
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 1

Qualitative Physics in Angry Birds
Przemysław A. Wałęga, Michał Zawidzki, and Tomasz Lechowski

Abstract—In this paper, we present a program designed to
successfully and autonomously play Angry Birds which attempts
to embrace motives of human players in their choices of targets
they want to shoot at in a game play. The program comprises two
modules: the representation module and the reasoning module.
In the former we introduce qualitative space representation
that utilises notions such as “to lie on”, “to lie to the right”,
“to be a shelter of a target”, etc. The latter investigates how
particular blocks of a structure behave once one of them has
been hit. It includes two algorithms, namely Vertical Impact
and Horizontal Impact. The first one is a novel method of
investigating the behaviour of complex structures after one of
their constituent blocks gets hit. Namely, it predicts which
elements of a structure fall if a supporting block gets destroyed.
Horizontal Impact, on the other hand, simulates force propagation
between adjacent elements after one of them gets struck. We also
describe experimental tests we have conducted in which Vertical
Impact correctly predicted which blocks will fall in over 98% of
investigated cases.

Index Terms—Physics-Based Simulation Games, Qualitative
Physics, Qualitative Reasoning, Spatial Reasoning, Stability
Checking.

I. INTRODUCTION

Human reasoning about surrounding physical world is sur-
prisingly accurate in many real life situations. In 1983 Howard
Gardner presented his theory of multiple intelligences [1].
According to Gardner there are several distinct abilities that
count as intelligences, one of which is the spatial intelligence.
It is defined as the ability to solve problems involving navi-
gation through space, visualization of objects from different
points of view and image recognition. Spatial intelligence
involves manipulation of information presented in a visual,
diagrammatic or symbolic form as opposed to verbal, language
based modality. We can think of spatial intelligence as a
qualitative method of reasoning - it does not involve numeric
values but focuses on a non-numerical presentation of the
problem at hand. Application of spatial intelligence involves
thinking about the shapes and arrangements of objects in space
and about spatial processes, such as the deformation of objects,
and the movement of objects and other entities through space.

Researchers from the field of Artificial Intelligence (AI)
have been trying to construct methods that would be as
effective as human reasoning about space. In some areas,
like, e.g., navigation problem of car parking, contemporary
AI algorithms perform better than average human (to check
how precise the latter can be, see, e.g., [2]–[4]). There is,
however, a large domain of problems involving spatial rea-
soning in which artificial methods still do not achieve as good

P. A. Wałęga and T. Lechowski are with the Institute of Philosophy, Uni-
versity of Warsaw. M. Zawidzki is with the Department of Logic, University
of Łódź and the Institute of Philosophy, University of Warsaw.

Manuscript received xxx; revised xxx.

results as humans. In particular, what we have in mind are
situations that require making predictions about behaviour of
objects in dynamically changing environment under uncertain
or incomplete information. A good example of such a situation
is a billiards game. People usually are not aware of precise
numerical values of the balls’ weight, stick tip’s distance
from the white ball or the curvature of the band, instead they
use qualitative categories like “lying closely”, “large angle”,
“hard shot” (and learn the effects of the actions taken on the
basis of such notions). Still, even unproficient players who are
familiar with the game can achieve reasonable scores. On the
other hand, billiards robots like, e.g., Deep Green (see [5])
requires complete information about the physical environment
it operates in to perform a shot.

A good platform that makes it possible to compare the
performance of human and AI agents facing tasks involving
reasoning about space in some simplified physical environ-
ments are the so-called Physics-Based Simulation Games
(PBSG in short) like the popular Angry Birds (AB), Cut the
Rope, Gears, Feed Me Oil or other. Since the physical rules
are relatively simple there, these games provide a convenient
testing ground for evaluating AI methods.

In this paper Angry Birds game is of our particular interest.
In an AB game a player uses a slingshot to launch birds of
various kinds in order to kill pigs located in a 2-dimensional
physical environment and entrenched by different types of
structures as depicted in Fig. 1. The goal in each level is
to kill all pigs in a given game scene using only a limited
number of birds of particular types. Pigs get killed whenever
a sufficiently large impulse is delivered to them. Points are
awarded not only for killing the pigs, but also for destroying
any block appearing in the scene. In order to shoot, player
needs to choose the angle at which a given bird is to be fired
and the power of the shot, by simply pulling the slingshot
rubber band.

Fig. 1: A screenshot from the AB game.

The main aim of this paper is to propose an approach that
can successfully deal with predictive reasoning about rigid
objects’ behaviour upon acting forces in particular physical
environments and that would employ, to a significant extent,
qualitative spatial concepts known from everyday life (like,
e.g., “being to the right” or “being more stable than”). The
method presented in this paper is domain-specific, namely, it is

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 2

an AI agent devised to successfully play AB. The reason why
we chose AB as a “running platform” for our approach is that
it is a good 2-dimensional instance of such an environment and
it allows for instant verification of the approach performance.
Notwithstanding the fact that some elements of the method
had to be tailored to this specific environment, e.g., values of
particular variables (densities, shelters etc.), we believe that the
techniques employed in the approach can be exploited outside
the context of AB to successfully predict the rigid objects’
behaviour in other similar environments. Implementing the
abovementioned qualitative terms in the algorithm is supposed
to bridge the gap between numeric techniques that such
programs usually involve and human spatial intelligence as
announced by Gardner in [1].

The main components of our approach are: a representa-
tion method and a reasoning method. The former introduces
physical space representation with qualitative statements that
make it possible to express such relations between objects
as: “lying on”, “being to the right” or “being a shelter of a
target”. We also introduce a method that enables us to capture
the notion of “I-stability” (stability as immovableness) of an
object. The second part of the approach, i.e., the reasoning
method, consists of two components, namely the Vertical
Impact (VI) and the Horizontal Impact (HI). The principal
idea behind VI is the following: we examine the location of
the center of mass of objects above our target in relation
to other blocks directly below. Based on that data we infer
information about the behaviour of these objects after the shot.
Namely, VI decides which objects fall down after hitting a
particular object. HI is based on the idea of force propagation.
The force acting on the target is transferred to other blocks
that are in contact with it. The transferred force depends on
both the initial impact, the nature of objects involved and their
relative location. HI, then, numerically estimates the impulse
delivered to any object once a particular object gets hit. Our
approach uses both reasoning methods to calculate the impact
that an object will have on other objects upon getting hit.
A numeric value of such impact is assigned to each object
that is reachable by a direct shot, however we only ascribe a
non-zero value to blocks which, when shot at, will affect pigs
located in the scene or their sheltering structures. Ultimately,
the program shoots at an object with the highest value.

The paper is organised as follows. In Sect. II we briefly dis-
cuss relevant work related to the key methods of our approach.
In Sect. III we introduce the methods for representing game
scenes in AB. Section IV is devoted to reasoning methods of
our approach, namely VI and HI, and to calculating the final
value of particular objects. An evaluation for our approach is
provided in Sect. V. Finally, in Sect. VI we conclude the paper
and present directions of prospective research.

II. RELATED WORK

The work reported in this paper is mostly situated in the field
of Qualitative Physics (see, e.g., [6]–[8]). The main goals of
Qualitative Physics are to “produce causal accounts of physical
mechanisms that are easy to understand” and at the same time
are “far simpler than the classical physics and yet retain all
the important distinctions without invoking the mathematics of

continuously varying quantities and differential equations” as
stated in de Kleer’s cornerstone paper [8]. In other words, the
main goal is to develop adequate representations of physical
mechanisms that do not involve sophisticated mathematical
tools and are understandable by the folk. The main, albeit not
the only, inspiration for Qualitative Physics are our intuitions.
Qualitative Physics aims at identifying the core knowledge
behind our physical intuitions. Humans appear to be using
qualitative representation and reasoning about the behaviour
of physical environment and our everyday methods differ
significantly from the classical physics’ view of the world
(see [8]). Given that we are good at functioning in the physical
world, it is reasonable to investigate these methods.

In [7] Forbus indicates three aspects of qualitative physics:
qualitative dynamics, qualitative kinematics and qualitative
styles of reasoning. In our approach we traverse all of them,
however, since most of the methods proposed in this paper
intersect the division lines drawn by Forbus, for the sake
of clarity we group them as follows. First, we provide a
qualitative representation of the static state of the environment.
Second, we investigate the notion of stability both in its static
and dynamic aspect (the former is handled by our notion of
“I-stability”, the latter is done by the VI algorithm). Third, we
scrutinize the way force is propagated to blocks in a structure
once one of them has been hit.

