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ABSTRACT

A general, modular technique for designing efficient leader finding algorithms in distributed, asyn-
chronous networks is developed. This technique reduces the relatively complex problem of efficient leader
finding to a simpler problem of efficient serial traversing of the corresponding network. The message com-
plexity of the resulting leader finding algorithms is bounded by ( f (n) + n) (log2k + 1) [or
( f (m) + n) (log2k + 1)], where n is the number of nodes in the network [m is the number of edges in the
network], k is the number of nodes that start the algorithm, and f (n) [ f (m)] is the message complexity of
traversing the nodes [edges] of the network. This technique does not require that the FIFO discipline is
obeyed by the links. The local memory needed for each node, besides the memory needed for the traversal
algorithm, is logarithmic in the maximal identity of a node in the network. This result achieves in a unified
way the best known upper bounds on the message complexity of leader finding algorithms for circular,
complete and general networks. It is also shown to be applicable to other classes of networks, and in some
cases the message complexity of the resulted algorithms is better by a constant factor than that of previ-
ously known algorithms.

1 A preliminary version of this paper was presented in 4-th Ann. ACM Symp. on Principles of Distributed Computing, Minaki,
Ontario, Canada, August 1985.
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1. INTRODUCTION

The problem of efficiently electing a leader in distributed networks was studied in many papers [B80,

DKR82, FL84, G77, GA84a, GA84b, GHS83, GK84, H84, HS80, K84, K86, KMZ83, KRS81, KRS84,

LR86, P82]. Some of the more efficient algorithms in this list are quite sophisticated and specially

designed for specific classes of networks. In this paper a general, modular technique for designing efficient

leader finding algorithms in such networks is developed. This techniques greatly simplifies the design of

distributed leader finding algorithms, without increasing the order of their message complexity. The advan-

tage of our technique is that even a layman can design an efficient leader finding algorithm for many classes

of networks simply by designing simple traversal for these networks. Moreover, the message complexity of

several algorithms obtained by this technique is shown to be better than that of specially designed algo-

rithms.

The model under investigation is a network of n processors with distinct totally ordered identities

identity(1), identity(2),. . ., identity(n), and m communication lines connecting pairs of the processors. No

processor knows any other processor’s identity. Each of the communication lines can be either bidirec-

tional or unidirectional, and each processor knows the lines connected to itself and their directions, but not

the identities of its neighbors. The communication is done by sending messages along the permitted direc-

tions of the communication lines. The processors are identical in the sense that all the processors that are

working on some common task execute the same algorithm. Such an algorithm may include operations of

(1) sending a message to a neighbor, (2) receiving a message from a neighbor and (3) processing informa-

tion in their (local) memory.

We assume that the messages on each line arrive in a finite time, with no error, and are kept until pro-

cessed. Unlike some algorithms for finding a leader (e.g. [DKR82, GA84a, GK84]) our algorithm does not

assume that the FIFO discipline is obeyed by the links. Note that existing communication protocols do not

necessarily guarantee the FIFO discipline (see Chapter 4 in [T81]). For networks that obey the FIFO disci-

pline, the algorithms can be simplified, and the messages length can be slightly reduced. We also assume

that all the processors are initially asleep and that any non-empty set of processors may be awaken
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spontaneously and start the algorithm; a processor that is not a starter remains asleep until a message

reaches it.

A communication network can be viewed as a mixed graph G = (V , E) (i.e., E might contain both

directed and undirected edges) with |V | = n and |E | = m. We refer to algorithms for a given network as algo-

rithms acting on the underlying graph, and we use the terms graph and network to denote the same entity.

Working within this model, when no processor knows the value of n, a minimum weight spanning

tree (and hence a leader) is found in [GHS83] in O(n log n + m) messages for a general undirected graph.

When n is known to every processor, a leader in such a network is found in [G77], in an expected number

of messages which is O(n log n) (independent of m), and the worst case is O(nm). In [LR86] a spanning

tree construction algorithm is presented for the case were each node knows its neighbors, and messages are

permitted to be very long. It is claimed there that the message complexity of that algorithm is

3 n log n + O(n) (independent of m) for the average case. The worst case message complexity of that algo-

rithm is said to be O(n2).

Ω(n log n) lower bounds and O(n log n) upper bounds for the problem of distributively finding a

leader in a circular network of processors (directed and undirected) and in a complete undirected network

are known; see [HS80, P82, KRS81, B80, DKR82, PKR82, FL84] for the circular networks and [KMZ84,

GA84b, H84] for the complete undirected network. An algorithm which can find a leader in general

strongly connected unidirectional networks in O(nm) messages is given in [S83]. Another such algorithm

(using less bits per message, to the total of O(nm) bits) is developed in [GA84a]. Most of these algorithms

also construct spanning trees on which messages can be routed from the leader to all nodes, and from all

nodes to the leader.

In this paper we present a general, modular technique for constructing leader finding algorithms for

any class of graphs. This technique yields algorithms which are competitive, or even better (in the message

complexity) than known algorithms, designed for special classes of networks. This technique solves the

problem in two stages:
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stage 1

construction of a traversal algorithm (to be defined).

stage 2

construction of a leader finding algorithm, which uses the algorithm of stage 1 as a distributed sub-

routine. (The exact relation between the leader finding algorithm and its distributed subroutine are

explained in the sequel.)

