Appendix I Application: Rio Guamani, Puerto Rico Section 205 Flood Control Project--GPS Horizontal and Vertical Control Densification (Jacksonville District)

This appendix is an example of a constrained adjustment of a static GPS survey performed to set basic horizontal and vertical control for a flood control project near Guayama on the south coast of Puerto Rico. The survey was performed in March 2002 by Renan L. Lopez de Azua & Associates (RLDA) under contract for the Jacksonville District. The Trimble GPSurvey screen capture below is a sketch of the 14 points that were occupied on this survey. GPS observations between points are shown by solid lines. Nine of the 14 points were held fixed in the constrained adjustment Five new 3D control points were located. No conventional observations were included in this sample adjustment although some conventional leveling was performed. These leveling observations were later included in a subsequent readjustment

Figure I-1. Diagram of constrained network adjustment

a. A total of 46 baselines were observed on the network shown in Figure I-1 above. Since vertical densification was being performed, duplicate baseline observations were performed. One baseline was subsequently excluded from the final constrained adjustment, resulting in 45 vectors. This produced 135 3D observation equations in the final adjustment. With the 14 geoid heights, a total of 149 observations were adjusted.

b. Initially, a free adjustment was performed over the network and outliers are removed. Next, the geoid model in inserted and adjusted and revised geoid model files are inserted back into GPSurvey before the final constrained adjustment is run. These preliminary adjustments are not shown in this example-only the final constrained adjustment is illustrated on the following pages.

c. The vertical orthometric datum used for this project in Puerto Rico is "Mean Sea Level," which is often termed NGVD 29 even though there is no direct relationship with the CONUS NGVD 29 datum.

d. The following pages contain excerpts from the Technical Instructions issued by the Jacksonville District for this project.

REQUEST FOR PROPOSAL

Engineering Division Design Branch

SUBJECT: Contract No. DACW17-02-D-0002

Mr. Renan Lopez De Azua R. Lopez De Azua & Associates, Inc. 1959 Loiza Street San Juan, Puerto Rico 00911-1422

Dear Mr. De Azua:

Reference contract number DACW17-02-D-0002 for Surveying and Mapping Services. The Government desires to execute a delivery order under subject contract for the following project:

RIO GUAMANI AT GUAYAMA, SECTION 205, FLOOD CONTROL PROJECT, ADDITIONAL SURVEYS, PLANS AND SPECIFICATIONS SURVEY, GUAYAMA, PUERTO RICO (Survey No. 01-269)

Please review the enclosed scope of work outlining the technical requirements and submit an itemized fee proposal for this work within 10 working days of receipt of this document. Please furnish this fee proposal to the attention of the Chief, Design Branch.

This request does not constitute a notice to proceed for the delivery order. Please do not commence work or incur any costs chargeable to the Government. You are cautioned that preparation of this fee proposal is entirely at your own risk and the Government can assume no obligation for payment of any related expenses incurred by your firm.

Mr. Robert Jenkins of the Survey Section is the point of contact. Please call him at 904-232-1610 if you have questions or need additional information.

Sincerely,

Walter Clay Sanders, P.E. Assistant Chief, Engineering Division

Enclosures

TECHNICAL REQUIREMENTS RIO GUAMANI AT GUAYAMA, SECTION 205 FLOOD CONTROL PROJECT, ADDITIONAL SURVEYS PLANS AND SPECIFICATION SCOPE SURVEY, GUAYAMA, PUERTO RICO (Survey 01-269)

1. <u>LOCATION OF WORK</u>. The project is located in the vicinity of Rio Guamani at Guayama, Puerto Rico.

2. SCOPE OF WORK.

2.a. The services to be rendered by the Contractor include obtaining hydrographic and topographic data of project features to be surveyed as shown on Enclosure 2 (plan plot). The project area was originally surveyed by Survey No. 98-062. The required surveys are to provide additional information not shown on the original survey. The additional data shall be merged with the original data and provide it as a single survey. All survey work shall be done in the Metric System.

2.b. The services to be rendered by the Contractor include all the work described in these technical requirements. Details not specifically described in these instructions are nevertheless a firm requirement if they can be identified as an item, or items, commonly a part of professional grade work of a comparative nature.

2.c. The Contractor shall furnish all necessary materials, labor, supervision, equipment, and transportation necessary to execute and complete all work required by these specifications.

2.d. The Corps of Engineers, Survey Section shall be contacted the same day that the Contractor plans to commence the work.

2.e. Rights-of-Entry must be obtained verbally and recorded in the field book before entering on the private property. Enter in the field book the name and address of the property owner contacted for rights-of-entry.

2.f. <u>COMPLIANCE.</u>: Surveying and Mapping shall be in strict compliance with EM-1110-1-1000 for Photogrammetric Mapping, EM-1110-1-1002 Survey Markers and Monumentation, EM-1110-1-1003 NAVSTAR Global Positioning System Surveying, EM-1110-1-1004 Deformation Monitoring and Control Surveying, EM-1110-1-1005 Topographic Surveying, EM-1110-2-1003 Hydrographic Surveying, EM-1110-1-2909 Geospatial Data and System, Tri-Services A/E/C CADD Standards, Tri-Services Spatial Data Standards, Related Spatial Data Products and Chapter 177, Chapter 472, and Chapter 61G17 of the Minimum Technical Standards set by the Puerto Rico Board of Professional Surveyors and Mappers

2.f(1). STANDARDS FOR DIGITAL GEOSPATIAL METADATA.

Metadata are "data about data". They describe the content, identification, data quality, spatial data organization, spatial reference, entity and attribute information, distribution, metadata reference, and other characteristics of data. Each survey project shall have metadata submitted with the final data submittal. Furnish a digital file using CORPSMET 95 (Metadata Software) with the appropriate data included. Enclosure 5 is an example of the metadata file printed. Point of contact in Survey Section is William Mihalik at 904-232-1462.

2.g. All digital data shall be submitted on CD ROM's.

3. <u>FIELD SURVEY EFFORT</u>. The area of work is outlined in Enclosure 1 (technical requirements) and depicted in yellow on Enclosure 2 (prints), Enclosure 3 (digital design file), Enclosure 4 (control monuments and descriptions).

3.a. <u>CONTROL</u>. The Horizontal datum shall be based on the Lambert Projection for Puerto Rico and the US Virgin Islands, North Zone (NAD 1983 meters). The vertical datum shall be NGVD of 1929. All control surveys shall be Third Order, Class II accuracy. Establish (replace missing or disturbed control monuments and/or set) by any of the following methods.

3.a(1) The basic control network shall be accomplished using precise differential carrier-phase Global Positioning System (GPS). Differential GPS baseline vector observations shall be made in strict accordance with the criteria contained in the engineering manual EM-1110-2-2003 and with the Geometric Geodetic Accuracy Standards And Specifications For Using GPS Relative Positioning Techniques by Federal Geodetic Control Committee, version 5.0.

3.a(2) Network design, station and baseline occupation requirements, for static and kinematic surveys, satellite observation time per baseline, baseline redundancies, and connection requirements to existing networks, shall follow the criteria given in the above said engineering manual. <u>A field observation</u> log shall be completed at each setup in the field.

3.a(3) GPS derived elevation data shall be supplied in reference to the above said datum. Existing benchmark data and stations shall be used in tandem in a minimally constrained adjustment program to model the geoid. All supporting data used in vertical adjustment shall be submitted. <u>The GPS plan shall be submitted and approved by Mr. David J. Robar prior to commencing work.</u>

3.a(4) Existing Corps of Engineers control data shall be utilized for horizontal and vertical control at the project site. The GPS network shall commence from the control shown on Enclosure 3. All established or recovered control shall be fully described and entered in a FIELD BOOK, in accordance with the Technical Requirements of this contract. All control surveys shall be Third Order, Class II accuracy. The Contractor shall submit the field data and abstracts for the control networks to Survey Section for computation before commencing the mapping. The monument designations shall be furnished as requested.

3.a(5) All horizontal and vertical control (double run forward and back) established shall be a closed traverse or level loop no spur lines, with third order accuracy. All horizontal and vertical control along with baseline layouts, sketches, and pertinent data shall be entered in field books.

3.a(6) All monuments, survey markers, etc., recovered shall be noted on the copies of control descriptions. Control points established or recovered with no description or out-of-date (5 Years old) description shall be described with sketches for future recovery use.

3.a(7) All original field notes shall be kept in standard pocketsize field books and shall become the property of the Government. The first four pages of the field books shall be reserved for indexing and the binding outside edge shall be free of all marking.

3.b. <u>FIELD SURVEY EFFORT</u>: A Contract Plans and Specification Scope Hydrographic, Topographic and Utility Surveys are requested of the project area.

3.b(1) <u>Topographic Survey</u>: Take conventional spot elevations and cross sections (field data) at intervals sufficient to calculate earthwork quantities for plans and specifications in accordance with FAR 52.236-16 QUANTITY SURVEYS. Collect additional data points necessary to define the existing terrain at alignment and grade changes, and where roads, and other feature alignments cross through or run adjacent to the survey area. The surface model shall be of adequate density and quality to produce a one-foot contour interval derived from the original digital terrain model (DTM) file. Locate and detail culverts, utilities, fences, and other structures. Locate tree lines and other planimetric features. Locate all property irons and monuments in the survey area. Plot all field data points (x,y,z) unless thinning is required for readability of text.

3.b(1)a Locate all power poles, power lines, extend limits of fencing and extend topography as noted on the enclosure.

3.b(1)b PR 53 Bridge: From north side of bridge to the intersection with PR3. Include gabions at intersection of PR 3 and PR 53.

3.b(1)c Pozo Hondo Bridge: Bridge has been replaced since previous survey and therefore must be resurveyed.

3.b(1)d At the west end of the project, determine limits of pavement, sanitary manhole and distribution, extend topo to fence along back of housing project.

3.b(1)e Fill area near northeast corner of PR 3 and PR 53.

3.b(1)f For siphon structure crossing the river, determine location and top elevation. For the structure along the edge of the street, determine location, top elevation, inverts and pipe sizes.

3,b(1)g Concrete irrigation channel, determine location, size and inverts at 50m intervals. For structure, determine location, invert and pipe size.

3.b(1)h For channel, located on southwest side of project approximately 500 meters west of PR 53, locate and provide topography from end of concrete to where it intersects with Rio Guamani.

3.b(2) <u>PLANIMETRICS</u>: All standard, geographic, and surface-visible features which are visible or identifiable shall be located with (X, Y, & Z) angles and distances including land use features, structural features, hydrographic features, and scale-dependent features.

3.b(3) <u>LAND USE FEATURES</u>: Land use features include parks, golf courses, and other recreational areas, historic areas, archeological sites, buildings, fences and walls, canals, ditches, reservoirs, trails, streets, roads, railroads, quarries, borrow pits, cemeteries, orchards, boundaries of logged-off areas and wooded areas, individual lone large trees, the trace of cross-country telephone, telegraph, and electric power transmission lines and their poles and towers, fence lines, billboards, rocks, and other walls, and similar details.

