
The abc Group

abc : An extensible AspectJ compiler

abc Technical Report No. abc-2004-1

Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3, Sascha Kuzins1,
Jennifer Lhoták3, Onďrej Lhoták3, Oege de Moor1, Damien Sereni1,

Ganesh Sittampalam1, Julian Tibble1

1 Programming Tools Group 2 BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

September 30, 2004

a s p e c t b e n c h . o r g

Contents

1 Introduction and Motivation 3

2 Architecture 5

2.1 Polyglot 5

2.2 Soot 7

2.3 Connecting Polyglot and Soot 7

3 Defining an Extension 8

3.1 Syntax 8

3.2 Type system 9

3.3 Semantic checks 9

3.4 Rewriting 10

3.5 Join points 10

3.6 Pointcuts 10

3.7 Advice 11

3.8 Optimisations 11

3.9 Runtime library 11

4 eaj — An AspectJ extension 12

4.1 Private pointcut variables 12

4.2 Global pointcuts 12

4.3 Cast pointcuts 13

4.4 Throw pointcuts 13

5 Implementing eaj using abc 13

5.1 Extending the lexer 13

5.2 Extending the parser 14

5.3 Adding new AST nodes 15

5.4 Adding new frontend passes 15

5.5 Adding new join points 16

5.6 Extending the pointcut matcher 17

5.7 Extending the runtime library 18

5.8 Code measurements 19

6 Related work 19

7 Conclusions and Future Work 21

1

List of Figures

1 abcoverall design 6

2 Grammar extension mechanism 9

3 The CastShadowMatch.matchesAt(...) method 17

4 Code measurements foreaj . 19

5 Thethrow pointcut inajc andabc. 20

2

Abstract

Research in the design of aspect-oriented programming languages requires a workbench that facilitates easy ex-
perimentation with new language features and implementation techniques. In particular, new features for AspectJ
have been proposed that require extensions in many dimensions: syntax, type checking and code generation, as well
as data flow and control flow analyses.

The AspectBench Compiler (abc) is an implementation of such a workbench. The base version of abcimplements
the full AspectJ language. Its frontend is built, using the Polyglot framework, as a modular extension of the Java
language. The use of Polyglot gives flexibility of syntax andtype checking. The backend is built using the Soot
framework, to give modular code generation and analyses.

In this paper, we outline the design ofabc, focusing mostly on how the design supports extensibility.We then pro-
vide a general overview of how to useabcto implement an extension. Finally, we illustrate the extension mechanisms
of abc through a number of small, but non-trivial, examples.abc is freely available under the GNU LGPL.

1 Introduction and Motivation

The design and implementation of aspect-oriented programming languages is a buoyant field, with many new language
features being developed. In the first instance, such features can be prototyped in a system like the Aspect Sand Box [9]
via a definitional interpreter. Such interpreters are useful in defining the semantics and in explaining the compilation
strategy of new language features [21]. The acid test for newlanguage features is, however, their integration into a
full, industrial-strength language like AspectJ. That requires a highly flexible implementation of AspectJ, to serve as a
workbench for aspect-oriented programming language research.

The purpose of this paper is to presentabc, the AspectBench Compiler for AspectJ, which supports the whole of
the AspectJ language implemented byajc 1.2, and which has been specifically designed to be an extensible framework
for implementing AspectJ extensions.abc is freely available under the GNU LGPL and can be downloaded from [1].

Challenges An AspectJ compiler is already a complex piece of software, which, in addition to the normal frontend
and backend components of a compiler, must also support a matcher (for name patterns) and a weaver (both for
intertype declarations and for advice). Furthermore, the kinds of extensions that have been suggested for AspectJ vary
from fairly simple pointcut language extensions to more complex concepts which require modifications in the type
system, matcher and weaver. To make the challenges explicit, we briefly review some previous work by others that
has motivated our design.

At one end of the spectrum, there are fairly small extensionsthat require changes primarily to the syntax. An
example of this kind is thename pattern scopesproposed by Colyer and Clement [6], which provide an abstraction
mechanism for name patterns. To support this type of extension, our workbench needs an easy way of extending the
syntax, as well as introducing named patterns into the environment.

A more involved extension is theparameteric introductionsof Hanenberg and Unland [14]. These are intertype
declarations that depend on parameters evaluated at weave-time. Their integration into AspectJ requires substantial
changes to the type system as well as the intertype weaver. This kind of extension thus motivates a highly flexible
implementation of types.

Most proposals for new features in AspectJ are, however, concerned with the dynamic join point model. In [23],
Sakuraiet al. proposeassociation aspects. These provide a generalisation of per-object instantiation, where aspect
instances are tied to a group of objects to express behavioural relationships more directly. This requires not only
changes to the frontend, but also substantial changes to code generation. Making such code generation painless is
another design goal of our workbench.

The community as a whole is concerned with finding ways of singling out join points based on semantic prop-
erties rather than naming. For instance, Kiczales has proposed a new type of pointcut, calledpredicted cflow[18].
pcflow(p) matches at a join point if there may exist a path to another join point wherep matches. It is correct to let
pcflow(p) match everywhere, but that would lead to inefficient programs. An efficient implementation ofpcflow(p)
needs substantial, interprocedural program analysis. Ourworkbench needs to provide a framework for building such
analyses.

3

In fact, examples where efficient implementation necessitates an analysis framework abound. Particular instances
include thedata flow pointcutsof Masuhara and Kawauchi [20], and thetrace-based aspectsof Douenceet al. [8], as
well as thecommunication history aspectsof Walker and Viggers [27].

All of the above are additions to the AspectJ language, but, of course, restrictions can be equally important in
language design. One promising example is the proposal of Aldrich to restrict the visibility of join points to those that
are explicit in the interface of a class [2]. We aim to supportthe implementation of such restrictions, and this requires
a flexible implementation of the type system and the pointcutmatcher.

Finally, we note that the implementation of advanced staticchecking tools for aspect-oriented programs, such as
those investigated by Krishnamurthiet al. [19], require all types of extension discussed above, ranging from simple
variations in syntax to making advanced analyses such as escape analysis take into account the effects of advice.

In summary, we can see that an extensible AspectJ compiler must be able to handle a wide variety of extensions,
possibly touching on many components of the compiler, including the frontend scanner and parser, the type checker,
the matcher and weaver, and potentially requiring relatively sophisticated program analysis to ensure correctness and
efficiency.

Design Goals One approach to implementing a language extension is to modify an existing compiler. However,
this is not always the best approach, since existing compilers may not have been designed with extensiblity as one of
the main goals. Furthermore, they may be constrained to workwith infrastructures which themselves are not easily
extensible. In the case of AspectJ, the only pre-existing implementation isajc, which is designed to support fast and
incremental compilation and also to interact closely with the Eclipse toolset.

Our approach was to design and implementabc, the AspectBench Compiler, with extensibility as its primary
design goal (we also aimed for an optimising implementationof AspectJ, but that is outside the scope of this paper).
To support extensibility, we distilled the following requirements from the above discussion of the challenges involved.

simplicity: It must be relatively simple to develop new extensions. Users of the framework should not need to
understand complicated new concepts or a complex software design in order to implement their extensions.

modularity: We require two kinds of modularity. First, the compiler workbench itself should be very modular, so
that the different facets of each extension can be easily identified with the correct module of the workbench.

