

Extending Message-Oriented Middleware using Interception

Edward Curry, Desmond Chambers, and Gerard Lyons

Department of Information Technology,
National University of Ireland, Galway, Ireland.

{edward.curry, des.chambers, gerard.lyons}@nuigalway.ie

Abstract
Varieties of Message-Oriented Middleware (MOM)

platforms are available each with their own propriety
functionality to solve specific messaging challenges. At
present, it is not possible to mix and match these
propriety features into a customized MOM solution.

A number of patterns have been identified that allow a
software systems implementation to be more flexible and
extensible. This work investigates the use of one such
pattern, the POSA Interceptor pattern, in the construction
of a MOM framework that is easily customised and
extended in a structured way.

This framework, Chameleon, is designed to support the
use of interceptors (message handlers) with a MOM
platform to facilitate dynamic changes to the behaviour of
the deployed platform. The framework also allows for
interceptors to be used on both the client-side and server-
side, permitting advance functionality to be deployed to
the client, and for co-operation between client-side and
server-side interceptors.

1. Introduction

Message-Oriented Middleware (MOM) platforms are
available in wide range of implementations such as
WebSphere MQ (formerly MQSeries) [1], TIBCO [2],
Herald [3], Hermes [4], SIENA [5], Gryphon [6], JEDI
[7] and REBECCA [8] each of these providers have been
designed with specific goals and employs unique
functionality to achieve these. A number of these
providers are designed as centralized servers or server
clusters, others as server/broker networks, some as
federated services. Providers have also been designed for
a specific task such as enterprise integration, mobile
clients, internet-level scalability, wide-area networks,
sensor networks, and ubiquitous environments. In order to
achieve these design goals, each provider has its own
unique services for their target audience such as message
translations, filtering algorithms, mobile profiles, broker

routing algorithms, distributed state persistence
technologies, and so on.

At present, the vast majority of these features are not
compatible with one another, nor are they transferable
between MOM platforms. The goal of this paper is to
illustrate a potential approach for packaging these services
into reusable chunks that may be mixed and matched to
create a customised messaging solution.

The remainder of this paper briefly introduces the
Interceptor design pattern and its current usage, gives an
overview of our work on providing message handler
chains (interceptors within the messaging domain) within
the Chameleon framework. The frameworks architectural
design and implementation is explained along with
possible uses of the framework and future development
plans.

2. Interception design pattern

The ever-increasing demands placed on software
systems require them to often perform beyond the scope
of their original requirements. Such behaviour may not
always be anticipated during their initial development
phase, thus making it important to design systems that can
be easily extended during their life cycle.

Systems designed for large target audiences with
diverse interests will often include functionality that is
only utilized by a small percentage of users. While such
functionality may be vital to some users, incorporating it
into the core system makes it unnecessarily bloated and
increases overhead for the majority of remaining users.

The POSA Interceptor design pattern [9] is a variant of
the Chain of Responsibility pattern from the Gang of Four
(GoF) [10] . This pattern enhances a system by increasing
flexibility and extensibility. The pattern also enables
functionality to be easily added to the system in order to
dynamically change its behaviour. This seamless
integration of functionality can be performed without the
need to stop and recompile the system, allowing its
introduction at runtime.

Figure 1. POSA Interceptor Pattern

The basic interceptor pattern has four main elements:
�� System Core
�� Dispatcher
�� Context
�� Interceptors

The Interceptor pattern, illustrated in Figure 1, follows
a straightforward sequence of events.

Interceptors are registered with the system dispatcher;
the system core may perform registration, the interceptors
may self-register, or they may be registered from an
external source (parent server/master server). Once the
interceptors are registered, the system core notifies the
dispatcher of any events that have occurred. Upon
receiving an event, the dispatcher examines the event to
determine which interceptors need to be notified. The
dispatcher then packages the event and any relevant
information into a context, the context may be provided
by the system core. The dispatcher then notifies the
relevant interceptors or interceptor chains (a
ordered/unordered collection of interceptors) by passing
them the context containing the event. When triggered, the
interceptor examines the context and executes its related
functionality.

An optional addition to the pattern is to allow
interceptors access to the internals of the core system state
and to provide a mechanism to control the system by
altering its state.

2.1. Uses of the interception pattern

Interceptors are utilised in a broad range of domains to
increase flexibility and extensibility; such systems include
CORBA ORBs (TAO, Orbix) for infrastructure and
support services, web browsers (Microsoft Internet
Explorer) for plug-in integration, and web servers
(Apache 2.0) to allow modules to register handlers
(interceptors) with the core server. The JBoss J2EE [11]
application server also uses the interceptor design pattern

to provide customized functionality in the areas such as
transactions, security, remoting and life cycle support.