3.b(4). <u>STRUCTURAL FEATURES:</u> Structural features include bridges, trestles, tunnels, piers, retaining walls, dams, power plants, transformer and other substations, transportation terminals, and airfields, oil, water, and other storage tanks, and similar detail.

3.b(5) <u>HYDROGRAPHIC FEATURES</u>: Hydrographic features included rivers, stream, lakes, ponds, marshes, springs, falls and rapids, glaciers, water wells, and similar details.

3.b(6) <u>CULVERT/WEIRS</u>: Provide survey of the weirs and culverts and all appurtenances to include invert elevation of outflow pipe, diameter of pipe, waterside length of pipe to discharge, and invert elevation of pipe at discharge. Locate with X, Y, and Z all culverts and weirs. Obtain invert elevations, top elevations at both ends, length of culverts, size, and direction for the existing culverts.

3.b(7) <u>BRIDGE SURVEYS</u>: Elevation shall be taken every 5 meter and at any grade change in both directions. The limit shall extend 20 meter upstream and downstream of each bridge, and the width of the adjacent channel survey. Survey shall be in accordance with US ARMY CORPS OF ENGINEERS TECHNICAL REQUIREMENT FOR SURVEYING, MAPPING AND PHOTOGRAMMETRIC SERVICES Section 12.7 "Bridge Surveys".

3.b(7)a An efforts shall be made by the survey contractor to obtain as-built data and prints of these structures which can be field verified and incorporated into the final submission. Should the survey contractor experience any difficulty in coordinating and obtaining information, the survey contractor should seek assistance from CESAJ-EN-DT Mr. Rob Jenkins at 904-232-1610 and the local sponsor's designated representative.

3.b(8) <u>Property Corners</u>: Locate all property irons and monuments that are found (NO PROPERTY SURVEY).

3.b(9) <u>UTILITIES:</u> The scope of this survey should include locating and providing data on all the existing aerial/underground utilities within the two areas. Locate all the existing aerial/surface utilities. Data required includes but is not limited to the field location of sanitary and storm sewer mains, trunks, laterals, catch basin and manholes, potable water mains, meters and valves, fire protection mains, electrical lines and poles and lowest point along the lines, transformers, junction boxes, and manholes, telephone lines, junction boxes, and manholes, cable television lines and junction boxes and Gas/Natural Mains. All utility information secured for this survey must be shown on the drawings.

3.b(9)a. <u>SANITARY AND STORM SEWERS</u>: The survey should include a manhole diameter, manhole construction material, size of lines, type of pipe, line size invert elevations, drop elevations in the manholes and top elevation of manholes. Obtain invert elevation and top elevations for all catch basins.

3.b(9)b. <u>POTABLE WATER:</u> The survey should indicate the location and elevations of the valves, meters mains.

3.b(9)c. <u>FIRE PROTECTION MAINS</u>: Locate all fire protection mains, fire hydrants, size of mains, type of pipe, and the type and location of valves in the survey area.

3.b(9)d. <u>ELECTRICAL POWER LINES AND TELEPHONE LINES AND BOXES</u>: Locate all aerial and underground lines and manholes within the survey area. Indicate the height and location (in X-Y coordinates) of poles for all aerial lines. The survey shall include the channel crossing and a minimum of two supporting structures (poles, towers,) beyond. In the event the crossing creates a junction within the two supporting structures the survey shall include two supporting structures in the direction of each leg created. Indicate the low wire elevation of all lines crossing the channel and at the power pole. The survey Contractor shall indicate electrical lines supported on bridges, and sizes of conduit, etc.

3.b(9)e. <u>CABLE TELEVISION:</u> Locate and name all aerial and underground cable television lines and manholes. Indicate the height and location (in X-Y-Z coordinates) of poles or manholes lines. Indicate the low wire elevation of all lines crossing the channel.

3.b(9)f. <u>HIGHWAY RIGHT-OF-WAY/EASEMENTS.</u> All highway or road right-of-way or easements shall be researched for recorded as-built data. Obtain additional Real Estate data as necessary including deeds, maps, title and parcel data in the vicinity to determine the correct positions of the subject right-of-way or easements. Perform a field survey traversing and connecting all available corners for each parcel or tract of land. The recorded data shall be included in the digital files.

3.b(9)g. <u>UTILITY RIGHT-OF-WAY OR EASEMENTS.</u> All electrical, telephone, sewer, water, cable, and electrical easements shall be researched for recorded as-built data. Obtain additional Real Estate data as necessary including deeds, maps, title and parcel data in the vicinity to determine the correct positions of the subject parcels. Perform a field survey traversing and connecting all available corners for each parcel or tract of land as needed. The record data shall be included in the digital files.

Technical Requirements: Rio Guamani at Guayama, Section 205 Flood Control Project (Continued)

3.c <u>BREAKLINE</u>. Breaklines shall be located for all natural or man-make features as needed (on sections). The breaklines shall be located with X, Y, and Z and identified.

3.d <u>DATA COLLECTION (KINEMATIC/RTK OR TOTAL STATION)</u>. Data collection will be allowed for data points only, showing all instrument positions, calibration, backsites and closing readings in the field book. Mr. Robar shall be contacted if you plan to use GPS (RTK) before utilizing. If RTK is utilized Q1 and Q2 files shall be furnished. Before using RTK, one session shall be performed around the expected survey area. After observation of the primary control (four monuments; one on each corner of the work area) the geoid model shall be prepared utilizing the four occupied monuments data. The geoid model shall be furnished to the Corps of Engineers for review and acceptance. CAUTION, unless the one session is observed with the four monuments before modeling the geoid, all data will be rejected and returned to the Contractor.

4. <u>DATA PROCESSING</u>. The Contractor shall make the necessary computations to verify the correctness of all measurements and apply the proper theory of location in accordance with the law or precedent and publish the results of the survey. The Contractor shall submit advance copies of the horizontal control so that USACE can compute the final positions before setting property corners that shall be established. Compute and tabulate the horizontal and vertical positions on all work performed. Review and edit all field data for discrepancies before plotting the final drawings.

4.a. Furnish X, Y, Z and descriptor ASCII file for each cross section and locate feature and one X, Y, Z, and descriptor ASCII file with all sections and features included.

5. <u>CADD</u>. The survey data shall be translated or digital capture into Intergraph IGDS 3D design files according to the specifications furnished. The survey data (cover, control, site plan, plan sheets, and section drawings) shall be provided in Intergraph MicroStation (PC or 32) Version 4.0 or higher, AT&T System V UNIX, CLIX R3.1 Vr. 6.3.2 format as shown in the letter dated 30 September 1992. <u>The neat mapping area on all sheets (covers and plans) shall be 30-inches by 25-inches</u>.

5.a. <u>GLOBAL ORIGIN</u>. The IGDS 3-D design file shall be prepared with a global origin of 0,0, 2147483.658, Design file master units: MM., Sub units: 1,000, and positional units: 1. The file name shall be the survey number prefixed to a "C," i.e., C269S1.DGN. All reference file's name shall commence with the C269 also.

5.b. <u>DIGITAL TERRAIN MODEL (DTM) DATA.</u> The Contractor shall develop and deliver a surface model of the survey area using Intergraph compatible Digital Terrain Modeling software and the model file shall have the .dtm extension. The digital terrain model shall be developed from cross sections, spot elevations, and breaklines. Breaklines should include ridges, drainage, road edges, surface water boundaries, and other linear features implying a change in slope. The surface model shall be of adequate density and quality to produce at 1-Foot minor contour interval and major contours on an interval of 5-Foot derived from the original DTM (Digital Terrain Model) file. The contour data shall be incorporated as a reference file into the final data set. All data used to develop the DTM's shall be delivered in Intergraph 3-D design files.

5.b(1) <u>CONTOURS</u>. The contours shall be developed in the digital terrain model (DTM). The contours shall be provided in one or more master DGN files and attached as a reference file to all sheet files utilizing the clip bounds methods. Each contour shall be drawn sharp and clear as a continuous solid line, dashed contours are not acceptable. Every index contour shall be accentuated as a heavier line than the intermediate and shall be annotated according to its actual elevation above NGVD 29. Whenever index contours are closer than one-quarter (1/4) inch, and the ground slope is uniform, the intermediate shall be omitted (in this case only plot the 5-Foot contours). Labeling or numbering of contours shall be placed on top of the contour line, so that the elevation is readily discernible, do not break contours. Labeling of intermediate contours may be required in areas of low relief.

5.c. MASTER DGN FILES. (Scale 1:1)

5.c(1) The survey data (DTM data points) points shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(2) The planimetric data shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(3) The culvert/weirs data shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(4) The bridge data shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(5) The road data shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5c(6) The utility data points shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(7) The contours shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods.

5.c(8) The breaklines shall be provided in one or more master DGN file and attached as a reference file to all sheet files utilizing the clip bounds methods DO NOT PLOT THE BREAKLINES.

5.d. <u>COVER AND CONTROL SHEET</u>. The first sheet shall be a cover sheet showing the control sketch, survey control tabulation, sheet layout or index, legend, project location map, survey notes, north arrow, graphic scale, grid ticks, and large signature block. Tabulate, plot, and list the horizontal control used for the survey on the final drawings.

5.e. <u>PLAN SHEETS</u>: The plan sheets shall be prepared to a scale of 1:1000 and 1:200 (METRIC), in the Corps of Engineers format (reference letter and instruction dated September 30, 1992) showing notes, title block, grid, north arrow, graphic scale, legend, sheet index, and D. O. File Number. Sheets shall be oriented with north to the top. The extreme right 177.8MM/7 inches of the sheet shall be left blank for notes, legends, etc. The second sheet and all sheets following shall be a continuation sheet and shall have a minimum of two notes, note 1: See Drawing number 1 for notes, note 2: Refer to Survey No. 01-269. Plans sheets title block shall be labeled as shown in Enclosure 4.

5,e(1) <u>Section Views.</u> The sections shall be extracted and displayed from the digital terrain model (DTM OR TNT) utilizing INROADS OR INXPRESS. The sections shall be generated or extracted along the same azimuth as the section was collected in the field. The sections shall be displayed at a 10 to 1 vertical exaggeration. The planimetric lines (alignment of extraction), alignment, stations, and cross sections shall be displayed in one DGN file, "**DO NOT PLOT**".

6. MAP CONTENT.

6a. <u>Coordinate Grid</u>: Grid ticks (English) of the applicable State Plane Coordinate System shall be properly annotated at the top, bottom and both sides of each sheet. Spacing of the grid ticks shall be 127MM/5 inches apart.