Second, the extension should be modular (separate from the workbench code). Users of the workbench should
not need to touch existing code; rather, they should be able to describe the extensions as specifications or code
that is separate from the main code base.

proportionality: Small extensions should require a small amount of work and code. There should not be a large
overhead required to specify an extension.

analysis capability: The compiler workbench infrastructure should provide bothan intermediate representation and
a program analysis framework. This is necessary for two reasons. First, some extensions may require relatively
sophisticated analyses to correctly implement their semantic checks and weaving. Second, some extensions may
lead to a lot of runtime overhead unless compiler optimisation techniques are used to minimise that overhead.

The abc approach To meet these objectives, we decided to build on existing, proven tools, namely the Polyglot
extensible compiler framework for the frontend [22], and the Soot analysis and transformation framework for the
backend [25]. Indeed, Polyglot has been shown to meet the criteria of simplicity, modularity and proportionality on a
wide variety of extensions to the syntax and type system of Java. By the same token, Soot has been shown to meet all
the above criteria for code generation, analysis and optimisation.

Given the success of these building blocks, we felt it extremely important to designabcso that both are usedas is,
without any changes that are specific toabc. As explained in Section 2 below, this has dictated an architecture where
the frontend separates the AspectJ program into a pure Java part and a part containing instructions for the weaver.

Contributions The contributions of this paper are the following:

4

• We have identified the requirements for a workbench for research in aspect-oriented programming languages by
analysing previous research in this area.

• We presentabc, an instance of such a workbench with a clean, extensible architecture.

• We have validated our architecture against these requirements with a number of small but non-trivial examples.

• The extensibility of Polyglot can be seen as a form of aspect-orientation, and thusabc is itself a substantial
exercise in aspect-oriented software development, with the primary goal of disentangling new, experimental
features from the existing base compiler.

Paper Structure The structure of this paper is as follows. In Section 2, we first give an overview of the main
building blocks ofabc, namely Polyglot and Soot, and show their role in the overallarchitecture ofabc. Next, in
Section 3 we sketch the main points of extensibility inabc. We then turn to describe some modest but representative
examples of AspectJ extensions in Section 4, and their implementation in Section 5. The approach ofabcis contrasted
with existing work in Section 6. Finally, in Section 7 we drawsome conclusions from our experience in buildingabc,
and we explore possible directions for future research.

2 Architecture

As stated in the introduction,abc is based on the Polyglot extensible compiler framework [22]and the Soot bytecode
analysis and transformation framework [25]. Using Polyglot as an extensible frontend enables customisation of the
grammar and semantic analysis; in the backend, Soot provides a convenient intermediate representation on which to
implement the weaving of extensions, as well as tools for writing any program analyses that extensions may require.
Polyglot can read class files to process library code; Soot can also read in class files, and indeedabccan weave into
jar files in the same way as theajc compiler for AspectJ.

Becauseabcworks with an unmodified Soot and Polyglot, it is easy for us, as the developers ofabcitself, to update
to the latest versions of Soot and Polyglot as they are released. By the same token, authors of AspectJ extensions can
upgrade to new versions ofabcwithout difficulty. This independence was achieved mainly by separating the AspectJ-
specific features in the code being processed from standard Java code. In the frontend,abc generates a plain Java
abstract syntax tree (AST) and a separate aspect information structure containing the aspect specific information. We
call the aspect information structure theAspectInfo. The unmodified backend can read in the AST (because it is plain
Java), andabc then uses theAspectInfoto perform all required weaving. A simplified diagram of the architecture of
abc is shown in Figure 1.

In the following subsections, we describe Polyglot and Sootin the context ofabc, with a focus on how they
contribute to extensibility. Finally we discuss in some more detail how the two parts are connected.

2.1 Polyglot

Polyglot [22] is a frontend for Java intended for implementing extensions to the base language. In its original config-
uration, Polyglot first parses Java source code into an abstract syntax tree (AST), then performs all the static checks
required by the Java language in a number of passes which rewrite the tree. The output of Polyglot is a Java AST
annotated with type information, which is written back to a Java source file. Polyglot is intended to perform all
compile-time checks; when a class has passed through all of the passes in Polyglot, the resulting Java file should be
compilable without errors by any standard Java compiler. When Polyglot is used as a frontend for Soot, theJava to
Jimplemodule inside Soot compiles the final AST into the Jimple intermediate representation instead of writing it out
to a Java file. Therefore, inabc, the final Polyglot passes separate the AspectJ program intopure Java (which is passed
to the Java to Jimple module in Soot) and instructions for theweaver.

Several features of Polyglot make it well-suited for writing extensions, and also help to make those extensions
themselves extensible. Polyglot allows a new grammar to be specified as a collection of modifications to an existing
grammar, where these modifications are given in a separate specification file, not in the original grammar file. The

5

AspectJ
AST

.java

Java
AST

Aspect
Info

.class

Jimple
skeleton

Jimple
IR

Woven
Jimple

.java.class

Soot decompilationSoot bytecode generation

Polyglot AST transformations

Polyglot parser

Skeleton weaving

Woven
skeleton

Advice weaving

Soot skeleton generation

Soot jimple body generation

Analyses and optimisations

Final
Jimple

Figure 1:abcoverall design

AspectJ grammar we developed forabc is specified as an extension of the Java grammar, and the grammars for
extensions are in turn specified as modifications to the AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, making it easy to extend or replace most of its parts, such as
the type system or the symbol table, as well as the list of rewrite passes that are performed on the AST. Each pass in
Polyglot non-destructively rewrites the input tree. As a result, it is easy to insert new passes in between existing ones,

6

and each pass typically performs only a small amount of work compared to traditional compiler passes. Inabc, we
have added many AspectJ-specific passes, and it is easy for extensions to add further passes of their own.

Each AST node in Polyglot uses a mechanism ofextensionsanddelegatesto allow methods to be replaced or
added in the middle of the existing class hierarchy, achieving an effect similar to what can be done in AspectJ using
intertype declarations, but in plain Java. This mechanism is commonly used by extensions ofabc to modify existing
AST nodes.

2.2 Soot

Soot [25], which is used as the back-end ofabc, is a framework for analysing and transforming Java bytecode. The
most important advantage of using Soot as the backend, both for developingabcitself and for extending the language,
is Jimple, Soot’s intermediate representation. Soot provides modules to convert between Jimple, Java bytecode, and
Java source code. It furthermore includes implementationsof standard compiler optimisations, whichabc applies
after weaving. We have already observed significant speedups from these optimisations alone (preliminary results are
accessible from [1]). In addition to already implemented analyses and transformations, Soot has tools for writing new
ones, such as control flow graph builders, definition/use chains, a fixed-point flow analysis framework, and a method
inliner. These features are useful for implementing extensions that need to be aware of the intra-procedural behaviour
of the program, such as pointcuts describing specific pointsin the control flow graph.

The Jimple intermediate representation is a typed, stack-less, three-address code. Rather than representing compu-
tations with an implicit stack, each Jimple instruction explicitly manipulates specified local variables. This represen-
tation greatly simplifies weaving of advice, both for standard AspectJ features and for extensions. If it were weaving
into bytecode directly, the weaver would need to consider the effect of the woven code on the implicit execution stack,
and generate additional code to fix up the stack contents. None of this is necessary when weaving into Jimple. More-
over, when values from the shadow point are needed as parameters to the advice, they are readily available in local
variables; the weaver does not have to sift through the computation stack to find them.

