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 Thermal resistance junction to case Rthjc per diode
The thermal resistance junction to case Rthjc describes the passage of heat between diode chips
(index j) and module base plate (index c).

2.3.3 Diagrams
Following the sequence of the datasheets, this chapter will give some hints concerning IGBT
datasheet diagrams. In cases where the diagram concerned is detailed in other chapters, this will
be referred to.

Maximum total power dissipation Ptot of IGBT module versus case temperature Tcase

 

 
 Figure 2.12 Maximum total power dissipation

 
Based on the maximum total power dissipation per IGBT (or per free-wheeling diode)
Ptot(25°C) = (Tjmax – 25°C)/Rthjc which is limited to Tcase = 25°C per definition, the function
depicted in the diagram describes derating at a higher case temperature.
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 Turn-on/ turn-off energy Eon, Eoff per pulse of an IGBT as function of the collector current
IC

 
 Figure 2.13 Turn-on/ -off energy dissipation as function of IC

 
 The turn-on/-off energies Eon, Eoff determined from a measuring circuit under ohmic-inductive
load are indicated versus different collector currents IC (e.g. chip temperature Tj = 125°C,
collector-emitter supply voltage VCC = 600 V) with specified control parameters.
 Switching losses may be determined by multiplying dissipation energy and switching frequency
f:

Pon = f * Eon Poff = f * Eoff.

 Eon and Eoff are indicated for IGBT at rated current (Ic@ Tcase = 80°C) in the characteristic values
of the datasheet.

 Turn-on and turn-off energy Eon, Eoff per pulse of an IGBT as function of the gate series
resistors RG (RGon, RGoff)
 see chapter 3.5.2

Maximum safe operating area during switch operation (SOA)
As explained in chapter 1.2.3 the IGBT has to manage an almost rectangular characteristic
i = f(u) between VCC and IL in case of hard switching.
The SOA (Safe Operating Area)-diagrams indicate to what extent this may be realized during
different operations without risk of destruction:
- SOA for switching, on-state and single pulse operation
- RBSOA (Reverse Biased SOA) for periodic turn-off
- SCSOA (Short Circuit SOA) for non-perdiodic turn-off of short circuits (chapter 3.6.2)
The SOA is limited by the following parameters:
- maximum collector current (horizontal limit);
- maximum collector-emitter voltage (vertical limit);
- maximum power dissipation or chip temperature (diagonal limits) see Figure 2.14;

 Maximum safe operating area during pulse operation (SOA)
 Figure 2.14 shows the maximum curve IC = f(VCE) during switching and on-state for different
pulse durations tp at a double logarithmic scale.
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 It is important that the maximum ratings are valid at a case temperature Tc = 25°C and for single
pulses, which will not heat the IGBT over the maximum chip temperature Tj = 150°.
 Although the lowest of the depicted diagonals represents the hyperbola of the maximum
stationary power losses Ptot, IGBT modules may only touch the linear characteristic area with
approximately VCE > 20 V or VGE < 9 V during switching operation. Analogous operation over a
longer period of time is not permitted, since asymmetries due to variation among the chips as
well as negative temperature coefficients of the threshold voltages might cause thermal
instability.
 

 
 Figure 2.14 Maximum safe operating area IC = f(VCE) during pulse operation (SOA)

 

 Turn-off safe operating area
 Figure 2.15 shows the turn-off safe operating area of an IGBT.
 

 
 Figure 2.15 Turn-off safe operating area (RBSOA)
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 During periodic turn-off the IGBT may effect a hard turn-off of ICM@80°C = TC for Tjmax and
defined driver parameters, provided that vCE (chip) has reached VCES-level (influence of parasitic
inductances and driver parameters, see chapters 3.4.1 and 3.5.2).

 Safe operating area at short circuit
 see chapter 3.6.2

 Derating of collector current versus case temperature
 see chapter 2.6; analogous to Figure 2.23b

 Forward output characteristic IC = f(VCE)
 

 Figure 2.16 shows the output characteristics for Tj = 25°C and 125°C (typical values) with
parameter VGE, also see chapters 1.2.2.2 and 2.6.
 

             
 
 Figure 2.16 Typical IGBT output characteristic IC = f(VCE) with paramter VGE

a) Tj = 25°C b) Tj = 125°C
 

 Transfer characteristic IC = f(VGE)
 The transfer characteristic (Figure 2.17) describes the behaviour of the IGBT within the active
area at VCE = 20 V and tp = 80 µs (linear operation). The collector current is coupled with the
gate-emitter voltage via transfer transconductance: IC = gfs * (VGE-VGE(th)).
 

a) b)
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 Figure 2.17 Typical transfer characteristic IC = f(VGE)

 

 Gate charge characteristic
 see chapter 1.2.3

 Internal capacitances versus collector-emitter voltage
 see chapter 1.2.3

 Switching times versus collector current
 Figure 2.18 shows typical dependencies of switching times td(on) (turn-on delay time), tr (rise
time), td(off) (turn-off delay time) and tf (fall time) on the collector current IC during hard
switching of inductive loads.
 

 
 Figure 2.18 Typical dependency of switching times on collector current (inductive load)

 
 The slightly overproportional increase of tr verifies that diC/dt does not increase to the same
extent as IC when the collector current rises.
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 Switching times versus gate resistor
 see chapter 3.5.2

 CAL diode forward characteristic
 see chapter 1.3.1.1

 Diode turn-off energy dissipation
 Figure 2.19 demonstrates the dependency of the diode turn-off energy EoffD on the diode current
IF conducted before turn-off, and on the turn-on speed of the IGBT determined by gate resistance
RG, during current commutation between free-wheeling diode and IGBT (hard switching).

 
 Figure 2.19 Diode turn-off energy dissipation EoffD versus collector current IC and gate resistance RG

 
 As expected, the diode turn-off losses increase with the forward current as well as with the rate
of rise of commutation current due to a simultaneous rise of  storage charge and reverse current
amplitude (see chapter 1.3.1.3).

 Transient thermal impedances of IGBT and free-wheeling diode
 see chapter 3.2.2.3

 Free-wheeling diode reverse recovery current as function of forward on-state current
 Figure 2.20 shows typical values of the peak reverse recovery current IRRM versus forward
current IF and di/dt determined by the gate resistance RG = RGon.
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 Figure 2.20 Typical peak reverse recovery current IRRM of free-wheeling diode versus IF and RG

 
 As expected, the peak reverse recovery current is higher, the faster the IGBT is switched on
(low RGon).
 At first, the reverse recovery current will increase together with rising forward current. If high
collector currents are applied, the share of charge carriers in the CAL-diode drift area, which
already re-combine during commutation, will increase with the duration of commutation;
therefore, IRRM will again drop in the high current range.

 Free-wheeling diode reverse recovery current as function of diF/dt
 Figure 2.21 depicts the typical dependency of the free-wheeling diode reverse recovery current
IRRM on di/dt, determined by control of the given gate resistances RG = RGon of the IGBT on the
measuring conditions indicated.
 

 
 Figure 2.21 Typical free-wheeling diode reverse recovery current IRRM versus di/dt and RG

 
 The reverse recovery current increases almost linearly to di/dt.
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