6.b. <u>CONTROL</u>. All horizontal and vertical ground control monuments shall be shown on the maps in plan and tabulated. In addition, show the channel limits (station, range and R/W) on the completed drawings.

6.c. <u>PLANIMETRIC.</u> The maps shall contain all surface-visible utilities and planimetric which are visible or identifiable.

6.d. <u>TOPOGRAPHY</u>. The map shall contain all representable and specified topographic features which are visible or identifiable.

6.e. <u>SPOT ELEVATIONS.</u> Spot elevations shall be shown on the maps in proper position. In areas where the contours are more than 3 inches apart at map scale, spot elevations shall be shown. The horizontal distance between the contours and such spot elevations or between the spot elevations shall not exceed two (2) inches at scale of delivered maps.

6.f. <u>CONTOURS</u>. The contours shall be developed in the digital terrain model (DTM). Each contour shall be drawn sharp and clear as a continuous solid line, dashed contours are not acceptable. Every index contour shall be accentuated as a heavier line than the intermediate and shall be annotated according to its actual elevation. Whenever index contours are closer than one-quarter (1/4) inch, and the ground slope is uniform, the intermediate shall be omitted. Labeling or numbering of contours shall be placed on top of the contour line, so that the elevation is readily discernible, do not break contours. Labeling of intermediate contours may be required in areas of low relief.

6.g. <u>MAP EDIT.</u> All names, labels, notes, and map information shall be checked for accuracy and completeness. All commercial buildings, roads and man made features shall be labeled with the type of construction, purpose and name. All residences shall be labeled with the type of construction.

6.h. <u>SHEET INDEX AND LEGEND.</u> On plan drawings a small scale sheet index shall be shown on each sheet of the series; highlighting the sheets in the standard manner. Planimetric and topographic feature legends shall be shown on each sheet. Contractor logo shall be shown on each drawing.

6.i. <u>MAP ACCURACY</u>. All mapping shall conform to the national map accuracy standards except that no dashed contour line will be accepted.

7. <u>SURVEY/QUALITY CONTROL REPORT.</u> The Contractor shall furnish a digital (*.doc) file on the final CD. The report shall include Right-of-Entry information, Control monuments Designation recovered, destroyed, fixed, included in control network, tide gauge location and monument used, dates of field survey collection, types of equipment used, quality control checks, and digital files. Unique circumstances and/or issues related to this survey, general approach/methodology to this survey. Along with any other data required in accordance with the law or precedent and for the Corps of Engineers to publish the results of the survey.

8. <u>DELIVERIES</u>. On completion, all data required shall be delivered or mailed to Design Branch, Survey Section at the address shown in contract, and shall be accompanied by a properly numbered, dated and signed letter or shipping form, in duplicate, listing the materials being transmitted. All costs of deliveres shall be borne by the Contractor. Items to be delivered include, but are not limited to the following:

8.a. GPS network plan, (before GPS work commences).

- 8.b. GPS raw data log sheets filled out in field with all information and sketches.
- 8.c. Plan sheet layout.
- 8.d. Computation files with Horizontal and Vertical abstracts along with any Q1 and Q2 files.
- 8.e. Horizontal and Vertical Field Books.

8.f. Furnish X, Y, Z, and descriptor ASCII file for each cross section and one merged with all data collected for all cross section.

8.g. DTM File.

8.h. DGN files to a scale of 1:1000 and 1:200.

- 8.i. Furnish a digital file using CORPSMET 95 (Metadata Software) with the appropriate data included.
- 8.j. Advance paper plots of all plan sheets, cover sheet and control sheets for approval.
- 8.k. Final paper plots on standard sized (30-inches by 42-inches, 2 set paper plots).
- 8.I. Survey Report C269*.doc file.

I-1. Loading RINEX Files for Baseline Processing

This screen capture in Figure I-2 below shows how the RINEX baseline observation files (e.g., *.02o) are loaded from the source file directory into the program GPSurvey. At this stage baselines can be selectively included or excluded from the adjustment.

Figure I-2. Loading RINEX data files

The screen capture in Figure I-3 below taken from GPSurvey shows which files were actually selected to be loaded for the project. In this example, all the observed lines were included.

Figure I-3. Selected files for baseline processing

This screen in Figure I-4 shows the RINEX navigation file (e.g., *.02n) that is selected for the processing with the baseline file.

Figure I-4. Loading RINEX navigation files

This screen capture (Figure I-5) from the Trimble WAVE Baseline Processor shows what baselines will be processed using the times of the observation as the key to processing.

WAVE - 01269	
Elle Edit Process Results Options Window Help	
	i17.24 × 6
	ai 2D
Files:	files
Name Start time Stop time Type Proce	issed
18060791 03/20/02 03:33:36 03/20/02 13:07:36 3tatic Yes	
11590/91 03/20/02 10:26:50 03/20/02 12:53:40 Static Yes 10420791 03/20/02 10:38:55 03/20/02 12:55:50 Static Yes	la l
17850791 03/20/02 11:31:05 03/20/02 16:07:35 Static Yes 11590792 03/20/02 13:04:20 03/20/02 15:36:05 Static Yes	
Selected files:	
Name Start time Stop time Type Proce	itcut to itgolf
	cation (2)
Add Add all <u>Remove</u> More info Sort by: Start Time	
Controls OK Cancel Help	
This is the area of the computations that expects which	
used to process the observations using the start and	ston times
used to process the observations using the start and a	
	<u> </u>
] M Start] 診 隙 @ @ 』 🚡 🔞 掉 🍁 🏶 🗇 📕 器 🖕 静 診 🕅	12:56 PM
🔄 📝 Distiller Assistant 3.01 🛛 💆 Document 1 - Microsoft Word 🛃 GPS urvey Project : 0 💾 GPS urvey Datab	ase Server Server Server Log - WAVE - 01269

Figure I-5. Trimble WAVE Baseline Processor file listing

Figure I-6 depicts the files transferred and loaded for baseline processing. The files are sorted by observation time. All files were selected for processing.

WAVE - 01269				
$\underbrace{ File \ \ }_{Edit} \underbrace{ Process \ \ }_{Results} \underbrace{ Options \ \ }_{Vindow} \underbrace{ Help }_{Help}$				<u> </u>
				i iner
				•
				i 17 24
				X 6
			i	
Load		×		ai 2D
<u>Files:</u>		✓ Include processed files		Bom
Name	Start time Stop time	Type Processed		6
18060791	03/20/02 10:18:45 03/20/02 12:56:15	Static Yes		ut to
11590791	03/20/02 10:26:50 03/20/02 12:53:40 03/20/02 10:38:55 03/20/02 12:55:50	Static Yes		ra
17850791	03/20/02 11:31:05 03/20/02 16:07:35	Static Yes		
	03/20/02 13:04:20 03/20/02 15:36:05	<u>Static</u>		
<u>S</u> elected files:				intout to
Name	Start time Stop time	Type Processed		ıtgolf
18060791	03/20/02 10:18:45 03/20/02 12:56:15	Static Yes		
11590791	03/20/02 10:26:50 03/20/02 12:53:40 03/20/02 10:38:55 03/20/02 12:55:50	Static Yes Static Yes		
17850791	03/20/02 11:31:05 03/20/02 16:07:35	Static Yes		
11330732	03720702 13:04:20 03720702 13:36:03			Station (2)
Add	Add all <u>R</u> emove <u>M</u> ore info	Sort by: Start Time 💌		1
Cast				
_ <u></u>		а <u>п</u> ер		te
The files that are show	n in the top FILES box	area can be sele	ected for	
processing and will be	moved to the SELECT	ED box below.	The files can	
be used for more than	one processing due to	the extended tir	nes of the	1
control point. The sing	le baseline method wa	as used on this p	project to allow	Ŧ
all of the baselines to b	e processed. The mu	iti-daseline meth	od can also	
be used and then only	the part of the baselin	es will be proces	sea.	
I ray				
🏨 Start 🛛 😹 🎆 🏉 🔍 🖳 💑 🐯 🗱 🏟	a 🔄 📕 🇱 👗 🚓 🔡 🦉			12:56 PM
) 🏂 Distiller Assistant 3.01 🖉 Docum	ent1 - Microsoft Word 🔠 GPS urvey Project : 1	0 📴 GPSurvey Database Serve	r 🌮 Log - WAVE - 01269	

Figure I-7 shows the file loading status--with observation 11570791 currently loading.

Figure I-7. Loading individual baseline observation files

I-2. Static Baseline Processing (Trimble WAVE Baseline Processor)

This screen (Figure I-8) shows the setup for processing static baseline observations. Start and stop times are indicated. In this example, "All Baselines" were selected. "Independent" or "User Defined" baselines could have been opted at this stage.

WAVE - 01269	
Elle <u>E</u> dit <u>Process</u> <u>R</u> esults <u>Options</u> <u>Window</u> <u>H</u> elp	
	E I I + " ver
	i17.24
	× 6
	ai 2D com
Setup X	Ś
Static <u>b</u> aseline generation: Process times:	ut to ra
All baselines Start: 3 /20 /02 09 : 59 : 30 1158 , 309570	
User defined Stop: 3 /21 /02 14 :02 :25 1158 ,410545	
Vinan-bio processing	rtcut to
Stan & Go Satellites Default	Itgolf
Continuous	
<u>Event markers</u>	5
Force continuous processing OK Cancel Help	Station
	×
	T
l Lañ	
)	12:59 PM
🛛 🏂 Distiller Assistant 3.01 🖉 Document 1 - Microsoft Word 🔂 GPS urvey Project : 0 🖽 GPS urvey Database Server 🖉 Log -	WAVE - 01269

Figure I-8. WAVE setup for baselines to be processed

This screen capture (Figure I-9) shows the Advanced Control options that can be specified--e.g., satellite elevation mask, iterations, search times, etc. The Broadcast Ephemeris is selected in this example--if the Precise Ephemeris were available, then this file could have been loaded. Residual Generation and Antenna Phase Correction options are also turned on for these baseline reductions.

Eie Edit	Process Results Options Window Beb		rer 17.24 17.2
🔀 Start	🔡 🐺 🏈 🔍 🖳 🐁 🔁 👯 🎂 🎕 🔄 📕 🇱 🦾 卫 🎽 🇱 🦉 🖓 👘 🖓 👘 🖓	12:59	PM Xa∕O⇔

Figure I-9. Trimble WAVE Baseline Processor Advanced Controls screen

As baselines are being processed, this screen (Figure I-10) shows which specific baseline is currently being processed and its completion status.