As input, Soot can handle both class files and Java source files. To convert bytecode to Jimple, Soot introduces
a local variable to explicitly represent each stack location, splits the variables to separate independent uses of the
same location, and infers a type [12] for each variable. To convert source code to Jimple, Soot first uses Polyglot to
construct an AST with type information, and then generates Jimple code from the AST. This process does not need
to be modified inabc, becauseabcpasses Soot a plain Java AST, keeping all the aspect-specificinformation in the
separate aspect information structure. Normally, after all processing, Soot converts the Jimple code into bytecode and
writes it to class files, but it also includes a decompiler which is very useful for viewing the effects of aspects and
AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion ofabc’s architecture by examining in closer detail how Polyglot and Soot interact. A key
component of this interaction is the separation of the AspectJ AST into a pure Java AST and the auxilliaryAspectInfo
structure. This transformation enablesabc to use the existing facility in Soot for translating a Polyglot AST into the
Jimple IR.

The Java AST is basically the AspectJ program with all AspectJ-specific language constructs removed. TheAs-
pectInfostructure contains complete information about these constructs. In cases where these contain actual Java code
(advice bodies,if pointcut conditions, intertype method/constructor bodies, intertype field initialisers), the code is
placed in placeholder methods in the Java AST.

The Java AST only contains Java constructs, but it is incomplete in the sense that it may refer to class members
which do not exist or are not accessible in the unwoven Java program. More specifically, the Java AST will in general
not be compilable until alldeclare parentsand intertype declarations have been woven into the program. The first of
these can alter the inheritance hierarchy, and the second can introduce new members that the pure Java parts may refer
to. Since both of these features may be applied to class files (for which we do not have an AST representation), it is
not possible to perform this part of the weaving process on the Polyglot representation before passing the AST to Soot.

Fortunately, Soot allows us to conduct the conversion from Java to Jimple in two stages, and the application of

7

declare parentsand intertype weaving can happen in between. In the first stage, Soot builds a class hierarchy with
mere stubs for the methods: it is a skeleton of a full program in Jimple, without method bodies. In the second stage,
Soot fills in method bodies, either by converting bytecode from class files, or by compiling AST nodes.

This setup permits both static weaving and advice weaving towork on the Jimple IR, largely independent of
whether the Jimple code was generated from source code or bytecode. And since the skeleton that is filled out in the
second stage has the updated hierarchy and contains all intertype declarations, all member refernces in the code are
resolved correctly in the translation into Jimple.

3 Defining an Extension

We now outline the basic steps needed to create an extension,in a general manner. This description is intended to give
the reader an impression of the extension mechanisms available in abc, without delving into excessive detail. After
this generic description, we shall introduce some concreteexamples in Section 4, and show how the basic steps are
instantiated in Section 5.

This section serves two purposes. First, to outline how we build on the existing extension mechanisms of Polyglot
and Soot to achieve extensibility inabc (Sections 3.2, 3.3, 3.4, and 3.8). Second, we wish to presentsome design
decisions that are unique toabc, which address specific issues regarding the extension of AspectJ (Sections 3.1, 3.5,
3.6, 3.7 and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually defining what additional syntax it will introduce to the
language. Makingabcrecognise the extended language involves changing the lexer and the parser that it uses. Polyglot
already handles extending grammars in a very clean and modular fashion, however the standard Polyglot lexer is not
extensible — extensions are expected to create their own lexer by copying it and making appropriate modifications.
Thus, in this subsection we describe our approach to making an extensible lexer in some detail, and then briefly
summarise the Polyglot mechanism for extending grammars.

Lexer We have designed the lexer forabc to support a limited form of extensibility that has been sufficient for
the extensions we have written so far. Specifically, the set of keywords recognised by the lexer can be modified by
an extension, and the actions taken by the lexer when encountering one of these keywords are customisable. More
complex extensions can still be achieved by reverting to Polyglot’s approach of copying and modifying the lexer
definition. This is in agreement with the principle of proportionality which was stated as a design goal — small
extensions are easy, and complex ones are possible. It is a topic of future work to improve the extensibility, perhaps
by specifying the lexer as a parser in itself.

The lexical analysis of AspectJ is complicated by the fact that there are really several different languages being
parsed: ordinary Java code, aspect definitions, and pointcut definitions. Consequently, theabc lexer is stateful — it
recognises different tokens in different contexts. The following example illustrates one kind of problem that is dealt
with by the introduction of lexer states:

if*.*1.Foo+.new(..)

The expected interpretation of such a string as Java code andas part of a pointcut will be very different; for example,
in Java, we would expect “1.” to become a floating point literal, whereas in the pointcut language the decimal point
would be viewed as a dot separating elements of a name pattern. Similarly, “*” in Java should be scanned as an
operator, while in pointcuts, it is part of a name pattern. Note also the use of what would be keywords in Java mode
(if andnew) as part of a pattern.

An important part of designing a stateful lexer is specifying when the lexer should switch to a different state
without adding too much complexity. The general pattern we use is to maintain a stack of states, and recognise the
end of a state when we reach an appropriate closing bracket character for that state. For example, normal Java code
is terminated by the ‘}’ character. Of course, braces can be nested, so we need to recognise opening braces and also
count the nesting level. For more details regarding the lexer states inabc, see section 5.1.

8

File X File Y

S ::= a includeX
| b extend S ::= d
| c | e

File Z Result

includeY S ::= a
drop S ::= b | c

| d | e

Figure 2: Grammar extension mechanism

Parser The abc parser is generated by PPG [3], the LALR parser generator forextensible grammars which is
included in Polyglot [22]. PPG allows changes to an existinggrammar to be entered in a separate file, overriding,
inheriting and extending productions from the base grammar. This results in modular extensions, which can easily be
maintained should the base grammar change.

The example in Figure 2 (using simplified non-PPG syntax) demonstrates the basic principles. An existing gram-
mar can be imported with the “include” keyword. New production rules can then be specified, and onecan change
existing rules using the keywords “extend” and “drop” to add and remove parts of the rule. More advanced changes,
such as modifying the precedence of operators, are also possible. For further details on the specification of grammar,
see [3].

3.2 Type system

Polyglot provides convenient facilities for extending thetype system. As a minimum, this involves introducing a new
kind of type object and lookup functions for these new entitities in the environment. The new type of environment is
then invoked by overriding the environment factory method in a subclass ofAJTypeSystem, which describes the type
system of AspectJ itself.

To illustrate, consider the introduction of named class pattern expressions [6]. We would need to introduce a new
type object to represent such names, sayNamedCPEInstance(in Polyglot, it is convention that identifiers for type
classes end with. . . Instance). The environment then maps (possibly qualified) names to objects of typeNamedCPE-
Instance.

The semantic checks for named patterns must enforce the requirement that there be no cycles in definitions, since
recursively defined named patterns do not make sense. A similar check has already been implemented for named
pointcuts, and it involves building a dependency graph. Such data structures necessary for semantic checks are typi-
cally stored in the type objects (hereNamedCPEInstance): because Polyglot operates by rewriting the original tree, it
is not possible to store references to AST nodes.

Examples such as the parametric introductions of Hanenbergand Unland [14] would require more invasive changes
in the type system, for example by subclassingInterTypeMethodInstance(the signature of a method introduced via an
intertype declaration) to take account of the parameters that are to be evaluated at compile-time.

3.3 Semantic checks

New semantic checks are usually implemented by overriding the appropriate method on the relevant AST nodes. The
most obvious place for simple checks is in theTypeCheckerpass; every AST node implements atypeCheck(TypeChecker)
method. The type checker is run after all variable references are resolved; all checks that do not require further data
structures are typically put in thetypeCheckmethod.

