Robustness of the BitTorrent protocol
1. Introduction

BitTorrent is a peer to peer file swarming network. It belongs to the popular genre of file sharing networks like Kazaa, Gnutella and Napster. Unlike its compatriots like Kazaa, eDonkey, which incorporate both the look up and retrieval of files, Bittorrent is purely a file distribution protocol shifts the burden of looking up for the resources to the user.
Most of the earlier file sharing networks depended on the altruistic nature of certain peers or servers to provide content. It has been estimated that 20-40% of Napster users and up to 70% of Gnutella users shared little or no content [1]. Also, nearly 50% of responses are returned by 1% of sharing hosts and nearly 98% of the responses are retuned by 25% of the sharing hosts [7]. Free riding exists due to the lack of concrete incentives to contribute to the network. Bittorrent belongs to the new generation of peer to peer networks, which incorporate incentives for uploading to the network. Bittorrent limits free riding by incorporating a variant of tit-for-tat [2]. A peer in Bittorrent prefers to upload to peers who download to it. So, a peer who uploads is likely to download faster.
Most file sharing networks are incorporating incentives to solve the free riding problem. One of the most popular file sharing networks in existence today, Kazaa, adopts a rather complicated incentive mechanism in which peers are elected as super nodes, which then tend to get more responses to their queries. More recently, Kazaa has incorporated Altnet’s Peer-points to encourage Kazaa users to distribute Gold Icon files, which are high quality, professional files from a variety of content providers and creators. The peers are awarded Peer-points which they redeem for more content [8].
A related resource sharing network architecture called Karma [6] provides incentives based on a single system-wide scalar per peer called its karma. A set of nodes, called a bank-set, keeps track of each node’s karma, increasing it as resources are contributed, and decreasing it as they are consumed. Karma in its current form, with the cryptographic and accounting overhead which includes mechanisms to control inflation and deflation, makes fine grain transaction too expensive.

The Bittorrent network is among the few successfully implemented file distribution networks that can boast of achieving the goals of an incentive based file sharing. Its framework of incentives is simple yet efficient. Peers upload pieces of the file while downloading it.

The aim of the project is to analyze the Bittorrent protocol and identify attacks by greedy and malicious peers. We also propose a trade based algorithm that can be seamlessly integrated with Bittorrent to make its incentive mechanism resilient to attacks. We also look at possible solutions to overcome most of the draw backs.
2. The BitTorrent Protocol
[image: image1.jpg]Web Server

torcent il Web page Tracker

inkto torreat fle

c
& 2%
Sy Peer
=)
Peer
[Leech]

Peer
[Leech]

Fig 1. Working of the BitTorrent network.