		And the second second			CALCULUR OF						i		
WAVE	- 01269 - [So	olution Summary]									<u> </u>		
E File E	Edit <u>P</u> rocess	<u>Results</u> Options	<u>W</u> indow	Help							_ 8 ×	<u>×</u>	7
	From Station	To	Station		Solution Typ	pe	Slope Distance	Ratio	Reference	From Ant. Ht.	To Ant. Ht.	□ • "	prer
							(meters)		Variance	(meas. meters)	(meas. meters)	=	94.
													1
													i 17 24
													X 6
													12
													7
													ai 2D
													com
													s. tus 00 00
													ŝ
													ut to
			S	tatic Process	sing			×					ra
			- 1										
				From:	PR 052								•
				10:	PR 304								
					I OT SU DASI	ennes							rteut to
			- 1		1	10%							Itgoir
			- 1			5							
					(Cancel							2
			_					12					>
													Station
													(2)
													te
												0	
												Ŧ	
Fage												11.	
🛃 Start) 🔡 🐺 🏉	o 💷 🛃 🕏	🎊 🎂 (i 🗄 📕	8 🕹 🖧 🍓	8						1:01	PM
	🛛 📥 Distiller A	ssistant 3.01	Docu	ment1 - Microso	oft Word 🔥 GP	Survey Proje	ct : 0 🔒	PSurvey D	atabase Serv	er 🥖 Log - WA	VE - 01269		100¢

Figure I-10. Trimble WAVE Baseline Processor--Static Processing screen

As processing progresses, for each completed baseline the WAVE Baseline Processor outputs the display shown in Figure I-11 below. From Station, To Station, Solution Type, Slope Distance, Ratios, Reference Variances, and Antenna Height data are tabulated for code, triple, float and/or fixed solutions. The adequacy of the baseline solutions is evaluated from the resultant ratios and variances, as was described in Chapter 10. (A detailed baseline reduction summary report is not shown for lines on this project--see Chapter 10 for a typical example).

Figure I-11. Trimble WAVE Baseline Processor--Static Processing screen

I-3. Constrained Network Adjustment (Trimble GPSurvey)

Figure I-12 below shows the screen that starts the loading of all of the baselines into the GPS network for the free and final adjustments. During this process one can change the names of baselines if errors were made and were not put on the observation log sheets.

Figure I-12. Trimble GPSurvey option screen

Fixed values are set for the known control points. (Only 6 of the 9 fixed points are listed below). All are fixed in X, Y, and orthometric elevation, except point PR 054 which is fixed only in X-Y.

COORDINATE EDITING FIELD								
PT# NAME	NORTH/EAST	ELL(H)/ORTH(h)	FIX KNWN					
1 PR 052	215011.4802 232319.5773	-7.5431 33.8990	YX-h YXHh					
2 PR 053	216017.8960 232771.9230	4.0567 45.4270	YX-h YXHh					
3 PR 054	216466.5690 232394.4000	20.4581 61.7864	YX YXHh					
4 PR 204	214840.3600 232081.2180	-10.9963 30.4390	YX-h YXHh					
5 PR 205	214972.4560 231867.1890	-10.4586 30.9650	YX-h YXHh					
6 PR 206	215719.3160 231966.5380	52.5379 93.8970	YX-h YXHh					

ESC=EXIT ENTER=SAVE ,TAB=CURSOR PgUp PgDn (ALT)F2-F5=(SET)CLEAR FIX

ADJUSTMENT ACTIVITY LOG NETWORK = 01269 TIME = Tue Aug 20 13:09:54 2002

Adjustment process underway. Computing closures. Closures have been computed. Indexing observation equations and unknowns. Number of sub-networks = 1. Number of inner constraints sub-network 1 = 0.

Sub-network 1: Fixed y = 9 Fixed x = 9 Fixed H = 0 Fixed h = 8.

Points included in sub-network 1:

PR 052 PR 053 PR 054 PR 204 PR 205 PR 206 PR 209 PR 210 PR 211 PR 303 PR 304 PR 305 PR 306 PR 307 Initializing parameter group 1: GPS Observations. 90 horizontal observations 45 vertical observations 45 observed azimuths 45 observed distances Located in sub-network 1. 9 fixed latitudes 9 fixed longitudes 0 fixed ellipsoid heights 8 fixed orthometric heights Y rotation parameter 1 = 31. X rotation parameter 2 = 32. Azimuth rotation parameter 3 = 33. Network scale parameter 4 = 34. Omitting parameter 5 by user choice Omitting parameter 6 by user choice Omitting parameter 7 by user choice Initializing parameter group 3: Geoid Model.

0 horizontal observations 14 vertical observations 0 observed azimuths 0 observed distances Located in sub-network 0. 0 fixed latitudes 0 fixed longitudes 0 fixed ellipsoid heights 8 fixed orthometric heights Transformation 1 ruled ineligible.

Transformation 2 ruled ineligible. Transformation 3 ruled ineligible. Transformation 4 ruled ineligible. Transformation 5 ruled ineligible. Transformation 6 ruled ineligible. Transformation 7 ruled ineligible. Number of fixed horizontal coordinates = 18. Number of fixed vertical coordinates = 8. Number of observation equations = 149. Number of vertical observation equations = 59. Number of unknowns = 34. Number of inner constraint equations = 0. The following observations are excluded from the adjustment: # 39 # 40 # 41 The following points were excluded from the adjustment: none Proceeding with observation equations. Turning on graphics before going into adjustment iteration. Beginning adjustment iteration 1. Forming observation equations. Performing observation covariance inverses. Forming constants and normal equations. Computing normals inverse. Computing observation residuals. Solutions from iteration 1: 1 2.854913e-005 2 -2.935114e-005 3 -9.454666e-006 4 -1.135234e-006 5 -1.135234e-006 6 1.091846e-007 7 2.731083e-008 8-5.073252e-006 9 1.715210e-005 10 1.715210e-005 11 -1.007466e-006 12 4.382808e-007 13 6.931903e-006 14 6.931903e-006 15 6.961781e-007 16 -2.403132e-007 17 8.987806e-006 18 1.346934e-005 19 1.346934e-005 20 2.070258e-005 21 1.626538e-005

22 1.626538e-005

ADJUSTMENT ACTIVITY LOG (Continued)

MATIMIAN	
ontinueu)	28 -4.153571e-006
22 1 0020650 005	29 6.861524e-007
23-1.9939036-003	30 -1.480108e-007
	31 2.050461e-004
25-1.0896786-005	32 1.875429e-003
26 -3.4636800-006	33 6.811946e-005
27 -4.153571e-006	34 -6.488047e-010

Recomputing closures for check on residuals Iteration check on residuals (tolerance = 1.0e-005):

~~	щ	1	aha	щ	1	_	1 1720200 002		1 1720200 002	_	1 000217c 01E
eq	# #	- - -	obs	# #	1 2	_	2 7257220 002	-	2 7257220 002	_	+1.009317e-015
еq	#	2	obs	#	2	-	-2.7257320-003	-	-2.7257328-003	=	+3.192/598-015
eq	#	3	obs	#	3	=	-3.388132e-021	-	+0.000000e+000	=	+3.388132e-021
eq	#	4	obs	#	4	=	+2./43241e-003	-	+2./43241e-003	=	+4.312089e-015
eq	#	5	obs	#	5	=	+1.184806e-003	-	+1.184806e-003	=	+1.869165e-016
еq	#	6	obs	#	6	=	+1.445093e-002	-	+1.445093e-002	=	+1.059916e-015
eq	#	7	obs	#	7	=	-9.747927e-003	-	-9.747927e-003	=	+5.759282e-016
eq	#	8	obs	#	8	=	+1.903540e-003	-	+1.903540e-003	=	+1.575563e-015
eq	#	9	obs	#	9	=	+3.920341e-003	-	+3.920341e-003	=	+1.554312e-015
eq	#	10	obs	#	10	=	+0.000000e+000	-	+0.000000e+000	=	+0.000000e+000
eq	#	11	obs	#	11	=	-8.470329e-022	_	+0.000000e+000	=	+8.470329e-022
eq	#	12	obs	#	12	=	+2.117582e-022	-	+0.000000e+000	=	+2.117582e-022
eα	#	13	obs	#	13	=	+0.000000e+000	_	+0.000000e+000	=	+0.000000e+000
eα	#	14	obs	#	14	=	+6.776264e-021	_	+0.000000e+000	=	+6.776264e-021
ea	#	15	obs	#	15	=	-6.987002e-001	_	-6.987002e-001	=	+3.958023e-011
ea	#	16	obs	#	16	=	+3.973133e-003	_	+3.973130e-003	=	+3.200652e-009
ea	#	17	ohs	#	17	=	+5 760878e-002	_	+5 760878e-002	_	+1 616346e-013
69 67	π #	1.0	obc	π #	10	_	+1 5865000+002	_	+1 5865000+000	_	+5.00005100 015
eq	#	10	oba	#	10	_	2164204002	_	2 1642040 002	_	+5.9900120-000
eq	П	20	obs	т ш	20	_	-2.1043046-002	_	-2.1043048-002	_	+3.047094e-009
eq	# #	20	obs	#	20	_	+0.403900e-003	-	+0.403901e-003	_	+7.0331410-010
еq	#	21	obs	#	21	-	+2.02/5940+000	-	+2.02/5940+000	-	+2.09/3988-011
eq	Ŧ	22	ado	Ŧ	22	=	+4.625992e-002	-	+4.625992e-002	=	+5.23882/e-010
eq	#	23	obs	#	23	=	-6.325114e-003	-	-6.325114e-003	=	+1.996675e-013
eq	#	24	obs	#	24	=	+9.153852e+000	-	+9.153853e+000	=	+3.238207e-007
eq	#	25	obs	#	25	=	+6.079804e-003	-	+6.079805e-003	=	+1.324542e-009
eq	#	26	obs	#	26	=	+1.030900e-002	-	+1.030900e-002	=	+2.308817e-010
eq	#	27	obs	#	27	=	-1.284557e+001	-	-1.284557e+001	=	+4.230263e-007
eq	#	28	obs	#	28	=	+1.100492e-002	-	+1.100492e-002	=	+1.224835e-009
eq	#	29	obs	#	29	=	+3.674400e-002	-	+3.674400e-002	=	+5.064874e-010
eq	#	30	obs	#	30	=	+9.199836e+000	-	+9.199836e+000	=	+6.668890e-007
eq	#	31	obs	#	31	=	+7.156526e-002	-	+7.156526e-002	=	+1.585227e-009
eq	#	32	obs	#	32	=	-8.199078e-003	_	-8.199080e-003	=	+2.176101e-009
ea	#	33	obs	#	33	=	+3.572660e+000	_	+3.572660e+000	=	+6.910694e-011
ea	#	34	obs	#	34	=	-6.813613e-002	_	-6.813613e-002	=	+4.435793e-009
ea	#	35	obs	#	35	=	+1.161688e-002	_	+1.161688e-002	=	+1.747977e-013
ea	#	36	obs	#	36	=	-4.230644e+001	_	-4.230644e+0.01	=	+2.053469e-012
ea	#	37	ohs	#	37	=	-6 084741e-002	_	-6 084741e-002	_	+8 463078e-010
ea	#	38	obs	±	38	=	+1 902216e-002	_	+1 902216e - 002	=	+9.575674e-016
69 60	#	30	obe	#	42	_	+6 1526510+000	_	+6 1526510+000	_	+5,531042 = 011
CQ og	π #	40	obs	π #	12	_	1 5645490 002		1 5645470 002		+1 2722020 000
eq	# #	40	obs	#	43	_	-4.304348e-003	-	-4.304347e-003	_	+1.372292e-009
еq	#	41	obs	#	44	-	-5.7310090-003	-	-5./310090-003	-	+1.0961/50-007
eq	Ŧ	42	obs	Ŧ	45	=	-/.8//954e-001	-	-/.8//955e-001	=	+1.334509e-007
eq	Ŧ	43	ado	Ŧ	46	=	+3.354646e-002	-	+3.354646e-002	=	+1.968335e-009
eq	#	44	obs	#	47	=	+1.752018e-002	-	+1.752019e-002	=	+5.410225e-010
eq	#	45	obs	#	48	=	+6.442804e-001	-	+6.442799e-001	=	+4.696995e-007
eq	#	46	obs	#	49	=	-8.173709e-003	-	-8.173708e-003	=	+6.671547e-010
eq	#	47	obs	#	50	=	+4.028200e-003	-	+4.028195e-003	=	+4.943828e-009
eq	#	48	obs	#	51	=	+7.818527e+001	-	+7.818527e+001	=	+5.998611e-008
eq	#	49	obs	#	52	=	+4.574225e-001	-	+4.574225e-001	=	+5.047094e-009
eq	#	50	obs	#	53	=	-2.897678e-001	-	-2.897678e-001	=	+7.036552e-010

