
Introduction to the UNIX Curses Library

Norman Matloff
Department of Computer Science
University of California at Davis

c©1997-2003, N. Matloff

March 16, 2003

Contents

1



1 Purpose of the Curses Library

Many widely-used programs need to make use of a terminal’s cursor-movement capabilities. A
familiar example is vi; most of its commands make use of such capabilities. For example, hitting
the j key while in vi will make the cursor move up one line. Typing dd will result in the current
line being erased, the lines below it moving up one line each, and the lines above it remaining
unchanged.

A potential problem with all this is that different terminals have different ways in which to specify
a given type of cursor motion. For example, if a program wants to make the cursor move up one
line on a VT100 terminal, the program needs to send the characters Escape, [, and A:

printf("%c%c%c",27,’[’,’A’);

(the character code for the Escape key is 27). But for a Televideo 920C terminal, the program
would have to send the ctrl-K character, which has code 11:

printf("%c",11);

Clearly, the authors of programs like vi would go crazy trying to write different versions for every
terminal, and worse yet, anyone else writing a program which needed cursor movement would have
to “re-invent the wheel,” i.e. do the same work that the vi-writers did, a big waste of time.

That is why the Curses library was developed. The goal was to alleviate authors of cursor-oriented
programs like vi of the need to write different code for different terminals. The programs would
make calls to the library, and the library would sort out what to do for the given terminal type.
Development of the Curses library was a major step in the evolution of UNIX software.1

When you log on, you have a terminal type, in the environment variable TERM2. The Curses
library consists of a number of functions which your program can call. Those functions know the
various cursor-movement character sequences for a large variety of terminals (this information is
in the file /etc/termcap). The important implication of that is that your program does not have
to know that information; it simply calls the Curses functions, and those functions will use your
TERM value to check the /etc/termcap file and then send the proper cursor-movement characters.

For example, if your program wanted to clear the screen, it would not (directly) use any character
sequences like those above. Instead, it would simply make the call

clear();

and Curses would do the work on the program’s behalf.
1The library is still quite important in today’s GUI-oriented world, because in many cases it is more convenient

to use the keyboard for actions than the mouse.
2You may have to set it yourself. As was mentioned before in the Syllabus and the handout on screen, this is

done via the UNIX command (if you are using the C shell) setenv TERM terminaltype where terminaltype is
vt100 for many terminals (including many terminal emulator programs running on PCs, e.g. Kermit), and is xterm
for X Windows.

2



2 Some of the Major Curses APIs

Here are some of the Curses functions you can call:3

• WINDOW *initscr():

REQUIRED. Initializes the whole screen for Curses. Returns a pointer to a data structure
of type WINDOW, used for some other functions.

• endwin():

REQUIRED. Resets the terminal, e.g. restores echo, cooked (non-cbreak) mode, etc.

• cbreak():

Sets the terminal so that it reads characters from keyboard immediately as they are typed,
without waiting for carriage return. Backspace and other control characters (including the
carriage return itself) lose their meaning.

• nocbreak():

Restores normal mode.

• noecho():

Turns off echoing of the input characters to the screen.

• echo():

Restores echo.

• clear():

Clears screen, and places cursor in upper-left corner.

• move(int, int):

Moves the cursor to the indicated row (top row is 0) and column (leftmost column is 0).

• addch(char):

Writes the given character at the current cursor position, overwriting what was there before,
and moving the cursor to the right by one position.

• insch(char):

Same as addch(), but inserts instead of overwrites; all characters to the right move one space
to the right.

• refresh():

Update the screen to reflect all changes we have requested since the last call to this function.

• delch():

Delete character at the current cursor position, causing all characters to the right moving one
space to the left; cursor position does not change.

• int getch():

Reads in one character from the keyboard.
3Many are actually macros, not functions.

3



• char inch():

Returns the character currently under the cursor.

• getyx(WINDOW *, int, int):

Returns in the two ints the row and column numbers of the current position of the cursor for
the given window.