A Bittorrent network consists of 3 types of entities - a tracker, a torrent file hosted on some web server and peers. The file is split into pieces and a hash is computed on each piece. Theses hashes are supplied in the torrent file for peers to verify pieces. Apart from these hashes a torrent file also contains the tracker URI. Periodically, all peers update their status with a central peer-information cache at the tracker. A peer obtains a list of peers from the tracker and then connects to each of the individual peers and starts downloading from them.
In Bittorrent peers can generally be classified into downloaders
 and seeds. Seeds are peers who have the complete copy of the file and offer it for download. Downloaders are peers who have nothing or parts of the file and download from other downloaders and seeds. After obtaining a complete copy, downloaders qualify to seed status.
It is considered good netiquette to upload to the network once a user has obtained a copy of a file. But such behavior is not common and cannot be guaranteed. Usually, most users download from the network and vanish as soon as the file has been completely downloaded. This is called leeching, because they use the network to obtain a copy of the file but do not upload anything. Such leech attacks are limited extensively in Bittorrent by coupling upload and download. In Bittorrent, the peers upload pieces to each other while downloading pieces of the file.
Another problem tackled by Bittorrent is the case of spurious files. In most networks, peers can verify the content of the file only after the complete file has been downloaded. (There are a few exceptions like the Kazaa client which allows a preview). In Bittorrent the granularity has been reduced from a complete file to fixed size pieces. A piece is said to be completely downloaded only if its hash matches that in the torrent file. This ensures that spurious content is not propagated in the network and the integrity of pieces is verified at each hop.
Bittorrent also incorporates “optimistic unchoking” for discovering better peers, i.e. peers who will upload to it much faster. Bittorrent peers upload only to a subset of the peers they are connected to, called the preferred peers. In optimistic unchoking, a peer picks another peer not already among its preferred peers and uploads to it, in the hope that the peer will reciprocate. If this remote peer uploads at a rate faster than any of the preferred peers, then a new preferred peer has been discovered and it displaces the slowest preferred peer. This ensures that a peer is always progressing towards better bandwidth utilization.
Another interesting feature, especially in the current wake of events, is that Bittorrent provides absolutely no anonymity. Even a novice programmer can obtain the IP addresses of all the peers in BT network without breaking a sweat!
Limitations:
Despite its many benefits, Bittorrent has some inherent limitations.
1. The tracker is a bottleneck because it single handedly accounts for about 1/1000th [1] of the total traffic. This is a considerable fraction taking into account the bulk of data that is transferred in typical Bittorrent network. Bittorrent networks are large in terms of the file size and also the number of peers simultaneously downloading. Hence scalability of a Bittorrent network largely depends on the network capacity of the tracker.
2. In addition, it is a single point of failure in the network. If a tracker fails, it no longer is possible for new peers to join the network or for existing peers to discover each other.
3. Bittorrent provides incentives only to the file sharing peers, not to the peers offering the file. More specifically, the seeds do not have any motivation to stay out there and upload to the network. This is a significant limitation in the incentive mechanism adopted by Bittorrent.
4. The overhead involved in the transfer of a small file, say a few kb, is extremely high. The total bandwidth expended on the protocol messages will be significantly high.
5. The protocol is not as robust as it should be. There are a few attacks that can be constructed against the peers. Like most peer to peer economic models operational on the Internet, Bittorrent was not designed with greedy and malicious peers in mind. The focus of this project is to strengthen Bittorrent’s economic model and come up with a robust incentive framework which is resilient to attacks by malicious and greedy peers.
3. Attacks on Bittorrent

1. Denial of service via a Sybil attack
Description

Peer-to-peer systems commonly rely on the existence of multiple, independent remote entities to mitigate the threat of hostile peers. If the local entity has no direct physical knowledge of remote entities, it can be duped into selecting a single remote entity multiple times, thereby defeating the redundancy. The forging of multiple identities is called a Sybil attack [4] on the system.

Each Bittorrent peer generates an identifier string during start up by hashing on their ip address and the time. This identifier called its peer-id is used to identify the peer on the Bittorrent network and is exchanged during the handshake between two clients. A peer can make multiple connections to another peer and generate as many peer ids and hence pose as multiple peers. Hence, BitTorrent peers are susceptible to the Sybil attack.
Impact

In Bittorrent, a peer does not upload to all its connected peers. A peer picks a subset of peers, called the preferred peers based on the rate at which the remote peers are downloading to the peer. The top ‘n’ connections that are downloading the fastest to it, where ‘n’ is a user specified parameter, are picked and the peer attempts to upload to only these peers. By making multiple connections to a naïve peer, the attacker peer can attempt to have more than one connection among its ‘n’ preferred connections.
Exploit

The seeds select their preferred peers list depending on the rate at which the remote peers are downloading from it. The faster peers are preferred to make more complete copies of the resource available on the network. The attacker peer can make multiple connections to seeds and thus multiply their download rate from the seeds. At the extreme, an attacker peer can attempt to hose out a copy of a file from the seed very quickly at the seeds entire upload bandwidth denying other naïve peers a chance to download from the seed.
On the contrary, a similar attempt on a fellow leech will lead to higher efficiency for the target peer. To stay among the preferred peers, the attacker peer must upload at a faster rate than the slowest preferred peer, which will increase the download rate of the target peer.
2. Seed only attack
Description

The peers exchange a BITFIELD message immediately after the initial handshake. The BITFIELD contains 1s for pieces the peer has and 0s for those it doesn’t have. When a peer receives the BITFIELD, if all the bits are set to 1, then the remote peer is a seed. This way peers can identify seeds easily.