ADJUSTMENT ACTIVITY LOG (Continued)

eq	#	51	obs	#	54	=	-1.433430e+000	_	-1.433430e+000	=	+2.697398e-011
eq	#	52	obs	#	55	=	+1.431538e-002	_	+1.431537e-002	=	+5.238827e-010
eq	#	53	obs	#	56	=	-7.738471e-004	_	-7.738471e-004	=	+1.996680e-013
ea	#	54	obs	#	57	=	-6.310346e+001	_	-6.310346e+001	=	+4.630607e-011
ea	#	55	obs	#	58	=	+5.137484e-001	_	+5.137484e-001	=	+1.054321e-009
ea	#	56	obs	#	59	=	-2.815387e-001	_	-2.815387e-001	=	+1.278977e-013
ea	#	57	obs	±	60	=	+8 221172e+001	_	+8 221172e+001	=	+1 446183 e -007
ea	#	58	obs	±	61	=	+3 601027e-001	_	+3.601027e-001	=	+1 398636 -009
ea	#	59	ohg	#	62	=	-2 123748 e -001	_	-2 123748e-001	=	+1.761587e-0.09
ea	π #	60	ohs	π #	63	_	+1 433463 $+002$	_	+1 433463e+002	_	+2.587701e-007
69 60	π #	61	obs	π #	64	_	+3.651871 - 001	_	+3 6518710-001	_	+3 2396880-009
CY og	π #	62	oba	π #	65		7 602000 002		7 602000 002	_	+4 9502150 010
eq	# #	62	oba	#	65	_	-7.082988E-002	_	-7.082989E-002	_	+2.6533150-010
टप्	# #	61	oba	# #	67	_	2 4297020 002	_	-0.0374000+000	_	+2.003404e-000
eq	#	65	oba	#	67	_	-2.420/93e-002	-	-2.420/940-002	_	+1.056293e-006
eq	# #	05	obs	#	00	-	+1.0222910-002	-	+1.0222910-002	-	+2.2304/70-009
еq	Ŧ	60	ado	Ŧ	69	=	+1.0434590+000	-	+1.0434590+000	=	+4.8506570-007
eq	#	67	obs	#	70	=	+3.335514e-002	-	+3.335514e-002	=	+6.000156e-009
eq	Ŧ	68	ado	Ŧ	/1	=	-3.8851/4e-003	-	-3.8851/3e-003	=	+1.3636190-009
eq	#	69	obs	#	72	=	-2.530377e+001	-	-2.530377e+001	=	+5.300641e-007
eq	#	70	obs	#	73	=	+1.943408e-001	-	+1.943408e-001	=	+1.436075e-009
eq	#	71	obs	#	74	=	+5.981976e-002	-	+5.981976e-002	=	+6.784776e-010
eq	#	72	obs	#	75	=	-3.876707e+002	-	-3.876707e+002	=	+6.668890e-007
eq	#	73	obs	#	76	=	-5.318146e-001	-	-5.318146e-001	=	+1.585227e-009
eq	#	74	obs	#	77	=	-1.246179e-001	-	-1.246179e-001	=	+2.177010e-009
еq	#	75	obs	#	78	=	-4.999991e+000	-	-4.999992e+000	=	+2.567016e-007
eq	#	76	obs	#	79	=	-8.464778e-004	-	-8.464774e-004	=	+4.184973e-010
eq	#	77	obs	#	80	=	+5.878313e-002	-	+5.878313e-002	=	+3.522176e-010
eq	#	78	obs	#	81	=	-3.041574e+001	-	-3.041574e+001	=	+1.918465e-013
eq	#	79	obs	#	82	=	+6.040496e-001	-	+6.040496e-001	=	+8.466833e-010
eq	#	80	obs	#	83	=	-7.491374e-002	-	-7.491374e-002	=	+2.220446e-016
eq	#	81	obs	#	84	=	-8.818368e+000	-	-8.818368e+000	=	+6.838974e-013
eq	#	82	obs	#	85	=	+5.804676e-002	_	+5.804676e-002	=	+1.436223e-009
eq	#	83	obs	#	86	=	-5.248905e-002	-	-5.248905e-002	=	+7.896461e-015
eq	#	84	obs	#	87	=	-1.775986e+001	_	-1.775986e+001	=	+6.124193e-007
eq	#	85	obs	#	88	=	+7.135368e-002	_	+7.135368e-002	=	+1.861621e-009
eq	#	86	obs	#	89	=	-4.440025e-002	_	-4.440025e-002	=	+5.002584e-010
eq	#	87	obs	#	90	=	-6.772805e+000	_	-6.772805e+000	=	+1.807343e-007
ea	#	88	obs	#	91	=	-7.871768e-003	_	-7.871767e-003	=	+1.556578e-009
ea	#	89	obs	#	92	=	-8.291872e-003	_	-8.291872e-003	=	+3.354864e-010
ea	#	90	obs	#	93	=	-1.806235e+001	_	-1.806235e+001	=	+1.588827e-006
ea	#	91	obs	#	94	=	-4.562904e-003	_	-4.562893e-003	=	+1.067908e-008
ea	#	92	obs	#	95	=	-4.474693e-003	_	-4.474691e-003	=	+2.553851e-009
ea	#	93	obs	±	96	=	+1 623485e+000	_	+1 623485e+000	=	+5.698642e-011
ea	#	94	ohg	#	97	=	+2.373179e-002	_	+2 373180e-002	=	+1 653033e-009
ea	т #	95	obs	т #	98	_	+2.825941e-003	_	+2.825941e-003	=	+2.628063e-014
69 60	π #	96	obs	π #	90	_	-1 054534 $+$ 001	_	-1 054534 $+$ 001	_	+1 824318 -012
ea	π #	97	oba	#	100		-2 877803 - 002	_	-2 8778030-002	_	+1 195649 -009
69 67	π #	99	obc	π #	101	_	-4 835661e-002	_	-4 8356610-002	_	+1.2812080-015
eq	#	90	oba	#	101	_	9 4259570±001		9 4259570±001	_	+9.047508-014
eq	#	100	oba	#	102	_	-0.4250570+001	-	-0.4250570+001	_	+9.94/5960-014
ey o~	# #	101	obs obs	# #	104	_	+J.1004000-001	-	+J.1034000-001	_	+0.300003e-010
eq o~	ff #		oba	₩ ₩	105	=	-1.300005e-UUL	-	-1.300005e-UUL	=	+0.U4911/0-U10
ey	# #	102	obs obs	# #	100		-2.704402E-001	-	1 6/E7022 000	_	+2.1502/38-007
eq	Η̈́	103	an Sao	Ŧ	100	=	-1.045/83e-UU2	-	-1.045/830-002	=	+2.0/5/03e-009
eq	# #	104	obs	#	T0./	=	-9.338660e-003	-	-9.338667e-003	=	+/.330924e-009
eq	Ŧ	105	ado sao	Ħ	100	=	-0.5318686+000	-	-0.5318686+000	=	+1.3495630-007
eq	#	105	obs	#	1109	=	-2.225955e-002	-	-2.225956e-002	=	+2.050959e-009
eq	#	T0./	ado ,	#	110	=	-4.099432e-002	-	-4.099433e-002	=	+4.002003e-009
eq	#	108 102	obs	#	111	=	-9.038680e+001	-	-9.038680e+001	=	+3.029304e-007
eq	#	109	obs	#	112	=	+2.265426e-001	-	+2.265425e-001	=	+2.131102e-009
ea	#	110	obs	#	113	=	+1.169143e-001	-	+1.169143e-001	=	+2.0/0887e-009

ADJUSTMENT ACTIVITY LOG (Concluded)