• getmaxyx(WINDOW *, int, int):

Returns in the two ints the number of rows and columns for the given window.

• scanw(), printw():

Works just like scanf() and printf(), but in a Curses environment. Avoid use of scanf()
and printf() in such an environment, which can lead to bizarre results. Note that printw()
and scanw() (if echo is on) will do repeated addch() calls, so they will insert, not overwrite.

There are many other things you can do with Curses, such as subwindowing, forms-style input, etc.
You can get a complete list of functions by typing

man curses

(you may have to ask for ncurses instead of curses). The individual functions have man pages
too.

In order to use Curses, you must include in your source code a statement

#include <curses.h>

and you must link in the Curses library:

gcc -g sourcefile.c -lcurses

Below is a sample program using Curses. Its action is explained in the comments. Try running
the program! You can get the source code from the raw file which produced this document,

4



http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.tex.

1 // simple curses example; keeps drawing the inputted characters, in columns

2 // downward, shifting rightward when the last row is reached, and

3 // wrapping around when the last column is reached

4

5 #include <curses.h> // required

6

7 int r,c, // current row and column

8 nrows, // number of rows in window

9 ncols; // number of columns in window

10

11 void draw(char dc)

12

13 { move(r,c); // move cursor to row r, column c

14 delch(); insch(dc); // replace character under cursor by dc

15 refresh(); // udate screen

16 r++; // go to next row

17 // check for need to shift right or wrap around

18 if (r == nrows) {

19 r = 0;

20 c++;

21 if (c == ncols) c = 0;

22 }

23 }

24

25 main()

26

27 { int i; char d;

28 WINDOW *wnd;

29

30 wnd = initscr(); // initialize window

31 cbreak(); // no waiting for Enter key

32 noecho(); // no echoing

33 getmaxyx(wnd,nrows,ncols); // find size of window

34 clear(); // clear screen, send cursor to position (0,0)

35 refresh(); // implement all changes since last refresh

36

37 r = 0; c = 0;

38 while (1) {

39 d = getch(); // input from keyboard

40 if (d == ’q’) break; // quit?

41 draw(d); // draw the character

42 }

43

44 endwin(); // restore the original window

45

46 }

47

3 Important Debugging Notes

Don’t use printf() or cout for debugging! Make sure you use debugging tool, for example GDB or
better the DDD interface to GDB. If you are not using a debugging tool for your daily programming
work, you are causing yourself unnecessary time and frustration. See my debugging slide show, at
http://heather.cs.ucdavis.edu/~matloff/debug.html.

5



Whatever approach you take to debugging (even if it is just printf() or cout), you’ll need to do
something to separate your debugging output from your Curses application’s output. Here I show
how to do that in GDB and DDD.4

3.1 GDB

Start up GDB as usual. Then determine the terminal number for the execution window, i.e.
window in which you wish your Curses application to run. To do this, run the UNIX tty command
in that window. Let’s suppose for example that the output of the latter is “/dev/pts/10”. Then
within GDB issue the command

(gdb) tty /dev/pts/10

We must then do one more thing before issuing the r command to GDB. Go to the execution
window, and type

sleep 10000

UNIX’s sleep command has the shell go inactive for the given amount of time, in this example
10,000 seconds. This is needed so that any input we type in that window will be sure to go to our
program, rather than to the shell.

Now go back to GDB and execute r as usual. Remember, whenever your program reaches points at
which it will read from the keyboard, you will have to go to the execution window and type them
there (and you will see the output from the program there too). When you are done, type ctrl-C
in the execution window, so as to kill the sleep command.

Note that if something goes wrong and your program finishes prematurely, that execution window
may retain some of the nonstandard terminal settings, e.g. cbreak mode. To fix this, go to that
window and type ctrl-j, then the word ‘reset’, then ctrl-j again.

3.2 DDD

Things are much simpler in DDD. Just click on View | Execution Window, and a new window will
pop up to serve as the execution window.

4This assumes knowledge of GDB or DDD. See the URL listed above.

6