Currently, no message service has exploited
interception as a mechanism for extending its core-
messaging functionality.

2.2. Evaluation

The Interceptor pattern has a number of advantages
and disadvantages; benefits of the pattern include the
decoupling of communications between a sender and
receiver of an interceptor request, this permits any
interceptor to fulfil the request and allows interceptors to
change system functionality, even at run-time.

The pattern also has a number of drawbacks that if left
unresolved may lead to a number of issues in the system
design. One of the main drawbacks is increased
complexity in design, the more interceptors can hook into
the system the more bloated its interface. The inherent
openness of the pattern also introduces potential
vulnerabilities into systems. With such an open design,
malicious interceptors or simply erroneous ones may be
introduced resulting in system corruption or errors.

Another important issue to consider is the possibility of
incompatibilities between interceptors and potential
infinite interceptor loops whereby an event produced by
an interceptor triggers another interceptor that in turn
generates an event that triggers the original interceptor.
Such errors will only occur at runtime and may be difficult
to locate.

When used within the messaging domain the abstract
generic interceptor pattern is implemented using a
customised context or ‘Message Context’ and ‘Message
Handlers’ as interceptors. The remainder of this paper
uses such terminology.

3. Chameleon

The goal of this research is to implement the
Chameleon message framework to allow message handler
chains (Interceptors) to augment functionality onto a base
MOM platform. In order to achieve this objective the Java
Message Service (JMS) Application Protocol Interface
(API) [12] is used as an interface to the underlying core
messaging platform, the Chameleon framework sits on top
of this Java Message Service System Core (JMSSC)
platform. MOM services/features can be packaged as
handlers and deployed to add functionality on top of the
base service, enhancing its functionality.

 The remainder of this section examines the
architecture of Chameleon and discusses its ability to
allow handlers to be deployed on both the client-side and
server-side of a MOM platform.

Figure 2. Chameleon Framework Overview

3.1. Server-side

The core of the Chameleon framework exists in its
server-side deployment. When the framework initialises, it
first registers any handler chains present in its start-up
configuration. Server-side chains are constructed from
local configuration files or under the guidance of a master
or peer server within a broker network. This configuration
may also be updated at runtime to adapt the chains for
operating conditions.

When a message is passed from the JMSSC,
chameleon first checks for the existence of a client-side
message context, if one exists it uses it as the basis to
create a server-side context. Alternatively, it creates a new
context for the inbound message. Once the context is
ready, it is passed to any relevant global server-side
chains. After the global dispatcher has completed
evaluating the message it is passed on to the local-chain
dispatcher. This local-dispatcher is responsible for
triggering any local-chains associated with specific
destinations; chain scopes are discussed in more detail in
section 3.5.

Server-side handlers have the ability to interact with a
client-side handler (if one exists); this topic is covered in
more details in the section 3.3 of this paper.

3.2. Message context

The message context is a handler’s main point of
interaction with the framework and JMSSC. It is central to
the invocation of handlers and is used to communicate the
message/event that has triggered it; the handler then
processes the message. Message contexts can be used as a
medium to store data, communicate with other handlers,
or interact with the JMSSC and framework. Handlers are
able to store and retrieve information within the context
using the setProperty() and getProperty() methods. These
methods can save any serializable object and the basic
Java primitive types within the context.

Contexts can also be used to communicate information
between client-side and server-side handlers, this allows
for the behaviour on the server-side or client-side to be
dynamically altered based on events and information from
either side.

The context is also a mechanism to enable a handler to
alter the behaviour of the JMSSC. The context achieves
this by exposing an API to control core system operations.
Handlers can be granted permissions to access parts of
this API. Such an approach provides a safe method to
manipulate the system core in a secure and controlled
manner.

3.3. Client-side

Client-side handlers offer the ability to extended and
enhance the functionality of the JMSSC on its client-side.
Client-side chains allow the message service to
dynamically alter the behaviour of its client at run-time.

Client-side handlers can be constructed in two
manners, the first approach is to build the chain from local
handlers which reside on the clients machine, this
approach requires the machine to have the relevant
handlers installed or to use a distributed classloader. The
second approach involves the construction of chains on
the server-side and transmission to the client; this removes
the need to have application-specific stubs that would
need to be pre-installed on the client machines. Once the
chain is constructed it now needs to be configured, similar
to server-side chains two approaches can be used,
configuration can be obtained from a local file or from the
server or peer node that the client is connect too. Client-
side chain configuration may be updated at runtime to
adapt the chains for operating conditions.