<u>6</u> 7	#	111	ohg	#	114	_	+2 037355 $+001$	_	+2 0373550+001	_	+2 8513330-007
CQ og	π #	110	oba	π #	115	_	+0 2101020 002		+0 2101060 002	_	+6 0/12090 000
eq	# #	112	oba	# #	116	_	+4 7276000 002	-	+4 7276900 002	_	+0.041398e-009
eq	# #	111	obs	# #	117	_	1 1026920+002	-	1 1026020+002	_	+1.041203e-009
eq	Η μ	115	ada	# #	110	=	-1.1926830+002	-	-1.1920830+002	=	+1.9312550-011
eq	Ŧ	110	a la s	#	110	=	+2.6858/86-001	-	+2.0858/80-001	=	+5.6850910-009
eq	Ŧ	110	ado	Ŧ	119	=	+3.448002e-001	-	+3.448002e-001	=	+2.232659e-013
eq	#	117	obs	#	120	=	-4.574976e+002	-	-4.574976e+002	=	+5.053889e-007
eq	#	118	obs	#	121	=	+1.969103e-001	-	+1.969103e-001	=	+8.038071e-010
eq	#	119	obs	#	122	=	+4.035390e-001	-	+4.035390e-001	=	+5.586175e-010
eq	#	120	obs	#	123	=	+4.347293e+000	-	+4.347293e+000	=	+6.027581e-007
еq	#	121	obs	#	124	=	+2.905365e-002	-	+2.905365e-002	=	+4.957338e-009
eq	#	122	obs	#	125	=	+9.965576e-003	-	+9.965577e-003	=	+8.288416e-010
eq	#	123	obs	#	126	=	-3.646539e+000	-	-3.646539e+000	=	+1.978812e-008
eq	#	124	obs	#	127	=	-2.164740e-002	-	-2.164740e-002	=	+2.524004e-010
eq	#	125	obs	#	128	=	-1.541062e-002	-	-1.541062e-002	=	+1.220997e-009
eq	#	126	obs	#	129	=	+9.490985e+000	-	+9.490985e+000	=	+2.209788e-012
eq	#	127	obs	#	130	=	+3.390364e-002	-	+3.390364e-002	=	+2.073581e-009
eq	#	128	obs	#	131	=	+2.135251e-001	-	+2.135251e-001	=	+1.421085e-014
eq	#	129	obs	#	132	=	-2.072900e+001	-	-2.072900e+001	=	+2.623430e-010
eq	#	130	obs	#	133	=	+2.839774e-002	-	+2.839773e-002	=	+9.410564e-009
eq	#	131	obs	#	134	=	+1.905402e-002	_	+1.905402e-002	=	+1.155499e-013
eq	#	132	obs	#	135	=	+5.346306e+001	-	+5.346306e+001	=	+1.856001e-006
eq	#	133	obs	#	136	=	-4.327163e-002	_	-4.327162e-002	=	+1.013239e-008
eq	#	134	obs	#	137	=	-2.995442e-003	_	-2.995444e-003	=	+2.334752e-009
eq	#	135	obs	#	138	=	+9.531944e-001	-	+9.531939e-001	=	+5.226953e-007
eq	#	136	obs	#	139	=	-5.585728e-003	_	-5.585722e-003	=	+5.518201e-009
eq	#	137	obs	#	140	=	+7.454290e-003	_	+7.454295e-003	=	+4.226804e-009
eq	#	138	obs	#	141	=	+2.174733e-001	_	+2.174733e-001	=	+2.825215e-011
ea	#	139	obs	#	142	=	+1.392240e-002	_	+1.392241e-002	=	+3.276267e-009
eq	#	140	obs	#	143	=	+2.256987e-002	_	+2.256987e-002	=	+1.521283e-013
ea	#	141	obs	#	144	=	+1.819094e+000	_	+1.819094e+000	=	+3.490333e-007
ea	#	142	obs	#	145	=	+2.807063e-002	_	+2.807064e-002	=	+6.859983e-009
ea	#	143	obs	#	146	=	+2.239743e-003	_	+2.239741e-003	=	+1.289568e-009
ea	#	144	obs	#	147	=	-1.721200e+001	_	-1.721200e+001	=	+1.612694e-0.06
ea	#	145	obs	#	148	=	+7.842632e-003	_	+7.842637e-003	=	+4.262680e-009
ea	±	146	obs	#	149	=	-3 978830e-003	_	-3 978828e-003	=	+2 201065e-009
ea	#	147	obs	#	150	=	-6.138768e+000	_	-6.138769e+000	=	+7.859648e-007
ea	#	148	obs	#	151	=	+2.141678e-002	_	+2.141677e-002	=	+5.741399e-010
~4 00	#	1/0	obc	#	150	_	18 8/73080-002	_	18 8/73050-002	_	+2 6836430-000
94	#	149	Sao	#	TDZ	-	+0.04/3000-003	-	T0.04/303E-003	-	±2.003043e=0 09

Successful adjustment 1 iterations Beginning adjustment summary in stats.log. Beginning coordinate adjustment in coords.log. Coordinate adjustment summary complete. Beginning plots of error ellipses. Ellipse plotting complete. Proceeding with adjustment of observations. Observation adjustment complete. Statistics summary complete. Plot histograms. Histogram plotting complete. Computing covariances in azimuth, distance and height. Covariance processing complete. Iterations complete, so turning graphics off. Graphics turned off. Closing activity log. TIME = Tue Aug 20 13:09:56 2002.

CLOSURES LOG NETWORK = 01269 TIME = Tue Aug 20 13:09:54 2002

OBS# TYPE BACKSIGHT FORESIGHT CLOSURE TRANSFORM

11 .1	DD 050	0.011700 0.000000			
l hgoid	PR 052	-0.011729m 0.000000m	[
2 ligoid	PR 055	-0.002720 m 0.000000 m 0.000000 m			
5 ligold	PK 034	0.000000111 0.000000111			
4 ligold	PK 204	0.002/45111 0.0000000111			
5 ngold	PK 205	0.001185m 0.000000m		Geoid Mo	odel
6 ngoid 7 haoid	PR 200	0.0014451m $0.000000m$		Closure	es
	PK 209	-0.009748111 0.000000111			
8 ngoid	PK 210	0.001904m 0.000000m			
9 ngoid	PR 211	0.003920m 0.000000m			
10 hgoid	PR 303	0.000000m 0.000000m			
11 hgoid	PR 304	0.000000m 0.000000m			
12 ngoid	PR 305	0.000000m 0.000000m			
13 hgoid	PR 306	0.000000m 0.000000m			
14 hgoid	PR 307	0.000000m 0.000000m	L		
15 gpsaz	PR 206	PR 204 -0.698700" -3.394764"			
16 gpsht	PR 206	PR 204 0.003973m -0.228487m			
17 gpsds	PR 206	PR 204 0.057609m 0.083265m			
18 gpsaz	PR 206	PR 305 1.586500" -3.391457"		GPS Ba	seline
19 gpsht	PR 206	PR 305 -0.021643m -0.216107m		Closu	res
20 gpsds	PR 206	PR 305 0.006404m 0.054952m			
21 gpsaz	PR 206	PR 052 2.027594" -3.393058"		azimuth	(")
22 gpsht	PR 206	PR 052 0.046260m -0.263303m		height (m)
23 gpsds	PR 206	PR 052 -0.006325m 0.074304m		distanc	e (m)
24 gpsaz	PR 305	PR 205 9.153853" -3.394245"		uistance	e (iii)
25 gpsht	PR 305	PR 205 0.006080m 0.082280m			
26 gpsds	PR 305	PR 205 0.010309m 0.056380m			
27 gpsaz	PR 305	PR 204 -12.845573" -3.394136"			
28 gpsht	PR 305	PR 204 0.011005m -0.011935m			
29 gpsds	PR 305	PR 204 0.036744m 0.050882m			
30 gpsaz	PR 305	PR 052 9.199836" -3.392437"			
31 gpsht	PR 305	PR 052 0.071565m -0.046754m			
32 gpsds	PR 305	PR 052 -0.008199m 0.027313m			
33 gpsaz	PR 052	PR 205 3.572660" -3.392647"			
34 gpsht	PR 052	PR 205 -0.068136m 0.129742m			
35 gpsds	PR 052	PR 205 0.011617m 0.042640m			
36 gpsaz	PR 052	PR 204 -42.306444" -3.392533"			
37 gpsht	PR 052	PR 204 -0.060847m 0.035526m			
38 gpsds	PR 052	PR 204 0.019022m 0.027557m			
<u>39 gpsaz</u>	PR 204	PR 205 31.946543" -3.390954"	Exclud	led from	
40 gpsht	PR 204	PR 205 -0.010386m 0.095248m	adjustr	nent	
41 gpsds	PR 204	PR 205 0.062515m 0.023619m			
42 gpsaz	PR 206	PR 205 6.152651" -3.394882"			
43 gpsht	PR 206	PR 205 -0.004565m -0.134274m			
44 gpsds	PR 206	PR 205 -0.005732m 0.070769m			
45 gpsaz	PR 206	PR 307 -0.787796" -3.386272"			
46 gpsht	PR 206	PR 307 0.033546m -0.101236m			
47 gpsds	PR 206	PR 307 0.017520m 0.074743m			
48 gpsaz	PR 206	PR 304 0.644280" -3.390719"			
49 gpsht	PR 206	PR 304 -0.008174m -0.189596m			
50 gpsds	PR 206	PR 304 0.004028m 0.047512m			
51 gpsaz	PR 206	PR 305 78.185273" -3.391457"			
52 gpsht	PR 206	PR 305 0.457422m -0.216107m			

CLOSURES LOG (Continued)

OBS#	TYPE	BACKSIGHT FOR	ESIGHT CLOSURE TRANSFORM
53 gj	psds	PR 206	PR 305 -0.289768m 0.054952m
54 gj	psaz	PR 206	PR 052 -1.433430" -3.393058"
55 gj	psht	PR 206	PR 052 0.014315m -0.263303m
56 gj	psds	PR 206	PR 052 -0.000774m 0.074304m
57 gj	psaz	PR 206	PR 053 -63.103459" -3.386483"
58 gj	psht	PR 206	PR 053 0.513748m -0.178852m
59 g	psds	PR 206	PR 053 -0.281539m 0.080682m
60 g	psaz	PR 304	PR 054 82.211724" -3.385721"
61 gi	psht	PR 304	PR 054 0.360103m 0.223656m
62 g	psds	PR 304	PR 054 -0.212375m 0.096682m
63 gi	psaz	PR 304	PR 307 143.346314" -3.386373"
64 gi	psht	PR 304	PR 307 0.365187m 0.088764m
65 gi	bsds	PR 304	PR 307 -0.076830m 0.072159m
66 gi	bsaz	PR 304	PR 305 -8.057408" -3.391576"
67 gi	psht	PR 304	PR 305 -0.024288m -0.026103m
68 gi	psds	PR 304	PR 305 0.010223m 0.013164m
69 gi	psaz	PR 304	PR 052 1.043459" -3.393177"
70 gi	bsht	PR 304	PR 052 0.033355m -0.073299m
71 gi	psds	PR 304	PR 052 -0.003885m 0.040451m
72 g	psaz	PR 304	PR 053 -25.303768" -3.386585"
73 g	psht	PR 304	PR 053 0.194341m 0.011146m
74 g	psds	PR 304	PR 053 0.059820m 0.065489m
75 g	psaz	PR 305	PR 052 -387.670687" -3.392437"
76 g	psht	PR 305	PR 052 -0.531815m -0.046754m
77 g	psds	PR 305	PR 052 -0.124618m 0.027313m
78 g	psaz	PR 305	PR 053 -4.999992" -3.385844"
79 gj	psht	PR 305	PR 053 -0.000846m 0.037693m
80 g	psds	PR 305	PR 053 0.058783m 0.077383m
81 gj	psaz	PR 052	PR 053 -30.415742" -3.384242"
82 gj	psht	PR 052	PR 053 0.604050m 0.085161m
83 gj	psds	PR 052	PR 053 -0.074914m 0.103621m
84 gj	psaz	PR 053	PR 054 -8.818368" -3.389982"
85 gj	psht	PR 053	PR 054 0.058047m 0.212127m
86 gj	psds	PR 053	PR 054 -0.052489m 0.055061m
87 gj	psaz	PR 053	PR 307 -17.759856" -3.390630"
88 gj	psht	PR 053	PR 307 0.071354m 0.077236m
89 gj	psds	PR 053	PR 307 -0.044400m 0.019765m
90 gj	psaz	PR 307	PR 054 -6.772805" -3.390188"
91 gj	psht	PR 307	PR 054 -0.007872m 0.134036m
92 gj	psds	PR 307	PR 054 -0.008292m 0.035398m
93 gj	psaz	PR 209	PR 306 -18.062349" -3.391626"
94 gj	psht	PR 209	PR 306 -0.004563m -0.062671m
95 gj	psds	PR 209	PR 306 -0.004475m 0.019314m
96 gj	psaz	PR 206	PR 054 1.623485" -3.385611"
97 gj	psht	PR 206	PR 054 0.023732m 0.033654m
98 gj	psds	PR 206	PR 054 0.002826m 0.080868m
99 gj	psaz	PR 209	PR 054 -10.545342" -3.394912"
100 g	psht	PR 209	PR 054 -0.028778m -0.156773m
101 g	psds	PR 209	PR 054 -0.048357m 0.073623m
102 g	psaz	PR 209	PR 053 -84.258567" -3.395767"
103 g	psht	PR 209	PR 053 0.318341m -0.369270m
104 g	psds	PR 209	PR 053 0.138867m 0.119357m
105 g	psaz	PR 306	PR 307 -0.276446" -3.394771"
106 g	psht	PR 306	PR 307 -0.016458m -0.231562m
107 g	psds	PR 306	PR 307 -0.009339m 0.083548m
108 g	psaz	PR 306	PR 054 -6.531868" -3.394121"
109 g	psht	PR 306	PR 054 -0.022260m -0.096678m
110 g	psds	PR 306	PR 054 -0.040994m 0.055759m