In fact, we present a single, general algorithm for the second stage, which is independent on the spe-

cific features of the algorithm of the first stage. Thus, the problem of leader finding algorithms is reduced to

the problem of traversal algorithms, which in general is much simpler. The message complexity of the

resulting algorithm is at most ( f (n) + n)(log2k + 1) [or ( f (m) + n)(log2k + 1)], where the convex function

f (n) [ f (m)] is an upper bound on the complexity of certain, simple executions of the traversal algorithm,

and k is the number of nodes that spontaneously start the algorithm. The messages of the resulting algo-

rithms and the local memory used at each node are of length which is logarithmic in the maximal identity

of a processor (this does not include the memory and the length of the messages used by the assumed

traversal algorithms, which are usually small). It is also shown that a leader in a network can use any

traversal algorithm to construct a spanning tree of routes from all nodes to itself, and a spanning tree of

routes from itself to all nodes (clearly, in an undirected network, any spanning tree can be used for both

purposes).

The algorithms constructed by this technique are shown to unify and generalize the results on leader

finding algorithms mentioned above in a non trivial sense. For instance, they provide simple constructions

of O(n log n) distributed algorithms for finding leaders in circular and complete networks, and in other

classes of networks of more complex structure, for which no such algorithms were designed before. The

message complexity achieved by this technique for complete graphs is better in a constant factor than the

previous results. A simple generalization of this technique achieves an 2m + 3n log k + O(n) leader finding

algorithm for general undirected networks; the message complexity of that algorithm is better than that of

the algorithms in [GHS83, KM86]. Our results for general networks are applicable also for different
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models such as the one appearing in [LR86] (and in fact improve their result).

This technique enables the simple construction of an efficient leader finding algorithm in directed

Euler networks. Another algorithm was obtained independently in [GK84] (the communication complexity

of the algorithm presented here is smaller by a constant factor than that of [GK84]). Applications of this

technique to general directed networks appear in [K86a]. The idea of modular construction of distributed

algorithms was recently used also in [ABF86].

The rest of the paper is organized as follows: In the next section some basic definitions used in this

paper are given. In section 3 the modular technique for leader finding is presented and proved, and in sec-

tion 4 various applications of this technique are given.

2. PRELIMINARIES

In this section we give the definitions needed for our results, and introduce some of the basic tools we

use.

Let A be a distributed algorithm acting on a graph G = (V , E). An execution of A consists of events,

each being either sending a message, receiving a message or doing some local computations. A distributed

algorithm A is global on a class Γ of graphs if for every graph G = (V , E) in Γ, and for every execution of A

on G, every node v in V either receives a message or sends a message during this execution.

A rooted execution of an algorithm A is an execution in which exactly one node was awakened spon-

taneously. An algorithm A is serial if in every rooted execution of A, at any giv en moment, at most one

message is sent in the network, and the next message is always sent by the last node that received a mes-

sage. An equivalent way to describe a serial algorithm is the following: A node gets a permission to trans-

mit a single message in a rooted execution of such an algorithm either on its spontaneous awakening or by

receiving a message from another node. This permission (viewed as a token) is denied from the node when

it transmits a message.

The following type of distributed algorithm is the main tool for our results:
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Definition: A traversal algorithm is a distributed algorithm which is both serial and global.

The message complexity mA,G of an algorithm A acting on a graph G is the maximal number of mes-

sages sent over all executions of A on G.

Let Γ be a family of graphs, A an algorithm acting on graphs in Γ, and f (x, y) a function of two vari-

ables. Then A is said to be of a message complexity f (n, m) if for each graph G = (V , E) in Γ, mA,G

≤ f (n, m) (n = |V |, m = |E |).

Let B be a distributed algorithm acting on some graph G. The carrier algorithm induced by B,

denoted Bc, is the algorithm obtained from B by having each message M sent by B be replaced by a mes-

sage (M , w), where w is an arbitrary string received from an outside source (i.e., an upper layer algorithm

located at the same node). w will be denoted as the attachment carried with M by B. The attachments

have no effect on the execution of B.

Let A and B be two distributed algorithms acting on the same graph G. We say that A uses B as a

carrier (and A is the master of B) if A at each node may invoke Bc (at the same node), and whenever Bc at

a giv en node receives a message, it first transfers its attachment to A (at the same node), and then waits for

instructions from A. More specifically, the master algorithm A at node i can perform the following opera-

tions on the carrier algorithm Bc at the same node:

Operation 1: Initiating Bc. The effect of such an initiation on Bc is the same as that of a spontaneous awak-

ening.

Operation 2: Appending an attachment w to a message M to be sent by Bc.

Operation 3: Deleting an attachment w from a message M received by Bc.

Operation 4: Instructing Bc to continue its execution.

Operation 5: Destroying a message to be sent by Bc. (In the case that B is a traversal algorithm with a sin-

gle initiator, this means an abortion of Bc.)

Operation 6: Repeating the last sending executed by Bc, after replacing the attachment of the correspond-

ing message by a new one. In this case we say that the new attachment is chasing the previ-

ous one.
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All carrier algorithms in this paper are induced by traversal algorithms, and we use "traversal algo-

rithm" instead of "carrier algorithm induced by the traversal algorithm". Moreover, each execution of such

an algorithm will be a rooted execution (which may be aborted, as described in 5. above). Note that this

does not exclude the possibility that a carrier algorithm is invoked simultaneously in several nodes - each

invocation will be considered a distinct rooted execution of the carrier algorithm. For this purpose all such

invocations must be distinguishable, e.g. by including distinct names in their attachments. Readers who are

familiar with operating systems may view the master-carriers mechanism described above as a generaliza-

tion of some single-computer operating systems mechanism (e.g. in UNIX) in which a single father-process

may create and monitor several son-processes, some of which may use the same code simultaneously. It

also may be viewed as a generalization to the common practice in communication networks, where higher-

layer protocols rely on an environment consisting of lower-layer protocols (see e.g. [T81]).

