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Abstract

Most of the research to date on the probability that there is a

Condorcet winner and on the likelihood that majority criterion and

scoring rules agree has focused on the situation in which all voters

have strict preference rankings on the candidates, with no indifference

allowed. The purpose of the current paper is to consider the impact of

voters’ indifference on these studies. Attention is restricted to the case
∗The authors thank the CNRS, the DGRI and the FNRS for their financial support

through their cooperation programme.
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of three candidate elections in the limiting case of a large electorate.

The probability that a voter will have a given preference on candidates

is assumed to follow an extension of the widely used impartial culture

condition. Using the same model, Gerhlein and Valognes computed

the Condorcet efficiency of scoring rules, that is, the probability that a

given scoring rule picks up the Condorcet winner, given that she exists.

We complete their results with two studies. The first one considers

the probability that a given scoring rule and the majority rule agree

on a pair of candidates. The second one deals with the probability

that the Condorcet winner is bottom ranked by a scoring rule.

1 Introduction

Most of the research to date on voting theory has focused on the situation in

which all voters have complete preference rankings on the candidates, with

no indifference allowed. Typically, a voting model assumes a set of voters N

and a finite set of candidates A; each voter is able to rank without tie all the

candidates according to her preference, i.e., her preference is a linear ordering

on A1. Next, the question is to determine the best way to aggregate the

individual preferences into a social ordering. However, many different criteria

have been established to determine who the winner should be when more than

two candidates are being considered. One criterion that has received a great

deal of attention is attributed to Condorcet [5]: The winner should be the

candidate that receives a majority of votes in all the pairwise comparisons.

Such a candidate is called a Condorcet winner. Another approach dates

back to Borda [4]: Each voter ranks without tie all the candidates, points

are attributed to them according to their ranks in the preferences, and the

candidate who obtains the highest total of points is declared as a winner.

When the society has to choose among m candidates, the Borda count awards

1Recall, a linear ordering on A is a transitive and antisymmetric binary relation on A.
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m− 1 points for a first place, m− 2 for a second, and so on down to 1 points

for the next to the last, and 0 for the last ranked alternatives. But the Borda

count is only one of the numerous scoring rules that can be designed by

according points.

Almost all the studies on the voting rules, and in particular those that

compared the Condorcet criterion and the scoring rules, make the assumption

that individual preferences are linear orderings. In this line of research, one

could quote many axiomatic results (see for example Young [27], Young and

Levenglick [28]), most of the works that attempt to evaluate the likelihood

of a Condorcet winner or the probability that a given scoring rule select the

Condorcet winner (for exhaustive surveys on this literature, see Gehrlein [10],

[11]), and even classic books such as the ones of Nurmi [19] and Saari [21].

Nevertheless, the pioneering work of Arrow [1] assumes that voters can be

indifferent between two alternatives or more; in his genuine model, individual

preferences are modeled by weak orderings, that is, binary relations that are

transitive, complete, and reflexive. So, why is this model so often restricted

to the case where preferences are linear orderings? A first reason is that

the impossibility results in social choice literature can be equally stated for

preference profiles of linear orderings or weak orderings. Secondly, while the

number of linear orderings is easy to compute (for m candidates, there are

m!), the number of weak orderings is obtained via a recursive formula. There

are 13 possible weak preferences for 3 candidates, 71 for 4 candidates, 517

for 5, etc. Thus, taking into account weak orderings obviously complicates

any characterization work or any computation of the likelihood of some given

paradox. A third reason derives from the huge number of weak preferences:

There are several ways to extend a voting rule defined on the set of strict

preferences to the set of weak ordering. For example, Black [2] pointed out

that there were different ways to define the Borda count for weak orderings.

Smith [23] proposes an answer to this issue in his work on the characteriza-
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tion of scoring rules and suggests a way to extend their definition to weak

orderings: when one voter is indifferent between candidates a and b and

prefers them to candidate c (this preference is denoted by a ∼ b � c), replace

her by two “half voters”, one which prefers a to b to c (this preference is

denoted by a � b � c), and the other preferring b to a to c (this preference

is denoted by a � b � c). His general argument is to replace a weak ordering

by a “pool” of linear orderings. Tournament literature faces the similar issue

of extending tournament solutions to weak tournaments 2. For more on this

subject, see Peris and Subiza [20] or Dutta and laslier [7]

All these reasons may explain why it is unusual to find in social choice

literature, especially when the aim is to evaluate the qualities and flaws of a

precise voting rule, articles that allow for indifferent voters.