Representation: The work concerning qualitative repre-
sentation of space has been done within Qualitative Spatial
Reasoning (QSR) approach (see [9]) which introduces com-
monsense methods representing space by means of symbolic
abstraction of numerical values. Several most notable exam-
ples of QSR methods that can deal with two-dimensional space
are: Region Connection Calculus [10] (although this one is
more involved with topology), Allen’s Interval Algebra [11]
and Rectangle Algebra (RA) [12]. The Qualitative Reasoning
approach has already been used in PBSG, e.g., in [13], [14]
where authors introduce an extended version of RA, called
Extended Rectangle Algebra (ERA). RA considers objects’
Minimum Bounding Rectangles (MBRs) with sides parallel
to the axes of a coordinate system (see Fig. 3). Each MBR is
projected on the coordinate axes. Then, start and end points of
such intervals determine a relation between two MBRs. ERA
recognizes not only the start and end points of an interval but
also its centre. As a result, ERA relations enable to distinguish
unstable objects as it becomes apparent in the next paragraph.

Stability: In [15], [16] Siskind proposes a framework
for kinematic analysis of stability of a two-dimensional scene
composed of pentagonal blocks. He distinguishes lines that
are “grounded” and then performs reasoning that answers
if the whole scene is stable, whereas a scene is said to be
stable if it is “immovable”, i.e., cannot be moved. In Siskind’s
approach the reasoning is conducted for line segments, there-
fore polygons are represented by closed polylines. In such
a scene representation some line segments intersect. Such
an intersection point is called a joint. Siskind distinguishes
three types of joints: revolute – if the angle between two
constituent segments can change, prismatic – if it can “slide”
along one of the constituent segments and rigid – otherwise.
In Siskind’s method each line segment should be ascribed two

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 3

numerical values representing its linear and angular velocity.
A number of conditions are formulated that determine how
these values should be assigned to segments if they have a
common joint. The key step of Siskind’s method is answering
the question of whether it is possible to achieve an assignment
such that it preserves certain conditions (namely such that the
entropy variable introduced to the scheme can be equated to
zero). If such an assignment is feasible, it means that the
whole scene is movable, i.e., unstable. In other words, he
investigates whether the assumption that blocks constituting
the scene move is consistent, and if the answer is affirmative,
he claims instability of the investigated scene. Therefore, the
whole problem of stability is here reduced to solving a set of
linear equations and inequalities. Ultimately, Siskind’s method
provides us with a yes-no answer to the question of whether
a scene is stable, which does not entirely fit our needs as it
will become clearer in Sect. III-D and IV-B.

In [17] Blum et al. analyse the notion of stability within
the dynamics paradigm. The motivation of their work is to
verify whether a robotic arm programmed to erect a given
block construction can add subsequent blocks to the structure
without losing its stability. In the cited paper also a two-
dimensional variant of the problem is investigated. The method
consists in analysing forces that act on particular adjacency
points between blocks. Each such force occurs as a variable in
a set of linear equations. Assuming that the masses of objects
are known, also numbers occur in these equations. As Blum
et al. show, the whole construction remains stable iff there
exists a solution to the abovementioned set of equations in
which all forces have non-negative values. The VI algorithm
also “calculates” whether a gravity force acting on a block
or a block structure outweighs opposite forces acting on it
and cause the block (structure) fall. However, no elaborate
mathematical apparatus is involved in the VI algorithm as can
be seen in more detail in Sect. IV-A.

A qualitative stability analysis is delivered by Renz and
Zhang in [13] and extended in [14]. In their approach an object
is said to be not stable if it will move (fall) under the influence
of gravity. When an object is supported appropriately, it is
stable. Their definition of stable objects involves a number
of rules, where the most important one seems to be the one
stating that “an object is stable and will not topple if the
vertical projection of the centre of mass of an object falls
into the area of support base”. The authors of the paper
notice that the provided rules do not exhaust all cases of
blocks that remain stable, which is the result of the fact that
they do not take into account objects lying on the block in
question, even though they could play some role in preserving
stability of this block. This is caused by the fact that reasoning
about supporting blocks and their influence on the object’s
stability only requires qualitative categories introduced by
ERA, whereas if blocks lying on the object are to be taken
into account, some numerical calculations would need to get
involved, thus squandering the qualitative character of the
whole method. Therefore it can be said that their method
for reasoning about stability is sound but incomplete. The VI
algorithm presented in our paper is based on intuitions about
stability similar to those used in the ERA paper, however it

also considers a potential impact that objects lying on an object
o can have on its stability.

Force propagation: The qualitative propagation of force
(or motion) has not been extensively analysed as of today.
One approach, presented by Nielsen in [18], is to consider
objects arranged in the so-called kinematic chains. Two objects
which are in contact with each other form a kinematic pair.
The closure of the relation of kinematic pair is called a
kinematic chain. If there is an external force acting on an
object in a kinematic chain, this force will then be distributed
to other objects in that chain. There are further questions that
need to be addressed, firstly: how will a motion of an object
affect another object; secondly: what kind of motion of one
object will affect other objects. Nielsen describes two types
of motion: translational and rotational. In order to determine
how an object will move and whether it has any effect on other
objects one must first eliminate the constrained motions (i.e.
motions which are impossible due to some constraints, e.g., a
wall) and then apply the motion transfer.

In [19] Pu considers the “flow” of force and velocity through
a structure consisting of several blocks. She analyses the
propagation of force for a dynamical model in terms of simple
input-output mechanism. For a structure consisting of three
blocks standing next to each other if we act with a certain
force on the first block, it will then act with another force on
the second one and so on. The incoming force is the “force-in”
which is transformed into the “force-out” which in turn acts on
the second block as the “force-in” again. Hence for a structure
consisting of connected blocks the force flows through the
structure.

In our HI algorithm we follow both of the above approaches
- Nielsen’s and Pu’s - extending them to more general cases
(e.g. when an object pushes two other objects in a given
direction). For more details we refer the reader to Sect. IV-C

III. REPRESENTATION

Our approach involves spatial configuration representation
by means of qualitative relations. Qualitative representation
seems to be essential for a human while reasoning about space,
in particular while playing PBSG games like AB. We obtain
qualitative representation as an abstraction from quantitative
data gathered from a screenshot of the game scene as follows.

A. Quantitative representation

Fig. 2: Objects extracted from the AB
game scene presented in Fig. 1 as Min-
imum Bounding Rectangles (MBRs)
on the left and real shapes on the right.

For quantitative
representation of a
game scene we use
a two-dimensional
coordinate system
such that its x-axis
is horizontal and
oriented to the
right, whereas the
y-axis is vertical
and oriented to
the top. By P we
denote the set of all pixels (points) in a scene. For each

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 4

pixel (point) p by integers x(p) and y(p) we denote its x-
and y-coordinate respectively. We obtain a list of objects
O in the game scene by means of a basic vision module
provided by the Angry Birds AI Competition organizers
(available online at aibirds.org) as presented in Fig. 2.
Each object extracted from the game scene screenshot is
represented as a set of points. Henceforth, if it does not lead
to confusion, we interchangeably use o as denoting an object
and the set of its constituent points. For any given object o,
center(o) is its center point, area(o) is its area, width(o) and
height(o) are dimensions of a Minimum Bounding Rectangle
(MBR) of o, and contour(o) is the set of borderline points that
belong to o, as presented in Fig. 3. Additionally, objects have
assigned types, namely ice, wood, pig or stone, e.g., pig(o)
denotes that o is a pig. Then, we define a density function,
ρ : {ice, wood, stone, pig} → [0, 1] which ascribes to each
type of object an experimentally obtained value of density
(ρ(ice) = 0.6, ρ(wood) = 0.7, ρ(stone) = 1, ρ(pig) = 0.6)1,
which we use to compute mass of an object. Furthermore there
is one distinguished object, namely ground.

left top
point of o

center(o)

width(o)

height(o)

Fig. 3: Object’s o repre-
sentation.

For any two objects oi and
oj the distance dist(oi, oj) is the
smallest distance between points
pk, pl such that pk ∈ oi and pl ∈
oj . Additionally, by traj(o) =
{traj→(o), traj↗(o)}, we denote
a set of 2 parabolic trajectories
(low and high) of a shot targeted
at the top left point of o with
the greatest possible sling tension,
where traj→(o) (traj↗(o)) is a list of points belonging to
the low (high) trajectory (see Fig. 6), such that its first point
is the central point of the sling and the last point is the left
top point of o (in most cases in AB shooting at the left top
point of an object gives better results, then shooting at its
center). Trajectories ignore obstacles, i.e., when determining a
trajectory between the sling and an object we abstract from the
fact that it might intersect other objects in between. Obviously,
in some cases there is only one or even no possible trajectory.
In what follows, the list of trajectories calculated for a given
game scene is denoted by T . The vision module enables us
to determine the bird type that is going to be launched. We
distinguish the following bird types: red, blue, yellow, white
and black. A list of all possible bird types is denoted by B.