Impact

Normally, a leech connects to all the peers in the list it receives from the tracker in response to its GET-request [3]. It does not distinguish between leeches and seeds.
In Bittorrent, a peer has to upload to a remote peer as part of the incentive mechanism to be able to download from the remote peer. On the contrary, to stay as the preferred peer with a seed, the peer just needs to download as fast as it can. This totally offsets the balance. Obviously, rather than waste its upload bandwidth, an attacker peer can pick only the seeds from the peer list obtained from the tracker connect only to them, ignoring the other leeches in the network.

Exploit

If a peer connects only to seeds, it need not contribute anything to the file-sharing network. By repeatedly obtaining peer lists from the tracker, the attacker peer can quickly obtain a list of almost all the peers seeding the file at the moment. The attacker peer then connects only these peers and downloads the file. In effect, the leech can download the file for free, i.e. without uploading anything.
Of course, the peer doesn’t have to stay online after completing the download. Hence, when the greedy leech downloads from the seeds, it is uses up the upload bandwidth of the seeds that could have been used by other well-behaving and network friendly peers.

3. Minimal upload attack:
Description
In Bittorrent, a peer sends have messages to all its connected peers whenever it successfully verifies a piece that it downloaded. It is possible for a fellow peer to estimate its download rate by observing the frequency of the have messages [Statistical patch].
Impact

According to the Bittorrent philosophy, a peer uploads only to the peers that it is downloading the fastest from. The fastest ‘n’ peers are selected as the preferred peers. A peer attempts to upload to its preferred peers as fast as possible subject to the maximum upload rate specified by the user. Note that, there is no equal distribution of bandwidth.

Currently the default value of n, which includes the one optimistic upload, is four. Consider two peers, Alice and Bob. As described above, HAVE messages from a remote peer are a good indication of the peer’s overall download rate. Let D[Alice] be the overall download rate of Alice as estimated by Bob. Also, let n’ be the size of Alice’s preferred peers list as assumed by Bob (usually 4 in the current implementation). Then the approximate rate at which Bob must upload to Alice to stay on Alice’s preferred list is given by

U[Bob->Alice] = D[Alice] /n

Exploit

[image: image2]
If Bob uploads at this rate, U[Bob->Alice], it will most definitely be in the preferred peer list of Alice and thus, Alice will definitely upload to Bob, subject to its upload bandwidth cap. Hence, instead of expending its entire bandwidth on a few nodes, Bob can increase its set of preferred peers (n), and attempt to upload to more naïve peers like Alice. This way Bob tries to be a preferred peer with more peers.

The real potential of this attack is when it is combined with the previously mentioned Sybil attack. Bob can potentially make multiple connections to Alice, say n’ or more connections and can upload at a low rate as low as 1kbps on each connection. If not many other peers are uploading to Bob, Alice selects Bob multiple times in its preferred peers list. This way, the attacker Bob is able to exploit Alice and force it to upload to Bob at a higher rate.
4. Anti-snubbing attack:
Description

Consider two peers, Alice and Bob. If Alice sees that Bob has pieces that it doesn’t have, Alice expresses interest by sending out an INTERESTED notification. If Bob has no pieces of interest to Alice, then it sends out a NOT INTERESTED notification to Bob. Each peer maintains this interest state by means of a flag. A peer connection in Bittorrent is either of the two states - choked or unchoked. Bob always unchokes only those peers it wishes to upload to, i.e. the set of n preferred peers. All other peers are choked. Bittorrent implements snubbing behavior to avoid peers uploading to any peer who doesn’t offer download, i.e. if there has been no download from a peer connection for a long time (default is 60 seconds), then the peer is snubbed.
Impact

Snubbing exists to restrict free riding. If Bob snubs Alice, then it will not upload to Alice until Alice downloads to Bob or in case of an optimistic unchoke[Protocol Description] by Bob. This way snubbing prevents Alice from wasting its bandwidth on Bob when it is known that Bob is not going to offer it anything.
But, since the snub time is large, (60 seconds by default), a peer can schedule to satisfy just one request, by uploading a chunk of a piece requested (usually 16kB), every 60 seconds and avoid getting snubbed.
Exploit

The above mentioned tweak to the client proves that snubbing doesn’t provide a fool proof solution to the free riding problem. It is still possible to download from other peers at a minimal cost.