3. THE GENERAL ALGORITHM FOR FINDING A LEADER

In this section we present a general technique for a modular construction of efficient leader finding

algorithms. The section is divided into four subsections: In the first we present a Leader Finding Theorem;

in the second we present the technique to construct the algorithms stated in that theorem, in the third we

prove the correctness and the complexity of these algorithms, and in the last we show how traversal algo-

rithms can be used to efficiently construct spanning trees of certain types.

3.1. LEADER FINDING THEOREM

First let us define the traversability property and the edge traversability property for any class of

graphs. Then we shall present a theorem which connects these properties with the complexity of leader

finding algorithms for this class.

Definition: Let Γ be a class of graphs and f (x) a real valued function. Then Γ is f traversable ( f edge

traversable) if there exists a traversal algorithm, B, such that in any rooted execution of B on any graph

GmemΓ, and for any x, after sending f (x) messages, B must have visited at least min {x + 1, n} distinct

nodes [min {x + 1, m} distinct edges]. That is: at least min {x + 1, n} distinct nodes [min {x + 1, m}
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distinct edges] were involved in the sending/receiving of these f (x) messages.

It follows from ([GA84a], [K84b]) that every class of graphs is O(x3) traversable [O(x2) edge

traversable]. Moreover, it can be shown that for every 1 ≤ α ≤ 3 [1 ≤ α ≤ 2] there is a class of graphs which

is O(xα ) traversable [edge traversable] but not o(xα ) traversable [edge traversable].

Leader Finding Theorem: Let a class of graphs, Γ, be f traversable, [ f edge traversable] where f is a

convex function2. Then there exists a distributed leader finding algorithm whose message complexity on

any graph G = (V , E)memΓ is at most (n + f (n)) (log2n + 1) if G is f traversable, and

(n + f (m)) (log2n + 1) if G is f edge traversable.

Note that, trivially, the converse of the above theorem does not hold (e.g. for classes of graphs for

which the message complexity of leader finding algorithm is less then O(n log n), such as stars).

The proof of the Leader Finding Theorem will be given in the sequel by presenting a leader finding

algorithm that uses a carrier Bc based on a given traversal algorithm B, and proving the properties of the

combined algorithm. We will prove the theorem only for the traversability property. The proof for the edge

traversability property is similar.

3.2. PRESENTATION OF THE ALGORITHM

We outline here the general leader finding algorithm, which uses a given traversal algorithm Bc as a

carrier. This algorithm is designed for networks in which messages sent along a link do not necessarily

obey the FIFO discipline; it will be noted later that if the FIFO discipline is obeyed then the algorithm can

be simplified, and the length of the messages sent by it can be reduced.

Initially all nodes are asleep, and are at phase = − 1. Assume that one node, a, is awakened and starts

the algorithm. Node a raises its phase to 0 and initiates a rooted execution of Bc, with an attachment w that

contains a’s phase, a’s identity, and a hop-counter, h, which is initially zero (i.e., w = (p, a, h), and initially

p = 0 and h = 0). The pair (0, a) of the phase and the identity is viewed as a token in annexing mode, and

2 A function f is convex if for all x and y it holds that f(x)+f(y) ≤ f(x+y).
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the hop-counter counts the number of times this token is sent. This token traverses the graph, annexing each

node of lower phase it passes to its domain. The annexing is done by having the annexed node store the

phase and identity of the token. The value of the hop-counter is increased by one each time the token is sent

(using Operations 3 and 4), and each node annexed by this token records the maximal value of the hop-

counter it had seen, denoted MaxHop. If a is the only node that was awaken, then eventually the token

(0, a) will complete the traversal of the graph at some node d , and it annexed all the nodes it passed. At this

moment d declares itself as a leader, and initiates another execution of Bc to announce its leadership.

Assume now that exactly two nodes, a and b, are spontaneously awaken. Then each node initiates a

rooted execution of Bc, as before. In the case that token (0, a) reaches a node c that was already annexed

by token (0, b), it stops the traversing and acts as follows:

(1) If (0, b) > (0, a) lexicographically (i.e., b > a), then token (0, a) stays at c and becomes a candidate.

(2) Otherwise, token (0, a) becomes a chasing token, and it chases token (0, b) (using operation 6). The

attachment of a chasing token contains the identity of the chased token, (0, b), and also the value of

the variable MaxHop of the last node it passed. This chasing token marks every node it visits during

this chase by ′chased(0)′, meaning that a chasing token had already passed this node at phase 0.

Since node a was annexed by token (0, a) and node b by (0, b), no token will annex all the nodes of the

graph. Without loss of generality, assume that b > a. Then token (0, b) eventually reaches a node which has

been annexed by token (0, a) and will start chasing this latter token. token (0, a), on the other hand, will not

chase token (0, b), since b > a. Instead, if token (0, a) reaches a node c that is either marked ′chased(0)′ or

annexed by token (0, b), token (0, a) will wait as a candidate at c until it is reached by its chaser.