Nevertheless, Fishburn and Gehrlein [8] computed the probability that

the Condorcet winner exists when every voter picks her preference indepen-

dently from the set of weak orderings. Their model has been used recently

by Jones, Radcliff, Taber and Timpone [14], van Deemen [6] and Lepelley

and Martin [16] to evaluate the likelihood of a Condorcet winner, and by

Gerhlein and Valognes [13] to compute the probability that a given scoring

rule selects the Condorcet winner.

The purpose of the current study is to consider the impact that voter

indifference on candidates will have on the relationship between the majority

rule and scoring rules. Attention is restricted to the case of three candidate

elections in the limiting case of a large electorate. The probability that

voters will have given preferences on candidates is assumed to follow an

extension of the widely used impartial culture condition (IC). In this context,

Gerhlein and Valognes [13] showed that taking into consideration indifferent

voters could significantly increase the Condorcet efficiency of voting rules.

2A tournament is a complete and antisymetric binary relation on A. A weak tournament

is a complete binary relation on A.
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We intend to prove that similar conclusions can be derived for two other

issues. The first one considers the probability that scoring rules and pairwise

vote agree on pairs of candidates; this extends a previous work by Gehrlein

and Fishburn [9], which did not take into account the case of indifferent

voters. The second one deals with the probability that the Condorcet winner

is bottom ranked by a scoring rule; here, the results with linear orders only

have been provided by Tataru and Merlin [24] and Gerhlein and Lepelley

[12].

The paper is organized as follows. In section 2, we present the voting

model and the voting rules we shall examine. Next we introduce Fishburn

and Gehrlein’s Impartial Weak Order Culture condition (IWOC) we will use

throughout the paper to evaluate the likelihood of paradoxes. In Section

3, we characterize the voting situations we want to evaluate the likelihood

of and the main results. Section 4 is devoted to the proofs and Section 5

concludes the paper, proposing new issues to examine with the help of the

IWOC assumption.

2 The Voting Model

2.1 Voters, Candidates and Preferences

We consider a population of voters, N = {1, . . . , n}, who have to choose

among candidates. In this paper, we shall restrict ourselves to the case of

three candidates; A = {a, b, c}. There are six possible preference rankings
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on the candidates when indifference is not allowed:

a � b � c n1 p1

a � c � b n2 p2

b � a � c n3 p3

b � c � a n4 p4

c � a � b n5 p5

c � b � a n6 p6

The number of individual with type i preference is denoted by ni and pi is

the probability that a randomly selected voter has the associated preference

ranking on candidates. For three candidates, there are 6 other preference

types with partial indifference:

a ∼ b � c n7 p7

a ∼ c � b n8 p8

b ∼ c � a n9 p9

a � b ∼ c n10 p10

b � a ∼ c n11 p11

c � b ∼ a n12 p12

The last possibility is a preference that represents complete indifference,

a ∼ b ∼ c n13 p13

A voting situation ñ = (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13) de-

scribes the distribution of the n voters on the different preference types.

2.2 Voting rules

The most famous criterion in voting theory is certainly the Condorcet cri-

terion: It asserts that a candidate is a Condorcet winner whenever she is

able to beat all his opponents in pairwise comparisons. For example a is
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a Condorcet winner whenever she beats b (inequality (1) is satisfied) and c

(inequality (2) is satisfied).

n1 + n2 − n3 − n4 + n5 − n6 + n8 − n9 + n10 − n11 > 0 (1)

n1 + n2 + n3 − n4 − n5 − n6 + n7 − n9 + n10 − n12 > 0 (2)

