Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family

Somitra Kr. Sanadhya and Palash Sarkar

Cryptology Research Group
Applied Statistics Unit
Indian Statistical Institute, Kolkata
India
\{somitra_r, palash\}@isical.ac.in
ISC, Taipei, $17^{\text {th }}$ September 2008

Cryptographic Hash functions

- Fixed size "Fingerprint" of arbitrary length data.

Cryptographic Hash functions

- Used in :
- Verifying integrity of data.
- Digital signatures.
- Storing authentication information (Passwords).
- ...

Hash function Security Requirements

- Collision resistance.

Difficult to find x_{1} and x_{2} s.t. $x_{1} \neq x_{2}$ but $h\left(x_{1}\right)=h\left(x_{2}\right)$

- Preimage resistance.

Given y, it is difficult to find an x s.t. $h(x)=y$

- Second Preimage resistance.

Given x_{1}, it is difficult to find an x_{2} s.t. $x_{1} \neq x_{2}$ but $h\left(x_{1}\right)=h\left(x_{2}\right)$

Merkle-Damgard Hash Design

Hash Function Schema (for one block message)

Figure: Round function of SHA-2 family

The Notation

- Message words :
- I: $\left\{W_{0}, W_{1}, \ldots, W_{15}\right\}$,
- II: $\left\{W_{0}^{\prime}, W_{1}^{\prime}, \ldots, W_{15}^{\prime}\right\}$.
- These message words are then expanded upto W_{20} and W_{20}^{\prime} for this work. The word W_{i} is used in Step i, where the index i starts from zero.
- Differences $\left\{\delta W_{0}, \delta W_{1}, \ldots, \delta W_{15}\right\}$.
- $W_{i}^{\prime}=W_{i}+\delta W_{i}$.

The Local Collision

9-step Non-Linear Local Collision

Step i	δW_{i}	δa_{i}	δb_{i}	δc_{i}	δd_{i}	$\delta \mathbf{e}_{i}$	δf_{i}	δg_{i}	δh_{i}
$i-1$	0	0	0	0	0	0	0	0	0
i	x	x	0	0	0	x	0	0	0
$i+1$	δW_{i+1}	0	x	0	0	y	x	0	0
$i+2$	δW_{i+2}	0	0	x	0	z	y	x	0
$i+3$	δW_{i+3}	0	0	0	x	0	z	y	x
$i+4$	δW_{i+4}	0	0	0	0	x	0	z	y
$i+5$	δW_{i+5}	0	0	0	0	0	x	0	z
$i+6$	δW_{i+6}	0	0	0	0	0	0	x	0
$i+7$	δW_{i+7}	0	0	0	0	0	0	0	x
$i+8$	$-x$	0	0	0	0	0	0	0	0

1. Nikolić-Biryukov (NB) : FSE '08 = $\{x, y, z\}=\{1,-1,0\}$;
2. Sanadhya-Sarkar (SS) : ACISP ' $08=\{x, y, z\}=\{1,-1,-1\}$

The Cross Dependence Equation

- We note a special and simple relation in the a and the e register.
- For example,

$$
\begin{align*}
e_{i} & =d_{i-1}+\Sigma_{1}\left(e_{i-1}\right)+f_{I F}\left(e_{i-1}, f_{i-1}, g_{i-1}\right)+h_{i-1}+K_{i}+W_{i} \\
& =d_{i-1}+a_{i}-\Sigma_{0}\left(a_{i-1}\right)-f_{M A J}\left(a_{i-1}, b_{i-1}, c_{i-1}\right) \\
& =a_{i-4}+a_{i}-\Sigma_{0}\left(a_{i-1}\right)-f_{M A J}\left(a_{i-1}, a_{i-2}, a_{i-3}\right) \tag{1}
\end{align*}
$$

This relationship shows that the e register solely depends on the a register values of previous 5 steps.

- This relation also shows that the state update of the SHA-2 family can be written in terms of one variable only, as was also independently observed by Indesteege et al. (SAC '08).

Constructing the 21-Step SHA-2 Attack

- Have a single local collision spanning from Step 6 to Step 14.
- We take other message words to have no differences. That is $\delta W_{i}=0$ for $i \in\{0,1,2,3,4,5,15\}$.
- For the SS local collision, we have $\delta W_{i}=0$ for $i \in\{10,11,12,13\}$.
- First 5 steps of message expansion of SHA-2 are shown next.

$$
\left.\begin{array}{l}
W_{16}=\frac{\sigma_{1}\left(W_{14}\right)+W_{9}+\sigma_{0}\left(W_{1}\right)+W_{0}}{\sigma_{1}\left(W_{15}\right)+W_{10}+\sigma_{0}\left(W_{2}\right)+W_{1}} \\
W_{17} \\
W_{18}=\underline{\sigma_{1}\left(W_{16}\right)+W_{11}+\sigma_{0}\left(W_{3}\right)+W_{2}} \\
W_{19}\left(W_{17}\right)+W_{12}+\sigma_{0}\left(W_{4}\right)+W_{3} \\
W_{20}=\underline{\sigma_{1}\left(W_{18}\right)}+W_{13}+\sigma_{0}\left(W_{5}\right)+W_{4}
\end{array}\right\}
$$

Underlined terms may have non-zero differences.
If $W_{16}=W_{16}^{\prime}$ i.e. $\delta W_{16}=0$ then we have a 21-step collision.