If the FIFO discipline is not obeyed, then the chasing token may bypass the chased token (0, a) on

some edge. Thus the chasing token arrives to node d at the other end of this edge before (0, a) does. In this

case one of the following must hold:

1) Either d does not belong to the domain of (0, a) and it does not contain a candidate, or

2) d belongs to the domain of (0, a) and the value of MaxHop in node d is smaller then the value of Max-

Hop stored at the chasing token.
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Upon recognizing that one of these cases have happened, the chasing token stays at d as a candidate, and it

is guaranteed that the bypassed token (0, a) will eventually arrive at d .

In any case, one token will become a candidate at some node, and another token will meet it at that

node. At this moment both tokens are destroyed, and a new token, at a phase higher by one, is created. The

identity of this new token is the identity of the node in which it was created, d . Now we are left with only

one token which like in the first case, is going to start traversing the graph. This token ignores lower phase

tokens, and it will not reach any node visited by another token at its own phase. Thus this token will com-

plete a full traversing of the graph at some node v. At this time v is elected as the leader.

In the general case, each token (p, a) is in one out of three modes:

(i) annexing mode: A token in this mode is trying to annex all the nodes in the network to its domain.

For this, the token is using Bc to traverse the network, and it annexes the tokens it passes during the

traversing.

(ii) chasing mode: A token in this mode is chasing some token ( p, b) in the annexing mode, attempting

to reach it and then to create a token in higher phase.

(iii) candidate mode: a token in this mode has a phase p, and is waiting to be met, hopefully, by a chasing

or annexing token in the same phase.

Whenever an annexing or chasing token reaches (or is created at) a node c, the following rules are

applied, according to the mode of the token.

annexing mode: Whenever a token (p, a) in the annexing mode reaches (or is created at) a node c which

belongs to a token (q, b), the following rules are applied.

(a1) The annexing is continued if: (1) the corresponding execution of Bc is not terminated, and (2) one of

the following holds: q < p or else (p, a) = (q, b) and node c is not marked ′chased(p)′.

If this condition is satisfied, node c performs the following: (i) It joins the domain of ( p, a) (if it is

not yet there), (ii) it increases the value of the hop-counter of the token by one, and send it forwards (

using Operations 2, 3 and 4), and (iii) it records the value of the updated hop-counter in the local
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variable MaxHop.

(a2) If the traversal is completed successfully (by annexing all nodes) then c is the elected leader.

In all other cases token (p, a) is destroyed (using Operation 5), and one of the following applies:

(a3) If p < q then token (p, a) is destroyed, and no more steps are taken.

(a4) If c contains a candidate token in phase p then both (p, a) and the candidate token are destroyed, and

a new token (p + 1, c), in the annexing mode, is created. This new token starts the annexing process,

beginning from the node c where it was created. Its hop counter is initialized to zero.

(a5) If p = q, and either node c is marked ′chased(p)′ or b > a, then token ( p, a) enters the candidate

mode, and waits at c.

(a6) Otherwise (i.e., p = q, b < a and node c is not marked ′chased(p)′), token ( p, a) is destroyed, and a

token in the chasing mode, which is chasing (p, b), is created.

chasing mode: Whenever a token in this mode, which is chasing token (p, a), reaches (or is created at) a

node c which belongs to a token (q, b), the following rules are applied.

(c1) The chasing is continued if: (1) (p, a) = (q, b), (2) the value of the variable LastMaxHop carried with

the chasing token is smaller than the value of the variable MaxHop stored at the node c, and (3) node

c is neither marked ′chased(p)′, nor does it contain a token at phase p in the candidate mode.

If the above conditions are satisfied, node c performs the following: (i) It marks itself by ′chased(p)′,

(ii) It sets the value of LastMaxHop of the chasing token to the value of MaxHop of itself, and (iii) it

continues the chasing (using Operation 6 on the message containing the chased token).

In all other cases, the chasing is stopped, and one of the following applies.

(c2) If p < q then the chasing token is destroyed, and no other steps are taken.

(c3) If c contains a candidate token at phase p, then both the candidate and the chasing tokens are

destroyed, and a new token (p + 1, c) is created, as in (a4).

(c4) Otherwise, (i.e., either 1) (p, a) = (q, b), and either node c is marked ′chased(p)′ or the value of Max-

Hop at node c is not larger then the value LastMaxHop at the chasing token, or 2) ( p, a) ≠ (q, b), and



11

p ≥ q): the chasing token enters the candidate mode, and waits at c.

After a leader is elected, one more execution of Bc to announce its leadership to all other nodes might

be needed.

3.3. COMPLEXITY AND CORRECTNESS PROOFS

Lemma 1: The number of distinct tokens at phase p created in an execution of the algorithm is at most

k ⋅ 2−p, where k is the number of nodes that start the algorithm spontaneously.

Proof: By the facts that any annexing token at phase p > 0  is created by destroying two tokens at phase

p − 1 (rules (a4) and (c3)), and that a chasing token at phase p is created by destroying an annexing token

of the same phase.

Lemma 2: In every execution of the algorithm, at most one node is declared as a leader.

Proof: By the fact that if token ( p, a) declares some node c as a leader, then (p, a) had completed a traver-

sal, which implies, by (a1), that (p, a) did not encounter any node that belonged to another token at phase

≥ p, and hence that no such token completed the traversal. Also by (a1), no token (q, b) with q < p could

complete the traversal.

Lemma 3: At any giv en phase, the number of messages sent by the algorithm with a token in this phase is

at most f (n) + n.