Later passes use data flow information to check initialisation of local variables and the existence ofreturn state-

9

ments. Again, each AST node implements methods to build the control flow graph for these purposes. In the base
AspectJ implementation, these are, for example, overridden to take into account the initialisation of the result param-
eter inafter returning advice, and extensions can make variations of their own.

AspectJ is somewhat unusual in that some semantic checks have to be deferred to the weaver. For example, it
is necessary to type check the results ofaround advice at each point where it is woven in. Becauseabcmaintains
precise position information throughout the compilation process, such errors can still be pinpointed to the appropriate
locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source compilerfor extensions to Java, where the final rewriting passes
transform new features into an equivalent pure Java AST.abc is different in that most of the transformation happens
at a later stage, when weaving into Jimple. It is, however, often useful to employ Polyglot’s original paradigm when
implementing extensions to AspectJ that have an obvious counterpart in AspectJ itself.

For example, consider again the feature of named class pattern expressions. A simple implementation would be to
just inline these after appropriate semantic checks have been done, so that nothing else needs to change in the compiler.
Such inlining would be implemented as two separate passes, one to collect the named pattern definitions and the other
to inline them — the two would then communicate via an explicit data structure that is common to both passes. As
said, it is not recommended to store pieces of AST explicitlyunless they are immediately transformed away.

abcdoes extensive rewriting of the tree prior to conversion to Jimple. This consists of introducting new placeholder
methods (for instance for advice bodies), and storing instructions for the weaver in theAspectInfo. Extensions can
participate in this process by implementing methods that are called by the relevant passes.

3.5 Join points

Introducing new pointcuts will often involve extending theset of possible join points. For example, implementation of
a pointcut that matches when a cast instruction occurs wouldrequire the addition of a join point at such instructions.

Many new join points will follow the pattern of most existingAspectJ join points and apply at a single Jimple state-
ment. These can be added by defining a new factory class that can recognise the relevant statements, and registering it
with the global list of join point types.

For more complicated join points, it will be necessary to override the code that iterates through an entire method
body looking for join point shadows. The overriding code cando any required analysis of the method body to find
instances of the new join points (for example, one might wantto inspect all control flow edges to find the back edges
of loops [16]), and then call the original code to find all the “normal” join point shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many proposalsfor new forms of pointcuts in AspectJ. To meet our
objective of proportionality (small extensions require little work), we have designed an intermediate representation
of pointcuts that is more regular than the existing pointcutlanguage of AspectJ. This makes it easier to compile new
pointcut primitives to existing ones.

Specifically, the backend pointcut language partitions pointcuts into the four categories listed below. Some of the
standard AspectJ pointcuts fit directly into one of these categories and are simply duplicated in the backend, while
others are must be transformed from AspectJ into the representation used inabc.

• Lexical pointcuts are restrictions on the lexical positionof where a pointcut can match. For examplewithin and
withincode fall into this category.

• Shadow pointcuts pick out a specific join point shadow withina method body. Thesetpointcut is an example.

• Dynamic pointcuts match based on the type or value of some runtime value. Pointcuts such asif , cflow andthis
are of this kind.

10

• Compound pointcuts represent logical connectives such as &&.

The motivation for this categorisation is that it allows theimplementation of each backend pointcut to be simpler and
more understandable, which in particular makes it easier for extension authors to define new pointcuts.

An example of an AspectJ pointcut that does not fit into this model directly is theexecution(〈MethodPattern〉)
pointcut, which specifies both that we are inside a method or constructor matchingMethodPatternand that we are at
the execution join point. The backend pointcut language therefore views this as the conjunction of a lexical pointcut
and a shadow pointcut.

To add a new pointcut, one or more classes should be added to the backend, and the frontend AST nodes should
construct the appropriate backend objects during the generation of theAspectInfostructure.

The backend classes are responsible for deciding whether ornot the pointcut matches at a specific location. If this
cannot be statically determined, then the pointcut should produce adynamic residuewhich can generate the required
runtime code.

3.7 Advice

It appears that there are few proposals for truly novel typesof advice: most new proposals can be easily rewritten to
the existing idioms of before, after and around. For example, the proposal for “tracecuts” in [8] reduces to a normal
aspect, where a state variable tracks the current matching state, and each pattern/advice pair translates into after advice.
Such new types of advice are thus implemented via rewriting,in the standard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows the AspectJ model of advice is straightforward: simply
implement a new class and define how code should be generated to call that piece of advice and where in the join point
shadow this code should go. For example, the bookkeeping required for cflow is implemented as a special kind of
advice that weaves instructions both at the beginning and end of a shadow.

3.8 Optimisations

The straightforward implementation of a new extension may result in inefficient runtime code. Even in the basic
AspectJ language, there are a number of features that incur significant runtime penalties by default, but in many cases
can be optimised.abc aims to make it as easy as possible to implement new optimisations, whether for the base
language or for extensions. In particular, it is straightforward to transform the AST in the frontend and the Jimple
intermediate code in the backend.

Taking an example from the base AspectJ language, construction of thethisJoinPoint is expensive because it must
be done each time a join point is encountered at runtime.abc (like ajc) employs two strategies for mitigating this
overhead. Firstly, some advice bodies only ever make use of the StaticPartmember ofthisJoinPoint, which only
needs to be constructed once. A Polyglot pass in the frontendis used to identify advice bodies where this is the case
and transform the uses tothisJoinPointStaticPart instead.

Secondly, the runtime code generated delays construction until as late as possible in case it turns out not to be
needed at all; this is complicated by the fact thatif pointcuts as well as advice bodies may make use of it, so construction
cannot simply be delayed until the advice body runs.abcgenerates code that instantiates thethisJoinPoint variable
where neededif it has not already been instantiated, usingnull as a placeholder until that point. The Jimple code is
then transformed to remove unnecessary checks and initialisations, using a variation of Soot’s intraprocedural nullness
analysis which has special knowledge that thethisJoinPoint factory method cannot returnnull.

3.9 Runtime library

The runtime library for AspectJ serves two purposes. Firstly, it contains bookkeeping classes necessary for the imple-
mentation of language constructs such ascflow. Extensions such as data flow pointcuts [20] would require a similar
runtime class in order to store dynamic data about the sourceof the value in a particular variable.

Secondly, the runtime provides the objects accessible through thethisJoinPointfamily of special variables; these
make information about the current join point available to the programmer via reflection. Any new pointcut introduced

11

is likely to have unique signature information which would be accessible to the user via an extension of theSignature
interface. For example, the standard AspectJ runtime contains, amongst others,AdviceSignature, FieldSignature, and
MethodSignature.

4 eaj — An AspectJ extension

This section describes a few particular extensions to the AspectJ language that we have implemented. These extensions
have been chosen to illustrate the most salient of the mechanisms that were described in the previous section. The
full source code for these examples is included with the standard distribution ofabc [1]. For ease of reference, the
extended language is namedeaj; one compileseaj programs with the command ‘abc-ext abc.eaj’. This is the usual
way of invoking extensions withabc.

4.1 Private pointcut variables

In AspectJ, the only way to introduce new variables into a pointcut is to make them explicit parameters to a named
pointcut definition or advice. It is sometimes convenient, however, to simply declare new variables whose scope is
only part of a pointcut expression, without polluting the interface of the pointcut. For example, it might be desired to
check that the value of an argument being passed has certain properties, without actually using that value in the advice
body. The new keywordprivate introduces a locally scoped pointcut variable. For instance, the following pointcut
could be used to check that the argument is either a negativeint or a negativedouble:

pointcut negativefirstarg() :
private (int x) (args(x) && if (x < 0))

|| private (double x) (args(x) && if (x < 0));

4.2 Global pointcuts

It is very common for many pieces of advice to share a common conjunct in their pointcut. The idea of aglobal
pointcut is to write these common conjuncts only once. An example use is to restrict the applicability of every piece
of advice within a certain set of aspects. For example, we might write:

global : * : ! within (Hidden);

This would ensure that no advice within any aspect could apply within theHiddenclass.