Unfortunately, a Condorcet winner may not always exist and then another

way to achieve a collective decision is needed. The class of scoring rules

provide such alternative schemes. For three candidate elections, a scoring

rule is characterized by the scoring vector wλ = (1, λ, 0): Each voter awards

1 point for her first choice, λ ∈ [0, 1] for her second choice, and 0 for the

last ranked candidate. A natural way to extend scoring rules for voters

whose preference is partially indifferent among two or three candidates is the

one suggested by Black [2] and Smith [23]: If a and b are tied, we should

award them the average number of points they would have obtained if not

tied. Thus, for the preference a ∼ b � c, a and b get (1 + λ)/2 points

and c zero point. Similarly, the preference a � b ∼ c is represented by the

weights (1, λ/2, λ/2), and the total indifference awards (1 + λ)/3 points to

any candidate. Thus, candidate a is selected by the scoring rule wλ for a

voting situation ñ iff :

(1− λ)(n1 − n3) + n2 − n4 + λ(n5 − n6) +
1 + λ

2
(n8 − n9) +

2− λ

2
(n10 − n11) > 0 (3)

n1 − n6 + (1− λ)(n2 − n5) + λ(n3 − n4) +
1 + λ

2
(n7 − n9) +

2− λ

2
(n10 − n12) > 0 (4)

The most famous scoring rules are the plurality rule, characterized by

w0 = (1, 0, 0), the Borda count, w 1
2

= (1, 1
2
, 0) and the antiplurality rule,

w1 = (1, 1, 0).

We can also use scoring vectors in a two stage voting process. A scor-

ing runoff first ranks the candidates according to a scoring vector (1, λ, 0),
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and next selects the winner among the top two on the basis of a pairwise

comparison 3.

2.3 Probability Assumptions

When preferences are represented by linear orderings, the impartial culture

condition (IC) assumes that pi = 1/(m!) for i = 1, . . . m!, and that all voters

determine their preference independently4. Fishburn and Gehrlein [8] sug-

gested the following extension for possibly indifferent voters. Let k1 denote

the probability that the type of a randomly selected voter is a linear ordering,

k2 the probability that she is partially indifferent, and k3 the probability that

she is completely indifferent. Of course, k1 + k2 + k3 = 1. k = (k1, k2, k3).

The impartial weak order culture condition (IWOC) then assumes that all

the preference types within a class are equally likely to be observed. Thus,

pi = k1/6 for i = 1, . . . 6; pi = k2/6 for i = 7, . . . 12 and pi = k3. When

k2 = k3 = 0, we recover the classical impartial culture assumption, which

has been widely used for the computation of many voting paradoxes.

The probability the Condorcet winner exists has been computed by Fish-

burn and Gehrlein [8] for a large number of voters:

P∞
Con(IWOC) =

3

4
+

3

2π
arcsin

(
k1 + k2

3k1 + 2k2

)
Under the same assumptions, Gehrlein and Valognes [13] have provided for-

mulas that enable to evaluate the probability that a scoring rule picks the

Condorcet winner, i.e., that inequalities (1) to (4) are simultaneously satis-

fied. They find out that this probability is maximized for the Borda count,

3In case of tie, we could assume that the first ranked candidate in the alphabetic order

would win or go to the second stage. Nevertheless, for large populations, the probability

of a tied outcome vanishes and can be neglected.
4For more on the IC condition and other assumptions that can be used when preferences

are linear orderings, see Berg and Lepelley [3] and Gerhlein [11].
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and that, for any scoring rule, it increases with k2. We will now check whether

such similar conclusions can be obtained for other voting situations.

3 The Likelihood of Paradoxes

3.1 Robustness of scoring rules over pairs of alterna-

tives

The first event we evaluate is the probabilities that a scoring rule agree with

the majority rule on a given pair of candidates. By doing so, the current

study determine which scoring rule comes closer to satify Arrow’s Indepen-

dence of Irrelevant Alternatives (IIA) in his genuine framework, allowing for

indifference.