5. Malicious upload attack
Description

Bittorrent implements piece wise hashing. The hash is computed by the original seed/distributor creating the Meta file (called the .torrent file). The torrent file contains the hashes for each piece. Currently the default size of a piece is 256kB. An important aspect of Bittorrent is that a peer does not download a complete piece from a single remote peer. It sends requests for chunks of a piece (typically 16kB) to all its peers who have the piece. This may cause more than one of the remote peers to upload the same chunk. The Bittorrent peer appreciates all such peers and updates their download rates. So, even though a peer uploaded a duplicate chunk, it may just manage to edge out a peer providing non-duplicate chunk (chunk that hasn’t been seen yet) in the race to be picked among the preferred peers.
Impact

Another important point to be noted here is that hash verification is performed only after the complete pieces has been assembled from various chunks that may have been downloaded from potentially different peers. Hence a malicious peer can upload a wrong content when requested for a chunk of the piece. But the attacked peer doesn’t have any means of identifying the malicious peer.
Exploit

Even if one of the chunks that went into assembling the complete piece were from a malicious peer, the invalid content would cause the entire piece to fail the check. The entire piece is discarded and downloaded again. But since the upload rates were updated as soon as the chunks were received, the malicious peer, even though uploading wrong content, may manage to stay among the preferred peers. So, the attacked peer will continue to upload to the malicious peer.

4. Trade based algorithm for Bittorrent

Bittorrent is a distributed file swarming protocol. Peers exchange pieces of a file with each other. It is interesting to model this behavior of Bittorrent peers as a trading of pieces. This section introduces a trade model and with some enhancements to the Bittorrent protocol.

1. Incentive: Instantaneous Bandwidth Vs Expended Work

Bittorrent’s tit-for-tat incentive mechanism is based on the instantaneous upload rates. A peer selects preferred peers based on the download rate of the peers and uploads only to the fastest ‘n’ peers. The sharing of its upload bandwidth between its peers is ad hoc and often results in unfair upload rates. For example, peers A, B and C are uploading to peer D at 1Kbps, 5Kbps and 10Kbps respectively. There is no guarantee that D will split its upload to A, B and C in the same ratio. In fact it is not even guaranteed that D will upload more to C than A.

Hence a more just metric is the actual amount of data uploaded. This is called the ‘credit’ earned by a peer and is a measure of the work expended by the peer. If peer A uploads X bytes to peer B, then peer B registers a credit of X for peer A.

2. New upload criteria in the choking algorithm

The trade based algorithm incorporates both instantaneous rates and credits in its peer selection policy. Just like in the Bittorrent choking algorithm, the preferred peers are selected according to the descending order of the download rates. But, there is a additional condition for a peer to be eligible for upload. A peer must have accumulated credit sufficient for the requested chunk. A high level description follows:

Sort connections and move into preferred_peer_list

Truncate preferred_peer_list to n

For each peer in preferred_peer_list do

If (credit accumulated by peer >= requested size) then

Satisfy request;

Else

Deny service – do nothing;

Next

3. Credit dynamics

In a truly tit-for-tat algorithm, a peer must get exactly how much it uploads. Not less. Not more. But, the peers participating in a pure tit-for-tat algorithm reflect the case in which both the parties always defect in the Prisoner’s dilemma problem [5], bringing down the productivity of the system. If all the peers adopt the greedy way, it will lead to deadlocks and starvation. To avoid such a situation the trade based algorithm incorporates optimism and ensures progress.

The Bittorrent protocol introduces the optimistic unchoking[1] mechanism for peer discovery. A peer selects another peer connected to it, not already in the preferred peers list, and then uploads to it in the hope that it will discover another peer willing to exchange pieces quickly. When applied to the trading scenario, it gives rise to two kinds of traders.

· A pure trader who is greedy and will trade only with traders already trading with it.

· An optimistic trader who gambles by uploading to new peers hoping to discover potential traders.

An optimistic trader must be willing to expend extra work on discovering new peers and must distributed free credit to discover new traders. An optimistic trader must distribute free credits called optimistic credits to discover new peers. Thus, the credit attributed to a peer consists of an additional component.

Total credit = trade credit + optimistic credit

where, trade credit is the credit accumulated by the remote peer by trading and optimistic credit is the free credit distributed by the local peer. The total optimistic credit is specified by the user on the peer client. This is distributed evenly on a per IP address basis to all the peers.