We introduce the reachable predicate for objects. Intu-
itively, it expresses the fact that an object o may be directly hit
by a shot. An object o is reachable iff there exists a trajectory
t (low or high) aiming at o and not intersecting any object ok
such that ok 6= o. More formally:

Definition 1 (reachable predicate). For an object o ∈ O

reachable(o) ≡∃t ∈ traj(o)∀p ∈ t∀oi ∈ O(
(p ∈ oi)→ (oi = o)

)
.

1At this stage of development of the program, the algorithm is not faced
with incomplete information like, e.g., unknown numerical values of densities.
Instead, we rigidly “fill out” these gaps. Introducing learning module to the
algorithm is a matter of future research (see Sect. VI).

B. Qualitative representation
We define lies_on - a binary relation between objects.

Intuitively, lies_on(o1, o2) whenever o1 is adherent to o2 from
above and presses o2 with its weight. Definition 2 captures this
intuition more formally:

Definition 2 (lies_on relation). For objects o1, o2 ∈ O
lies_on(o1, o2) ≡ o1 6=o2 ∧ ∃p1, p2 ∈ P

(
p1 ∈ o1 ∧ p2 ∈ o2

∧ x(p1)=x(p2) ∧ 0< y(p1)−y(p2)<c
)
.

The meaning of the constant c ∈ N is the following. Nor-
mally we would be looking for only those points of o1
that strictly adhere to o2 as the candidates for the leftmost
and rightmost points (in that case c = 1). However, due
to imperfect representation of blocks provided by the vision
module it might happen that two objects that are adherent in
the actual game scene are represented as slightly distant to
each other. Therefore, the aim of introducing the constant c
is to prevent recognizing such imperfectly represented objects
as disconnected.

The lies_on relation is irreflexive and for convex polygons
(which we are mostly dealing with in the AB game scenes)
also asymmetric (this asymmetry breaks down in the case of
non-convex polygons). At first glimpse lies_on resembles the
intuitive concept of “being supported by” and one could be
inclined to confuse these two. It is not the case, though, since
the latter is not asymmetric even for convex polygons. For
instance, in Fig. 4(a) we have lies_on(o1, o2) but at the same
time o1 is a support of o2 as well as o2 is a support of o1.

o1 o2
o3

o4

o5 o6

ground

(a)

o1

o2
p1 p2

ground

(b)

Fig. 4: In Fig. (a) a sample arrangement of blocks is presented.
Figure (b) shows the leftmost (rightmost) connection points p1
(p2) between o1 and o2.

Analogously, on_right(o1, o2) (also irreflexive and asymmet-
ric for convex polygons) means that o1 adheres to o2 from
the right-hand side stabilizing o1 in the event it gets hit by
(or after) a shot (as it will become apparent later, forces
are generally propagated from left to right). For example, in
Fig. 4(a) we have on_right(o6, o5). A formal definition of
on_right is as follows.

Definition 3 (on_right relation). For objects o1, o2 ∈ O
on_right(o1, o2) ≡ o1 6=o2 ∧ ∃p1, p2 ∈ P

(
p1 ∈ o1 ∧ p2 ∈ o2

∧ y(p1)=y(p2) ∧ 0< x(p1)−x(p2)<c
)
.

Henceforth we abbreviate lies_on−1 and on_right−1 by,
respectively, lies_under and on_left, i.e., lies_under
(on_left) is the converse relation of lies_on (on_right).

aibirds.org

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 5

For each two blocks o1, o2 such that lies_on(o1, o2), we
define the left- and rightmost connection points between o1
and o2 (left_p(o1, o2) and right_p(o1, o2), respectively) in 3
steps. First, let L(o1, o2) be a set of all points p ∈ o1 such that
their distance to o2 is smaller than the constant c. Second, let
L′(o1, o2) ⊆ L(o1, o2) be a set of points with the smallest x-
coordinate. Third, the left_p(o1, o2) is the point in L′(o1, o2)
with the smallest y-coordinate. We define the right_p in an
analogous way. As an example consider the structure presented
in Fig. 4(b), where lies_on(o1, o2), hence we can determine
the left_p(o1, o2) and right_p(o1, o2). In this case we have
p1 = left_p(o1, o2) and p2 = right_p(o1, o2).

The main part of spatial representation is obtained by means
of the unary predicate reachable and the binary relations
lies_on and on_right. In what follows we introduce a spatial
network – a graph-like structure which is constructed and
stored by our program.

Definition 4 (spatial network). Spatial network G =
(O, reachable, lies_on, on_right) is a graph-like structure,
where O is a set of spatial objects, reachable ⊆ O is a set
of distinguished (reachable) objects, and lies_on ⊆ O2 and
on_right ⊆ O2 constitute a set of edges of two types.

As an example we show in Fig. 5(a) a graphical presentation
of a spatial network corresponding to the block structure from
Fig. 4(a).

ground

o2o1 o3

o4

o5 o6

(a)

ground

o2o1 o3

o4

o5 o6

(b)

Fig. 5: The graph-like representation of the structure from
Fig. 4(a). (a) represents a spatial network, where thick nodes
are elements of reachable, orange arrows represent lies_on
relation and red dashed arrows stand for on_right. In (b)
respective shaded arrows represent lies_on∗ and on_right∗.

We denote the transitive closure2 of the relations lies_on
and on_right by lies_on? and on_right?, respectively. We
have obtained transitive closures of lies_on and on_right
by means of a depth-first search algorithm presented in [20]
(whose complexity is in O(n2), where n = card(V) is a
number of nodes in the graph). The obtained lies_on? and
on_right? enable us to create a graph-like structure G′ =
(O, reachable, lies_on?, on_right?) presented in Fig. 5(b).

C. Shelters
It often appears that there is no way of hitting a target with-

out destroying its sheltering structure first. It is then reasonable

2The transitive closure of a binary relation R on a set X is a minimal
transitive relation R∗ on X such that R ⊆ R∗.

to identify the most important shelters. We define shelter - a
ternary relation between two objects and a trajectory, which
denotes the fact that the first object is a shelter for the second
object (always a pig) with respect to a given trajectory. More
precisely, shelter(o1, o2, t) whenever o2 is a pig and o1 lies
on one of estimated trajectories for a shot aiming at o2. A
formal definition of the shelter relation is as follows.

Definition 5 (shelter relation). For objects o1, o2 ∈ O and a
trajectory t ∈ T

shelter(o1, o2, t) ≡ t ∈ traj(o2) ∧ pig(o2) ∧ o1 ∩ t 6= ∅.

For each object we determine a shelter value which allows us
to distinguish between more and less important shelters. We
define a function shelter_val : O → R that maps an object
into its shelter value as follows. Let Tpig ⊆ T be a set of
all trajectories that aim at any of the pigs in a game scene
and let Tpig(o) ⊆ Tpig be a set of all these trajectories that
intersect o and do not directly aim at o, i.e., the trajectories
with respect to which o is a shelter for some pig. Now, the
more elements Tpig(o) contains, the more valuable o should
be as a shelter. Moreover, the closer a sheltering object o is
to the pig and the fewer objects lie between o and this pig on
a given trajectory, the higher the probability that a direct shot
at o will also affect the pig and, consequently, the higher the
shelter value of o should be.

Definition 6 (shelter_val function). For an object o ∈ O

shelter_val(o) =
∑

t∈Tpig(o)

1

dist(o, pigt)
· 1

no_betw(o, pigt, t)+1
,

where pigt is a pig that a trajectory t aims at and
no_betw(o, pigt, t) is a number of objects lying on a trajectory
t between o and pigt .

Note that the intuitive meaning of the shelter_val function is
a little vague and comprises the importance of a shelter from
the player’s point of view, i.e., to what extent destroying it
will help them in further game play.

o1

o2

o3

ground

o4

traj→(o4)

traj↗(o4)

Fig. 6: For the traj→(o4) tra-
jectory o2 and o3 are shel-
ters of the o4 pig, whereas for
traj↗(o4) only o3 is a shelter
of o4.

As an example consider
Fig. 6. On a trajectory
traj→(o4) there are
2 shelters for the o4
pig, namely o2 and o3,
whereas on the upper
trajectory traj↗(o4)
only o3 is a shelter
for o4. Consequently,
Tpig(o1) = ∅, Tpig(o2) =
{traj→(o4)}, Tpig(o3) =
{traj→(o4), traj↗(o4)}.
o3 has higher shelter_val
than o2 since, first,
|Tpig(o3)| > |Tpig(o2)|,
second, o3 is closer to the
o4 pig with respect to trajectory traj→(o4) and last, there
are no other objects between o3 and o4 on either of the
trajectories intersecting o3 (as opposed to o2).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 6

D. I-stability

In our reasoning module we employ the notion of I-stability
(stability as immovableness) that would be helpful in determin-
ing whether an object is likely to fall/move after getting hit.
Since we want to decide which objects are the best targets,
i.e., which should we shoot at to cause the biggest possible
damage, we need I-stability to be a gradable property. Thus,
we define I-stability as “susceptibility to fall or move upon
getting hit”. It is easy to note that neither of the stability defini-
tions presented in Sect. II meets the above case. Following the
lines of [6], [7], we can informally characterize the introduced
notion by indicating certain monotonic dependencies between
I-stability and various features of a game scene. We will use
Fig. 7 as an example. Thus, the object o’s I-stability increases3

whenever one of the following increases (ceteris paribus):
• n - I-stability of objects that lie_under o (o2, o3)
• ratio(o) - ratio of o’s width to its height (ratio(o1))
• mass(o) - cumulated mass of o and all objects that
lie_on∗ o (mass of o1, o4 and o5),

• mass_right(o) - cumulated mass of the objects that are
directly on_right of o (mass of o6 and o7).

ground

o2 o3

o4

o5

o6

o7

o1
width(o1)

height(o1)

Fig. 7: Factors determining the
I-stability of o.