Without loss of generality, we assume that the social ranking given by the

scoring rule wλ is a � b � c, the five other cases being similar. Then, we de-

fine by P∞
ab (λ, k1, k2) (respectively by P∞

bc (λ, k1, k2) and by P∞
ac (λ, k1, k2)) the

conditional probability that the ranking on the pair {a, b} (respectively on

the pairs {b, c} and {a, c}) agrees with the scoring ranking a � b � c for the

scoring vector λ, for the given values of k1 and k2 under the IWOC assump-

tion, and for a large population (n goes to infinity). Note that P∞
ab (λ, k1, k2)

gives also the probability that a scoring rule wλ and the scoring runoff method

using the same scoring vector wλ select the same winner.

Theorem 1. The conditional probability that the weighted scoring rule using

the scoring vector (1, λ, 0), leads to the social ranking a � b � c while the

majority rule also ranks a before b under the IWOC assumption for a large
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electorate is given by:

P∞
ab (λ, k1, k2) =

1

12
+

1

4π

[
− arcsin

(
4k1 + 3k2√

(3k1 + 2k2)(8k1z + k2z′)

)

+ arcsin

(
4k1 + 3k2

2
√

(3k1 + 2k2)(8k1z + k2z′)

)]

where z = (1− λ + λ2), z′ = (5− 2λ + 2λ2), λ ∈ [0, 1], and for k1 + k2 > 0.

Theorem 2. The conditional probability that the weighted scoring rule using

the scoring vector (1, λ, 0), leads to the social ranking a � b � c while the

majority rule also ranks b before c under the IWOC assumption for a large

electorate is the same as the probability that the weighted scoring rule using

the scoring vector (1, λ, 0), leads to the social ranking a � b � c while the

majority rule also ranks a before b.

P∞
ab (λ, k1, k2) = P∞

bc (λ, k1, k2)

Theorem 3. The conditional probability that the weighted scoring rule using

the scoring vector (1, λ, 0), leads to the social ranking a � b � c while the

majority rule also ranks a before c under the IWOC assumption for a large

electorate is given by:

P∞
ac (λ, k1, k2) = 2− 3

π
arccos

(
4 k1+3 k2

2
√

3 k1+2 k2
√

8 k1z+k2z′

)
where z = (1− λ + λ2), z′ = (5− 2λ + 2λ2), λ ∈ [0, 1], and for k1 + k2 > 0.

These expressions are symmetric in λ around λ = 1/2 and decreases

in z and z′ so that each P∞
− (λ, k1, k2) is maximized uniquely at λ = 1/2

and is minimized only by λ ∈ {0, 1}. Thus the Borda score vector max-

imizes P∞
− (λ, k1, k2), and the plurality and the reverse-plurality minimize

P∞
− (λ, k1, k2). This confirms the results obtained by van Newenhizen on the

optimality of the Borda count regarding to majority criteria for probability

distributions similar to the ones described by the IC assumption. For the
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special case k1 = 1 (k2 = 0), this reduces to the original case of IC, and to

results due to Gehrlein and Fishburn [9]. Numerical evaluations are displayed

in Table 1 and Table 2.

3.2 Ranking a Condorcet winner last

In this section we are interested in the probability P∞
CL(λ, k1, k2) that a

Condorcet winner is bottom ranked by any scoring method (1, λ, 0), for λ ∈
[0, 1] under the IWOC assumption for a large population. For candidate a,

these situations are characterized by inequalities (1) and (2), and the fact

that conditions (3) and (4) are not satisfied. We also denote P∞
CW (λ, k1, k2)

the probability that a scoring rule wλ = (1, λ, 0) select the Condorcet winner

in the same conditions.

Theorem 4. The conditional probability that the weighted scoring rule using

the scoring vector (1, λ, 0) elects the Condorcet loser when indifference is

allowed is given by the following expression

P∞
CL(λ, k1, k2) = P∞

CW (λ, k1, k2)−
(

arcsin(ρ) + arcsin(ρ/2)

π/2 + arcsin( k1+k2
3k1+2k2

)

)
with ρ = 4 k1+3 k2√

[8k1 (1−λ+λ2)+k2 (5−2λ+2λ2)](3k1+2k2 )