Proof: Assume that d tokens were created in phase p, and that the domain of the ith token, 1 ≤ i ≤ d con-

tains ni nodes. Since no two domains in the same phase overlap, we have that:

d

i=1
Σ ni ≤ n.

By the traversability property, the annexing token (p, i) occurred in at most f (ni) messages. Thus, we

obtain by the convexity of f that the number M of messages with annexing tokens in a given phase satis-

fies:

M ≤
d

i=1
Σ f (ni) ≤ f (

d

i=1
Σ ni) ≤ f (n).

Since every node that sends a chasing token at a given phase p is marked ′chased(p)′, and a node that is
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marked ′chased(p)′ does not send any chasing token at phase p (rule (c1)), The number of messages with

chasing tokens at a given phase is bounded by n. The lemma follows.

Note that the term n in the bound of the above lemma comes from the bound of at most n messages

with chasing tokens at any giv en phase. It will be shown that in certain cases this bound can be reduced by

simplifying the analysis of the chasing.

Lemma 4: The number of messages sent by the algorithm is at most (n + f (n)) ⋅ (log2k + 1), where k is the

number of nodes that start the algorithm spontaneously.

Proof: By Lemma 1, the number of phases is bounded by log2 k + 1. By Lemma 3, at most n + f (n) mes-

sages are sent by the algorithm with tokens in any giv en phase. The lemma follows.

Lemma 5: If there are more than one token at a certain phase p, then a token at phase p + 1 is eventually

created.

Proof: Assume the contrary. Then there is a phase p such that there are at least two annexing tokens at

phase p, and no token at phase p + 1 is ever created. We shall show that this is impossible.

Let (p, i) be a token in phase p with the maximum possible i. When (p, i) is created it invokes an

execution of Bc to traverse the graph. Since there are other annexing tokens at phase p, this execution can-

not complete the annexing of all the nodes in the network, and hence must be aborted upon reaching some

node c (see rule (a1)). By the maximality of i and of p, one of the following must have happened at the

time (p, i) reached c:

(1) c belonged to a token ( p, j) with j < i, and hence by rule (a6), a chasing token at phase p, which chased

(p, j), was created, or

(2) c was already marked ′chased(p)′.

In both cases, a chasing token at phase p must have been created. Out of all annexing tokens in

phase p which are chased, let (p, t) be the one with the minimum possible t.

Out of all messages containing a chasing token which is chasing (p, t), consider the one with the

maximal value of MaxLastHop. Denote this message by C and the value of its LastMaxHop by l(C). Note
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that C is unique, as by (c1) no node send more than one token that chases (p, t); therefore, no two such

messages chase the same message with the token (p, t), and hence each message that chases (p, t) has a dis-

tinct value of LastMaxHop. Let A be the message chased by C, i.e. - the unique message with an annexing

token (p, t) whose hop-counter h(A) equals l(C). Let e be the edge that carried A and v be the node that

received it. By (c1), the maximality of l(C) and the maximality of p, one of the following must have hold

when v received C:

(1) Node v already contained a token in the candidate mode.

(2) Not (1), and v belonged to a different token at phase ≤ p.

(3) Neither (1) nor (2), v belonged to (p, t), and l(C) was larger than MaxHop of v.

(4) None of the above, and v was marked ′chased(p)′.

If (1) held, then a token at phase p + 1 was created (c3).

If (2) held, then message C bypassed A on e: To see this, observe that A had reached v before C but v was

not annexed by the token ( p, t) carried by A. Hence, by the minimality of t, a candidate token must have

been created at v. This candidate could be destroyed only if a token at phase p + 1 was created (rules (a4)

and (c3)).

After reaching v, C must have stayed there ((c4) and the maximality of MaxLastHop). Since A ev entually

reached v too, a token at phase p + 1 must have been created at v also in this case (rules (a4) or (c3)) .

Assume now that (3) held. It is easy to see that the C bypassed A on e, and by an argument similar to the

above a token at phase p + 1 must have been created at v.

Finally, assume that (4) held. Let C1 be the message with a token chasing (p, t) that was sent by v when it

marked itself by ′chased(p)′ (see (c1)), and let l(C1) be the value of LastMaxHop of C1. Let A1 be the

message chased by C1, i.e. - the unique message with an annexing token ( p, t) whose hop-counter h(A1)

equals l(C1). Observe that A1 is the last message with annexing token ( p, t) sent by v, since a chasing token

always chases the last message with the chased token, and that after the chasing token is sent by v no more

messages with the chased token are sent by v.
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If C bypassed A on e, then, like in (2) and (3) above, a token at phase p + 1 is eventually created at v.

Assume now that C did not bypass A on e. First we claim that upon the arrival of A at v, a candidate was

not created at v: Otherwise, by the fact that no token at phase higher than p was created, this candidate

would still be there when C arrived, contradicting the assumption that (1) did not hold. Since, by the maxi-

mality of p, (p, t) could not be destroyed upon the arrival of A at v, a message with (p, t) was sent by v

after it received A. Hence A1 was sent after A was sent (and received by v). But this means that:

l(C1) = h(A1) > h(A) = l(C)

Which contradicts the maximality of l(C).

In all cases, a token at phase p + 1 was created at v, a contradiction to the maximality of p.