Before we briefly com-
ment on each of these
points, we introduce a for-
mal definition of a function
I-stability : O → [0, 1]
that assigns to each object
an I-stability value from
the interval [0, 1] (where 0
means that the object will
move without any stimuli
and 1 means that the object
is impossible to move).

Definition 7 (I-stability function). For an object o ∈ O \
{ground}

I-stability(o) =(
n

√√√√ 1∑
oi|lies_on(o,oi)

1
I-stability(oi)

·ratio(o)
)k√mass(o)· l√mass_right(o)

,

where:

ratio(o)=

{
1 if width(o)≥height(o)
width(o)
height(o) otherwise

,

mass(o)=
1

1+
∑

oi|oi=o∨lies_on∗(oi,o)
area(oi)ρ(oi)

,

mass_right(o)=
1

1+
∑

oi|on_right∗(oi,o)
area(oi)ρ(oi)

,

n = card({o2 | lies_on(o1, o2)}),
k, l ∈ Z are determined experimentally.

I-stability of ground is always equal to 1.

3Until it reaches the threshold value here equal to 1.

Notice that a value of the I-stability function is always in
the interval [0, 1]. 1∑

o2|lies_on(o1,o2)

1
I-stability(o2)

is in the interval

[0, 1] and n ∈ N, therefore n

√
1∑

o2|lies_on(o1,o2)

1
I-stability(o2)

∈

[0, 1] and the greater n is, the greater is this expression.
Since ratio(o1) ∈ [0, 1], then

(
n

√
1∑

o2|lies_on(o1,o2)

1
I-stability(o2)

·

ratio(o1)
)
∈ [0, 1]. Finally, raising this expression to any non-

negative power cannot result in getting a value greater than 1.
Now let us get back to the monotonic dependencies char-

acterizing our notion of I-stability. The first one expresses the
fact that an object “inherits” some part of its I-stability after
the objects lying directly under. In our equation we used a
variation of geometric average to encode that if more than
one block underlies an object under consideration then the
more I-stable of them affect the “inherited” part of I-stability
of the object stronger than less I-stable ones. Even though
this assumption is not free of fallacies, we believe it reflects
well an “average” case. The second dependency reflects an
intuitive truth that the “flatter” an object is, the harder it is
to move or overthrow. In the equation the ratio value of an
object is used as a simple coefficient. The third dependency
encapsulates the fact that mass pressing an object from above
stabilizes it. The last one captures a simple relation: the more
massive is a structure situated to the right of an object, the less
the object is susceptible to move or fall after getting hit from
the right (since it can abut against this structure). Both mass
values are captured in the equation in the form of exponents.
Since any non-zero value of a mass equates the value of the
respective exponent to a fraction from the interval (0, 1), it
increases the value of the base (which is a fraction from an
interval (0, 1])4. The roots in the exponents and their degrees
(represented by k and l in the equation) are introduced to
balance the influence of both types of mass on the final I-
stability value of an object. In the case of our algorithm k
and l have been experimentally determined to be equal to,
respectively, 5 and 7.

At the end of this section let us again recall other definitions
of stability discussed already in Sect. II. Let us consider the
objects o6 and o7 from Fig. 7. According to [14] both objects
are stable as standing on the ground (satisfying Rule 1). In
the light of [17], too, both of them would be classified as
stable since all forces acting on them remain in equilibrium.
On the other hand, Siskind’s method from [15], [16] would
qualify them as unstable since neither of them is grounded
(only the ground itself and hills are “grounded” in Siskind’s
sense) and it is possible to move both of them. Our approach
assigns different I-stability values to both objects determining
which is more likely to overturn after getting hit. It shows that
the notion of I-stability introduced in this paper recognizes a
different property than the cited works.

IV. REASONING

In this section, we demonstrate how we use the notions
constituting our representation of a game scene in order to

4Note that if mass_above(o) or mass_right(o) is equal to 0, then the
respective exponent is equal to 1 thus leaving the base unchanged.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 7

take the best possible shot, i.e., the shot that, given the
circumstances, will cause the largest damage to pigs and/or
their shelters in the scene. The aim of reasoning methods
displayed in this section is to assign numerical values to
objects, so that, in principle, an object with the highest value
is the best direct target in a given situation. Calculation of the
final values of objects consists of the following parts:

First, we assume that the only objects that we want to have
impact on are pigs and their shelters.

Second, we indicate all objects that are reachable by a shot
(for details, see Sect. III-A) since these are the only objects
that we are going to assign a non-zero value to.

Third, in calculating the final value of each reachable block
we take into account two components: its I-stability and the
degree to which violation of the object will have impact on
pigs and their shelters. The pattern appropriately embracing
these factors is presented in the final part of this section.

Fourth, in calculating the impact of a block on a pig or its
shelter, we take into account two factors, namely: which blocks
will fall after we have damaged a given block, and how the
impact of the shot is propagated into other blocks. We intro-
duce two methods for capturing the abovementioned factors,
namely Vertical Impact and Horizontal Impact respectively.
They are presented in detail in the forthcoming two parts of
this section.

A. Vertical Impact

In most Angry Birds scenes objects are arranged into
complex structures. This means that by striking one of them
we also affect other components of the structure. In such
structures some objects support others, so that if we remove
these supporting blocks (they get destroyed or fall), supported
objects may collapse. We propose a method which is qualita-
tive in nature and only to a small extent exploits quantitative
measures. We call it Vertical Impact. It allows us to infer
about the effects of an object’s fall or disappearance, i.e.,
predicting which other blocks in the structure will fall. The
method is based on a recursive checking of substructures in
the spatial network representing the scene (starting from the
object directly hit by a bird) and in the end it returns the list
of all objects that ultimately will fall. It exploits the rule that
serves as the basis for stability investigation in [14], namely
that “an object is stable and will not topple if the vertical
projection of the centre of mass of an object falls into the
area of support base”. In the following part we demonstrate
in detail how the method works, using Fig. 8 as our running
example.

We apply VI by taking as an input a concrete object o we
intend to destroy by a direct shot (see Fig. 8(a)). Afterwards,
we proceed in the following steps.

First, we determine a set Ao of all objects in the relation
lies_on∗ with o, i.e., lying directly or indirectly on o5.
Afterwards we find a set Bo of all objects lying under Ao
except for o itself. Intuitively, after the fall of o Ao rests on
objects from Bo, which form a structure henceforth referred

5Henceforth, we will denote an object composed of all elements of a set
S by a corresponding symbol S written in gothic font. For example, Ao will
denote an object built of all elements of Ao.

o1 o2

o3

o4

o7

o6

o5

o8

ground
fall = ∅

(a)

o1 o2

o3

o4

o7

o6

o8

ground

o5

pl

pr

pc

x(pl) < x(pc) < x(pr)

fall = {o1}

(b)

o1 o2

o3

o4

o7

o6

o8

ground

o5

pl pr

p′l p′r pc

fall = {o1}

(c)

o1

o3

o2

o4

o7

o6

ground

o5

pl

pr

pc

o8

x(pc) < x(pl)

fall = {o1, o3}

(d)

o1

o3

o4

o7

o5
o6

o8

ground

o2
pl pr

pc

fall = {o1, o3, o4, o5, o8}

(e)

o1

o3

o4

o7

o5
o6

o8

ground

o2

pl pr

pc

x(pr) < x(pc)

fall = {o1, o3, o4, o5, o8}

(f)

o1

o3

o4

o5
o6

o8

ground

o2
o7

pl pr

pc

fall = {o1, o3, o4, o5, o6, o8}

(g)

o1

o3

o4

o5
o6

ground

o2
o7

o8

fall = {o1, o3, o4, o5, o6, o8}

(h)

Fig. 8: Blue lines circle elements that are currently processed
by the VI algorithm. Elements marked orange lie directly
under (or also directly on when the Check procedure is
launched) objects circled with a blue line.

to as Bo. In Fig. 8(b) Ao1 = {o3, o4, o5, o8} (marked blue)
and Bo1 = {o2, o6} (marked orange).

