L]
)X

The abc Group

abc : An extensible AspectJ compiler

abc Technical Report No. abc-2004-1

Pavel Avgustinov!, Aske Simon Christensen?, Laurie Hendren®, Sascha Kuzins?,
Jennifer Lhotdk3, Ond¥ej Lhotak®, Oege de Moor?, Damien Sereni?,
Ganesh Sittampalam?, Julian Tibble!

! Programming Tools Group 2 BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

September 30, 2004

aspectbench.org

Contents

1 Introduction and Motivation 3
2 Architecture 5
2.1 Polyglot e e e e e 5
2.2 SO0 . . . 7
2.3 Connecting Polyglotand Soot 7
3 Defining an Extension 8
31 SYNtax . . .o e e 8
3.2 TypesyStem e e e e e e e 9
3.3 Semanticchecks. e e 9
3.4 ReWrtiNg e e e e e e e a ee 10
3.5 JoiNpoints L e e e 10
3.6 PoINtCUtS e e 10
3.7 AdVICE . . . e 11
3.8 Optimisations e e 11
3.9 Runtimelibrary e e e e 11
4 eaj— An AspectJ extension 12
4.1 Private pointcutvariables e 12
4.2 Globalpointcuts. e 12
4.3 CastpointCuts o e e e e e e e 13
4.4 Throw pointCULS o e e e e e e 13
5 Implementing eaj using abc 13
5.1 Extendingthelexer L e e 13
5.2 Extendingthe parser e e 14
5.3 Addingnew AST nodes i e e e 15
5.4 Adding new frontend passes e e 15
5.5 Addingnew join points e e e e e 16
5.6 Extendingthe pointcutmatcher 17
5.7 Extendingthe runtimelibrary 18
5.8 Codemeasurements e e 19
6 Related work 19
7 Conclusions and Future Work 21

List of Figures

g b~ W N P

abcoveralldesign L e 6
Grammar extension mechanism e e 9
The CastShadowMatch.matchesAt(...)method 17
Codemeasurementsfea) 19
Thethrow pointcutinajcandabec 20

Abstract

Research in the design of aspect-oriented programmingiéayas requires a workbench that facilitates easy ex-
perimentation with new language features and implemamtagchniques. In particular, new features for AspectJ
have been proposed that require extensions in many dimensgntax, type checking and code generation, as well
as data flow and control flow analyses.

The AspectBench Compilealjc) is an implementation of such a workbench. The base vergiah@mplements
the full AspectJ language. Its frontend is built, using tlodyBlot framework, as a modular extension of the Java
language. The use of Polyglot gives flexibility of syntax appe checking. The backend is built using the Soot
framework, to give modular code generation and analyses.

In this paper, we outline the designatic focusing mostly on how the design supports extensibiig. then pro-
vide a general overview of how to uabcto implement an extension. Finally, we illustrate the egten mechanisms
of abcthrough a number of small, but non-trivial, examplabcis freely available under the GNU LGPL.

1 Introduction and Motivation

The design and implementation of aspect-oriented progiamlanguages is a buoyant field, with many new language
features being developed. In the first instance, such featian be prototyped in a system like the Aspect Sand Box [9]
via a definitional interpreter. Such interpreters are usafdefining the semantics and in explaining the compilation
strategy of new language features [21]. The acid test for laeguage features is, however, their integration into a
full, industrial-strength language like AspectJ. Thatuiegs a highly flexible implementation of Aspect], to sersaa
workbench for aspect-oriented programming language relsea

The purpose of this paper is to presabt, the AspectBench Compiler for AspectJ, which supports thelevof
the AspectJ language implementeddjy 1.2, and which has been specifically designed to be an ekterfimmework
for implementing AspectJ extensiorabcis freely available under the GNU LGPL and can be downloadaa {1].

Challenges An AspectJ compiler is already a complex piece of softwatechy in addition to the normal frontend
and backend components of a compiler, must also support eheratfor name patterns) and a weaver (both for
intertype declarations and for advice). Furthermore, thdskof extensions that have been suggested for AspectJ vary
from fairly simple pointcut language extensions to more ptax concepts which require modifications in the type
system, matcher and weaver. To make the challenges explibriefly review some previous work by others that
has motivated our design.

At one end of the spectrum, there are fairly small extenstbasrequire changes primarily to the syntax. An
example of this kind is theame pattern scopgwoposed by Colyer and Clement [6], which provide an abstrac
mechanism for name patterns. To support this type of exdansur workbench needs an easy way of extending the
syntax, as well as introducing named patterns into the enknent.

A more involved extension is thearameteric introductionsf Hanenberg and Unland [14]. These are intertype
declarations that depend on parameters evaluated at wieaveTheir integration into AspectJ requires substantial
changes to the type system as well as the intertype weavés.kirfd of extension thus motivates a highly flexible
implementation of types.

Most proposals for new features in AspectJ are, howevegaroed with the dynamic join point model. In [23],
Sakuraiet al. proposeassociation aspectsThese provide a generalisation of per-object instaotiativhere aspect
instances are tied to a group of objects to express behalimlationships more directly. This requires not only
changes to the frontend, but also substantial changes ® gaaeration. Making such code generation painless is
another design goal of our workbench.

The community as a whole is concerned with finding ways oflgiggout join points based on semantic prop-
erties rather than naming. For instance, Kiczales has pexpa new type of pointcut, callgaedicted cflon[18].
pcflow(p) matches at a join point if there may exist a path to anothergoint wherep matches. It is correct to let
pcflow(p) match everywhere, but that would lead to inefficient prografn efficient implementation gicflow(p)
needs substantial, interprocedural program analysis.w@tkbench needs to provide a framework for building such
analyses.

In fact, examples where efficient implementation neceassitan analysis framework abound. Particular instances
include thedata flow pointcut®f Masuhara and Kawauchi [20], and ttiace-based aspectd Douenceet al.[8], as
well as thecommunication history aspeat§ Walker and Viggers [27].

All of the above are additions to the AspectJ language, Hutparse, restrictions can be equally important in
language design. One promising example is the proposaldsfehl to restrict the visibility of join points to those that
are explicit in the interface of a class [2]. We aim to supplogtimplementation of such restrictions, and this requires
a flexible implementation of the type system and the pointzatcher.

Finally, we note that the implementation of advanced stirecking tools for aspect-oriented programs, such as
those investigated by Krishnamurtt al. [19], require all types of extension discussed above, rapfiom simple
variations in syntax to making advanced analyses such apesmalysis take into account the effects of advice.

In summary, we can see that an extensible AspectJ compilst Ineuable to handle a wide variety of extensions,
possibly touching on many components of the compiler, iiclg the frontend scanner and parser, the type checker,
the matcher and weaver, and potentially requiring relbtisephisticated program analysis to ensure correctnabs an
efficiency.

Design Goals One approach to implementing a language extension is tofgnadiexisting compiler. However,
this is not always the best approach, since existing comgaifay not have been designed with extensiblity as one of
the main goals. Furthermore, they may be constrained to wiadtkinfrastructures which themselves are not easily
extensible. In the case of AspectJ, the only pre-existing@émentation isajc, which is designed to support fast and
incremental compilation and also to interact closely wité Eclipse toolset.

Our approach was to design and implemeht, the AspectBench Compiler, with extensibility as its prigna
design goal (we also aimed for an optimising implementatibAspectJ, but that is outside the scope of this paper).
To support extensibility, we distilled the following regements from the above discussion of the challenges ingolve

simplicity: It must be relatively simple to develop new extensions. Bsdrthe framework should not need to
understand complicated new concepts or a complex softvemigmlin order to implement their extensions.

modularity: We require two kinds of modularity. First, the compiler wbénch itself should be very modular, so
that the different facets of each extension can be easihifikr with the correct module of the workbench.