As another example, it is often useful to prevent advice froman aspect applying within that aspect itself. The
following declaration (for aspectAspect) can achieve this more concisely than putting the restriction on each piece of
advice:

global : Aspect: !within (Aspect);

In general, a global pointcut declaration can be put anywhere a named pointcut declaration can be (i.e. directly within
a class or aspect body). The location of such a declaration has no effect on its applicability, except that name patterns
within such a declaration will only match classes and aspects visible from the scope of that declaration.

The general form of a global pointcut declaration is as follows:

global : 〈TypePattern〉 : 〈Pointcut〉 ;

It has the effect of replacing the pointcut of each advice declaration in each aspect whose name matchesTypePattern
with the conjunction of the original pointcut and the globalPointcut.

12

4.3 Cast pointcuts

The purpose of thecastpointcut is to match whenever a value is cast to another type.A corresponding new type of join
point shadow is added which occurs at every cast instruction, whether for reference or primitive types, in the bytecode
of a program.

To illustrate, the following piece of advice can be used to detect runtime loss of precision caused by casts from an
int to ashort:

before(int i):
cast(short) && args(i)

&& if (i < Short.MIN VALUE
|| i > Short.MAX VALUE)

{
System.err.println(“Warning: loss of ” +

“ precision casting ” +
i + “ to a short.”);

}

In general the syntax of acastpointcut iscast(〈TypePattern〉); this will match at any join point where the static
result type of the cast is matched byTypePattern. In keeping with the pattern of other primitive pointcuts, the value
being cast from can be matched by theargs pointcut, and the result of the cast can be matched by the optional
parameter toafter returning advice (and is returned by theproceedcall in around advice).

4.4 Throw pointcuts

The throw pointcut is introduced in the developer documentation forajc [17], and we have implemented it ineaj to
compare the ease-of-extension of both compilers. It matches a new join point shadow which occurs at each throw
instruction.

The following example demonstrates how extended debugginginformation can be produced in the event of a
runtime exception, using a piece of advice:

before(Debuggable d):
this(d) && throw () && args(RuntimeException)

{
d.dumpState();

}

5 Implementing eaj using abc

We have given a broad outline of how extensions are constructed and discussed some specific extensions that we have
implemented. We now show in detail how this was done, both to provide a guide for others and to enable a realistic
assessment of the work involved.

The starting point to extendingabcis theAbcExtensionclass. An extension can be specified at runtime by passing
its core package name toabcwith the-extflag; theAbcExtensionclass from this package is then loaded by reflection;
all the extensibility hooks inabcare passed through this class. There is a default implementation of this class in the
abc.mainpackage, which extensions must subclass.

Another key class isExtensionInfo. This is part of the extensibility mechanism of Polyglot; all frontend extensions
(except for the lexer) are registered by subclassing this class. New instances of this class are returned by the subclassed
AbcExtension.

5.1 Extending the lexer

As described in Section 3.1,abc’s lexer is stateful. There are four main lexer states for dealing with the different
sub-languages of AspectJ: JAVA , ASPECTJ, POINTCUT and POINTCUTIFEXPR. The first three are used in the obvious
contexts. The POINTCUTIFEXPR state is necessary because theif pointcut allows a Java expression to be nested inside

13

a POINTCUT; however, while the normal JAVA state is terminated by a ‘}’, we need to return to the POINTCUT state
when reaching a matching closing ‘)’ character.

Keywords for each state are stored in state-specificHashMaps which map each keyword to an object implementing
theLexerActioninterface. This interface declares a method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recognised. Its return value is turned into a parser token and passed
to the parser for further analysis. A reference to the lexer instance is passed as a parameter togetToken(...), so that
side effects that affect the lexer (like changing the lexer state) are possible. A default implementation of this interface
is supplied, which offers sufficient functionality to associate keywords with parser tokens and (optionally) change the
lexer state; custom implementations ofLexerActioncan provide more flexibility. Note that the default implementation
provides functionality sufficient for all but 5 (out of more than 90) Java and AspectJ keywords.

Implementing theeaj extensions required adding several new keywords. In particular, “cast” was introduced as a
keyword in the POINTCUT state, and “global” as a keyword in all four lexer states. Note that “private” and “throw”
are already keywords in all states, and so do not need to be introduced specifically for the private pointcut variables
and throw pointcut extensions. Here is the code that adds thekeywords to the respective states:

public void initLexerKeywords(AbcLexer lexer)
{

// keyword for the “cast” pointcut extension
lexer.addPointcutKeyword(“cast”,

new LexerAction c(new Integer
(abc.eaj.parse.sym.PCCAST)));

// keyword for the “global pointcut” extension
lexer.addGlobalKeyword(“global”,

new LexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL),

new Integer(lexer.pointcut state())));

// Add the base keywords
super.initLexerKeywords(lexer);

}

Note that both keywords use the default implementation ofLexerAction, i.e. theLexerAction c class. We see
the one-argument and two-argument constructors for that class. The first argument is always the parser token that
should be returned for the keyword, the second argument (if present) is the lexer state that should be selected after the
keyword. As stated above, further logic can be implemented by subclassingLexerAction c.

5.2 Extending the parser

The grammar fragment below shows how two new productions areadded for private pointcut variables and the cast
pointcut, which can appear anywhere a normal pointcut could:

extendbasic pointcut expr ::=
PRIVATE:x LPAREN formal parameter list opt:a RPAREN

LPAREN pointcut expr:bRPAREN:y
{:

RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

:}
| PC CAST:x LPAREN type pattern expr:aRPAREN:y

{:
RESULT=

parser.nf.PCCast(parser.pos(x,y), a);
:}

;

The fragment closely resembles code one would use with the popular CUP parser generator, apart from theextend
keyword. PPG also allows you to drop productions, transfer productions from one non-terminal to another, and
override the productions of a particular non-terminal; it is described in detail in [3].

14

5.3 Adding new AST nodes

As mentioned above,abc’s frontend is built on the Polyglot extensible compiler framework [22]. In fact, from Poly-
glot’s point of view,abc is just another extension. This means thatabc “inherits” all the extensibility mechanisms
provided by Polyglot.

In particular, adding new AST nodes is common when writing compiler extensions, and thus it is important to
provide an easy and robust mechanism for doing so.

All four extensions discussed above required new AST nodes.For the sake of brevity we will only present the
node introduced by the global pointcut extension here — the other cases are handled very similarly.

In order to write a clean Polyglot extension, one has to adhere to the rigorous use of factories and interfaces to
create nodes and invoke their members, respectively. The first step is therefore to define an interface for the new AST
node, declaring any functionality it wants to present to theoutside world:

public interface GlobalPointcutDeclextendsPointcutDecl
{

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}

We provide a method to insert the pointcut into a static data structure keeping track of the global pointcuts defined
in the program (cf. Section 5.4). Note that the interface extendsabc’s PointcutDeclinterface, so it provides all the
functions relevant to a pointcut declaration.

The next step is to write the class implementing that interface. Some boilerplate code is required (a constructor and
methods to allow visitors to visit the node), and, of course,the methodregisterGlobalPointcut() is given a concrete
implementation.