Second, we fix three points:

1) the center of mass for Ao (center(Ao), pc in short),
2) the leftmost connection point between Ao and Bo

(left_p(Ao,Bo), lp in short),
3) the rightmost connection point between Ao and Bo

(right_p(Ao,Bo), rp in short),

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 8

We call the last two the pivot points of Ao.
Third, we check whether x(pc) < x(pl) or x(pc) > x(pr).

If neither is the case, we proceed to step Fourth. Otherwise,
we perform Step Sixth. Fig. 8(b) shows that the Ao1 ’s centre of
mass pc is located between the left- and rightmost connection
point (pl and pr, respectively) between Ao1 and Bo1 , so we
need to perform a further check whether Ao1 will indeed
remain stable.

Fourth, If x(pl) < x(pc) < x(pr), in most cases it means
that Ao remains stable and nothing is added to the list of fallen
objects at this stage. However, it might also turn out that even
though the Ao as a single object would remain stable, the
stability of some components of Ao has been violated. To
verify this, we check, one by one, each block lying on our
object o. For each such object oi we fix two sets: LOoi of
all objects lying directly on oi and LUoi (to memorize these
symbols, note that LO and LU stand for, respectively, lying
on and lying under) of all objects lying directly under oi. If
LUoi turns out to be empty, it means that oi has no longer any
blocks it can lie on and it falls. Therefore, we launch the VI
method for oi as an input and for the initial spatial network
reduced by the set of objects currently occurring on the list
of fallen objects and the set of respective edges departing or
entering these objects. In Fig. 8(c) the only object that has been
lying directly on o1 is o3. LUo3 is non-empty and consists of
a single object o2, while LOo3 = {o4}.

Fifth, If LUoi is not empty, which means that there exist
blocks that oi is lying on, it is still possible that oi has lost
its stability. We check it by, first, fixing the following points:

1) the left- and rightmost connection points between LUoi
and oi (left_p(LUoi , oi), right_p(LUoi , oi), pl and pr,
respectively, in short),

2) the left- and rightmost connection points between LOoi

and oi (left_p(LOoi , oi), right_p(LOoi , oi), p
′
l and p′r,

respectively, in short),
3) the centre of mass of oi (center(oi), pc in short).

Now, if both the pc and the entire adherent part of LOoi

protrude beyond the (entire) adherent part of LUoi from
the same side, i.e., x(pc) < x(pl) ∧ x(p′r) < x(pl) or
x(pr) < x(pc) ∧ x(pr) < x(p′l), it means that there is no
counterbalance for the forces acting on oi on this side from
above. Consequently, oi looses its stability and falls. Thus,
we launch the VI method for oi as an input and for the
initial spatial network reduced by the set of objects currently
occurring on the list of fallen objects and the set of respective
edges departing or entering these objects. In Fig. 8(c) we can
see that both the o3’s centre of mass pc and the whole part
of LOo3 adherent to o3 (determined by the interval [p′l, p

′
r])

protrude from the left beyond the part of LUo3 adherent to o3
(determined by the interval [pl, pr]), which means that o3 will
fall and is added to the list fall.

Sixth If x(center(Ao)) < x(left_p(Ao,Bo)) or
x(center(Ao)) > x(right_p(Ao,Bo)), Ao must have lost its
balance and in effect all elements Ao fall. Consequently, we
add them to the list of fallen objects. Roughly, if a centre
of mass of the structure Ao is located horizontally between
utmost connection points between Ao and its underlying
structure Bo, in most cases it remains stable (unless the

Check procedure from steps Fourth and Fifth proved the
opposite). On the other hand, if it protrudes from the left
beyond the leftmost connection point or from the right beyond
the rightmost connection point, Ao loses its balance and falls.
In Fig. 8(d) the sets Ao3 = {o4, o5, o8} and Bo3 = {o6}
are determined since o3 has just fallen. It turns out that
Ao3 ’s centre of mass protrudes from the left beyond Bo3 .
Consequently, all elements of Ao3 fall and are added to the
list fall.

Algorithm 1 VERTICAL(o)
Input: an object o
Output: a list fall of all objects that fall if o does

1: Initialize an empty list of objects fall;
2: Run FALL(o, fall);

Algorithm 2 FALL(o, fall)
Input: an object o and an initialized list fall
Output: an updated list fall

1: Add o to fall;
2: Set a list of objects Ao ← {o′ ∈ O | lies_on∗(o′, o) ∧ o′ /∈ fall};
3: Initialize a new object Ao;
4: Set contour(Ao)← contour(

⋃
Ao); // Ao takes its contour after the contour

of Ao understood mereologically
5: Initialize a double x(Ao); // an abscissa of Ao’s mass center
6: Set a double m← 0 // m will represent mass of Ao
7: for each object oi from Ao do
8: Set m← m+ area(oi)·ρ(oi); // area(oi)·ρ(oi) is a mass of oi
9: end for

10: for each object oi from Ao do
11: Set x(Ao) ← x(Ao)+

area(oi)·ρ(oi)
m ·x(oi); // calculating x(Ao) as the

weighted average of the abscissas of all Ao’s members’ centers
12: end for
13: Set lists of objects Bo ← {o′ ∈ O | o′ /∈ fall ∪ Ao ∧ ∃o′′ ∈ Ao

lies_under(o′, o′′)}, B+
o ← Bo ∪ {o′ ∈ O | lies_under(o′, o) ∧ o′ /∈

fall};
14: if Bo is empty then // if o turned out to be the only block lying under Ao
15: Set fall← fall ∪

⋃
Ao;

16: for each object oi from B+
o do

17: Set a list Coi ← {o
′ ∈ O | lies_under(o′, oi)};

18: if Coi is not empty then
19: Initialize a new object Coi ;
20: Set contour(Coi)← contour(

⋃
Coi);

21: if not left_p(oi,Coi)<x(oi)<right_point(oi,Coi) then
22: Run FALL(oi, fall);
23: end if
24: end if
25: end for
26: else
27: Initialize a new object Bo;
28: contour(Bo)← contour(

⋃
Bo);

29: if left_p(Ao,Bo)<x(Ao)< right_p(Ao,Bo) then // if the Ao’ mass
center lies between both utmost connection points between Ao and the structure Bo

lying under Ao
30: for each object oi such that lies_on(oi, o) do
31: Run CHECK(oi, fall);
32: end for
33: else
34: Set fall← fall ∪

⋃
Ao;

35: for each object oi from B+
o do

36: Set a list Coi ← {o
′ ∈ O | lies_under(o′, oi)};

37: if Coi is not empty then
38: Initialize a new object Coi ;
39: Set contour(Coi)← contour(

⋃
Coi);

40: if not left_p(oi,Coi)<x(oi)<right_point(oi,Coi) then
41: Run FALL(oi, fall);
42: end if
43: end if
44: end for
45: end if
46: end if

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 9

Algorithm 3 CHECK(o, fall)
Input: an object o and an initialized list fall
Output: an updated list fall

1: Set lists LOo ← {o′ ∈ O | lies_on(o′, o)}, LUo ← {o′ ∈ O |
lies_under(o′, o)};

2: if LUo is empty then
3: Run FALL(o, fall);
4: else
5: Initialize new objects LOo, LUo;
6: Set contour(LOo) ← contour(

⋃
LOo), contour(LUo) ←

contour(
⋃
LUo);

7: if [right_p(LOo, o) < left_p(LUo, o) & x(center(o)) <

left_p(LUo, o)] or [left_p(LOo, o) > right_p(LUo, o) &

x(center(o)) > right_p(LUo, o)] then // if two conditions are jointly satisfied:
1) o’s mass center protrudes beyond the adherent structure LUo lying under o from
the left (right), 2) the adherent structure LOo pressing o from above also protrudes
beyond LUo from the left (right)

8: Run FALL(o, fall);
9: end if

10: end if

Seventh, we begin with constructing a set B+
o consisting

of the elements of Bo and all objects lying directly under o.
If Ao has not collapsed, we further consider only the objects
located directly under o. Otherwise we consider all elements
of B+

o . For all these elements we check whether they fall by
taking the following steps. We fix a set Cbi of all objects lying
directly under the object bi. They form a structure which we
denote as Cbi . Then we fix three points:

1) the center of mass for the object bi (center(bi), pc in
short),

2) the leftmost connection point between bi and Cbi
(left_p(bi,Cbi), pl in short),

3) the rightmost connection point between bi and Cbi
(right_p(bi,Cbi), pr in short).