Proof of the Leader Finding Theorem: Clearly, at the beginning of the algorithm there is at least one

token. By Lemmas 4 and 5, the algorithm will eventually get to a situation where there is a unique token at

some phase p, and no other token in this phase will ever be created. This token, which is an annexing

token, will complete the traversing of the graph (completing Bc), and then will create a leader declaring

token, which by Lemma 2 is unique. The complexity of the algorithm follows by Lemma 4.

Note that most of the complication in the proof of Lemma 5 is due to the fact that we do not assume

the FIFO discipline. Indeed, In the case that this discipline is guaranteed, the mechanism for counting and

recording the number hops taken by annexing tokens (using the hop-counter and the variables MaxHop and

LastMaxHop) is redundant. Consequently, the algorithm can be considerably simplified.

3.4. SPANNING TREES CONSTRUCTION

In this section it is shown how the traversal algorithm, Bc, can be used after a leader is elected to con-

struct directed spanning trees, containing paths to (from) the leader from (to) all other nodes. For this con-

struction alone (and not for the leader election which may have preceded it) we assume that a rooted execu-

tion of Bc always terminates at the node that initiated it. (This can always be achieved by at most doubling

the message complexity of Bc, when it is used not for leader election, but for spanning tree construction).
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Let node c be the elected leader. Upon its election, c initiates a "leader declaring" execution of Bc.

Associate with each node, excluding c, the edge on which the node had sent the last message in this execu-

tion. Clearly, this set of edges, directed in the directions of these last messages, constitutes a spanning tree

in which there is a directed path from every node to the leader.

Note that in the description above, a node might not know when its participation in the leader decla-

ration execution of Bc is completed, neither what edge leaving it belongs to the tree rooted at the leader.

This problem is solved in the following way:

(1) In the leader declaration execution of Bc, attach to the token a hop-counter. Also, each node a

records the value MaxHop of the hop-counter the token had the last time a sent it. (as in the annex-

ing mode of the leader finding algorithm).

(2) After the leader declaration execution of Bc is terminated at node c, it initiates another execution of

Bc which is identical to the previous one. When the hop-counter of the token in this execution upon

leaving a node a equals the value of MaxHop from the previous execution at a, it terminates its part

in the algorithm and takes the edge that carried the last message to be the one directed to the leader.

Bc can also be used to construct a spanning tree of directed paths from the leader to all other nodes:

In the undirected case the direction of the edges in the tree described above are reversed. In directed or

mixed graphs this can be done in the following way:

(1) Execute Bc from the leader, with an edge counter, that counts the distinct edges used by it. This

assigns a unique name (number) to each edge used by Bc. This name is known to both ends of the

edge.

(2) Each node records the name of the edge on which it received the first message. Clearly, the set of

these edges constitute a tree having the desired properties.

(3) Another two executions of Bc (using messages of length O(n log n)) are used to accumulate the edges

of the tree at the leader, and then to spread them to all nodes.
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The message complexity of both algorithms is O( f (n)) [O( f (m))]. However, in the latter algorithm attach-

ments of O(n log n) bits might be needed. Alternatively, it is possible to modify this latter algorithm to

work with O(nm + f (n)) [O(nm + f (m))] messages of O(log n) bits.

4. RESULTS OBTAINED BY USING THE GENERAL ALGORITHM FOR FINDING A

LEADER

In order to demonstrate the power of the Leader Finding Theorem we now present traversing and

edge-traversing algorithms for various classes of networks, and use them to obtain leader finding algorithms

for these classes of networks.

4.1. FINDING A LEADER USING O(x) TRAVERSALS

Five examples of O(x) traversable classes of networks are presented below. Applications of the

Leader Finding Theorem on these classes yield algorithms for finding a leader in O(n log n) messages. For

two of these classes - circular and complete networks - there are known leader finding algorithms which use

only O(n log n) messages. For the other three cases no such algorithms were published before. In the

known two cases quite sophisticated special algorithms were designed [HS80, P82, KRS81, B80, DKR82,

PKR82, KMZ84, GA84b, H84], but even a layman can design a suitable traversing algorithms for these

classes of networks.

(1) CIRCUITS (Unidirectional and Bidirectional)

Circuits are trivially x traversable (the initiator sends a message to one of its neighbors, and the mes-

sage is forwarded around the circle until stopped by its initiator). Thus our leader finding algorithm

will find a leader in any circle using no more than 2n ⋅ (log2n + 1) messages. Note that the message

length required by the traversal algorithm itself is only O(1) bits.

(2) COMPLETE UNDIRECTED GRAPHS

The class of complete graphs is 2x traversable. The initiator sends a message to one of its neighbors

and waits for an acknowledgement. This operation is repeated until all the initiator’s neighbors are

traversed. At first glance this traversing algorithm, together with the Leader Finding Theorem yields
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an algorithm for finding a leader in complete undirected graphs in (n + 2 ⋅ n)(log2n + 1) messages.

However, a simple elaboration of the analysis yields a better bound. To see this recall the computa-

tion of the complexity of the Leader Finding Algorithm: the term (n + f (n)) appears in

(n + f (n))(log2n + 1) as in each phase f (n) messages may be used for traversal of tokens in annexing

mode, and n for chasing. In this special case of complete undirected graphs one can easily verify that

at most three messages are used for the chasing of a token. The message complexity for finding a

leader thus becomes (2n ⋅ log2 n) + O(n). (The O(n) term is for the chasing: up to 3n ⋅ 2−p messages

in phase p.) This is better in a constant factor than the complexity in [KMZ84], [H84], and

[GA84b]3.