In order to make sure we can instantiate this new node type, wesubclassabc’s default node factory (which, in turn,
is derived from Polyglot’s node factory) and create a methodfor obtaining an instance ofGlobalPointcutDecl:

public GlobalPointcutDecl
GlobalPointcutDecl (

Position pos,
ClassnamePatternExpr aspectpattern,
Pointcut pc, String name,
TypeNode voidn)

{
return new GlobalPointcutDecl c(pos, aspectpattern,

pc, name, voidn);
}

Now the extended parser can produceGlobalPointcutDeclobjects when it encounters the appropriate tokens (cf.
listing in Section 5.2).

Note that all changes are local to new classes we created (in fact, these classes are in a completely separate
package). The fact thatabc itself didn’t have to be changed at all makes the extension robust with respect toabc
upgrades. Also, since the new AST node extends an existing node, very little functionality needs to be re-implemented.
The associated interfaces only have to declare the methods specific to the new node’s particular functionality.

In the same way, interfacesPCLocalVarsand PCCastwere defined, along with implementing classes, for the
private pointcut variables andcastpointcut extensions. Corresponding production methods were added to the extended
AspectJ node factory.

5.4 Adding new frontend passes

Implementing the “global pointcuts” extension described in Section 4.2 requires somewhat more extensive additions
to the compiler — first, all global pointcuts need to be collected, and then each pointcut must be replaced with the
conjunction of the original pointcut and all applicable global pointcuts.

Polyglot’s visitor-based architecture makes implementing that very easy. We add two new passes. The first stores
all global pointcuts in a static variable, and the second applies that pointcut to the relevant code. For reasons of code

15

brevity, these two passes are implemented by the same class,GlobalAspects; it uses a member variable calledpassto
distinguish which of the two functions it is performing.

The traversal of the AST is performed by theContextVisitorPolyglot class. The new pass extendsContextVisitor
with a method that performs the required action when it encounters a relevant AST node.

The following code fragment illustrates the behaviour of the new visitor upon entering an AST node:

public NodeVisitor enter(Node parent, Node n) {
if (pass == COLLECT
&& n instanceofGlobalPointcutDecl) {

((GlobalPointcutDecl) n).
registerGlobalPointcut(this, context(), nodeFactory);

}
return super.enter(parent, n);

}

As mentioned above, both new passes are implemented by the same class, and hence the check thatpass==COLLECT
makes sure we do the right thing. If the current node is aGlobalPointcutDecl(one of the new AST nodes defined in
section 5.3), we call its special method so it registers itself with the data structure storing global pointcuts. Then we
delegate the rest of the work (the actual traversal) to the superclass.

The implementation of theleave() method, which is called when the visitor leaves an AST nodeand has the option
of rewriting the node if necessary, is very similar. Ifpass==CONJOINand we are at an appropriate node, we return
the conjunction of the node and the global pointcut.

The sequence of passes that the compiler goes through is specified in the special singletonExtensionInfoclass. By
subclassing it and inserting our new passes in an overriddenmethod which then calls the original method, we make
sure the original sequence of passes is undisturbed. Note that this mechanism makes the extension robust with respect
to changes in the baseabcpasses — we can add and rearrange passes without breaking theextension.

5.5 Adding new join points

To implement the cast and throw pointcuts, we first need to extend the list of join point types. This is done by adding
to a list of factory objects which the pointcut matcher iterates over to find all join point shadows. ThelistShadowTypes
method is defined in theAbcExtensionclass and is overridden foreaj:

protected List /*<ShadowType>*/ listShadowTypes()
{

List /*<ShadowType>*/ shadowTypes=
super.listShadowTypes();

shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;

}

The definitions ofCastShadowMatchandThrowShadowMatchare very similar and we therefore limit ourselves to
discussing the former.

TheCastShadowMatch.shadowType() method just returns an anonymous factory object which delegates the work
of finding a join point to a static method in theCastShadowMatchclass. This method,matchesAt(...), takes a structure
describing a position in the program being woven into and returns either a new object representing a join point shadow
or null; the code for it is given in Figure 3.

The purpose of theMethodPositionparameter is to allowabcto iterate through all the parts of a method where a join
point shadow can occur, and ask each factory object whether one actually does. There are four types ofMethodPosition
for normal AspectJ shadows:

• Whole body shadows: execution, initialization, preinitialization

• Single statement shadows: method call, field set, field get

• Statement pair shadows: constructor call

16

public static CastShadowMatch
matchesAt(MethodPosition pos)

{
if (!(posinstanceofStmtMethodPosition))

return null;

Stmt stmt= ((StmtMethodPosition) pos).getStmt();

if (!(stmtinstanceofAssignStmt))
return null;

Value rhs= ((AssignStmt) stmt).getRightOp();

if (!(rhs instanceofCastExpr))
return null;

Type cast to = ((CastExpr) rhs).getCastType();

return new CastShadowMatch(
pos.getContainer(), stmt, cast to);

}

Figure 3: The CastShadowMatch.matchesAt(...) method

• Exception handler shadows: handler

Most shadows either fall into the category of “whole body” or“single statement”. Two are special; a constructor call
join point encompasses both thenew instruction that creates the object as well as theinvokespecialthat initialises
it, and handler join points can only be found by looking at theexception handler table for a method, rather than its
statements.

If a new join point requires an entirely new kind of method position, then the code that iterates over them can be
overridden.

The first job of thematchesAt(...) method is to check that we are at the appropriate position for acastpointcut,
namely one with a single statement. Next, we need to check whether there is actually a cast taking place at this
position; the grammar of Jimple makes this straightforward, as a cast operation can only take place on the right-hand
side of an assigment statement. If no such operation is found, we returnnull; otherwise we construct an appropriate
object.

Defining theCastShadowMatchclass also requires a few other methods, connected with defining the correct values
to be bound by an associatedargs pointcut, reporting the information required to constructa JoinPoint.StaticPart
object at runtime, and recording the information that a pointcut matches at this shadow in an appropriate place for the
weaver itself to use. The details are straightforward, and we omit them for reasons of space.

5.6 Extending the pointcut matcher

Again, we describe the implementation of thecastpointcut and omit discussion of the almost identical throw pointcut.
Once the corresponding join point shadow has been defined, writing the appropriate backend class is straightforward.
The pointcut matcher tries every pointcut at every join point shadow found, so all thecastpointcut has to do is to check
whether the current shadow is aCastShadowMatch, and if so verify that the type being cast to matches theTypePattern
given as argument to thecastpointcut:

protected Residue matchesAt(ShadowMatch sm)
{

if (!(sminstanceofCastShadowMatch))
return null;

Type cast to = ((CastShadowMatch) sm).getCastType();

if (!getPattern().matchesType(cast to))
return null;

return AlwaysMatch.v();
}

17

TheAlwaysMatch.v() value is adynamic residuethat indicates that the pointcut matches unconditionally at this
join point. For those pointcuts where matching cannot be statically determined, this is replaced by one which inserts
some code at the shadow to check the condition at runtime.

5.7 Extending the runtime library

AspectJ provides dynamic and static information about the current join point throughthisJoinPointand associated
special variables.

For thecastpointcut extension, this runtime interface was extended toreveal the signature of the matching cast.
For example, the following aspect picks out all casts (except for the one in the body of the advice) and uses runtime
reflection to display the type that is being cast to at each join point:

import org.aspectbench.eaj.lang.reflect.CastSignature;

aspectFindCasts
{

before():
cast(*) && ! within (FindCasts)

{
CastSignature s= (CastSignature)

thisJoinPointStaticPart.getSignature();

System.out.println(“Cast to: ” +
s.getCastType().getName());

}
}

Implementing this requires changes both in the backend of the compiler (where the static join point information is
encoded for the runtime library to read later), and the addition of new runtime classes and an interface.