If x(pc) < x(pl) or x(pr) < x(pc), then bi falls and we launch
the VI method for bi as an input and for the initial spatial
network reduced by the set of objects currently occurring
on the list of fallen objects and the set of respective edges
departing or entering these objects (since we assume that,
as fallen, they no longer take part in the reasoning process).
Otherwise, it remains stable so we proceed to the next Bo’s
element bi+1 and we get back to the previous point of the
method. In Fig. 8(e) we can see that Bo3 = {o6} is extended
to B+

o3 by adding o2 as the only element that has been lying
directly under o3. Thus, we proceed to checking whether
subsequent elements of B+

o3 = {o2, o6} will fall. The first
element of B+

o3 o2 lies on the ground which obviously makes
it remain stable (see Fig. 8(e)). The second element of B+

o1
element, o6 falls since its center of mass pcg protrudes to
the right the rightmost connection point prm between itself
and the only element of Co6 , i.e., o7 (see Fig. 8(f)). Since
o6 has fallen, we launch VI with o6 as an input and an
appropriately shrunk spatial network. There is no object that
lies on o6, so we instantly proceed to checking elements of
B+
o6 which is a singleton set {o7} (see Fig. 8(g)). However,

o7 remains stable, so the algorithm terminates returning the
list fall = {o1, o3, o4, o5, o6, o8} of all fallen objects (see
Fig. 8(h)).

A pseudocode of the VI method is demonstrated in Al-
gorithms 1 (Vertical), 2 (Fall) and 3 (Check). Intuitively,
Algorithm 1 serves to initialize a list fall that is to be filled.

Algorithm 2 makes it possible to verify whether whole struc-
tures lying transitively on a fallen object will fall. Algorithm 3
enables us to check if particular elements of a structure that
Algorithm 2 evaluated as stable will indeed remain stable.

The VI method always terminates. Indeed, by the fact that
the number of objects in a game scene is limited, the Fall
method can be recursively called only a finite number of times
- it cannot be called for the same object twice, which is secured
in lines: 2 (which prevents Algorithm 3 from calling Fall
infinitely many times in lines 3 and 8) and 13 of Algorithm 2
(which prevents it from calling Fall infinitely many times in
lines 22 and 41). Moreover, each call of the Fall method
consists of a finite number of steps since all lists: Ao, Bo,
B+
o and Coi are finite (again, by the fact that there is only

a finite number of objects in a scene). The same applies to
the Check method. It can only be called finitely often since
all lists Ao that Check relies on are finite and since there are
only finitely many objects in a scene, only a finite number of
such lists can be created during operation of the method.

B. Comparison with alternative methods

As described in more detail in Sect. II, Siskind’s method
of determining stability of a scene (see [15], [16]) allows us
to judge whether in a given layout the whole scene remains
stable. Thus, if we wanted to apply the method to analyze
the stability of a scene after one of its constituting blocks
is destroyed, we would need to check if an appropriate
assignment of linear and angular velocity to each constituent
line segment of the structure is possible. In such an approach,
however, several difficulties occur. First, our vision module
does not allow us to precisely identify each joint as belonging
to a particular type. Second, Siskind’s method only makes it
possible to evaluate if the whole grounded structure remains
stable after the shot. In order to know which particular block
of the given structure will remain stable, we would have
to distinguish different substructures of the main structure,
evaluate their stability and on that basis determine the falling
blocks. This, however, ignores the mutual impact of different
substructures on each other and the way they are grounded in
each other.

The approach introduced by Blum et al. (see [17]) offers
a sophisticated, dynamic analysis of the structure in question.
Resting on estimated mass of objects, angles between them
and friction coefficients, it calculates forces and tensions
between blocks and returns an information if such a structure is
stable. Again, if this approach is to be introduced into the AB
shot scenario, it would face similar problems. It determines
the (in)stability of the whole structure, whereas we want to
know exactly which objects will fall in order to calculate a
possible impact of a targeted block on other blocks.

The comparison of determining stability by the ERA agent
(see [14]) and VI algorithm deserves a more extensive treat-
ment. We will discuss two types of object configurations that
are properly evaluated by our method, but not by the ERA
agent.

In the first case we consider objects that seem to be not
stable if we only consider the objects below them but turn out
to be stable when objects above them are taken into account.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 10

The ERA agent does not consider what is happening above an
object whose stability is being determined (see [14]), therefore
it would not be able to verify that o5 from Fig. 8 is stable as
long as o6 and o8 remain stable - in this configuration what is
essential for o6’s stability is that o5 and o8 press it from above.
Our algorithm determines the centre of mass of objects lying
above a considered object in order to check if the structure
above makes it stable or is not sufficient to stabilize it (see
Section IV-A). As a result, as long as we do not remove o1,
it recognizes o5, o6 and o8 as stable objects.

ground

o3
o1

o2

Fig. 9: An example of object
configuration, in which ERA
incorrectly recognizes o2 as sta-
ble.

Secondly, consider struc-
tures made of slanting ob-
jects lying one on another
as in Fig. 9. Here o2 is
the only unstable object. In
such a case the ERA agent
uses a rule stating that if a
slanting object is in surface-
to-surface contact with an-
other, already stable, slant-
ing object and moreover
the major part of the first
object’s vertical projection
overlaps with the second object’s vertical projection, then the
considered object is stable (for a precise rule description see
Rule 1.6 in [14]). As a result, the ERA agent would incorrectly
recognize o2 as stable, whereas VI recognizes o2 as unstable
since its centre of mass is to the left of the left-most connection
point between o2 and o1.

C. Horizontal Impact

The second method, i.e., Horizontal Impact, enables us to
estimate how the impulse of a bird directly hitting an object
is propagated to other objects in the structure. We assume
that given an object o such an impact is propagated from o
to all objects that are on_right, lies_on or lies_under o. If
the impact is propagated to pigs or their shelters, they may
fall down or be damaged which obviously is highly desired.
The method assigns each object a numerical value of the so-
called force that acts on that object. We use spatial networks
introduced in Sect. III-B in order to check how the impact
is propagated. Note that HI only investigates propagation of
forces within the connected part of the spatial network the
object o is located in. It means that at the current stage of
development of the algorithm quite frequently occurring cases
of vertical blocks toppling on other objects (thus propagating
force) are not covered by HI. The more detailed description
of the method is as follows.

First, we take as an input a particular object o we intend
to directly fire at and the trajectory of the shot t.

Second, we initialize an array forces of size card(O) of
forces acting on objects in the scene. Initially, forces[oi]← 0,
for all oi ∈ O.

Third, in order to estimate the force forces[o] acting on
the direct target o of the shot, we need to take into account the
type of the bird, the type of the target and the type of the shot
trajectory. Since the impact of a bird on an object depends
both on the object type and on the bird type, we introduce a

correlation function of these two as arguments which returns
a value from the interval [0, 1]. The greater the value is, the
higher the impact of the bird on the object. In Tab. I we present
experimentally established values of the correlation function.

TABLE I: Experimentally established correlation function.
hhhhhhhhhhhbird_type

object_type
pig ice wood stone

red 1 0.8 0.65 0.3
blue 1 1 0.5 0.25

yellow 1 0.6 1 0.2
white 1 0.7 0.8 0.6
black 1 1 1 1

We assign to each type of trajectory (low and high) a value
by traj_type : T ×O → [0, 1] described in Def. 8.

Definition 8 (traj_type function). For a trajectory t ∈ T and
an object o ∈ O

traj_type(t, o) =

{
1 if t = traj→(o)

0.7 if t = traj↗(o)

Then forces[o], which in this case is the force acting on a
directly hit object o with a bird b and trajectory t, is assigned
a value in the following way:

forces[o]← correlation
(
bird_type(b), object_type(o)

)
· traj_type(t, o)

Fourth, we determine a set P of objects that propagate the
force in the current step and a set NP of their neighbours, i.e.,
objects that directly lies_on, lies_under or on_right of some
object from P . In Fig. 10(a) in the first step of the algorithm
P = {o1} (marked blue) and NP = {o2, o4}.

Fifth, for each element oi of NP we calculate the value of
force propagated to oi from elements of P . If it is greater than
previously assigned value to forces[oi], then new forces[oi]
becomes the propagated force value. The propagated force
depends on the stability of oi and of the maximum of values
of forces that have been already propagated to objects oj ∈ P
such that they either lie on or under oi or are located on
the left of oi. To capture it more formally, let AO(o) =
{o′ | lies_on(o′, o)∨ lies_under(o′, o)∨ on_left(o′, o)}. Let
forces_max[AO(o)] be the maximal value of forces already
propagated to elements of AO(o). We set:

forces[oi]← max

(
forces[oi],

forces_max[AO(oi)]

1 + I-stability(oi)

)
.

Additionally, we construct a set N ′P ⊆ NP as a set of objects
to which new force value has been assigned in the current step
of the algorithm. In Fig. 10(a) in the first step of the algorithm
force is propagated to o2, o4, therefore N ′P = {o2, o4} in this
step.