Second, the extension should be modular (separate fromdHhéoench code). Users of the workbench should
not need to touch existing code; rather, they should be aldescribe the extensions as specifications or code
that is separate from the main code base.

proportionality: Small extensions should require a small amount of work artecd here should not be a large
overhead required to specify an extension.

analysis capability: The compiler workbench infrastructure should provide thintermediate representation and
a program analysis framework. This is necessary for twooreadirst, some extensions may require relatively
sophisticated analyses to correctly implement their s¢imahecks and weaving. Second, some extensions may
lead to a lot of runtime overhead unless compiler optimigatiechniques are used to minimise that overhead.

The abc approach To meet these objectives, we decided to build on existingyqar tools, namely the Polyglot
extensible compiler framework for the frontend [22], and oot analysis and transformation framework for the
backend [25]. Indeed, Polyglot has been shown to meet thexierof simplicity, modularity and proportionality on a
wide variety of extensions to the syntax and type systemva. By the same token, Soot has been shown to meet all
the above criteria for code generation, analysis and og#itiain.

Given the success of these building blocks, we felt it exédgrimportant to desigabcso that both are uses is
without any changes that are specifiatoc As explained in Section 2 below, this has dictated an agchite where
the frontend separates the AspectJ program into a pure davanm a part containing instructions for the weaver.

Contributions The contributions of this paper are the following:

We have identified the requirements for a workbench for rebaa aspect-oriented programming languages by
analysing previous research in this area.

We presenabg an instance of such a workbench with a clean, extensibletaoture.

We have validated our architecture against these requiresméth a number of small but non-trivial examples.

The extensibility of Polyglot can be seen as a form of aspéetitation, and thuabcis itself a substantial
exercise in aspect-oriented software development, wighptfimary goal of disentangling new, experimental
features from the existing base compiler.

Paper Structure The structure of this paper is as follows. In Section 2, we firge an overview of the main
building blocks ofabg namely Polyglot and Soot, and show their role in the ovexaihitecture ofabc. Next, in
Section 3 we sketch the main points of extensibilitabhc We then turn to describe some modest but representative
examples of AspectJ extensions in Section 4, and their imgafgation in Section 5. The approachatittis contrasted
with existing work in Section 6. Finally, in Section 7 we draame conclusions from our experience in buildéiy,

and we explore possible directions for future research.

2 Architecture

As stated in the introductiombcis based on the Polyglot extensible compiler framework Et#j the Soot bytecode
analysis and transformation framework [25]. Using Polygle an extensible frontend enables customisation of the
grammar and semantic analysis; in the backend, Soot pmaidenvenient intermediate representation on which to
implement the weaving of extensions, as well as tools fotingiany program analyses that extensions may require.
Polyglot can read class files to process library code; Saottso read in class files, and indesut can weave into

jar files in the same way as tlagc compiler for AspectJ.

Becausabcworks with an unmodified Soot and Polyglot, itis easy for ssha developers @bcitself, to update
to the latest versions of Soot and Polyglot as they are retedy the same token, authors of AspectJ extensions can
upgrade to new versions abcwithout difficulty. This independence was achieved mainhsbparating the AspectJ-
specific features in the code being processed from standsedcbde. In the frontendbc generates a plain Java
abstract syntax tree (AST) and a separate aspect informsttiocture containing the aspect specific information. We
call the aspect information structure thAspectinfo The unmodified backend can read in the AST (because it is plai
Java), anagbcthen uses thédspectinfao perform all required weaving. A simplified diagram of theekdtecture of
abcis shown in Figure 1.

In the following subsections, we describe Polyglot and Sndhe context ofabc with a focus on how they
contribute to extensibility. Finally we discuss in some mdetail how the two parts are connected.

2.1 Polyglot

Polyglot [22] is a frontend for Java intended for implemegtéextensions to the base language. In its original config-
uration, Polyglot first parses Java source code into anatidtyntax tree (AST), then performs all the static checks
required by the Java language in a number of passes whicltadive tree. The output of Polyglot is a Java AST
annotated with type information, which is written back toawal source file. Polyglot is intended to perform all
compile-time checks; when a class has passed through dlegidsses in Polyglot, the resulting Java file should be
compilable without errors by any standard Java compilereVBolyglot is used as a frontend for Soot, flaga to
Jimplemodule inside Soot compiles the final AST into the Jimplerimiediate representation instead of writing it out
to a Java file. Therefore, aibg the final Polyglot passes separate the AspectJ prograruménJava (which is passed
to the Java to Jimple module in Soot) and instructions fomtbaver.

Several features of Polyglot make it well-suited for wigtiaxtensions, and also help to make those extensions
themselves extensible. Polyglot allows a new grammar tgbeified as a collection of modifications to an existing
grammar, where these modifications are given in a separatgfisation file, not in the original grammar file. The

.class Jjava

v

Polyglot parser

Aspect]
AST
v
Polyglot AST transformations
v]
Java Aspect
AST Info

vl—l

Soot skeleton generatior)

Skeleton weaving

—

Woven

—l skeleton
|

Soot jimple body generation

i

Jimple
IR

Advice weaving

v

Woven
Jimple

Analyses and optimisations|

v
Final
Jimple
I]
Soot bytecode generation Soot decompilation
v]

.Cclassg Jjava

Figure 1:abcoverall design

AspectJ grammar we developed fabc is specified as an extension of the Java grammar, and the gmanfor
extensions are in turn specified as modifications to the A3grammar.

Polyglot makes heavy use of interfaces and factories, ngakeasy to extend or replace most of its parts, such as
the type system or the symbol table, as well as the list ofiteyasses that are performed on the AST. Each pass in
Polyglot non-destructively rewrites the input tree. As sulg it is easy to insert new passes in between existing, ones

and each pass typically performs only a small amount of workpared to traditional compiler passes.alnc we
have added many AspectJ-specific passes, and it is easytéms@ons to add further passes of their own.

Each AST node in Polyglot uses a mechanisnextensionand delegatego allow methods to be replaced or
added in the middle of the existing class hierarchy, achgpain effect similar to what can be done in AspectJ using
intertype declarations, but in plain Java. This mechansoommonly used by extensionsaticto modify existing
AST nodes.

2.2 Soot

Soot [25], which is used as the back-endabft is a framework for analysing and transforming Java bytecdthe
most important advantage of using Soot as the backend, botle¥elopingabcitself and for extending the language,

is Jimple, Soot’s intermediate representation. Soot ples/imodules to convert between Jimple, Java bytecode, and
Java source code. It furthermore includes implementatidrsdandard compiler optimisations, whielbc applies
after weaving. We have already observed significant spesfiom these optimisations alone (preliminary results are
accessible from [1]). In addition to already implementedigses and transformations, Soot has tools for writing new
ones, such as control flow graph builders, definition/usénsha fixed-point flow analysis framework, and a method
inliner. These features are useful for implementing extarssthat need to be aware of the intra-procedural behaviour
of the program, such as pointcuts describing specific pairttse control flow graph.

The Jimple intermediate representation is a typed, siesk-three-address code. Rather than representing compu-
tations with an implicit stack, each Jimple instruction kifly manipulates specified local variables. This regres
tation greatly simplifies weaving of advice, both for stamtlAspectJ features and for extensions. If it were weaving
into bytecode directly, the weaver would need to consideeffect of the woven code on the implicit execution stack,
and generate additional code to fix up the stack contentse Wbthis is necessary when weaving into Jimple. More-
over, when values from the shadow point are needed as paanetthe advice, they are readily available in local
variables; the weaver does not have to sift through the ctattipn stack to find them.