Client-side handlers introduce a number of advantages
to MOM/DEBS by permitting computational tasks and
behaviour to be easily distributed to client machines. With
this support framework in place, advanced features may
be developed with co-operation and co-ordination
between both the client and server-side of the platform.
Such capabilities could be used to increase the scalability
of centralized servers by distributing tasks to the clients,
such as message transformation, filtering, etc.

The dynamic retrieval and configuration of client-side
handlers has a number benefits; services can now be
deployed to the client without any special arrangements
on the client-side. This streamlined distribution of services
reduces the amount of administration needed to alter a
deployed system, making frequent changes to its
behaviour and configuration more feasible. A service can
adapt itself into a more optimal state based on its current
operating conditions. Clients may now connect to multiple
servers and retrieve their specific client-side chain without
the need for extra configuration or intervention by a
system administration.

The prospect of deploying functionality to the client
side is an interesting proposition, however due diligence
must be taken when considering the use of this “mobile
code”. If a client-side chain can be configured from a
remote location or is downloaded, it presents a number of
security issues and potential vulnerabilities to the client
system; such issues are covered in more details in [13].

Once client-side chain initialization has complete, the
outbound/inbound message is placed into a message
context and passed to the client-side dispatcher. As soon
as the message has passed through the chain, the message
context is packaged into the JMS messages and sent to the

server-side. Upon receipt of a new message, the server
checks for the existence of a client-side context and uses
this in the construction of the server-side context. This
process allows client-side handlers to communicate with
the server-side, allowing data exchange between them,
such as the results of a distributed task or the results of
any computations or pre-processing carried out on the
message by the client-side.

The inverse of this process is also possible, whereby
server-side handlers wish to pass message specific
information details to the client-side; achieved by
updating the message context of an outbound message.

3.4. Chain services

Message handlers within the Chameleon framework
can provide a wide variety of functionality to the
underlying JMSSC. To successfully carry out many of
these tasks, handlers will require access to a number of
infrastructure services. The Chameleon framework offers
a numbers of support services for handlers; such services
include logging facilities, persistence frameworks
(hibernate), usage statistics, and core system states. Other
potential services also include transactions, security,
hardware usage statistics (CPU, memory, hard disk) and
fault-tolerant system/event recovery logs.

Interactions with the core message service can use two
methods; exploitation of the message context to control
the core service has already been covered. The second
approach involves using a chain service to access the
system core. Such a service can expose models of the core
message services internal structures and state. Chameleon
provides one such service that exposes the current
destinations that exist within the message service; the
model contains destination configuration, usage statistics,
and subscriber details. This service also provides
destination administration capabilities (add, remove,
move, etc). Such services are designed to allow handlers
access to the internal state of the system in order to
increase the functionality that they provide and enhance
their ability to examine and adapt the core system at
runtime.

3.5. Chain scope

Handler chains provide a powerful method of
augmenting a message service with dynamic functionality;
this ability can be extend by using multiple chains and
attaching them at multiple interception points within the
service core. An interception point is a place of execution
within a system in which handler chains can be triggered
to inject functionality. In order to achieve this, the systems
behaviour must be modelled to allow chains to be attached
to specific points within the model. A good quality system

model will help to identify appropriate locations for
interception points, this can also help to determine what
handlers should be grouped together. Within the
Chameleon framework, three chain interception points or
interception scopes are available:

�� Global (system-wide – all destinations)
�� Local (per destination)
�� Hierarchy (per branch)

Global-scoped chains are designed to operate on all
incoming messages into the service and are triggered
before any other scoped chains; global chains are
designed for implementing system-wide services such as
auditing, logging, or usage monitoring.

Local-scoped interception points work on a per-
destination basis, allowing for chains to be attached to a
single or group of destinations, once a message arrives for
a given destination the chains attached to that destination
(if any) will be triggered before the message is delivered
to the destination. These interception points allow
functionality to be added/extended at the destination level;
this scope of chain allows highly specific behaviour to be
attached to a single destination.

Hierarchy interception points allow chains to be
associated with a channel within a hierarchy. Similar to
local-destination interception points, hierarchy
interception points work on the principle that each leaf
(channel) of the hierarchy can have a local chain
associated with it. The absolute chain for a branch
consists of this local chain and the absolute chain of its
parent, this recursive approach to interception continues
up the tree until it reaches the root channel. This results in
a very powerful mechanism for processing messages
submitted to a channel hierarchy structure. This
mechanism is similar to inheritance within object-oriented
programming, where an object (channel) inherits the
functionality of its ancestors (parents chains) and can
augment this functionality with its local implementation
(local chain).