Static join point information is encoded in a string which isparsed at runtime by a factory class to construct the
objects accessible fromthisJoinPointStaticPart. This happens just once, namely in the static initialiser ofthe class
where the join point shadow is located. The alternative, which is to directly generate code to construct these objects,
would be expensive in terms of the size of the bytecode produced; using strings provides a compact representation
without too much runtime overhead.

The static information for acastpointcut is encoded as follows. To allow us to easily reuse the existing parser for
such strings, a fair amount of dummy information is generated, corresponding to properties that cast join points do
not have. For example, modifiers such aspublic are important for join points that have a method or field signature
associated with them, but make no sense for the cast join point. The string for thecastpointcut is constructed from
four parts:

• Modifiers (encoded as an integer — 0 for a cast)

• Name (usually a method or field name, but for a cast it is just “cast”)

• Declaring type — class in which the join point occurs

• Type of the cast

For example, a cast join point within a method in the classIntHashTablewhich casts the value retrieved from a
HashMapto anIntegerwould produce the following encoded string:

"0-cast-IntHashTable-Integer"

The runtime factory is subclassed to add a method that creates an object implementing the newCastSignature
interface for appropriate join points. The aforementionedAbcExtensionclass has a method which specifies which
runtime class should be used as a factory forthisJoinPointStaticPart objects, which is overriden so that runtime
objects are created with the new factory:

18

eaj measurements Files Lines of code

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0

Runtime 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarations Weaver 0 0

Runtime 0 0
Cast AST nodes 2 46
poincuts Passes 0 0

Weaver 2 94
Runtime 2 27

Throw AST nodes 2 46
pointcuts Passes 0 0

Weaver 2 91
Runtime 2 16

Extension
information and
shared classes

7 205

Total 27 870

Figure 4: Code measurements foreaj

public String runtimeSJPFactoryClass()
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

}

5.8 Code measurements

To enable the reader to assess the amount of effort involved in implementing each of these new features, we have
summarised some statistics in Figure 4. The table shows the size of the whole parser, and of the boilerplate for
factories in the top and penultimate row, respectively. Themost interesting part is the breakdown by construct in the
middle. For private pointcut variables, all the work goes into defining new AST nodes, and there is no need to define
new passes or to touch the weaver in any way. By contrast, global pointcuts require the introduction of new Polyglot
passes, which reduce the new construct to existing AspectJ constructs. Finally, for cast and throw pointcuts, there is
substantial work in the weaver, because these introduce a new type of join point.

It is pleasing to us that the distinction between the examples is so sharp, as it gives good evidence that the aim of
modularity has been achieved. We believe that the amount of code that needs to be written also meets the criterion
of proportionality that was introduced at the beginning of this paper. The criterion of simplicity is more difficult to
measure, but we hope that the sample code in this section suffices to convince the reader that we have succeeded in
this respect as well. The examples presented here do not demonstrate analysis capability: assessment of that criterion
is ongoing work.

6 Related work

Others before us have identified the need for a workbench to support the rapid developments in aspect-oriented pro-
gramming language research. In this section, we review a number of such proposals, and contrast them with the
approach taken inabc.

19

Throw-pointcut statistics ajc abc
Core compiler/runtime files modified 8 0
throw -specific files created 2 6
Extension-specific factories modified - 5
Total files touched 10 11
Lines of code written1 103 187

Figure 5: Thethrow pointcut inajc andabc.

ajc Thede factostandard workbench for research into variations and extensions of AspectJ is theajc compiler. It
has served this purpose admirably well, and for example [20,23] report on the successful integration of substantial
new features intoajc.

We believe that, in view of the explosion of research into newfeatures and analyses, the time has now come to
disentangle the code of the base compiler from that of the extensions. The benefits are illustrated by the table in Figure
5. It compares the implementation of thethrow pointcut inabcandajc. In the case ofajc, we have to modify a large
number of existing files, thus tangling the new extension with the existing compiler base. At the cost of some factory
classes (and thus some more lines of code),abcdisentangles the two completely.

Javassist Javassist is a reflection-based toolkit for developing Javabytecode translators [5]. Compared to other
libraries such as BCEL, it has the distinguishing feature that transformations can be described using a source-level
vocabulary. Compared toabc, it provides some of the combined functionality of the Java-to-Jimple translator plus
the advice weaver, but its intended applications are different: in particular, it is intended for use at load-time. Conse-
quently, Javassist does not provide an analysis framework like Soot does inabc.

Josh Josh is an open implementation of an AspectJ-like language based on Javassist [4], and as such it is much
closer in spirit toabc. Indeed, the primary purpose of Josh is to experiment with new pointcut designators, although it
can also be used for features such as parametric introductions. Because of the implementation technology, there is no
special support for the usual static checks in the frontend,which is provided inabcby the infrastructure of Polyglot.
Josh does not cover the whole of AspectJ, which limits its utility in realistic experiments.

Logic meta-programming A more radical departure from traditional compiler technology is presented bylogic
meta-programming, as proposed by [7, 13]. Here, program statements where extra code should be woven in are
selected by means of full-fledged Prolog programs. This addssignificant expressive power, and like Josh, the design
makes it easy to experiment with new kinds of pointcuts. The system operates on abstract syntax trees, which are not
a convenient representation for transformation and analysis — many years of research in the compilers community
have amply demonstrated the merits of a good intermediate representation. A further disadvantage, in our view, is
the lack of static checks due to the increased expressive power. The success of AspectJ can partly be explained by
the fact that it provides ahighly disciplinedform of meta-programming; some of that discipline is lost inlogic meta-
programming, because the full power of Prolog precludes certain static checks. Nevertheless, a system based on these
ideas is publicly available [26], and it is used as a common platform by a number of researchers.

Pointcuts as functional queries Eichberg, Mezini and Ostermann have very recently suggested an open im-
plementation of pointcuts, to enable easy experimentationwith new forms of pointcuts [10]. Their idea is closely
related to that of logic meta-programming, namely to use a declarative query language to identify join point shadows
of interest. A difference is that they opt for the use of the XML query language XQuery instead of a logic language.
Furthermore, [10] only deals with static join points. As argued in the introduction, several recent proposals for new
pointcut primitives require data flow analyses. We believe that it is not convenient to express such analyses via queries
on syntax trees. It is however quite easy to transfer some of the ideas of [10] toabc, by letting the queries range over
Polyglot ASTs. A challenge, then, is to define appropriate type rules to implement as part of the frontend.

1Note that the numbers in Figure 5 forabctake into account the relevant lines of files which are listedunder “Extension information and shared
classes” in Figure 4.

20

7 Conclusions and Future Work

We have presentedabc, and its use as a workbench for experimentation with extensions of AspectJ. Our primary
design goal was to completely disentangle new features fromthe existing codebase, and this goal has been met. We
hope that such disentangling will enable yet more rapid developments in the design of aspect-oriented programming
languages, and the integration of ideas from multiple research teams into a single system, where the base can evolve
independently of the extensions.

This project has also been an evaluation of the extensibility of Polyglot and Soot, from the perspective of aspect-
oriented software development. We now summarise their rolein the extensibility of our design, and identify possible
improvements.