As input, Soot can handle both class files and Java source Titesonvert bytecode to Jimple, Soot introduces
a local variable to explicitly represent each stack loastigplits the variables to separate independent uses of the
same location, and infers a type [12] for each variable. Toved source code to Jimple, Soot first uses Polyglot to
construct an AST with type information, and then generateplé code from the AST. This process does not need
to be modified inabc becausabc passes Soot a plain Java AST, keeping all the aspect-speéifimation in the
separate aspect information structure. Normally, afigsrakcessing, Soot converts the Jimple code into bytecode an
writes it to class files, but it also includes a decompilerahihis very useful for viewing the effects of aspects and
AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion abcs architecture by examining in closer detail how Polygloti&oot interact. A key
component of this interaction is the separation of the AEpAST into a pure Java AST and the auxilligkgpectinfo

structure. This transformation enabkscto use the existing facility in Soot for translating a PoltghST into the

Jimple IR.

The Java AST is basically the AspectJ program with all Aspsepecific language constructs removed. Ake
pectinfostructure contains complete information about these coctst In cases where these contain actual Java code
(advice bodiesif pointcut conditions, intertype method/constructor bediatertype field initialisers), the code is
placed in placeholder methods in the Java AST.

The Java AST only contains Java constructs, but it is inceteph the sense that it may refer to class members
which do not exist or are not accessible in the unwoven Jaxgram. More specifically, the Java AST will in general
not be compilable until allleclare parentsind intertype declarations have been woven into the progfém first of
these can alter the inheritance hierarchy, and the secanditaduce new members that the pure Java parts may refer
to. Since both of these features may be applied to class fdesvhich we do not have an AST representation), it is
not possible to perform this part of the weaving process erPilyglot representation before passing the AST to Soot.

Fortunately, Soot allows us to conduct the conversion framado Jimple in two stages, and the application of

declare parent&nd intertype weaving can happen in between. In the firsestagot builds a class hierarchy with
mere stubs for the methods: it is a skeleton of a full progmnadimple, without method bodies. In the second stage,
Soot fills in method bodies, either by converting bytecodeficlass files, or by compiling AST nodes.

This setup permits both static weaving and advice weavingdk on the Jimple IR, largely independent of
whether the Jimple code was generated from source codeexduld. And since the skeleton that is filled out in the
second stage has the updated hierarchy and contains atl/pealeclarations, all member refernces in the code are
resolved correctly in the translation into Jimple.

3 Defining an Extension

We now outline the basic steps needed to create an extemsegeneral manner. This description is intended to give
the reader an impression of the extension mechanisms bieifaabg without delving into excessive detail. After
this generic description, we shall introduce some conartenples in Section 4, and show how the basic steps are
instantiated in Section 5.

This section serves two purposes. First, to outline how vild lom the existing extension mechanisms of Polyglot
and Soot to achieve extensibility abc (Sections 3.2, 3.3, 3.4, and 3.8). Second, we wish to presené design
decisions that are unique &¢ which address specific issues regarding the extensionpdéd3 (Sections 3.1, 3.5,
3.6, 3.7 and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually definvhat additional syntax it will introduce to the
language. Makingbcrecognise the extended language involves changing thedexrehe parser that it uses. Polyglot
already handles extending grammars in a very clean and mofdighion, however the standard Polyglot lexer is not
extensible — extensions are expected to create their ovan lBxcopying it and making appropriate modifications.
Thus, in this subsection we describe our approach to makingxtensible lexer in some detail, and then briefly
summarise the Polyglot mechanism for extending grammars.

Lexer We have designed the lexer fabcto support a limited form of extensibility that has been sigfit for

the extensions we have written so far. Specifically, the §&epwords recognised by the lexer can be modified by
an extension, and the actions taken by the lexer when erexogione of these keywords are customisable. More
complex extensions can still be achieved by reverting todpot's approach of copying and modifying the lexer

definition. This is in agreement with the principle of profianality which was stated as a design goal — small
extensions are easy, and complex ones are possible. It @caabfuture work to improve the extensibility, perhaps

by specifying the lexer as a parser in itself.

The lexical analysis of AspectJ is complicated by the faat there are really several different languages being
parsed: ordinary Java code, aspect definitions, and poidéfinitions. Consequently, trebclexer is stateful — it
recognises different tokens in different contexts. Théofeing example illustrates one kind of problem that is dealt
with by the introduction of lexer states:

if*.*1. Foot+.new(..)

The expected interpretation of such a string as Java codesgpatt of a pointcut will be very different; for example,
in Java, we would expect “1to become a floating point literal, whereas in the pointaunguage the decimal point
would be viewed as a dot separating elements of a name pat&mmlarly, “*” in Java should be scanned as an
operator, while in pointcuts, it is part of a name patternteNalso the use of what would be keywords in Java mode
(if andnew) as part of a pattern.

An important part of designing a stateful lexer is specifyimhen the lexer should switch to a different state
without adding too much complexity. The general pattern & is to maintain a stack of states, and recognise the
end of a state when we reach an appropriate closing brackeacter for that state. For example, normal Java code
is terminated by the}’ character. Of course, braces can be nested, so we needinise opening braces and also
count the nesting level. For more details regarding therlsteges imbc see section 5.1.

File X FileY
S = a | includeX
| b|extendS = d
| ¢ | e
Filez Result
includeY S = a
dropS = b | ¢
| d | e

Figure 2: Grammar extension mechanism

Parser The abc parser is generated by PPG [3], the LALR parser generatoextansible grammars which is
included in Polyglot [22]. PPG allows changes to an exisgngmmar to be entered in a separate file, overriding,
inheriting and extending productions from the base gramiftas results in modular extensions, which can easily be
maintained should the base grammar change.

The example in Figure 2 (using simplified non-PPG syntax)alestrates the basic principles. An existing gram-
mar can be imported with therfclude’ keyword. New production rules can then be specified, andaamechange
existing rules using the keywordsxtend and “drop’ to add and remove parts of the rule. More advanced changes,
such as modifying the precedence of operators, are alsibposBSor further details on the specification of grammar,
see [3].

3.2 Type system

Polyglot provides convenient facilities for extending thpe system. As a minimum, this involves introducing a new
kind of type object and lookup functions for these new etiggiin the environment. The new type of environment is
then invoked by overriding the environment factory method isubclass oAJTypeSystemvhich describes the type
system of Aspect] itself.

To illustrate, consider the introduction of named classgpatexpressions [6]. We would need to introduce a new
type object to represent such names, EaynedCPEInstancg@n Polyglot, it is convention that identifiers for type
classes end with. . Instancg. The environment then maps (possibly qualified) names jiectdbof typeNamedCPE-
Instance

The semantic checks for named patterns must enforce the@eetnt that there be no cycles in definitions, since
recursively defined named patterns do not make sense. Aasiotieck has already been implemented for named
pointcuts, and it involves building a dependency graph.hSlata structures necessary for semantic checks are typi-
cally stored in the type objects (hedamedCPEInstangebecause Polyglot operates by rewriting the original titee
is not possible to store references to AST nodes.

Examples such as the parametric introductions of Hanerdmettynland [14] would require more invasive changes
in the type system, for example by subclasdimgrTypeMethodInstandéhe signature of a method introduced via an
intertype declaration) to take account of the parameteitsaife to be evaluated at compile-time.

3.3 Semantic checks

New semantic checks are usually implemented by overridiagppropriate method on the relevant AST nodes. The
most obvious place for simple checks is in fiypeCheckepass; every AST node implementypeChecklypeCheckgr
method. The type checker is run after all variable refersiaee resolved; all checks that do not require further data
structures are typically put in thgpeChecknethod.