(3) COMPLETE UNDIRECTED BIPARTITE GRAPHS

A node initiating a traversing in a complete bipartite graph will send a message serially to all its

neighbors, as in the case of a complete graph (i.e. at any giv en time there is at most one unacknowl-

edged message.) Next the initiator will ask its last visited neighbor, say b, to send serially messages

to all b’s other neighbors. Clearly, now, the class of complete bipartite graphs is 2x traversable, yield-

ing a 3n log n leader finding algorithm. However, the chasing of a token in this case is done by at

most 4 messages, and hence the complexity of leader finding is reduced to (2 ⋅ n ⋅ log n) + O(n) mes-

sages.

(4) UNDIRECTED GRAPHS OF RADIUS 1

These are graphs that contain a node which is a neighbor of all other nodes. A node, i, initiating a

traversing in a graph of radius 1, will also send a message serially to all its neighbors, as in the case

of complete graphs. In this case, however, each acknowledgement will include the number of neigh-

bors of the acknowledging neighbor. When this process ends, any acknowledgement containing the

largest number of neighbors must have come from some node c which is a center. Node i thus sends a

message to c, asking it to send serially messages to all c’s neighbors. Clearly, now, the class of

3After this paper was completed, we have received a modified version of [GA84b] in which other two algorithms were present-
ed which also achieve the same message complexity ( (2n ⋅ log n) + O(n)).
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graphs of radius 1 is 4x traversable, yielding an O(5n log n) leader finding algorithm. However, since

chasing is done in this case with at most four messages, the complexity is reduced to

(4 ⋅ n ⋅ log n) + O(n) messages.

(5) COMPLETE K-PARTITE GRAPHS

These are graphs in which the nodes are partitioned into K ≥ 2 sets, and each node in any set, U , is

connected to all nodes except those in U . Clearly this set is 4x traversable by a method similar to the

method described in (3) above. Also - the chasing is done in four messages. Hence a leader is found

in 4 n log n + O(n) messages. This algorithm can be generalized to the class of graphs in which each

node, together with any r of its neighbors (for some fixed r) form a dominating set (note that for K-

partite graphs, r = 1). The message complexity for general r is 2(r + 1)n log n + O(n).

4.2. FINDING A LEADER USING O(x) EDGE TRAVERSAL

In this sub-section we use the edge traversability property to derive algorithms for finding a leader in

directed Euler networks and in strongly connected directed networks. In the first case we use a simple O(x)

traversal algorithm, described in the sequel, and the complexity of the resulted algorithm is smaller, by a

constant factor, than that of an algorithm for the same task that was obtained independently in [GK84]. In

the second case we use a more sophisticated traversal algorithm given in [K86a]. The complexity of the

resulted algorithm is better for almost all graphs than that of the algorithm in [GA84a].

(1) DIRECTED EULER NETWORKS

Here we present an O(m log n) algorithm for finding a leader in directed Euler graphs. This is a gen-

eralization of the known results for directed circuits. We use a simple algorithm to traverse the edges

of an Euler graph in 2m messages: Start from the initiating node, and proceed traversing unused

edges as long as possible. When arriving a node with no untraversed outgoing edges, the traversal of

a circuit has been completed. Retraverse this circuit in the same order, until a node v with an outgo-

ing unused edge is met, or until the second traversing is completed. In the former case, repeat the

procedure in a recursive manner, starting from v. Incorporating this traversal algorithm in the general

algorithm yields an (2m + n) log n leader finding algorithm in Eulerian directed graphs. For
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comparison, the message complexity of the algorithms of [GA84a, S83], when applied to Euler

directed graphs, use up to O(n m) messages. The message complexity of this algorithm is better, by a

factor of 2, than that of an algorithm which was independently designed specially for the same task

([GK84]).

(2) STRONGLY CONNECTED DIRECTED GENERAL NETWORKS

In [K86a] a traversing algorithm for general strongly connected directed graphs is presented. In order

to describe the message complexity of that algorithm, we need the following definition. Define the

deficiency of a node, a, denoted xa, as the absolute value of the difference between the number of

edges entering a and the number of edges leaving a, i.e. xa = |din(a) − dout(a)|. The deficiency of a

graph G = (V , E), denoted by x = x(G), is: x =
amemV
Σ xa

The traversal algorithm of [K86a] traverses a directed graph with n nodes, m edges and deficiency x,

using O(m + n x) messages. Thus, finding a leader can be accomplished using O((m + n x)(log n)

messages. This is better than the result in [GA84a, S83] for almost all graphs. (e.g., for graphs in

which x ≤
m

log2 n
, which holds for all but a vanishing fraction of the graphs with n nodes.)

4.3. GENERAL NETWORKS

In this section we use our leader finding theorem while generalizing the notion of traversal. This

yields results which improve upon the known results for general undirected networks in the standard model,

as well as in a certain non-standard model.

4.3.1. AN ADAPTIVE DFS TRAVERSAL

The leader finding algorithm discussed in this paper repeatedly uses a given traversal algorithm on a

given network. In this subsection we modify the traversal so as to use information it obtains during early

executions in order to improve its performance in later executions.