4 Proofs

The most natural way to compute likelihood of some events under the IWOC

assumption is to follow the techniques proposed by Fishburn and Gehrlein

[8] and also used by Gehrlein and Valognes [13]. Another possibility is to rely

upon the techniques that have been proposed by Saari and Tataru [25]. In

their paper, they estimate the likelihood of obtaining different social rankings

as we modify the scoring rule. Tataru and Merlin [24] and Merlin, Tataru

and Valognes [18] extended the range of application of theses techniques by

using them for the computation of other events.
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The results we present in this paper have been double checked with both

techniques. By proving Theorem 1, we present a way to adapt the Saari-

Tataru method for the IWOC case. The proof of Theorem 2 is similar, and

is ommited. But, we will use the Saari-Tataru technique to prove Theorem

3. Unfortunately, this method requires heavy computations for the proof of

Theorem 4; thus, we chose to present a more classical proof of this result, in

the line of the Gehrlein-Fishburn papers.

4.1 Proofs of Theorem 1

4.1.1 The classical proof

The first step of the proof is to define three discrete variables x1, x2, and

x3. Each variable is based on a linear order on the set of alternatives that is

randomly chosen by a voter according to a probability distribution p. The

three random variables are

sc(a) > sc(b) :



x1 = (1− λ) p1 − p3

= 1 p2 − p4

= λ p5 − p6

= 0 p7 + p12 + p13

= (1 + λ)/2 p8 − p9

= 1− λ/2 p10 − p11

sc(b) > sc(c) :



x2 = λ p1 − p2

= 1 p3 − p5

= (1− λ) p4 − p6

= 0 p9 + p10 + p13

= (1 + λ)/2 p7 − p8

= 1− λ/2 p11 − p12
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aMb :


x3 = +1 p1 + p2 + p5 + p8 + p10

= −1 p3 + p4 + p6 + p9 + p11

= 0 p7 + p12 + p13

Variable x1 equals the difference in points awarded by a voter to a and b

under indifference with the scores wλ, and x2 equals the difference in points

between b and c under wλ. Variable x3 relates to the fact that we focus on a

being the majority winner over b.

In going to the limit we use the multivariate extension of the central limit

theorem saying that as n → ∞ the limiting proportion in question is equal

to a positive constant time the probability that (
√

n)(average value over the

orders in the profile of the variable)≥ 0 for each variable in the limit under the

m-variate normal distribution with zero mean vector and correlation matrix

derived from the average values of the pairwise products of the variables over

the orders on the set of alternatives. Then, the three variate extension of

the Central Limit Theorem [26] says that (x̄1n
1
2 , x̄2n

1
2 , x̄3n

1
2
) has a trivariate

normal distribution with E(xj) = 0 for each j = 1, 2, 3 and a covariance

matrix V that is given by

V =


2k1z/3 + k2z′/12 −k1z/3− k2z′/24 2k1/3 + k2/2

− 2k1z/3 + k2z′/12 −k1/3− k2/4

− − k1 + 2k2/3


where z = (1− λ + λ2) and z′ = (5− 2λ + 2λ2), provided that V is positive

definite. Since det(V ) > 0 for all λ ∈ [0, 1], the probability is given by the

trivariate normal orthant probability with correlation matrix R given by

V =


1 −1/2 4k1+3k2√

γ(3k1+2k2)

− 1 − 4k1+3k2

2
√

γ(3k1+2k2)

− − 1


where

γ = (8k1(1− λ + λ2) + k2(5− 2λ + 2λ2)).
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Hence, P∞
ab (λ, k1, k2) = 6Φ3(R1). The trivariate extension of Shepard’s The-

orem of Median Dichotomy gives:

Φ3(R1) =
1

12
+

1

4π

(
arcsin

(
4k1 + 3k2√
γ(3k1 + 2k2)

)
− arcsin

(
4k1 + 3k2√
γ(3k1 + 2k2)

))