Later passes use data flow information to check initialisatif local variables and the existencerefurn state-

ments. Again, each AST node implements methods to build ¢énéral flow graph for these purposes. In the base
AspectJ implementation, these are, for example, ovemidioi¢éake into account the initialisation of the result param
eter inafter returning advice, and extensions can make variations of their own.

AspectJ is somewhat unusual in that some semantic checkstbde deferred to the weaver. For example, it
is necessary to type check the resultsaodund advice at each point where it is woven in. Becaabe maintains
precise position information throughout the compilatioagess, such errors can still be pinpointed to the apprapria
locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source comfuitezxtensions to Java, where the final rewriting passes
transform new features into an equivalent pure Java A8tis different in that most of the transformation happens
at a later stage, when weaving into Jimple. It is, howeveerofiseful to employ Polyglot’s original paradigm when
implementing extensions to AspectJ that have an obvioustegoart in AspectJ itself.

For example, consider again the feature of named clasgpattpressions. A simple implementation would be to
justinline these after appropriate semantic checks hage thene, so that nothing else needs to change in the compiler.
Such inlining would be implemented as two separate paseedpaollect the named pattern definitions and the other
to inline them — the two would then communicate via an exptieita structure that is common to both passes. As
said, it is not recommended to store pieces of AST explicitliess they are immediately transformed away.

abcdoes extensive rewriting of the tree prior to conversionnple. This consists of introducting new placeholder
methods (for instance for advice bodies), and storing ulesitins for the weaver in thAspectinfo Extensions can
participate in this process by implementing methods thatalied by the relevant passes.

3.5 Join points

Introducing new pointcuts will often involve extending thet of possible join points. For example, implementation of
a pointcut that matches when a cast instruction occurs wegjdire the addition of a join point at such instructions.

Many new join points will follow the pattern of most existidgpectJ join points and apply at a single Jimple state-
ment. These can be added by defining a new factory class thatcagnise the relevant statements, and registering it
with the global list of join point types.

For more complicated join points, it will be necessary torode the code that iterates through an entire method
body looking for join point shadows. The overriding code canany required analysis of the method body to find
instances of the new join points (for example, one might vtaimispect all control flow edges to find the back edges
of loops [16]), and then call the original code to find all tfmal” join point shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many propogaisiew forms of pointcuts in Aspect]. To meet our
objective of proportionality (small extensions requirttidi work), we have designed an intermediate representatio
of pointcuts that is more regular than the existing pointanguage of AspectJ. This makes it easier to compile new
pointcut primitives to existing ones.

Specifically, the backend pointcut language partitionsifmoits into the four categories listed below. Some of the
standard AspectJ pointcuts fit directly into one of thesegaties and are simply duplicated in the backend, while
others are must be transformed from AspectJ into the repiasen used irabc

e Lexical pointcuts are restrictions on the lexical positddrvhere a pointcut can match. For examypiéhin and
withincode fall into this category.

e Shadow pointcuts pick out a specific join point shadow withimethod body. Theetpointcut is an example.

e Dynamic pointcuts match based on the type or value of soméwarvalue. Pointcuts such ds cflow andthis
are of this kind.

10

e Compound pointcuts represent logical connectives such8as &

The motivation for this categorisation is that it allows thalementation of each backend pointcut to be simpler and
more understandable, which in particular makes it easregxXtension authors to define new pointcuts.

An example of an AspectJ pointcut that does not fit into thigletalirectly is theexecution((MethodPatteri)
pointcut, which specifies both that we are inside a methoabstructor matchinylethodPatterrand that we are at
the execution join point. The backend pointcut languageefioee views this as the conjunction of a lexical pointcut
and a shadow pointcut.

To add a new pointcut, one or more classes should be added tmtkend, and the frontend AST nodes should
construct the appropriate backend objects during the génarof theAspectinfcstructure.

The backend classes are responsible for deciding whetmatdne pointcut matches at a specific location. If this
cannot be statically determined, then the pointcut shorddyce adynamic residuevhich can generate the required
runtime code.

3.7 Advice

It appears that there are few proposals for truly novel tygfesdvice: most new proposals can be easily rewritten to
the existing idioms of before, after and around. For exanthke proposal for “tracecuts” in [8] reduces to a normal
aspect, where a state variable tracks the current matctaiteg and each pattern/advice pair translates into afteced
Such new types of advice are thus implemented via rewritmtiie standard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows thee&tpmodel of advice is straightforward: simply
implement a new class and define how code should be genevatellithat piece of advice and where in the join point
shadow this code should go. For example, the bookkeepingrestfor cflow is implemented as a special kind of
advice that weaves instructions both at the beginning adab&a shadow.

3.8 Optimisations

The straightforward implementation of a new extension nesult in inefficient runtime code. Even in the basic
AspectJ language, there are a number of features that irgruficant runtime penalties by default, but in many cases
can be optimised.abc aims to make it as easy as possible to implement new optimisatwhether for the base
language or for extensions. In particular, it is straightfard to transform the AST in the frontend and the Jimple
intermediate code in the backend.

Taking an example from the base AspectJ language, coristmattthethisJoinPoint is expensive because it must
be done each time a join point is encountered at runtiate (like ajc) employs two strategies for mitigating this
overhead. Firstly, some advice bodies only ever make uskedbtaticPartmember ofthisJoinPoint, which only
needs to be constructed once. A Polyglot pass in the fronsemsed to identify advice bodies where this is the case
and transform the uses tohisJoinPointStaticPart instead.

Secondly, the runtime code generated delays constructithas late as possible in case it turns out not to be
needed at all; this is complicated by the fact fhpbintcuts as well as advice bodies may make use of it, socanisn
cannot simply be delayed until the advice body ruaisc generates code that instantiatestthisJoinPoint variable
where needed it has not already been instantiatedsingnull as a placeholder until that point. The Jimple code is
then transformed to remove unnecessary checks and isati@ins, using a variation of Soot'’s intraprocedural regk
analysis which has special knowledge thatttiieJoinPoint factory method cannot returrull.

3.9 Runtime library

The runtime library for AspectJ serves two purposes. Firgttontains bookkeeping classes necessary for the imple-
mentation of language constructs suclcigw. Extensions such as data flow pointcuts [20] would requinenda
runtime class in order to store dynamic data about the safrte value in a particular variable.

Secondly, the runtime provides the objects accessibleigirthethisJoinPointfamily of special variables; these
make information about the current join point availablet® programmer via reflection. Any new pointcut introduced

11

is likely to have unique signature information which woukldccessible to the user via an extension oSigmature
interface. For example, the standard AspectJ runtime smt@amongst otherédviceSignaturg-ieldSignatureand
MethodSignature

4 eaj — An AspectJ extension

This section describes a few particular extensions to tipeétd language that we have implemented. These extensions
have been chosen to illustrate the most salient of the méstharthat were described in the previous section. The
full source code for these examples is included with thedseshdistribution ofabc[1]. For ease of reference, the
extended language is namedj one compile®aj programs with the commandbc-ext abc.edj This is the usual

way of invoking extensions withbc

4.1 Private pointcut variables

In AspectJ, the only way to introduce new variables into anfmit is to make them explicit parameters to a named
pointcut definition or advice. It is sometimes conveniewiyviver, to simply declare new variables whose scope is
only part of a pointcut expression, without polluting théeirfiace of the pointcut. For example, it might be desired to
check that the value of an argument being passed has certgiarties, without actually using that value in the advice
body. The new keyworgrivate introduces a locally scoped pointcut variable. For instarice following pointcut
could be used to check that the argument is either a nedatioe a negativelouble

pointcut negativefirstarg) :
private (int x) (args(x) && if(x < 0))
|| private (double ¥ (args(x) && if(x < 0));

4.2 Global pointcuts

It is very common for many pieces of advice to share a commaijueoat in their pointcut. The idea of global
pointcut is to write these common conjuncts only once. Amepla use is to restrict the applicability of every piece
of advice within a certain set of aspects. For example, wéhvigite:

global : * : !within (Hidden);

This would ensure that no advice within any aspect couldyawjihin the Hiddenclass.