If we use Depth First Search algorithm (DFS, see e.g. [E79]) as a traversal in general graphs in our

leader finding algorithm, we obtain a leader finding algorithm with a message complexity of O(m log n),
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which is worse than the O(m + n log n) complexity of the algorithm in [GHS83]. We show below how to

improve it to yield a leader finding algorithm whose message complexity is smaller than that of the algo-

rithm of [GHS83] by a constant factor, and is still better in the order of the message complexity when k, the

number of initiators of the algorithm, is small. For this sake, we modify the DFS traversal to include opera-

tions of edge deletions from the graph, as follows:

Consider an annexing token, (p, a), which traverses an edge e from node c to node d , and finds that

node d already belongs to its domain. In this case e is a DFS back edge, and the next move of the token,

according to the DFS traversal, is moving back on e from d to c. We modify the traversal so that while

traversing back, the token marks e deleted in d (upon departure) and in c (upon arrival).

In the leader finding algorithm, the only tokens which take in consideration deleted edges are annex-

ing tokens. Suppose that such a token ( p, a) arrives at a node d from a node c over an edge e and finds that

some edge f is marked deleted in d . If ( p, a) does not ceases to be an annexing token upon arriving to d ,

then it continues the traversal according to the following rules:

(Case 1): e diff f . The token ignores f .

(Case 2): e = f . (Clearly, in this case e was not deleted by (p, a).) The token returns immediately to c.

Consider a given execution of the algorithm, and call an edge deleted if it was marked deleted during

this execution. Let Gnon−deleted be the subgraph of G that contains all the edges that are not deleted.

Claim: Gnon−deleted is a connected graph.

Proof: Assume the contrary and let Econnecting be the set of deleted edges such that each edge in Econnecting

connects two maximal components of Gnon−deleted . Among the edges in Econnecting, let e be one that was

marked deleted by a token (p, a) with largest p, and let c and d be the ends of e. There is a path, in G,

between nodes c and d , which consists of the DFS tree edges of the traversal of token ( p, a). Since edge e

connects two maximal connected components of Gnon−deleted , some edge, f , of this path was marked

deleted, and there is no path in Gnon−deleted between the end points of f . Thus edge f belongs to Econnecting.

However, f could be marked deleted only by a token in phase larger than p. A contradiction.
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Next we bound the message complexity of the algorithm. First note that the changes made in the

traversal does not change the fact that a node never sends more than one token in the chasing mode at each

phase, and hence the total number of messages with chasing tokens is bounded by n log n.

It remains to bound the number of messages with annexing tokens. For this, we partition these mes-

sages to three kinds; consider a message with an annexing token ( p, a) sent along an edge e from c to d .

Then this message is of one of the following types:

(1) Last message: If upon arrival to d (p, a) ceases to be an annexing token.

(2) DFS tree message: If either ( p, a) annexes node d (and hence add e to its DFS tree), or e was already

in its DFS tree upon leaving c.

(3) Other message. The possibilities are:

(3.a1): (p, a) finds that e is a back-edge, or

(3.a2): (p, a) marked e deleted at c, following a message of type (3.a1) from d to c, or

(3.a3): (p, a) finds that e was marked deleted at d , or

(3.a4): (p, a) is sent back on e following a message of type (3.a3) from d to c.

Clearly, since there are at most 2n tokens (Lemma 1), there are at most 2n messages of type (1).

To bound the messages of type (3), we have

Observation: Consider an edge e that was marked deleted during the algorithm. Then:

(1) Since in type (3) last messages are excluded, there is at most one message of type (3.a2) or (3.a4) on

e - namely, the message with the token of the highest phase sent on e.

(2) Similarly, among all messages of types (3.a1) or (3.a3) sent on e, there is at most one with a token

(p, a), which is not second to last message of this token in the annexing mode - namely, the message

followed by the message in (1) above; all other messages of this type are followed by messages from

d back to c (Case 2), which cease to be annexing token upon arrival to c, since they find that a token

with a higher phase had already annexed c.
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Consider all edges that were deleted during the algorithm. There are at most m − n such edges, and

hence the number of messages of types (3.a2) or (3.a4) that were sent on them is at most m − n. Also, there

are at most m messages of types (3.a1) and (3.a3) with a maximal phase sent on them. All the remaining

messages are second to last messages of the corresponding annexing tokens, and hence there are at most 2n

such messages. Thus, the total number of messages of type (3) is at most 2m.

To bound the number of messages of type (2), we define the complexity of the DFS traversal to be the

number of messages of this type it sends (i.e., we give the messages of type (2) weight 1, and the other

messages weight 0). under this weighted complexity, the DFS is a 2n node traversal. It is easy to see that

the leader finding theorem remains valid for this notion of weighted complexity and hence it yields an

upper bound of 2n log n + O(n) on the number of messages of type (2). Thus, the total complexity of the

algorithm is 2m + 3n log k + O(n). This performance is better than the previous results ([GHS83]) by a

constant factor. This also implies a better order of worst-case performance when k (the number of initiators

of the algorithm) is small. In contrast, the algorithm in [GHS83] does not take advantage of small k.

4.3.2. APPLICATION IN A NEIGHBORHOOD-KNOWLEDGE MODEL

In [LR86] a model in which each node knows its neighbors, and messages are permitted to be arbi-

trarily long, is considered (we call this model "neighborhood knowledge"). The annexing token in this case

can carry the whole description of its DFS tree, and thus to avoid the traversing of back edges. The com-

plexity of this traversal is O(n), which yields, using our leader finding method, a 3n log n +O(n) leader

finding algorithm. The algorithm of [LR86] is claimed there to have this message complexity only for the

av erage case. The worst case message complexity in [LR86] is said to be O(n2).
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