4.1.2 A similar problem

Consider now the following problem: each voter has a probability 1/13 to pick

any of the 13 weak orderings, but the scores given for a strict orderings are

multiplied by
√

k1, while the scores awarded to an alternatives for preferences

7 to 12 are multiplied by
√

k2. In a similar way, we want to evaluate the

probability that the ranking given by the scoring rule λ is a � b � c while a

gets a majority of votes over b. The three random variables are:

sc(a) > sc(b) :



x′1 = (1− λ)
√

k1 p1 − p3

=
√

k1 p2 − p4

= λ
√

k1 p5 − p6

= 0 p7 + p12 + p13

= (1 + λ)
√

k2/2 p8 − p9

= (1− λ/2)
√

k2 p10 − p11

sc(b) > sc(c) :



x′2 = λ
√

k1 p1 − p2

=
√

k1 p3 − p5

= (1− λ)
√

k1 p4 − p6

= 0 p9 + p10 + p13

= (1 + λ)
√

k2/2 p7 − p8

= (1− λ/2)
√

k2 p11 − p12
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aMb :



x′3 =
√

k1 p1 + p2 + p5

=
√

k2 p8 + p10

= −
√

k1 p3 + p4 + p6

= −
√

k2 p9 + p11

= 0 p7 + p12 + p13

By applying the same argument as in proof of Theorem 1, the three-

variate extension of the Central Limit Theorem [26] says that (x̄′1n
1
2 , x̄′2n

1
2 , x̄′3n

1
2
).

Thus, assuming k1 = k2 = 6/13 and modifying the weights in an appropriate

way in the equations (1) to (4) lead to a similar problem as the one described

by Theorem 1.

4.2 Proof of Theorem 2

In order to give the details of the computation of P∞
ac (λ, k1, k2), we here

choose to modify the problem stated in Theorem 2, by multiplying all the

coefficient of the nt’s by
√

k1 if t = 1, . . . , 6 and by
√

k2 if t = 7, . . . , 12.

√
k1(n1 + n2 + n3 − n4 − n5 − n6) +

√
k2(n7 − n9 + n10 − n12) > 0 (5)

√
k1((1− λ)(n1 − n3) + n2 − n4 + λ(n5 − n6)) +

√
k2(

(1 + λ)

2
(n8 − n9) +

2− λ

2
(n10 − n11)) > 0 (6)

√
k1(n1 − n6 + (1− λ)(n2 − n5) + λ(n3 − n4)) +

√
k2(

1 + λ

2
(n7 − n9) +

2− λ

2
(n10 − n12)) > 0 (7)

Following the arguments given by Saari and Tataru [25], Tataru and Mer-

lin [17] and Merlin, Tataru and Valognes [18], the probability that these 3

inequalities are met simultaneously for a voting situation when pi = 1
13

, i =

1, . . . , 13 under the IWOC assumption for n large is equal to the surface of

the spherical simplex T described by equation (5),(6),(7) on the surface of

the unit sphere in R3, divided by the surface of this sphere. Let Wt be a

normal vector for hyperplane Tt, described by equations (t), t = 5, 6, 7.

W5 = (
√

k1,
√

k1,
√

k1,−
√

k1,−
√

k1,−
√

k1, 0,
√

k2,−
√

k2,
√

k2,−
√

k2, 0, 0)

W6 = ((2− 2 a)
√

k1, 2
√

k1, (2 a − 2)
√

k1,−2
√

k1, 2 a
√

k1,−2 a
√

k1, 0,
√

k2 (1 + a) ,
√

k2 (−1− a) ,
√

k2 (2− a) ,
√

k2 (a − 2) , 0, 0)

W7 = (2 a
√

k1,−2 a
√

k1, 2
√

k1, (2− 2 a)
√

k1,−2
√

k1, (2 a − 2) l,
√

k2 (1 + a) ,
√

k2 (−1− a) , 0, 0,
√

k2 (2− a) ,
√

k2 (a − 2) , 0)
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The three hyperplanes T5, T6 and T7 define a spherical simplex (a triangle

here) on the surface of the unit sphere in R3. Let αtu be the angle between

the hyperplanes Tt and Tu. By the Gauss-Bonnet theorem, the surface S of

the triangle is:

S = α56 + α57 + α67 − π

α56 = arccos
(
− W5.W6
||W5||.||W6||

)
= π − arccos(1/2 4 k1+3 k2√

3 k1+2 k2
√

8 λ2k1+8 k1−8 k1λ+5 k2−2 k2λ+2 k2λ2 )

= π − arccos(1/2 4 k1+3 k2√
3 k1+2 k2

√
8k1z+k2z′

)

α57 = arccos
(
− W5.W7
||W5||.||W7||

)
= π − arccos(1/2 4 k1+3 k2√

3 k1+2 k2
√

8 λ2k1+8 k1−8 k1λ+5 k2−2 k2λ+2 k2λ2 )

= π − arccos(1/2 4 k1+3 k2√
3 k1+2 k2

√
8 k1z+k2z′

)

where z = (1− λ + λ2), z′ = (5− 2λ + 2λ2), and λ ∈ [0, 1].