Sixth, until N ′P 6= ∅ we repeat steps Fourth and Fifth with
a proviso that in each step the set N ′P from the preceding
step, i.e., the set of objects forces have just been propagated
to, becomes the set P , i.e., the set of objects that propagate the
force in the current step. New set NP is calculated as described
in step Fourth and N ′P becomes an empty set. In Fig. 10

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 11

o1

Fo1

o2

o3

o4

o5

P = {o1}
NP = {o2, o4}
N ′P = {o2, o4}

(a)

o1

Fo1

o2Fo2

o3

o4Fo4

o5

P = {o2, o4}
NP = {o1, o3, o5}
N ′P = {o3, o5}

(b)

o1

Fo1

o2Fo2

o3Fo3

o4Fo4

o5

Fo5

P = {o3, o5}
NP = {o2, o4}

N ′P = ∅

(c)

Fig. 10: The subfigures represent 3 steps of the HI algorithm.
In each step objects from P are marked blue, whereas NP
and N ′P are listed below a corresponding subfigure.

algorithm does 3 steps presented in Fig. 10(a-c) respectively
and terminates.

Since there is only a finite number of objects in the scene
and the propagated force from object o is always lower than
force propagated to object o, the algorithm always terminates.

Algorithm 4 HORIZONTALIMPACT(o, b, t)
Input: an object o, a bird b, a trajectory t
Output: an array forces of values of forces propagated to objects after o gets hit by

the bird b with the trajectory t

1: initialize empty lists of objects P , NP and N ′P ;
2: initialize an array forces of doubles of size card(O);
3: Set forces[oi] such that ∀oi ∈ O forces[oi]← 0 ;
4: Set forces[o] ← correlation(bird_type(b), object_type(o)) ·
traj_type(t, o); // calculate the direct force acting on o

5: Set P ← {o};
6: Set NP ← {oi|lies_on(oi, o) or lies_under(oi, o) or on_right(oi, o)};
7: while N ′P 6= ∅ do
8: Set N ′P ← { }; // N ′P becomes an empty list
9: for each object oi ∈ NP do

10: Set a list of objects AO ← {o|lies_on(o, oi) ∨ lies_under(o, oi) ∨
on_right(o, oi)};

11: Set forces_max← max
oj∈AO

forces[oj];

12: if forces[oi] < forces_max
1+I-stability(oi)

then
13: Set forces[oi]← forces_max

1+I-stability(oi)
;

14: Set N ′P ← N ′P ∪ {oi}; // add oi to N ′P
15: end if
16: end for
17: Set P ← N ′P ; // new P
18: Set NP ← {oi|lies_on(oi, oj) or lies_under(oi, oj) or

on_right(oi, oj) for some oj ∈ P}; // new NP
19: end while

D. Value estimation

Separately, VI and HI do not provide adequate reasoning.
However, the combination of the abovementioned methods
enables us to predict objects’ behaviour even in complex
structures. For an example see the structure depicted in Fig. 11,
where hitting o1 makes o2, o3 and o6 (a pig) fall down because
they lost one of their supports. On the other hand, the impact
of a shot propagates to o7 (another pig) which gets battered. In
order to reason correctly about this situation VI and HI need
to be used simultaneously.

After performing VI and HI methods, we are able to define
a function influence : O×O×B×T → [0, 1] which assigns a
value of the overall influence that an object hit has on another
object if the shot is performed with a given bird and trajectory.
Values of the influence function belong to the interval [0, 1],
where influence(o1, o2, b, t) = 0 means that if we fire at o1

with a bird b and trajectory t, o1 will have no influence on o2,
whereas influence(o1, o2, b, t) = 1 means that if o1 falls after
a direct shot at it, then o2 automatically falls, too. Formally,
we introduce the function in the following definition.

Definition 9 (influence function). For objects o1, o2 ∈ O, a
bird b ∈ B and a trajectory t ∈ T

influence(o1, o2, b, t) =

{
1 if o2 ∈ fall
forces[o2] otherwise

,

where o1 is a directly hit object, and the lists fall and forces
are obtained by running VI and HI respectively.

In order to choose the best shot in a given AB scene, we
need to estimate the overall value of available shots. This
value depends on the type of a bird to be fired, the type of
a shot trajectory (high or low parabola) and the block which
is a direct target of the shot. More precisely, the value of the
shot, i.e., the value of the function value : B × T × O → R
increases whenever the I-stability of a direct target decreases
or its influence on interesting objects increases, i.e., pigs or
their shelters. The exact description of the value function is
provided in the forthcoming definition.

Definition 10 (value function). For a bird b ∈ B, a trajectory
t ∈ T and an object o ∈ O

value(b, t, o) =

1

I-stability(o)
·
∑
oi∈O

ivalue(oi) · influence(o, oi, b, t),

where ivalue : O → R maps an object into its interesting
value, i.e., for an object o ∈ O:

ivalue(o) =

{
100 if o is a pig
shelter_val(o) otherwise

.

Since the value of shelter_val is always less than 100, then
ivalue function has a greater value for a pig than for any other
object.

What we call “the best shot” is the one with the maximal
value, which indicates its highest possible influence on pigs
and their shelters. While the goal of the game in each level is to
kill all pigs, the strategy of searching for a shot that will affect
pigs and their shelters to the highest degree seems reasonable.
Its empirical evaluation is presented in the following section.

V. EVALUATION AND DISCUSSION

The first major proving ground for our program was the
2014 Angry Birds AI Competition [21]. The Angry Birds
AI Competition is an annual event where the participants’
task is to develop computer programs that play AB without
human intervention. These programs compete on pre-designed
AB levels (not previously known to the competitors). As the
organizers claim [21], the long-term goal of the competition is
to build an AI agent that can play new AB levels better than
humans. We finished 5th in that competition.

Since then we have upgraded our program and compared the
new version with the benchmarks with the results of agents

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 12

o1

o2

o3

o4

o5

o6

o7

o1

Fo1

o2Fo2

o3Fo3

o4Fo4

o5

Fo5

o6 Fo6

o7Fo7

object o1 o2 o3 o4 o5 o6 o7
forces Fo1 Fo2 Fo3 Fo4 Fo5 Fo6 Fo7

o1

o2

o3

o4

o5

fall = {o1, o2, o3, o6}

o6

o7

HORIZONTAL
IMPACT

VERTICAL
IMPACT

o1

o2

o3

o4Fo4

o5

Fo5

o6

o7Fo7

fall = {o1, o2, o3, o6}
object o4 o5 o7
forces Fo4 Fo5 Fo7

COMBINED RESULT

Fig. 11: Combination of VI and HI.

which participated in 2014 as well as 2013 edition of the com-
petition. The benchmarks are available online (aibirds.org),
thus in Tab. II we only present the scores of the best agent
(PlanA+), our score, the score of agent using ERA (QSR
approach) and the score of Naive Agent. PlanA+ introduces
the resistance factor for each pair consisting of a bird type and
a block type (similar to correlation considered in Tab. I). On
that basis, PlanA+ for each shot aimed at a pig or an exploding
block (TNT) counts the number of objects predicted to be
destroyed and chooses the best shot. The approach is simple
but due to a long optimisation of the parameters (55 hours
of parallel computations on 20 computers) it obtained very
good results in the competition. Naive Agent is a program
which randomly selects a pig from a scene and targets its shots
directly at it, even if it is not reachable, i.e., even when it is
effectively sheltered by other blocks. Apart from selecting a
pig and a trajectory mode - low or high - Naive Agent does not
perform any reasoning. As Tab. II shows, our agent obtained
better overall results than ERA and Naive Agent. Furthermore,
our agent outplayed the best agent (PlanA+) on 8 out of 21
and had the best score of all 30 agents on 2 levels.

A separate issue is the prediction quality of our Vertical
Impact algorithm. In order to test it, we have conducted a
series of experiments. On each of the 21 levels of the Poached
Eggs scenario we have chosen blocks that are reachable
in the initial situation. For each such a block o we have
compared the Vertical Impact prediction about stability of the
structure without o with the actual situation that occurred after
destroying o in the game. More precisely, we denote by P a
set of blocks that Vertical Impact predicted to fall/be destroyed
and by F ⊆ P a set of blocks that have been predicted to
fall/be destroyed and in fact have fallen/been destroyed in
the Angry Birds game. The ratio R = |F |

|P | is 1 if all of the
predicted blocks have fallen/been destroyed and is 0 if none of
the predicted blocks have fallen/been destroyed. If the value
of R is close to 1 in all the tests, the algorithm is sound, i.e.,
it does not predict a block to fall if it does not actually fall.

The result of the performed tests are as follows. We have

TABLE II: Benchmarks of AB programs. When our agent has
the highest score on a given level, it is written in bold.