CLOSURES LOG (Continued)

OBS# TYPE	BACKSIGHT FOR	ESIGHT CLOSURE TRANSFORM
111 gpsaz	PR 306	PR 053 -90.386796" -3.394977"
112 gpsht	PR 306	PR 053 0.226543m -0.309177m
113 gpsds	PR 306	PR 053 0.116914m 0.100033m
114 gpsaz	PR 054	PR 307 20.373552" -3.391484"
115 gpsht	PR 054	PR 307 0.009310m -0.136809m
116 gpsds	PR 054	PR 307 0.004738m 0.035406m
117 gpsaz	PR 054	PR 053 -119.268323" -3.391690"
118 gpsht	PR 054	PR 053 0.268588m -0.214424m
119 gpsds	PR 054	PR 053 0.344800m 0.055080m
120 gpsaz	PR 307	PR 053 -457.497609" -3.391042"
121 gpsht	PR 307	PR 053 0.196910m -0.078470m
122 gpsds	PR 307	PR 053 0.403539m 0.019768m
123 gpsaz	PR 211	PR 306 4.347293" -3.397813"
124 gpsht	PR 211	PR 306 0.029054m 0.299146m
125 gpsds	PR 211	PR 306 0.009966m 0.131473m
126 gpsaz	PR 209	PR 307 -3.646539" -3.395561"
127 gpsht	PR 209	PR 307 -0.021647m -0.291657m
128 gpsds	PR 209	PR 307 -0.015411m 0.102740m
129 gpsaz	PR 211	PR 209 9.490985" -3.397023"
130 gpsht	PR 211	PR 209 0.033904m 0.358618m
131 gpsds	PR 211	PR 209 0.213525m 0.131534m
132 gpsaz	PR 211	PR 210 -20.728997" -3.389977"
133 gpsht	PR 211	PR 210 0.028398m 0.026161m
134 gpsds	PR 211	PR 210 0.019054m 0.015150m
135 gpsaz	PR 210	PR 303 53.463059" -3.390187"
136 gpsht	PR 210	PR 303 -0.043272m 0.015632m
137 gpsds	PR 210	PR 303 -0.002995m 0.011081m
138 gpsaz	PR 210	PR 306 0.953194" -3.398670"
139 gpsht	PR 210	PR 306 -0.005586m 0.269392m
140 gpsds	PR 210	PR 306 0.007454m 0.138704m
141 gpsaz	PR 210	PR 209 0.217473" -3.397880"
142 gpsht	PR 210	PR 209 0.013922m 0.328864m
143 gpsds	PR 210	PR 209 0.022570m 0.136789m
144 gpsaz	PR 303	PR 306 1.819094" -3.399319"
145 gpsht	PR 303	PR 306 0.028071m 0.250078m
146 gpsds	PR 303	PR 306 0.002240m 0.145324m
147 gpsaz	PR 306	PR 209 -17.212003" -3.390045"
148 gpsht	PR 306	PR 209 0.007843m 0.056902m
149 gpsds	PR 306	PR 209 -0.003979m 0.019312m
150 gpsaz	PR 211	PR 303 -6.138769" -3.389327"
151 gpsht	PR 211	PR 303 0.021417m 0.045389m
152 gpsds	PR 211	PR 303 0.008847m 0.026218m

SUMMARY OF COVARIANCES NETWORK = 01269 TIME = Tue Aug 20 13:09:55 2002

Definition of precision (E x S) $\acute{y} = C\acute{y} + P\acute{y}$: Horizontal: Precision (P) expressed as: ratio Propagated linear error (E): U.S. (standard error of adjusted horizontal distance) Scalar (S) on propagated linear error: 1.0000 Constant error term (C): 0.0000 3-Dimensional: Precision (P) expressed as: ratio Propagated linear error (E): U.S.

(standard error of adjusted slope distance) Scalar (S) on propagated linear error: 1.0000 Constant error term (C): 0.0000 Using orthometric height errors This adjustment output file shows the precision of the 3D line vectors between each of the points in the network. Since 14 points were in this network (9 fixed and 5 new), a combination of 91 connecting lines are output ... only a selected few of which are shown in this tabulation. The precisions shown are from each point in the survey to every other point in the survey even if there wasn't a baseline measured between the points. This summary is used to show the precision even though the baselines were not measured and how the entire network fits relative to the 9 fixed control points.

OBSERVATION ADJUSTMENT SUMMARY NETWORK = 01269 TIME = Tue Aug 20 13:09:55 2002

OBSERVATION ADJUSTMENT (Tau = 3.50)

GPS Parameter Group 1 GPS ObservationsAzimuth rotation = +3.3908 seconds $1.00\sigma = 1.2360$ secondsDeflection in latitude = -45.7925 seconds $1.00\sigma = 6.9026$ secondsDeflection in longitude = -62.5723 seconds $1.00\sigma = 7.5689$ secondsNetwork scale = 0.999906082080 $1.00\sigma = 0.000005772833$

OBS# BLK#/ TYPE BACKSIGHT/ UDVC/ OBSERVED/ 1.00 \sigma' TAU REF# INSTRUMENT/ UDPG/ ADJUSTED/ 1.00 \sigma' FORESIGHT SBNT RESIDUAL 1.00 \sigma

- 1 -**- hgoid -**- -**- -41.4304m 0.0223m 0.40 1 PR 052 -**- -41.4421m 0.0207m -**- 1 -0.011729m 0.0084m
- 2 -**- hgoid -**- -**- -41.3676m 0.0223m 0.12 2 PR 053 -**- -41.3703m 0.0214m -**- 1 -0.002726m 0.0065m
- 3 -**- hgoid -**- -**- -41.3282m 0.0223m OPEN 3 PR 054 -**- -41.3282m 0.0223m -**- 1 +0.00000m 0.0000m
- 4 -**- hgoid -**- -**- -41.4381m 0.0223m 0.12 4 PR 204 -**- -41.4353m 0.0213m -**- 1 +0.002743m 0.0065m
- 5 -**- hgoid -**- -**- -41.4248m 0.0223m 0.05 5 PR 205 -**- -41.4236m 0.0212m -**- 1 +0.001185m 0.0070m
- 6 -**- hgoid -**- -**- -41.3735m 0.0223m 0.36 6 PR 206 -**- -41.3591m 0.0192m _**- 1 +0.014451m 0.0114m
- 7 -**- hgoid -**- -**- -41.2740m 0.0223m 0.42 7 PR 209 -**- -41.2838m 0.0213m _**- 1 -0.009748m 0.0067m
- 8 -**- hgoid -**- -**- -41.2747m 0.0223m 0.08 8 PR 210 -**- -41.2728m 0.0211m -**- 1 +0.001904m 0.0072m
- 9 -**- hgoid -**- -**- -41.2858m 0.0223m 0.16 9 PR 211 -**- -41.2819m 0.0212m -**- 1 +0.003920m 0.0070m
- 10
 -** -41.2671m
 0.0223m
 OPEN

 10
 PR 303
 -** -41.2671m
 0.0223m

 -** 1
 +0.000000m
 0.0000m

This is the adjustment summary of all of the control that was used in this survey. The points have a difference in the geoid, horizontal and vertical observations that were performed in this survey based on the geoid model that was used to adjust the observation data from the RINEX files.

OBSERVATION ADJUSTMENT SUMMARY (Continued)

OBS# BLK#/ TY REF# FO	YPE BACKSIGHT/ UDVC/ OBSERVED/ 1.00α INSTRUMENT/ UDPG/ ADJUSTED/ 1.00α/ RESIGHT SBNT RESIDUAL 1.00σ	5/ TAU
11 -**- hgoid 11	-****41.4013m 0.0223m OPEN PR 304 -**41.4013m 0.0223m -**- 1 +0.000000m 0.0000m	
12 -**- hgoid 12	-****41.4110m 0.0223m OPEN PR 305 -**41.4110m 0.0223m -**- 1 +0.000000m 0.0000m	
13 -**- hgoid 13	-****41.2891m 0.0223m OPEN PR 306 -**41.2891m 0.0223m -**- 1 +0.000000m 0.0000m	
14 -**- hgoid 14	-****41.3539m 0.0223m OPEN PR 307 -**41.3539m 0.0223m -**- 1 +0.000000m 0.0000m	
15 1 gpsaz 1	-****- 172ø34'03.2773" 5.7761" 0.04 PR 206 -**- 172ø34'02.5786" 1.2360" PR 204 1 -0.698700" 5.6423"	
16 1 gpsht 1	-****63.3097m 0.0807m 0.02 PR 206 -**63.3058m 0.0370m PR 204 1 +0.003973m 0.0717m	
17 1 gpsds 1	-****- 886.2649m 0.0238m 0.71 PR 206 -**- 886.3225m 0.0051m PR 204 1 +0.057609m 0.0233m	
18 2 gpsaz 1	-****- 136ø08'10.5143" 7.3927" 0.07 PR 206 -**- 136ø08'12.1008" 3.1584" PR 305 1 +1.586500" 6.6841"	Azimuth (gpsaz)
19 2 gpsht 1	-****57.0105m 0.0777m 0.10 PR 206 -**57.0322m 0.0461m PR 305 1 -0.021643m 0.0625m	Height (gpsht)
20 2 gpsds 1	-****- 584.9467m 0.0261m 0.08 PR 206 -**- 584.9531m 0.0099m PR 209 1 -0.003979m 0.0133m	Distance (gpsds
Obs	ervations 21 thru 149 similar (#39, 40, 41 excluded)	
150 46 gpsaz 1	-****- 8ø13'20.3253" 19.3844" 0.15 PR 211 -**- 8ø13'14.1866" 15.1696" PR 303 1 -6.138768" 12.0680"	
151 46 gpsht 1	-****0.2522m 0.0570m 0.19 PR 211 -**0.2308m 0.0470m PR 303 1 +0.021417m 0.0323m	
152 46 gpsds 1	-****- 279.1379m 0.0253m 0.15 PR 211 -**- 279.1468m 0.0192m PR 303 1 +0.008847m 0.0164m	