α67 = arccos
(
− W6.W7
||W6||.||W7||

)
= π

3

By dividing S by 4π, the surface of the sphere, and by multiplying it by

6, we obtain:

P∞
ac (λ, k1, k2) = 2− 3

π
arccos

(
4 k1+3 k2

2
√

3 k1+2 k2
√

8 k1z+k2z′

)
4.3 Proof of Theorem 3

Proof. To begin, we note that the probability that candidate a is a Condorcet

winner and selected for a given scoring rule under IWOC is a quadrivariate

normal orthant probability from∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2, r3, r4) = P∞
CWa

(λ, k1, k2),
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where F (r1, r2, r3, r4) is the probability density function for the multivariate

normal distribution with correlation matrix R. A reduced form of this is

obtained by Gehrlein and Valognes [13].

Let P∞
CLa

(λ, k1, k2) denote the probability that candidate ‘a’ is both the

Condorcet loser and is elected by a weighted rule under IWOC. Then,

P∞
CLa

(λ, k1, k2) =

∫ ∞

0

∫ ∞

0

∫ 0

−∞

∫ 0

−∞
F (r1, r2, r3, r4)

Let notation of the form F (r1, r2,−, r4) denote the marginal probability

that is derived from F (r1, r2, r3, r4) for r3, with R modified accordingly (third

row and third column removed). It follows that (using a recollection of

Sheppard’s theorem)

P∞
CLa

(λ, k1, k2) =

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ 0

−∞
F (r1, r2, r3, r4)

−
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ 0

−∞
F (r1, r2, r3, r4)

=

∫ ∞

0

∫ ∞

0

∫ 0

−∞
F (r1, r2,−, r4)

−
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
F (r1, r2, r3, r4) + P∞

CWa
(λ, k1, k2)

P∞
CLa

(λ, k1, k2)− P∞
CWa

(λ, k1, k2) =

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
F (r1, r2,−, r4)

−
∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2,−, r4)

−
∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2, r3,−)

=

∫ ∞

0

∫ ∞

0

F (r1, r2,−,−)−
∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2,−, r4)

−
∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2, r3,−)

Using Sheppard’s Theorem of Median Dichotomy, this will reduce to a sample

function of some “arcsin” terms. Thus, we have a fairly simple form for

17



P∞
CLa

(λ, k1, k2). And the difference (loser-winner) is very simple in form. So,

it is easy to obtain a representation for P∞
CLa

(λ, k1, k2):

Loser−Winner =

∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2, r3,−) +

∫ ∞

0

∫ ∞

0

∫ ∞

0

F (r1, r2,−, r4)

−
∫ ∞

0

∫ ∞

0

F (r1, r2, r3,−)

The two- and three-variate orthant probabilities in this representation can

be evaluated directly from Sheppard’s 1898 Theorem of Median Dichotomy

(Kendall and Stuart [15]) to obtain, after reduction:

P∞
CLa

(λ, k1, k2) = P∞
CWa

(λ, k1, k2)−
(

arcsin(ρ) + arcsin(ρ/2)

3(π/2 + arcsin( k1+k2
3k1+2k2

))

)

Where P∞
CWa

(λ, k1, k2) =
Φ(4, R)

1/3P∞
Con(IWOC)

(Cf Gehrlein and Valognes [13]).

For three candidates, there is a Condorcet winner if and only if, there is

a Condorcet loser.

By the symmetry of IWOC we have:

P∞
CL(λ, k1, k2) = 3× P∞

CLa
(λ, k1, k2).

Computed values of P∞
CL(λ, k1, k2) are given in Table 3 for some values of

λ, k1 and k2.