The trading algorithm requires a peer to maintain a list of unique IP addresses it is connected to and the number of peers associated with the IP address. Peers may share the same IP address in two cases:

· If the peers are behind the same Network Address Translator (NAT): In this case the peers behind the NAT are on a high speed network and can trade with each other quickly.

· If the IP address belongs to a malicious peer: A remote peer makes multiple connections to the same peer. [Described in Section 3].

The optimistic credit given to each IP address is further divided equally to each of the peers sharing the same IP address to ensure relative fairness among peers behind the same NAT.

4. Boot-strapping

Bittorrent clients suffer from slow start. Usually, peers take about 5-10 minutes to stabilize their preferred peers. This is because new peer discovery is done only by the one optimistic unchoke. A new peer joining the system has to be optimistically unchoked by an older peer to get hold of at least one complete piece before it starts uploading.

The trade client adopts two optimizations to make bootstrapping quicker. The probability of a peer being unchoked optimistically increases with the number of connections it makes. So, the number of remote peers a peer connects to can be increased.
Another optimization in the trading system is the one shot free credit. When a remote peer B connects to peer A, A satisfies its first request irrespective of its credit balance. For this A gives B a one-shot free credit equal to the request size of the first request from B. To avoid the attack where a remote peer may repeatedly connect to peer A to obtain the free credit, each trading peer is required to maintain an IP-peer cache. Once a peer is given the one shot free credit, the IP address is added to this cache. The IP-peer cache is refreshed every 24 hours.

5. Degree of Optimism

Traders always have a limit up to which they would like to be adventurous. This is characterized in the trading system by the degree of optimism. It basically decides how much of its resources a peer is willing to direct towards the discovery of new peers. There are 5 degrees of optimism that can be set by the user.

	Trader type
	Pure Trader
	Optimistic trader

	Degree of optimism
	0
	1
	2
	3
	4

	Scale
	:-((

Very low

	:-(

Low
	:-|

Medium
	:-)

High
	:-D

Very high

	Fraction of upload bandwidth (max_upload_rate) used for serving optimistic credit
	0
	1%
	5%
	10%
	20%

	Fraction of upload connections (max_uploads) used for optimistic unchoke
	0
	1%
	10%
	25%
	50%

Table 1: Degrees of Optimism
As indicated, a peer is a pure trader when its degree of optimism is 0. It trades only with peers trading with it and takes no initiative in discovering new peers. Hence it does no optimistic unchoking and also doesn’t serve any optimistic credits to any peer. There are 4 levels for an optimistic peer. Higher degree of optimism implies that the peer is willing to contribute a higher fraction of upload bandwidth to discovery of new peers rather than trade with its present traders.

6. No Snubbing

The trade algorithm eliminates the snubbing behavior of the Bittorrent peers. Snubbing aims to prevent free riding. In the trading system, this is already achieved via the credits. Peers can download only if they have sufficient credit accumulated. Hence snubbing becomes redundant and can be eliminated.

5. Enhancements

	Vulnerability
	Bittorrent Experimental Client
	Trade client

	Sybill attack on seed
	Vulnerable
	Immune

	Seed only attack
	Vulnerable
	Vulnerable

	Anti-snubbing attack
	Vulnerable
	Immune

	Malicious uploads
	Vulnerable
	Vulnerable

	Minimal upload to peer
	Vulnerable
	Immune

	Masquerade as a peer to obtain details of all peers and then bring down the whole network.
	Vulnerable
	Vulnerable

	Denial of Service attack on the tracker
	Vulnerable
	Vulnerable

Table 2: Attacks at a glance
Section 3 dealt with the attacks on the Bittorrent protocol. In this section we show that the trading system is immune to most of the attacks.

Attack 1: Denial of Service via a Sybil attack

The trading client is immune to this attack because it maintains the IP address and peer ids in the IP peer cache. One –shot free credits are distributed only once per IP address in 24 hours. Optimistic credits are distributed on a per IP address basis. Hence multiple connections or not, an IP address receives the same amount of free credits. There is really no incentive for a Sybil attack in the credit based system.