ADJUSTMENT STATISTICS SUMMARY

NETWORK = 01269 TIME = Tue Aug 20 13:09:54 2002

ADJUSTMENT SUMMARY

Network Reference Factor = 1.00Chi-Square Test (σ = 95%) = PASS Degrees of Freedom = 115.00

Degrees of Freedom = No. of obs - no. of unk = 149-34 = 115

GPS OBSERVATIONS

Reference Factor = 1.00r = 114.04

GPS Solution	1 Reference Factor =	1.51	r = 2.69
GPS Solution	2 Reference Factor =	0.31	r = 2.31
GPS Solution	3 Reference Factor =	0.44	r = 2.71
GPS Solution	4 Reference Factor =	0.96	r = 2.45
GPS Solution	5 Reference Factor =	1.77	r = 2.41
GPS Solution	6 Reference Factor =	0.65	r = 2.36
GPS Solution	7 Reference Factor =	0.51	r = 2.92
GPS Solution	8 Reference Factor =	2.20	r = 2.95
GPS Solution	9 Reference Factor =	1.00	r = 0.00 *
GPS Solution	10 Reference Factor =	0.57	r = 2.72
GPS Solution	11 Reference Factor =	0.58	r = 2.34
GPS Solution	12 Reference Factor =	0.13	r = 1.92
GPS Solution	13 Reference Factor =	3.08	r = 2.91
GPS Solution	14 Reference Factor =	0.16	r = 2.81
GPS Solution	15 Reference Factor =	0.40	r = 3.00
GPS Solution	16 Reference Factor =	0.26	r = 2.99
GPS Solution	17 Reference Factor =	0.25	r = 2.99
GPS Solution	18 Reference Factor =	0.42	r = 1.63
GPS Solution	19 Reference Factor =	0.34	r = 2.01
GPS Solution	20 Reference Factor =	0.19	r = 3.00
GPS Solution	21 Reference Factor =	0.51	r = 2.99
GPS Solution	22 Reference Factor =	0.95	r = 2.56
GPS Solution	23 Reference Factor =	0.31	r = 3.00

* excluded baseline

GPS Solution	24 Reference Factor =	0.73	r = 2.88
GPS Solution	25 Reference Factor =	0.66	r = 2.76
GPS Solution	26 Reference Factor =	0.49	r = 2.43
GPS Solution	27 Reference Factor =	1.07	r = 1.89
GPS Solution	28 Reference Factor =	0.26	r = 2.56
GPS Solution	29 Reference Factor =	2.30	r = 2.56
GPS Solution	30 Reference Factor =	0.28	r = 2.99
GPS Solution	31 Reference Factor =	0.39	r = 2.11
GPS Solution	32 Reference Factor =	1.97	r = 2.20
GPS Solution	33 Reference Factor =	0.15	r = 2.99
GPS Solution	34 Reference Factor =	1.72	r = 2.06
GPS Solution	35 Reference Factor =	0.20	r = 2.99
GPS Solution	36 Reference Factor =	0.22	r = 2.99
GPS Solution	37 Reference Factor =	1.11	r = 2.25
GPS Solution	38 Reference Factor =	1.01	r = 2.13
GPS Solution	39 Reference Factor =	0.10	r = 2.99
GPS Solution	40 Reference Factor =	1.17	r = 2.90
GPS Solution	41 Reference Factor =	0.15	r = 2.82
GPS Solution	42 Reference Factor =	0.13	r = 2.75
GPS Solution	43 Reference Factor =	0.80	r = 2.11
GPS Solution	44 Reference Factor =	0.44	r = 1.67
GPS Solution	45 Reference Factor =	0.75	r = 2.24
GPS Solution	46 Reference Factor =	0.53	r = 1.10

 $\begin{array}{ll} \mbox{GEOID MODEL} \\ \mbox{Reference Factor} = 1.00 & r = 0.96 \end{array}$

Geoid Heights: Reference Factor = 1.00 r = 0.96Delta Geoid Heights: Reference Factor = 1.00 r = 0.00

WEIGHTING STRATEGIES:

GPS OBSERVATIONS: Scalar Weighting Strategy: Alternative Scalar Set Applied Globally = 30.04

No summation weighting strategy was used

Station Error Strategy: H.I. error = 0.0030 Tribrach error = 0.0030

GEOID MODEL: Scalar Weighting Strategy: Alternative Scalar Set Applied Globally = 0.36

No summation weighting strategy was used

Results of adjusted Geoid model: Noise in vertical GPS observations: 0.31669041 Variance of geoid model: 0.00049794 Further use of correlated Geoid Model not recommended

**** Adjusted Coordinates ****

Projection Group: NAD-83 SP Lambert Zone Name: P.R. and V.I. Linear Units: meter Angular Units: degrees Datum Name: NAD-83

Station	North	East	Ortho.	
Short Name			Height	
PR 052	215011.48020	232319.57730	33.89900	
PR 053	216017.89600	232771.92300	45.42700	
PR 054	216466.56900	232394.40000	61.85600	
PR 204	214840.36000	232081.21800	30.43900	
PR 205	214972.45600	231867.18900	30.96500	Fixed Points
PR 206	215719.31600	231966.53799	93.89700	
PR 209	217248.07400	232454.47800	75.30500	
PR 210	217663.82000	233850.78100	79.55900	
PR 211	217503.61100	233831.92799	80.69100	
PR 303	217779.91745	233871.84091	80.47200	
PR 304	215436.97244	232386.20863	37.04600	
PR 305	215297.53496	232371.91574	36.72700	New Points
PR 306	217049.36699	232507.43018	68.77300	
PR 307	216167.62873	232624.01503	50.46767	

***** End of Report *****

[See Figure I-16 for screen capture view of the adjusted points]

I-4. Adjustment Output Plots

Horizontal and elevation errors are graphically depicted, as shown in Figures I-13 and I-14 below. Figure I-13 contains fixed points, so no error ellipses are generated. Station PR 054 was held fixed in position but not in elevation; thus, the elevation and height standard errors are shown.

Figure I-13. Trimble GPSurvey positional error plots

This GPSurvey output graph shows one-sigma error ellipses and scales for some selected new points in the adjustment. Displays should be set to depict 95% accuracies instead of one-sigma values.

Figure I-14. Trimble GPSurvey positional error ellipses at adjusted points

The following screen capture (Figure I-15) of the adjustment output shows a histogram of the network's standardized (or normalized) residuals. The top figure shows the histogram for combined horizontal and vertical residuals. These residual plots should resemble a bell curve, as is apparent. A rough evaluation of potential outliers can be observed by noting residuals falling outside the 3-sigma level. As can be seen below, a few observations are outside the 3-sigma level, but none exceed 4-sigma.

Figure I-15. Trimble GPSurvey Standardized Residual histograms

Figure I-16 is a screen capture of the adjusted coordinates.

🐼 D	👪 GPSurvey Project : 0	1269						-DX	
File	Project Plan Load Pro	🚼 Project Repo	rt Summary					_ 🗆 🗙	×
				**** Adjusted (Coordinates ****				»
		Projection Group	: NAD-83 SP La	mbert					
L	Report Selections	Zone Name:	P.R. and V.I.						E 🖌 🍕
- 1		Linear Units:	meter						
	Title:	Angular Units:	degrees						i 17.24
		Datum Name:	NAD-83						A 0
4	🗌 📃 Project Sumr	Station	Station	North	East	Ortho.	Ellip.		
-	÷	Short Name	ID			Height	Height		
12	Station Sumr	PR 052	PR 052	215011.48020	232319.57730	33.89900	-7.55286		
	Heteren	PR 053	PR 053	216017.89600	232771.92300	45.42700	4.05840		ai 2D
	<u>V</u> Adjusted	PR 054	PR 054	216466.56900	232394.40000	61.85600	20.50326		com
'n	📃 Baseline Sun	PR 204	PR 204	214840.36000	232081.21800	30.43900	-10.99267		2
	📃 Baseline Sol	PR 205	PR 205	214972.45600	231867.18900	30.96500	-10.45477		15 E
	📃 Detailed Bas	PR 206	PR 206	215719.31600	231966.53799	93.89700	52.55122		ut to
	Summer	PR 209	PR 209	217248.07400	232454.47800	75.30500	34.05227		ra
	🔄 🔄 Phase A	PR 210	PR 210	217663.82000	233850.78100	79.55900	38.28481		
	Process	PR 211	PR 211	217503.61100	233831.92799	80.69100	39.40917		
1.	Cantinuous X	PR 303	PR 303	217779.91745	233871.84091	80.47200	39.21243		
	and halistad	PR 304	PR 304	215436.97244	232386.20863	37.04600	-4.34605		intout to
-		PR 305	PR 305	215297.53496	232371.91574	36.72700	-4.68708		Index .
	Phase A	PR 306	PR 306	217049.36699	232507.43018	68.77300	27.45222		
	Process	PR 307	PR 307	216167.62873	232624.01503	50.46767	9.11380		
<u>^</u>	Station								5
•	📃 📃 Event Summ	5							Station
11									(2)
ω									te
-									
			Exit to	Project Manager					<u>±</u>
				, ,					
= 6									
								- 1	
Dra									
Page									11.
🋃 Sta	art 🛛 🎰 👯 🏉 🔍 💻	🖶 🔁 🗱 👪	🗞 🛅 📕 🗱	🕹 🏶 🔡 🐯					1:14 PM
	😹 Distiller Assistant 3.01 🖉 Document 1 - Microsoft Word 🔥 GPS urvey Project : 0 🖽 GPS urvey Database Server						₩400000000000000000000000000000000		
	1.00				· · · · · · · · · · · · · · · · · · ·	1020			

Figure I-16. Trimble GPSurvey listing of adjusted coordinates