As another example, it is often useful to prevent advice fammaspect applying within that aspect itself. The
following declaration (for aspe@&spec} can achieve this more concisely than putting the resbriatin each piece of
advice:

global : Aspect !within (Aspec};

In general, a global pointcut declaration can be put anyevheramed pointcut declaration can be.directly within
a class or aspect body). The location of such a declaratismbaffect on its applicability, except that name patterns
within such a declaration will only match classes and agpéstble from the scope of that declaration.

The general form of a global pointcut declaration is as feo

global : (TypePatterh : (Pointcu} ;

It has the effect of replacing the pointcut of each advicdatation in each aspect whose name matdiygePattern
with the conjunction of the original pointcut and the gloPaintcut

12

4.3 Cast pointcuts

The purpose of theastpointcut is to match whenever a value is cast to another #perresponding new type of join
point shadow is added which occurs at every cast instruotibether for reference or primitive types, in the bytecode
of a program.

To illustrate, the following piece of advice can be used ttederuntime loss of precision caused by casts from an
int to ashort
before(int i):
casf(shor) && args(i)

&& if(i < Short.MIN VALUE
[| i > Short. MAX VALUE)

System.err.printlfWarning: loss of " +
“ precision casting " +
i +“to a short.”);

In general the syntax of east pointcut iscast(TypePatteri); this will match at any join point where the static
result type of the cast is matched bypePattern In keeping with the pattern of other primitive pointcutse tvalue
being cast from can be matched by theys pointcut, and the result of the cast can be matched by thergiti
parameter t@fter returning advice (and is returned by tipeoceedcall in around advice).

4.4 Throw pointcuts

Thethrow pointcut is introduced in the developer documentatiorefof{17], and we have implemented it &gjto
compare the ease-of-extension of both compilers. It mateheew join point shadow which occurs at each throw
instruction.

The following example demonstrates how extended debuggiiogmation can be produced in the event of a
runtime exception, using a piece of advice:

before(Debuggable i
this(d) && throw() && args(RuntimeException

d.dumpStatg;

5 Implementing eaj using abc

We have given a broad outline of how extensions are constlaid discussed some specific extensions that we have
implemented. We now show in detail how this was done, bothréeige a guide for others and to enable a realistic
assessment of the work involved.

The starting point to extendirapcis the AbcExtensiorlass. An extension can be specified at runtime by passing
its core package name #dbcwith the-extflag; theAbcExtensiorlass from this package is then loaded by reflection;
all the extensibility hooks imbcare passed through this class. There is a default impleti@mif this class in the
abc.mainpackage, which extensions must subclass.

Another key class iExtensionInfoThis is part of the extensibility mechanism of Polyglot;fedntend extensions
(except for the lexer) are registered by subclassing thssclNew instances of this class are returned by the subdlass
AbcExtension

5.1 Extending the lexer

As described in Section 3.hBbCs lexer is stateful. There are four main lexer states folidgawith the different
sub-languages of Aspectdvd , ASPECT, POINTCUT and POINTCUTIFEXPR. The first three are used in the obvious
contexts. The BINTCUTIFEXPR state is necessary becauseiffpointcut allows a Java expression to be nested inside

13

a PoINTCuUT; however, while the normalaJa state is terminated by ", we need to return to thed®NTCUT state
when reaching a matching closing ‘)’ character.

Keywords for each state are stored in state-spddiishMays which map each keyword to an object implementing
the LexerActioninterface. This interface declares a method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recoghilis return value is turned into a parser token and passed
to the parser for further analysis. A reference to the lemstaince is passed as a parametegeiiiokeq..), so that
side effects that affect the lexer (like changing the lexate are possible. A default implementation of this irdeef

is supplied, which offers sufficient functionality to aside keywords with parser tokens and (optionally) change th
lexer state; custom implementationsd.@&ixerActioncan provide more flexibility. Note that the default implertation
provides functionality sufficient for all but 5 (out of mortesatn 90) Java and AspectJ keywords.

Implementing theeaj extensions required adding several new keywords. In péatic‘cast was introduced as a
keyword in the ®INTCUT state, and §lobal’ as a keyword in all four lexer states. Note thativate’ and “throw”
are already keywords in all states, and so do not need to tmlinded specifically for the private pointcut variables
and throw pointcut extensions. Here is the code that addsetheords to the respective states:

public void initLexerKeywords(AbcLexer lexer)

{

/I keyword for the “cast” pointcut extension
lexer.addPointcutKeywo(ttast”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.PCAST)));

/I keyword for the “global pointcut” extension
lexer.addGlobalKeywoiglobal”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL
new Integellexer.pointcut state))));

/I Add the base keywords
super.initLexerKeywords(lexer);

Note that both keywords use the default implementatioheferAction i.e. theLexerAction c class. We see
the one-argument and two-argument constructors for tlaascl The first argument is always the parser token that
should be returned for the keyword, the second argumentdggnt) is the lexer state that should be selected after the
keyword. As stated above, further logic can be implemenyesubclassind exerAction c.

5.2 Extending the parser

The grammar fragment below shows how two new productionsidded for private pointcut variables and the cast
pointcut, which can appear anywhere a normal pointcut could
extendbasic_pointcut expr::=

PRIVATE:X LPARENformal parameter list opt:a RPAREN
LPAREN pointcut_expr:bRPARENY

RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

)

| PC_CASTXLPARENtype pattern expr:arRPARENY

RESULT=
parser.nf.PCCast(parser.pos(x,y), a);

The fragment closely resembles code one would use with thelapnCUP parser generator, apart froméxéend
keyword. PPG also allows you to drop productions, transfedpctions from one non-terminal to another, and
override the productions of a particular non-terminalsitiescribed in detail in [3].

14

5.3 Adding new AST nodes

As mentioned abovebcs frontend is built on the Polyglot extensible compilemfrawork [22]. In fact, from Poly-
glot’s point of view,abcis just another extension. This means thht “inherits” all the extensibility mechanisms
provided by Polyglot.

In particular, adding new AST nodes is common when writingipder extensions, and thus it is important to
provide an easy and robust mechanism for doing so.

All four extensions discussed above required new AST no#fes.the sake of brevity we will only present the
node introduced by the global pointcut extension here — thera@ases are handled very similarly.

In order to write a clean Polyglot extension, one has to agh®the rigorous use of factories and interfaces to
create nodes and invoke their members, respectively. T8tesfap is therefore to define an interface for the new AST
node, declaring any functionality it wants to present todhtside world:

public interface GlobalPointcutDeclextendsPointcutDecl

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}

We provide a method to insert the pointcut into a static datecture keeping track of the global pointcuts defined
in the program¢f. Section 5.4). Note that the interface extemtl€’s PointcutDeclinterface, so it provides all the
functions relevant to a pointcut declaration.

The next step is to write the class implementing that interf&ome boilerplate code is required (a constructor and
methods to allow visitors to visit the node), and, of couthe, methodegisterGlobalPointcy) is given a concrete
implementation.

In order to make sure we can instantiate this new node typsulvelassabcs default node factory (which, in turn,
is derived from Polyglot’'s node factory) and create a metloodbtaining an instance @lobalPointcutDecl
public GlobalPointcutDecl
GlobalPointcutDecl (
Position pos,
ClassnamePatternExpr aspegiattern,
Pointcut pc, String name,
TypeNode voidn)

{

return new GlobalPointcutDecl c(pos, aspectpattern,
pc, name, voidn);

Now the extended parser can prod@@ebalPointcutDecbbjects when it encounters the appropriate tokefs (
listing in Section 5.2).

