L ifn =24 1.
The left-hand inequality in (7) is a direct consequence of
the fact that the adjacency matrix of an acyeclic digraph
may be permuted into upper triangular form; see [4].

Since zﬁ(n) is asymptotically dominated by terms of
order 2", it might serve as a caution to those who would
calculate further numbers 7, , using algorithms of the kind
discussed in this section. We note that the values of 7, for
n = 3 were obtained by Krishnamurthy [6] using a dif-
ferent algorithm.

To verify directly that v; = 19 and 73 = 29, we may
apply eq. (2) to the five unlabeled acyclic transgraphs
D; on 3 points shown in Figure 1 and also to the four non-
acyclic transgraphs Ds , D7, Ds, Dy on 3 points in Figure
9. This information is summarized in.Table II, in which
the sum of the first 5 entries in the last row isy; = 19 and
the total row sum is 73 = 29.

In actual fact, (6) and (7) are, with s = 2, a special
case of an easily derivable result which we state without
proof; namely,

'Yngz

where the sum is taken over all compositions (ordered
partitions) of n.

] 273 Dy D4 Ds
)

n! fI (20.'_ l)a;_H , (8)

a;!aa!---a,!,-:l

Fia. 1.
De Dy - Dg Dg
Fia. 2
TABLE IT _
Dlgraph D D1 Dz D3 D4 Ds Dq D‘I Ds DD
Symmetry number s(d) 6 1 2.2 1 2 2 26
Number of labeling 6/s(D) 1 6 3 3 6 3 331
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