Constructing the 21-Step SHA-2 Attack

- $W_{16}=\sigma_{1}\left(W_{14}\right)+W_{9}+\sigma_{0}\left(W_{1}\right)+W_{0}$.
- $\delta W_{14}=-1$.
- l.e. $\delta W_{16}=0, \Longrightarrow \sigma_{1}\left(W_{14}\right)+W_{9}=\sigma_{1}\left(W_{14}^{\prime}\right)+W_{9}^{\prime}$.
- I.e. $\delta W_{9}=\sigma_{1}\left(W_{14}\right)-\sigma_{1}\left(W_{14}-1\right)$.
- In ACISP '08, we developed an improved probabilistic attack using the fact that the term $\sigma_{1}(X)-\sigma_{1}(X-1)$ is highly skewed.
- We created a list of pairs $\left(X, \sigma_{1}(X)-\sigma_{1}(X-1)\right)$.
- Now we can make the attack deterministic.

Constructing the 21-Step SHA-2 Attack

- The SS local collision allows δW_{9} to be set to any value.
- Even though $\sigma_{1}\left(W_{14}\right)-\sigma_{1}\left(W_{14}-1\right)$ is highly skewed, we can suitably choose δW_{9} so as to satisfy the equality of these two terms.
- This allows the deterministic 21-step SHA-2 attack.
- Prior work had not been able to show 21-step SHA-512 collisions. We provide the first colliding message pair for 21-step SHA-512.

Constructing the 21-Step SHA-2 Attack

- There are two different 21-step SHA-2 attacks in this work.
- Both the attacks are deterministic.
- There are 6 free words in the first attack.
- There are 5 free words in the second attack.
- In the first attack, the SS local collision has 4 consecutive $\delta W_{i}=0$.
- In the first attack, the SS local collision has 3 consecutive $\delta W_{i}=0$.

The Case of the NB Local Collision

- δW_{9} depends on e_{6}, e_{7} and e_{8}.
- Assuming that these three register values are random, we have that

$$
\operatorname{Pr}\left[\delta W_{9} \geq 2^{j}\right]<\frac{1}{2^{j-1}}
$$

- I.e. δW_{9} rarely takes very large values.
- On the other hand, for SHA-512, we have that

$$
\sigma_{1}(X)-\sigma_{1}(X-1) \geq\left(2^{42}+2^{39}+2^{38}+2^{36}-2^{3}\right)
$$

- The two lemmas above show that, using the NB local collision, obtaining equality of the two terms is very unlikely for SHA-512.

The Case of the NB Local Collision

- More generally, if the NB local collision is started at Step i, then
- δW_{i+3} depends on e_{i}, e_{i+1} and e_{i+2}.
- Assuming that these three register values are random, we have that

$$
\operatorname{Pr}\left[\delta W_{i+3} \geq 2^{j}\right]<\frac{1}{2^{j-1}}
$$

- But we still need to satisfy the equality

$$
\delta W_{i+3}=\sigma_{1}\left(W_{i+8}\right)-\sigma_{1}\left(W_{i+8}-1\right)
$$

Bridging the Gap for the NB Local Collision

- First of all, note that

$$
\delta W_{i+3}=-f_{I F}\left(e_{i+2}, e_{i+1}-1, e_{i}\right)+f_{I F}\left(e_{i+2}, e_{i+1}, e_{i}\right) .
$$

- It is possible to ensure that the values of the registers e_{i+2}, e_{i+1} and e_{i} are such that the term δW_{i+3} is large. This allows attaining the equality possible.
- But, to attain such values of e_{i+2}, e_{i+1} and e_{i}, one needs to iterate over many initial words.
- \Longrightarrow Equality is achieved at the cost of more work in the beginning of the search for message words.

Recent work on SHA-2

- 22-step Deterministic SHA-512 Attack. (IACR eprint)
- 23-step SHA-512 attack with effort $2^{16.5}$ calls. (CoRR archive)
- 24-step SHA-512 attack with effort $2^{32.5}$ calls. (CoRR archive)

Thank You

The Organizers \& The Audience.