Note that all changes are local to new classes we create@din these classes are in a completely separate
package). The fact thatbcitself didn’'t have to be changed at all makes the extensibusbwith respect t@bc
upgrades. Also, since the new AST node extends an existitg, wery little functionality needs to be re-implemented.
The associated interfaces only have to declare the metipedsfis to the new node’s particular functionality.

In the same way, interfacd¥CLocalVarsand PCCastwere defined, along with implementing classes, for the
private pointcut variables arstpointcut extensions. Corresponding production methode agded to the extended
AspectJ node factory.

5.4 Adding new frontend passes

Implementing the “global pointcuts” extension describe®ection 4.2 requires somewhat more extensive additions
to the compiler — first, all global pointcuts need to be cdlelc and then each pointcut must be replaced with the
conjunction of the original pointcut and all applicablelgdd pointcuts.

Polyglot’s visitor-based architecture makes implemeantirat very easy. We add two new passes. The first stores
all global pointcuts in a static variable, and the secondiapghat pointcut to the relevant code. For reasons of code

15

brevity, these two passes are implemented by the same GdmlAspectsit uses a member variable callpdssto
distinguish which of the two functions it is performing.

The traversal of the AST is performed by tBentextVisitorPolyglot class. The new pass exter@ntextVisitor
with a method that performs the required action when it entarg a relevant AST node.

The following code fragment illustrates the behaviour @& tiew visitor upon entering an AST node:

public NodeVisitor entgiNode parent, Node)r{
if (pass == COLLECT
&& n instanceofGlobalPointcutDedl {
((GlobalPointcutDedl n).
registerGlobalPointcuthis, contexf), nodeFactory;,

}

return super.entefparent n);

As mentioned above, both new passes are implemented byttescdass, and hence the check {hads==COLLECT
makes sure we do the right thing. If the current node @a@balPointcutDeclone of the new AST nodes defined in
section 5.3), we call its special method so it registerdfitgith the data structure storing global pointcuts. Then we
delegate the rest of the work (the actual traversal) to therslass.

The implementation of thieaveg) method, which is called when the visitor leaves an AST ratthas the option
of rewriting the node if necessary, is very similarplss==CONJOINand we are at an appropriate node, we return
the conjunction of the node and the global pointcut.

The sequence of passes that the compiler goes through ifiespétthe special singletoBxtensioninfalass. By
subclassing it and inserting our new passes in an overridaghod which then calls the original method, we make
sure the original sequence of passes is undisturbed. Nattéhie mechanism makes the extension robust with respect
to changes in the basdcpasses — we can add and rearrange passes without breakgehsion.

5.5 Adding new join points

To implement the cast and throw pointcuts, we first need terekthe list of join point types. This is done by adding
to a list of factory objects which the pointcut matcher itesover to find all join point shadows. Th&tShadowTypes
method is defined in thAbcExtensiomrlass and is overridden feij:

protected List /*<ShadowType*/ listShadowTypes()

{
List /*<ShadowType*/ shadowTypes
super.listShadowTypes();
shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;
}

The definitions ofCastShadowMatcandThrowShadowMatchre very similar and we therefore limit ourselves to
discussing the former.

The CastShadowMatch.shadowTypemethod just returns an anonymous factory object whicbghtkes the work
of finding a join point to a static method in ti@astShadowMatctlass. This methodnatchesAt..), takes a structure
describing a position in the program being woven into andrrest either a new object representing a join point shadow
or null; the code for it is given in Figure 3.

The purpose of th®lethodPositiorparameter is to allowbcto iterate through all the parts of a method where a join
point shadow can occur, and ask each factory object whettgeactually does. There are four typedadthodPosition
for normal AspectJ shadows:

e Whole body shadows: execution, initialization, preirigation
¢ Single statement shadows: method call, field set, field get

e Statement pair shadows: constructor call

16

public static CastShadowMatch
matchesAMethodPosition pds
{

if (!(posinstanceofStmtMethodPosition
return null;

Stmt stmt ((StmtMethodPositignpos).getStmg);

if (!(stmtinstanceofAssignStn))
return null;
Value rhs= ((AssignStn)tstm).getRightOf);

if (!(rhsinstanceofCastExp})
return null;
Type castto = ((CastExp} rhs).getCastTyp@;

return new CastShadowMatch
pos.getContaind}, stmt cast to);

Figure 3: The CastShadowMatch.matchesAt(...) method
e Exception handler shadows: handler

Most shadows either fall into the category of “whole body™single statement”. Two are special; a constructor call
join point encompasses both thewinstruction that creates the object as well asithvkespeciathat initialises

it, and handler join points can only be found by looking at éixeeption handler table for a method, rather than its
statements.

If a new join point requires an entirely new kind of methodigion, then the code that iterates over them can be
overridden.

The first job of thematchesAt..) method is to check that we are at the appropriate posfor acastpointcut,
namely one with a single statement. Next, we need to checkheh¢here is actually a cast taking place at this
position; the grammar of Jimple makes this straightforwasda cast operation can only take place on the right-hand
side of an assigment statement. If no such operation is fonadeturnnull; otherwise we construct an appropriate
object.

Defining theCastShadowMatctlass also requires a few other methods, connected withiigfime correct values
to be bound by an associatadgs pointcut, reporting the information required to constractoinPoint.StaticPart
object at runtime, and recording the information that a fminhmatches at this shadow in an appropriate place for the
weaver itself to use. The details are straightforward, aaadmit them for reasons of space.

5.6 Extending the pointcut matcher

Again, we describe the implementation of teestpointcut and omit discussion of the almost identical thrainfcut.
Once the corresponding join point shadow has been definéithgwhe appropriate backend class is straightforward.
The pointcut matcher tries every pointcut at every join psiradow found, so all theastpointcut has to do is to check
whether the current shadow i€astShadowMatgland if so verify that the type being cast to matchesTypePattern
given as argument to th@stpointcut:

protected Residue matchesAt(ShadowMatch sm)
if (!(sminstanceofCastShadowMath
return null;
Type castto = ((CastShadowMatdrsm).getCastTyp@;

if (!getPatterif).matchesTygeast to))
return null;

return AlwaysMatch.g);

17

The AlwaysMatch.{) value is adynamic residuehat indicates that the pointcut matches unconditionalhis
join point. For those pointcuts where matching cannot bicsiéy determined, this is replaced by one which inserts
some code at the shadow to check the condition at runtime.

5.7 Extending the runtime library

AspectJ provides dynamic and static information about tireenit join point throughhisJoinPointand associated
special variables.

For thecast pointcut extension, this runtime interface was extende@veal the signature of the matching cast.

For example, the following aspect picks out all casts (ekémpthe one in the body of the advice) and uses runtime
reflection to display the type that is being cast to at eaahpoint:

import org.aspectbench.eaj.lang.reflect.CastSignature
aspectFindCasts

before():
casi{(*) && ! within (FindCast$
{

CastSignature s (CastSignaturg
thisJoinPointStaticPart.getSignaturé);

System.out.printffiCast to: " +
s.getCastTydgegetNamé);

Implementing this requires changes both in the backendeofdmpiler (where the static join point information is
encoded for the runtime library to read later), and the &fibf new runtime classes and an interface.

Static join point information is encoded in a string whictparsed at runtime by a factory class to construct the
objects accessible frotisJoinPointStaticPart This happens just once, namely in the static initialisethef class
where the join point shadow is located. The alternativectviig to directly generate code to construct these objects,
would be expensive in terms of the size of the bytecode predtugsing strings provides a compact representation
without too much runtime overhead.