5 Concluding Comments

Our results tend to prove that letting voters cast ballots with weak prefer-

ences increases the different types of Condorcet efficiency of the scoring rules.

To some extent, letting individuals express more varied opinion increases ho-

mogeneity! Nevertheless, we don’t know to which extent these conclusions

remain valid with more candidates. Introducing weak orderings does not

18



change the status of the Borda count: This is still the scoring rule that

has more affinities with majority criteria. Further studies could determine

whether using other methods to define scoring rules for weak orderings (dif-

ferent from the one Black and Smith suggested) would lead to better results

in term of Condorcet efficiency of the scoring rules.
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Table 1: Probabilities P∞
ab (λ, k1, k2) and P∞

bc (λ, k1, k2)

k1 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.0 0.7553 0.7794 0.8044 0.8282 0.8464 0.8534

k2 = 0.1 0.7877 0.8117 0.8365 0.8598 0.8777 0.8846

k2 = 0.2 0.8044 0.8284 0.8531 0.8764 0.8945 0.9016

k2 = 0.9 0.8386 0.8626 0.8876 0.9123 0.9329 0.9419

k1 = 0.5 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.1 0.7641 0.7881 0.8131 0.8367 0.8547 0.8617

k2 = 0.2 0.7714 0.7955 0.8204 0.8439 0.8618 0.8687

k2 = 0.5 0.7877 0.8117 0.8365 0.8598 0.8777 0.8846

k2 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k1 = 0.0 0.8604 0.8848 0.9111 0.9391 0.9688 1.0000

k1 = 0.1 0.7877 0.8117 0.8365 0.8598 0.8777 0.8846

k1 = 0.2 0.7747 0.7987 0.8236 0.8470 0.8649 0.8718

k1 = 0.9 0.7604 0.7844 0.8095 0.8331 0.8512 0.8582
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Table 2: Probabilities P∞
ac (λ, k1, k2)

k1 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.0 0.9016 0.9223 0.9409 0.9557 0.9654 0.9688

k2 = 0.1 0.9288 0.9457 0.9603 0.9717 0.9789 0.9814

k2 = 0.2 0.9409 0.9558 0.9686 0.9784 0.9846 0.9868

k2 = 0.9 0.9614 0.9729 0.9824 0.9896 0.9941 0.9956

k1 = 0.5 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.1 0.9095 0.9292 0.9466 0.9604 0.9694 0.9725

k2 = 0.2 0.9158 0.9346 0.9511 0.9641 0.9725 0.9754

k2 = 0.5 0.9288 0.9457 0.9603 0.9717 0.9789 0.9814

k2 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k1 = 0.0 0.9719 0.9815 0.9893 0.9952 0.9988 1.0000

k1 = 0.1 0.9288 0.9457 0.9603 0.9717 0.9789 0.9814

k1 = 0.2 0.9185 0.9369 0.9530 0.9657 0.9739 0.9767

k1 = 0.9 0.9062 0.9263 0.9442 0.9585 0.9677 0.9710
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Table 3: Probabilities P∞
CL(λ, k1, k2)

k1 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.0 0.03709 0.02383 0.01261 0.00462 0.00068 0

k2 = 0.1 0.02883 0.01831 0.00962 0.00352 0.00052 0

k2 = 0.2 0.02535 0.01607 0.00847 0.00312 0.00047 0

k2 = 0.9 0.01971 0.01265 0.00686 0.00269 0.00044 0

k1 = 0.5 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k2 = 0.1 0.03465 0.02217 0.01170 0.00427 0.00063 0

k2 = 0.2 0.03273 0.02088 0.01099 0.00402 0.00059 0

k2 = 0.5 0.02883 0.01831 0.00962 0.00352 0.00052 0

k2 = 0.1 λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

k1 = 0.0 0.01715 0.01130 0.00651 0.00294 0.00074 0

k1 = 0.1 0.02883 0.01831 0.00962 0.00352 0.00052 0

k1 = 0.2 0.03191 0.02034 0.01070 0.00391 0.00058 0

k1 = 0.9 0.03566 0.02286 0.01207 0.00441 0.00065 0
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