Attack 2: Seed only attack

The trading peers can connect only to the seeds and obtain the file. The system is still vulnerable to this attack. But, by making the credits durable and extending the credit system to a multi-file trading system, where peers are members of overlapping Bittorrent networks, the attack can be fixed. In the extended case, a peer may be a seed for a file but will probably be leeching for another file. Hence peers can potentially trade for pieces of different files.

Attack 3: Minimal upload attack

In the credit based trading system, a peer uploads only how much credit has been accumulated. The optimistic credit given to a peer connection is the only free credit. The trade credits are earned by the remote peer by uploading. A remote peer will receive exactly how much it uploads in addition to the optimistic credit. This way the trading client negates this attack.

Attack 4: Anti-snubbing attack

The trading system completely eliminates snubbing behavior. Snubbing was introduced to restrict free riding. The credit system inherently achieves this. Hence snubbing can be eliminated. Therefore this attack is not possible.

Attack 5: Malicious upload attack

The trading system is still vulnerable to this attack. In the trading system, a peer should reward a remote peer for uploading to it irrespective of it was a duplicate chunk or not. Also, since piece length is large and chunks are aggregated to form pieces, there is no mechanism to individually identify which chunk was bad. A solution to this problem is to decrease the length of a piece such that a complete piece is downloaded from a peer at a time. This would increase the size of the torrent file. It is a better option than having to download entire pieces again and again because of a single malicious peer in the network.

Lastly, a malicious party can bring down the Bittorrent network by performing a denial of service attack either on the tracker or on each of the individual peers in the network.
It is clear that the trading system clearly achieves considerable improvement in robustness of the Bittorrent protocol.

6. Related Work

Initial implementation of the core trading algorithm shows considerable improvement in the performance of the Bittorrent network. The total optimistic credit is currently fixed to be at 10% of the maximum upload rate set by the user. A trading network was constructed on a Local area network and peer download speeds peaked up to 11 Mbps.

The credit system based peer was integrated into an existing Bittorrent network and tested. It seamlessly integrates with any Bittorrent network and its performance was comparable with the default Bittorrent peer. Often, depending on the network status, the trading peer has a higher peek download rate and a higher share ratio.
All comparisons were made to the Experimental release of the Bittorrent client (version 3.2.1b)

[Put in the graphs after running more tests].

7. Future Work – To do list
1. Complete implementation of the trading algorithm

2. Incorporate degrees of optimism.
3. Extend the protocol to trade across multiple files.

4. Make credits durable.

5. Finally, the ultimate goal is to integrate some or all of the work with the official Bittorrent Protocol.

Questions Pending

How to handle distributors in the trading system?

The trading system extends the Bittorrent protocol to include a special mode of operation for distributors. The only aim of the distributor is to get as many copies of the file out on the network as soon as possible. File distributors like Redhat, do not care about accumulating credit. Hence in a distributor mode of operation, a peer selects its preferred list and circumvents the check for sufficient credits as it maintains no credits for its peers. The distributor uploads to the top downloaders, similar to the seed behavior in the Bittorrent protocol.

#? How to deal with remote peers still giving credit to the distributor peer?

#? the cap on the credit variables.

Optimistic credit – One piece length

Trade credit - ?

#? “TCP congestion control behaves very poorly when sending over many connections at once.” – Protocol Spec. How many connections?
Reference:

[1] Bram Cohen, Incentives build robustness in Bittorrent, May 2003

[2] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, A Measurement Study of Peer-to-Peer File sharing Systems, Jan 2002
[3] Bram Cohen, Bitconjurer.org, BitTorrent Protocol Specification (http://bitconjurer.org/BitTorrent/documentation.html)
[4] J R. Douceur, The Sybil Attack

[5] A W Tucker, Prisoner’s Dilemma, Serendip.com

[6] V Vishnumurthy, S Chandrakumar, EG Sirer, KARMA : A Secure Echonomic Framework for Peer-to-Peer Resource Sharing.

[7] E. Adar and B.A. Huberman, Free Riding on Gnutella.
[8] www.kazaa.com

Upload rate

Download rate

Fig 1. Optimal operation points. From the adjoining graph, the most efficient operating points for a peer are P1 and P2. Even if a peer cannot determine P2, it must strive to operate as close to it as possible.

P1

P2

� In BitTorrent, downloaders are often called leeches even though they upload.