The static information for aastpointcut is encoded as follows. To allow us to easily reusesttisting parser for
such strings, a fair amount of dummy information is genetaterresponding to properties that cast join points do
not have. For example, modifiers suchpamblic are important for join points that have a method or field sigrea
associated with them, but make no sense for the cast joirt.pble string for thecast pointcut is constructed from
four parts:

e Modifiers (encoded as an integer — 0 for a cast)
e Name (usually a method or field name, but for a cast it is juast®
e Declaring type — class in which the join point occurs

e Type of the cast

For example, a cast join point within a method in the clagklashTablevhich casts the value retrieved from a
HashMapto anintegerwould produce the following encoded string:

"0-cast-IntHashTable-Integer”

The runtime factory is subclassed to add a method that areatebject implementing the neBastSignature
interface for appropriate join points. The aforementioAdtExtensiortlass has a method which specifies which
runtime class should be used as a factorytfosJoinPointStaticPart objects, which is overriden so that runtime
objects are created with the new factory:

18

| eaj measurements | Files | Lines of code]

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0
Runtime 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarations| Weaver 0 0
Runtime 0 0
Cast AST nodes 2 46
poincuts Passes 0 0
Weaver 2 94
Runtime 2 27
Throw AST nodes 2 46
pointcuts Passes 0 0
Weaver 2 91
Runtime 2 16
Extension 7 205
information and
shared classes
Total 27 870

Figure 4: Code measurements &aj

public String runtimeSJPFactoryClags
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

5.8 Code measurements

To enable the reader to assess the amount of effort involvémplementing each of these new features, we have
summarised some statistics in Figure 4. The table showsizbeo$ the whole parser, and of the boilerplate for
factories in the top and penultimate row, respectively. et interesting part is the breakdown by construct in the
middle. For private pointcut variables, all the work goesidefining new AST nodes, and there is no need to define
new passes or to touch the weaver in any way. By contrastabpaintcuts require the introduction of new Polyglot
passes, which reduce the new construct to existing Aspeaslrticts. Finally, for cast and throw pointcuts, there is
substantial work in the weaver, because these introduce @ype of join point.

It is pleasing to us that the distinction between the examiglso sharp, as it gives good evidence that the aim of
modularity has been achieved. We believe that the amountas that needs to be written also meets the criterion
of proportionality that was introduced at the beginningta$ tpaper. The criterion of simplicity is more difficult to
measure, but we hope that the sample code in this sectionesuffy convince the reader that we have succeeded in
this respect as well. The examples presented here do notrdtrat® analysis capability: assessment of that criterion
is ongoing work.

6 Related work

Others before us have identified the need for a workbenchgpatithe rapid developments in aspect-oriented pro-
gramming language research. In this section, we review abeumf such proposals, and contrast them with the
approach taken iabc

19

Throw-pointcut statistics ajc abc
Core compiler/runtime files modified 8 0
throw-specific files created 2 6
Extension-specific factories modifigd - 5
Total files touched 10 11
Lines of code writteh 103 187

Figure 5: Thethrow pointcut inajc andabc

ajc Thede factostandard workbench for research into variations and eiira®f AspectJ is thajc compiler. It
has served this purpose admirably well, and for exampleZ2Preport on the successful integration of substantial
new features intajc.

We believe that, in view of the explosion of research into rieatures and analyses, the time has now come to
disentangle the code of the base compiler from that of thensitns. The benefits are illustrated by the table in Figure
5. It compares the implementation of ttigow pointcut inabcandajc. In the case ofjc, we have to modify a large
number of existing files, thus tangling the new extensiomwhe existing compiler base. At the cost of some factory
classes (and thus some more lines of codbdisentangles the two completely.

Javassist Javassist is a reflection-based toolkit for developing Igttacode translators [5]. Compared to other
libraries such as BCEL, it has the distinguishing featuad thransformations can be described using a source-level
vocabulary. Compared tabg, it provides some of the combined functionality of the Jawaimple translator plus
the advice weaver, but its intended applications are differin particular, it is intended for use at load-time. Gans
qguently, Javassist does not provide an analysis framewvk&iSoot does imbc

Josh Josh is an open implementation of an AspectJ-like languagedon Javassist [4], and as such it is much
closer in spirit toabc Indeed, the primary purpose of Josh is to experiment with pa@ntcut designators, although it
can also be used for features such as parametric introdsctiecause of the implementation technology, there is no
special support for the usual static checks in the fronteutnich is provided inabcby the infrastructure of Polyglot.
Josh does not cover the whole of AspectJ, which limits ifgyth realistic experiments.

Logic meta-programming A more radical departure from traditional compiler tectogyl is presented blpgic
meta-programmingas proposed by [7, 13]. Here, program statements whera egtte should be woven in are
selected by means of full-fledged Prolog programs. This apificant expressive power, and like Josh, the design
makes it easy to experiment with new kinds of pointcuts. Tstesn operates on abstract syntax trees, which are not
a convenient representation for transformation and aizalysmany years of research in the compilers community
have amply demonstrated the merits of a good intermedigresentation. A further disadvantage, in our view, is
the lack of static checks due to the increased expressivempolie success of AspectJ can partly be explained by
the fact that it provides highly disciplinedform of meta-programming; some of that discipline is loskigic meta-
programming, because the full power of Prolog precludesestatic checks. Nevertheless, a system based on these
ideas is publicly available [26], and it is used as a commaif@im by a number of researchers.

Pointcuts as functional queries Eichberg, Mezini and Ostermann have very recently sugdesteopen im-
plementation of pointcuts, to enable easy experimentatitin new forms of pointcuts [10]. Their idea is closely
related to that of logic meta-programming, namely to usecdadative query language to identify join point shadows
of interest. A difference is that they opt for the use of the Xiyuery language XQuery instead of a logic language.
Furthermore, [10] only deals with static join points. Aswaed in the introduction, several recent proposals for new
pointcut primitives require data flow analyses. We beliéna it is not convenient to express such analyses via queries
on syntax trees. It is however quite easy to transfer somieeoiffieas of [10] t@bg by letting the queries range over
Polyglot ASTs. A challenge, then, is to define appropriapetsules to implement as part of the frontend.

INote that the numbers in Figure 5 fabctake into account the relevant lines of files which are listader “Extension information and shared
classes” in Figure 4.

20

7 Conclusions and Future Work

We have presenteabc and its use as a workbench for experimentation with exterssof AspectJ. Our primary
design goal was to completely disentangle new features fhenexisting codebase, and this goal has been met. We
hope that such disentangling will enable yet more rapid ldgveents in the design of aspect-oriented programming
languages, and the integration of ideas from multiple nefeigams into a single system, where the base can evolve
independently of the extensions.

This project has also been an evaluation of the extensilofiPolyglot and Soot, from the perspective of aspect-
oriented software development. We now summarise theirinalee extensibility of our design, and identify possible
improvements.

Polyglot Polyglot turned out to be highly suited to our purposes. Xmsion mechanisms are exactly what is
needed to implement Aspect] itself as an extension of Jattaowly minimal code duplication. This in turn makes
the development adbcrelatively independent of further improvements to Polyglo

As we have remarked earlier, the Polyglot mechanisaetégatesnimicks that of ordinary intertype declarations,
whereagxtension node®ughly correspond to what an AspectJ programmer wouldraiyudo viadeclare parents
and interface intertype declarations. Polyglot achiehésaffect by cunningly creating a replica of the inheritanc
hierarchy in code, which then provides the hooks for appat@rchanges. Arguably that mechanism is somewhat
brittle, and it is certainly verbose, replicating the samfeimation in multiple places of the code.