Polyglot Polyglot turned out to be highly suited to our purposes. Its extension mechanisms are exactly what is
needed to implement AspectJ itself as an extension of Java, with only minimal code duplication. This in turn makes
the development ofabcrelatively independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanism ofdelegatesmimicks that of ordinary intertype declarations,
whereasextension nodesroughly correspond to what an AspectJ programmer would naturally do viadeclare parents
and interface intertype declarations. Polyglot achieves this effect by cunningly creating a replica of the inheritance
hierarchy in code, which then provides the hooks for appropriate changes. Arguably that mechanism is somewhat
brittle, and it is certainly verbose, replicating the same information in multiple places of the code.

We thus face the question whether it would be possible to extendabcusing AspectJ, or indeed any other dialect of
Java that features open classes. The answer is in the positive, asabc is written in pure Java. It follows that users who
prefer to use AspectJ to extendabccan do so without further ado.

Would the result be more compact and understandable code? Unfortunately, a significant proportion of Polyglot’s
extensions is taken up by boilerplate code for generic visitors in each new AST node. To generate that automatically,
one would need reflection or a feature akin to parametric introductions [14]. The reflection route has been used with
much success, in a framework by Hanson and Proebsting [15] that is very similar to Polyglot.

On the whole we feel our choice of Polyglot has been justified.To further assess its merits, we are planning
a comparative study of Polyglot’s extension mechanism and more advanced technologies such as aspect-oriented
reference attribute grammars [11]. In particular, we wouldlike to investigate how multiple, independent extensions
can be composed.

Soot The choice of Soot as the basis for our code generation and weaver has had a fundamental impact not only
on the quality of the code that is generated, but also on the ease by which the transformations are implemented. The
Jimple intermediate representation of Soot has been honed on a great variety of optimisations and analyses before we
applied it toabc, and we reap the benefits of this large body of previous work.

Equally important has been the use of the Dava decompiler that is part of the Soot framework. This makes it much
easier to pinpoint potential problems, and to communicate the ideas about code generation to others. It also opens the
way to exciting new visualisations, for example to indicateat source level exactly what dynamic residue was inserted
at a join point shadow.

In this paper, we have not yet fully exploited the analysis capabilities of Soot. In particular, for the optimised
implementation of advanced features such as predicted control flow [18], data flow pointcuts [20] and trace cuts [8,27],
the interprocedural analyses of Soot will be very important. In such cases, one needs to first weave naively, in order to
get an approximation of the relevant analysis structures. These are then used to weave again, but now more precisely,
removing redundant residues. We hope to report on the details of this process (which also applies to the implementation
of cflow [24]) in a forthcoming paper.

Acknowledgments

This work was supported, in part, by NSERC in Canada and EPSRCin the United Kingdom. Our thanks to Chris
Allan for his comments on a draft of this paper.

21

References

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ, documentation, support mailing lists, and
bug database.http://aspectbench.org .

[2] Jonathan Aldrich. Open modules: A proposal for modular reasoning in aspect-oriented programming. Technical
Report CMU-ISRI-04-108, Institute for Software Research,Carnegie Mellon University, 2004.

[3] Michael Brukman and Andrew C. Myers. PPG: a parser generator for extensible grammars, 2003. Available at
www.cs.cornell.edu/Projects/polyglot/ppg.html .

[4] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open AspectJ-like language. In K. Lieberherr, editor,3rd
International Conference on Aspect-oriented Software Development, pages 102–111, 2004.

[5] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java bytecode translators. In2nd
International coference on Generative Programming and Component Engineering (GPCE ’03), volume 2830 of
Springer Lecture Notes in Computer Science, pages 364–376, 2003.

[6] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In3rd International Conference on
Aspect-oriented Software Development, pages 56–65. Association for Computing Machinery, 2004.

[7] Kris de Volder. Aspect-oriented logic meta-programming. In Pierre Cointe, editor,2nd International Conference
on Meta-level Architectures and Reflection, volume 1616 ofSpringer Lecture Notes in Computer Science, pages
250–272, 1999.

[8] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction analysis of stateful aspects.
In Karl Lieberherr, editor,3rd International Conference on Aspect-oriented SoftwareDevelopment, pages 141–
150, 2004.

[9] Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuhara.Tutorial: AOP language exploration using the Aspect
Sand Box. In1st International Conference on Aspect-oriented SoftwareDevelopment, 2002.

[10] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as functional queries. InSecond ASIAN Sym-
posium on Programming Languages and Systems (APLAS 2004), Springer Lecture Notes in Computer Science,
2004.

[11] Torbjörn Ekman and Görel Hedin. Reusable language specifications in JastAdd II. In Thomas Cleenewerck,
editor, Evolution and Reuse of Language Specifications for DSLs (ERLS), 2004. Available from:http://
prog.vub.ac.be/˜thomas/ERLS/Ekman.pdf .

[12] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference of static types for Java bytecode.
In Static Analysis Symposium, pages 199–219, 2000.

[13] Kris Gybels and Johan Brichau. Arranging language features for more robust pattern-based crosscuts. In2nd
International Conference on Aspect-oriented Software Development, pages 60–69. ACM Press, 2003.

[14] Stefan Hanenberg and Rainer Unland. Parametric introductions. In Mehmet Aksit, editor,2nd International
Conference on Aspect-Oriented Software Development (AOSD2003), pages 80–89, 2003.

[15] David Hanson and Todd Proebsting. A research C# compiler. Software — Practice and Experience, to appear,
2004.

[16] Bruno Harbulot and John R. Gurd. Using AspectJ to separate concerns in parallel scientific Java code. In
Proceedings of the 3rd international conference on Aspect-oriented software development, pages 122–131. ACM
Press, 2004.

[17] Jim Hugunin. Guide for developers of the AspectJ compiler and weaver, 2004. Available at
http://dev.eclipse.org/viewcvs/index.cgi/˜checkout˜ /org.aspectj/modules/
docs/developer/compiler-weaver/index.html?rev=1.1&c ontent-type=text/
html&cvsroot=Technology_Project .

22

[18] Gregor Kiczales. The fun has just begun. Keynote address at AOSD. Available ataosd.net/archive/
2003/kiczales-aosd-2003.ppt , 2003.

[19] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect advice modularly. InACM
SIGSOFT International Symposium on the Foundations of Software Engineering, 2004.

[20] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented programming. In1st Asian
Symposium on Programming Languages and Systems, volume 2895 ofLecture Notes in Computer Science, pages
105–121, 2003.

[21] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A compilation and optimization model for aspect-
oriented programs. InCompiler Construction, volume 2622 ofSpringer Lecture Notes in Computer Science,
pages 46–60, 2003.

[22] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible compiler framework
for Java. In12th International Conference on Compiler Construction, volume 2622 ofLecture Notes in Computer
Science, pages 138–152, 2003.

[23] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi,Saeko Matsuura, and Seiichi Komiya. Association
aspects. In Karl Lieberherr, editor,3rd International Conference on Aspect-oriented SoftwareDevelopment,
pages 16–25, 2004.

[24] Damien Sereni and Oege de Moor. Static analysis of aspects. InProceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD), pages 30–39, 2003.

[25] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and Vijay Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? InCompiler Construction, 9th International
Conference (CC 2000), pages 18–34, 2000.

[26] Kris De Volder. The TyRuBa metaprogramming system. Available athttp://tyruba.sourceforge.
net/ .

[27] Robert Walker and Kevin Viggers. Implementing protocols via declarative event patterns. InACM Sigsoft
International Symposium on Foundations of Software Engineering (FSE-12), 2004.

23