Level PlanA+ Our agent ERA agent Naive Agent
1-1 30480 32880 29210 29760
1-2 62370 43350 42760 43250
1-3 40620 40350 41610 40180
1-4 29000 19090 27990 10590
1-5 69440 65160 63840 62490
1-6 36970 35270 25700 14980
1-7 32020 37420 45990 22150
1-8 47320 48180 23390 35840
1-9 26440 42310 45930 36050
1-10 56830 55560 49570 52570
1-11 47240 49440 38570 39310
1-12 58210 58190 54990 48660
1-13 34010 39040 32270 30000
1-14 65640 65640 57550 45640
1-15 54910 31450 47280 44190
1-16 57530 53280 63000 52300
1-17 51190 42090 42770 39530
1-18 52120 56080 48290 39590
1-19 39440 32210 22040 29460
1-20 45980 38410 36910 40140
1-21 64620 70130 53710 0
Total 1002380 955530 893370 756680

conducted 60 experiments. In one experiment (presented in
Fig. 12) Vertical Impact predicted 3 blocks to fall while in
fact only one of them did, therefore in this case R = 1

3 . In
the remaining 59 experiments R = 1. We conclude that the
algorithm is sound and in what follows we discuss situations
in which our algorithm failed to predict the correct number
of falling blocks and those in which it succeeded when other
methods would not.

o1

o2

o3

o2

o3

o2

o3

Fig. 12: Left: initial sitiuation (red arrow symbolizes a shot
trajectory, o1, o2 and o3 were predicted to fall by VI); middle:
o2 and o3 remain stable despite being predicted to fall by the
algorithm; right: the test was repeated and o2 and o3 fell.

We consider two specific examples of application of the
algorithm. The first situation (Fig. 12) is the only instance,
where blocks predicted to fall by our algorithm remained
stable. These blocks remained stable due to the horizontal im-
petus that moved them to the right and made them stuck. This
example shows that there are some unpredictable events that
may go against our algorithm’s predictions. These however
occur very rarely. In particular, a repeated test on that level
resulted in the scenario predicted by our algorithm.

The situation shown in Fig. 13 proves the strength of our
algorithm. A block that was supporting other blocks in the
structure has been removed, yet the whole structure remained
stable. In particular, in Fig. 13 one of the highlighted blocks
lost its support and if considered without its surrounding
structure, it would be predicted to fall, however due to the

aibirds.org

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 13

pressure of the blocks above it, it remains stable. This kind of
reasoning is novel, in particular it is not present in the method
described in [14].

o1

o2 o2

Fig. 13: Left: initial situation (red arrow symbolizes a shot
trajectory); right: o2 remains stable due to the pressure of the
blocks above.

VI. CONCLUSIONS

In this paper, we presented a program autonomously playing
AB, whose main aim was to successfully complete subsequent
game levels. Although the approach is dedicated to playing
AB, the introduced method may be used to perform reasoning
in other applications that consider two-dimensional physical
space. The main strong points of the method are:· The program involves qualitative representation of a two-
dimensional physical environment that tries to employ simi-
lar (qualitative) categories people use when reasoning about
space.· The reasoning methods introduced to the algorithm, namely
Vertical Impact and Horizontal Impact, are a successful mix
of qualitative and quantitative reasoning methods.· Practical performance of the program which resulted in a
high total score gathered in all 21 levels of AB Poached Eggs
scenario and in a higher (or equal) score than the best agent
participating in 2014 AB AI Competition (Plan A+) in 9 levels.

On the other hand the approach has its limitations:· In the approach only shooting at the left top point of an
object is considered. Although it gives good practical results,
in some situations shooting at other points would be better.· The combined reasoning performed by VI and HI does
not take into account the effects of rolling balls or force
propagation between non-adjacent objects (e.g., when a high
object is toppling onto another one).· The approach does not involve planning, i.e., only the best
shot in a given game scene is considered.

We see the evolution of the algorithm threefold. Currently
the algorithm always picks a unique block with the highest
value as a target of the shot. In the modified version we
want it to distinguish, say, 20% of blocks with highest values
and pseudo-randomly choose between them assuming that the
chance of a block being selected is proportional to its value.
Second, we would like to introduce machine learning methods
to the program. Values of coefficients standing by constituents
of final value estimation, e.g., I-stability, shelter_value,
etc., could presumably be modified so that the scores of the
program improve. We plan to employ techniques of evolution-
ary algorithms to make the program amend the coefficients
according to the results obtained. Finally, we want to fully

integrate our two algorithms, namely VI and HI. We would like
HI to take over the role of the basis for the whole integrated
method. VI will only be run for a given object provided that
the force value assigned to this object by HI exceeds a certain
threshold value representing the minimal value of force acting
on a block sufficient for destroying or overturning it.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the
anonymous referees whose detailed and insightful comments
help significantly improve this paper. This paper is a result
of the project funded by the National Science Centre, Poland
(grant number: DEC-2011/02/A/HS1/00395).

REFERENCES

[1] H. Gardner, Frames of Mind: The Theory of Multiple Intelligences. New
York, NY, USA: Basic Books, 1983.

[2] J.-H. Shin and H.-B. Jun, “A study on smart parking guidance algo-
rithm,” Transportation Research Part C: Emerging Technologies, vol. 44,
pp. 299 – 317, 2014.

[3] P. Zips, M. Böck, and A. Kugi, “A fast motion planning algorithm for
car parking based on static optimization,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Tokyo, Japan, Nov. 2013, pp. 2392–
2397.

[4] T. Hirst, “Robot cars, part 1: Parking the future for now,”
May 2013. [Online]. Available: http://www.open.edu/openlearn/
science-maths-technology/engineering-and-technology/technology/
robot-cars-part-1-parking-the-future-now

[5] M. A. Greenspan, J. Lam, W. Leckie, M. Godard, I. Zaidi, K. Anderson,
D. C. Dupuis, and S. Jordan, “Toward a competitive pool playing robot:
Is computational intelligence needed to play robotic pool?” in CIG.
IEEE, 2007, pp. 380–388.

[6] B. Kuipers, “Qualitative simulation,” Artificial Intelligence, vol. 29,
no. 3, pp. 289–338, 1986.

[7] K. D. Forbus, “Readings in qualitative reasoning about physical sys-
tems,” D. S. Weld and J. d. Kleer, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1990, ch. Qualitative Physics: Past
Present and Future, pp. 11–39.

[8] J. de Kleer and J. S. Brown, “A framework for qualitative physics,” in
Proc. 6th Ann. Conference of the Cognitive Science Society, 1984, pp.
11–18.

[9] A. G. Cohn and J. Renz, “Qualitative spatial representation and rea-
soning,” Handbook of knowledge representation, vol. 3, pp. 551–596,
2008.

[10] D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic based on regions
and connection.” KR, vol. 92, pp. 165–176, 1992.

[11] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commu-
nications of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[12] P. Balbiani, J.-F. Condotta, and L. F. del Cerro, “A new tractable subclass
of the rectangle algebra,” in IJCAI, vol. 99, 1999, pp. 442–447.

[13] P. Zhang and J. Renz, “Qualitative spatial representation and reasoning
in Angry Birds: First results,” in 27th International Workshop on
Qualitative Reasoning, 2013, p. 123.

[14] ——, “Qualitative spatial representation and reasoning in Angry Birds:
The extended rectangle algebra,” 2014.

[15] J. M. Siskind, “Visual event classification via force dynamics,” in
Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, Austin, TX, USA, 2000, pp. 149–155.

[16] ——, “Method of determining the stability of two dimensional polygonal
scenes,” United States Patent, no. US 6,693,630 B1, pp. 1–19, 2004.

[17] M. Blum, A. Griffith, and B. Neumann, “A stability test for configura-
tions of blocks,” Artificial Intelligence Memo, no. 188, 1970.

[18] P. E. Nielsen, “A qualitative approach to rigid body mechanics,” Ph.D.
dissertation, Champaign, IL, USA, 1988, aAI8908788.

[19] P. Pu, “Simulating both dynamic and kinematic behaviors of mecha-
nisms,” in Proceedings of the Third Workshop on Qualitative Reasoning,
Stanford, CA, USA, 1989, pp. 1–13.

[20] C. H. Papadimitriou, Computational complexity. John Wiley and Sons
Ltd., 2003.

[21] J. Renz, “AIBIRDS: The Angry Birds Artificial Intelligence Competi-
tion.” in Proceedings of the 29th AAAI Conference, 2015, to appear.

http://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/technology/robot-cars-part-1-parking-the-future-now
http://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/technology/robot-cars-part-1-parking-the-future-now
http://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/technology/robot-cars-part-1-parking-the-future-now

	Introduction
	Related work
	Representation
	Quantitative representation
	Qualitative representation
	Shelters
	I-stability

	Reasoning
	Vertical Impact
	Comparison with alternative methods
	Horizontal Impact
	Value estimation

	Evaluation and Discussion
	Conclusions
	References