We thus face the question whether it would be possible taebetbcusing AspectJ, or indeed any other dialect of
Java that features open classes. The answer is in the positabcis written in pure Java. It follows that users who
prefer to use AspectJ to exteatlccan do so without further ado.

Would the result be more compact and understandable codi?tumately, a significant proportion of Polyglot's
extensions is taken up by boilerplate code for genericarisiin each new AST node. To generate that automatically,
one would need reflection or a feature akin to parametriogdhtctions [14]. The reflection route has been used with
much success, in a framework by Hanson and Proebsting [&bigtivery similar to Polyglot.

On the whole we feel our choice of Polyglot has been justifi€d.further assess its merits, we are planning
a comparative study of Polyglot’s extension mechanism andenadvanced technologies such as aspect-oriented
reference attribute grammars [11]. In particular, we wdiKd to investigate how multiple, independent extensions
can be composed.

Soot The choice of Soot as the basis for our code generation andewbas had a fundamental impact not only
on the quality of the code that is generated, but also on the leawhich the transformations are implemented. The
Jimple intermediate representation of Soot has been hamadjeeat variety of optimisations and analyses before we
applied it toabg and we reap the benefits of this large body of previous work.

Equally important has been the use of the Dava decompileigtipart of the Soot framework. This makes it much
easier to pinpoint potential problems, and to communidesédeas about code generation to others. It also opens the
way to exciting new visualisations, for example to indicattsource level exactly what dynamic residue was inserted
at a join point shadow.

In this paper, we have not yet fully exploited the analysigatslities of Soot. In particular, for the optimised
implementation of advanced features such as predictedatdiotv [18], data flow pointcuts [20] and trace cuts [8,27],
the interprocedural analyses of Soot will be very importimsuch cases, one needs to first weave naively, in order to
get an approximation of the relevant analysis structurbgsg are then used to weave again, but now more precisely,
removing redundant residues. We hope to report on the gefahis process (which also applies to the implementation
of cflow [24]) in a forthcoming paper.

Acknowledgments

This work was supported, in part, by NSERC in Canada and ERP8RIGZ2 United Kingdom. Our thanks to Chris
Allan for his comments on a draft of this paper.

21

References

[1] abc. The AspectBench Compiler. Home page with downlpBA®, documentation, support mailing lists, and
bug databasdttp://aspectbench.org

[2] Jonathan Aldrich. Open modules: A proposal for modutasioning in aspect-oriented programming. Technical
Report CMU-ISRI-04-108, Institute for Software Reseafcarnegie Mellon University, 2004.

[3] Michael Brukman and Andrew C. Myers. PPG: a parser genefar extensible grammars, 2003. Available at
www.cs.cornell.edu/Projects/polyglot/ppg.html

[4] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open Asgiéet language. In K. Lieberherr, editdsrd
International Conference on Aspect-oriented Softwaredimmentpages 102-111, 2004.

[5] Shigeru Chiba and Muga Nishizawa. An easy-to-use todbd efficient Java bytecode translators. 2nd
International coference on Generative Programming and gonent Engineering (GPCE '03Yolume 2830 of
Springer Lecture Notes in Computer Scienuages 364-376, 2003.

[6] Adrian Colyer and Andrew Clement. Large-scale AOSD faddbeware. In3rd International Conference on
Aspect-oriented Software Developmerages 56—65. Association for Computing Machinery, 2004.

[7] Kris de Volder. Aspect-oriented logic meta-programmiin Pierre Cointe, edito2nd International Conference
on Meta-level Architectures and Reflectionlume 1616 ofSpringer Lecture Notes in Computer Scienuages
250-272,1999.

[8] RémiDouence, Pascal Fradet, and Mario Suidholt. Caitipa, reuse and interaction analysis of stateful aspects
In Karl Lieberherr, editor3rd International Conference on Aspect-oriented Softweeelopmentpages 141—
150, 2004.

[9] Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuhdnatorial: AOP language exploration using the Aspect
Sand Box. InlLst International Conference on Aspect-oriented Softiareelopment2002.

[10] Michael Eichberg, Mira Mezini, and Klaus Ostermannirauts as functional queries. Becond ASIAN Sym-
posium on Programming Languages and Systems (APLAS ,280dnger Lecture Notes in Computer Science,
2004.

[11] Torbjorn Ekman and Gorel Hedin. Reusable languagei§ipations in JastAdd Il. In Thomas Cleenewerck,
editor, Evolution and Reuse of Language Specifications for DSLs $R004. Available from:http://
prog.vub.ac.be/"thomas/ERLS/Ekman.pdf

[12] Etienne Gagnon, Laurie J. Hendren, and Guillaume MarcEfficient inference of static types for Java bytecode.
In Static Analysis Symposiympages 199-219, 2000.

[13] Kris Gybels and Johan Brichau. Arranging languageuiesst for more robust pattern-based crosscuts2nih
International Conference on Aspect-oriented Softwaredimmentpages 60—69. ACM Press, 2003.

[14] Stefan Hanenberg and Rainer Unland. Parametric inttiohs. In Mehmet Aksit, edito2nd International
Conference on Aspect-Oriented Software Development (AIDBB) pages 80-89, 2003.

[15] David Hanson and Todd Proebsting. A research C# comeftware — Practice and Experiende appear,
2004.

[16] Bruno Harbulot and John R. Gurd. Using AspectJ to sépazancerns in parallel scientific Java code. In
Proceedings of the 3rd international conference on Aspeietated software developmepages 122-131. ACM

Press, 2004.

[17] Jim Hugunin. Guide for developers of the Aspect] compiand weaver, 2004. Available at
http://dev.eclipse.org/viewcvs/index.cgi/"checkout™ /org.aspectj/modules/
docs/developer/compiler-weaver/index.html?rev=1.1&c ontent-type=text/

html&cvsroot=Technology_Project

22

[18] Gregor Kiczales. The fun has just begun. Keynote adda¢sAOSD. Available atosd.net/archive/
2003/kiczales-aosd-2003.ppt , 2003.

[19] Shriram Krishnamurthi, Kathi Fisler, and Michael Gnberg. Verifying aspect advice modularly. ACM
SIGSOFT International Symposium on the Foundations ohaoftEngineering2004.

[20] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow poimin aspect-oriented programming. 1st Asian
Symposium on Programming Languages and Systeshane 2895 of ecture Notes in Computer Scienpages
105-121, 20083.

[21] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyncompilation and optimization model for aspect-
oriented programs. I€ompiler Constructionvolume 2622 ofSpringer Lecture Notes in Computer Scignce
pages 46—-60, 2003.

[22] Nathaniel Nystrom, Michael R. Clarkson, and Andrew Gydvk. Polyglot: An extensible compiler framework
for Java. Inl2th International Conference on Compiler Constructieslume 2622 of_ecture Notes in Computer
Sciencepages 138-152, 2003.

[23] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu UbayaShgko Matsuura, and Seiichi Komiya. Association
aspects. In Karl Lieberherr, editadrd International Conference on Aspect-oriented Softwaeyelopment
pages 16-25, 2004.

[24] Damien Sereniand Oege de Moor. Static analysis of aspkeProceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AQ9BYes 30-39, 2003.

[25] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendreaxtriék Lam, Patrice Pominville, and Vijay Sundaresan.
Optimizing Java bytecode using the Soot framework: Is isitda? InCompiler Construction, 9th International
Conference (CC 2000pages 18-34, 2000.

[26] Kris De Volder. The TyRuBa metaprogramming system. ikade athttp://tyruba.sourceforge.
net/ .

[27] Robert Walker and Kevin Viggers. Implementing protlsceia declarative event patterns. ACM Sigsoft
International Symposium on Foundations of Software Ereging (FSE-12)2004.

23