 4. Framework benefits

When compared to alternative techniques for system
extension, such as method-call interception, reflection, or
aspect-oriented programming, Chameleon provides a non-
invasive message-centric method for augmenting any JMS
compatible message service without needing access to its
source code for mass-refactoring and recompilation.

Besides offering a flexible method of integrating MOM
technologies, the Chameleon framework has a number of
benefits for the development and deployments of MOM
services. It provides a unique ability to easily deploy
functionality to the client-side of a MOM without the need
for any application-specific stubs to be present. MOM
systems can be easily extended and their behaviour can be

altered at run-time, this allows for a number of unique
MOM features to be developed.

Chameleon can facilitate the development of reflective
and adaptive MOM services, reflection has been
advocated for advanced adaptive behaviour, the reflective
middleware model is a principled and efficient way of
dealing with highly dynamic environments yet supports
development of flexible and adaptive systems and
applications [14]. Reflective flexibility diminishes the
importance of many initial design decisions by offering
late and runtime-binding options to accommodate actual
operating environments at the time of deployment, instead
of anticipating the operating environments at design time
[15].

Chameleon also facilitates the development of services
that can co-ordinate their behaviour with the client-side of
the message producer or consumer. This allows the
development of a service that can easily distribute tasks to
client machines; such capabilities open the possibility of
developing new dynamic services for MOM. Such
services could request clients to transforms their message
payloads into the desired format for a destination, this
would substantially reduce the workload of message
brokers, for example each destination within the service
may provide a XML schema and relevant XSLT
stylesheets to transform incoming XML messages with on
the client-side.

Chameleon also allows behaviour to be easily
packaged as message handlers and dynamically added to
the core service. Once packaged, behaviours can be mixed
and matched to create customised messaging solutions.
This process reduces the effort required to dynamically
add and remove behaviour such as auditing, accounting,
security, transactions, filters, message transformations
(XSLT), and load balancing from a MOM service.

5. Future plans

The next stage of our research is to complete the
development of the framework and to develop a number
of services that exploit the virtues of the framework. The
first of these services involves the utilisation of adaptive
and reflective techniques with channel hierarchies [16].

Channel Hierarchies are structures that allow channels
to be defined in a hierarchical fashion, so that they may be
nested under other channels. Each sub-channel offers a
more granular selection of the messages contained in its
parent. Clients of the hierarchy subscribe to the most
appropriate level of channel in order to receive the most
relevant messages. In large-scale systems, the grouping of
messages into related types (i.e. into channels) helps to
manage large volumes of different messages [17].

Current MOM platforms do not define the structure of
channel hierarchies. Application developers must

therefore manually define the structure of the hierarchy at
design-time. This process can be tedious and error-prone.
To solve this problem the Chameleon messaging
architecture implements reflective channel hierarchies
[18] with the ability to autonomously self-adapt to their
deployment environment. The Chameleon architecture
exposes a causally-connected meta-model to express the
configuration and structure of the channel hierarchy, this
enables the run-time inspection and adoption of the
hierarchy.

In order for handlers to be interoperable between
services, a number of standards will need to be defined to
regulate interaction with the core message service. Models
are needed to represent the internal state of the service, its
destinations, message producers and consumers,
subscriptions, filters, usages statistics, and so on. If MOM
behaviour is to be truly portable between
implementations, such standards will need to be defined in
co-operation with the entire MOM community.

Plans are also in place to port propriety functionality
from a third-party message service to act as a proof of
concept for the approach. We also plan to investigate
further services, tools, and techniques to offer streamlined
integration of disparate MOM services.

6. Conclusions

This work forms a necessary step in integrating
Message-Oriented Middleware (MOM) technology from
disperse implementations. While not claiming to be a
sliver bullet, it provides a useful non-invasive mechanism
to add/extend the functionality of an underlying MOM
implementation. The process of augmenting functionality
upon this core message service is achieved though the use
of the POSA Interceptor pattern.

The Chameleon framework is designed to support the
use of message handlers (interceptors) with a JMS
compatible MOM platform. Chameleon allows MOM
behaviours to be easily packaged as message handlers and
dynamically added to the core service. Once packaged,
behaviours can be mixed and matched to create
customised messaging solutions.

 The framework permits handlers to be used on both
the client and server-sides, allowing for advanced
functionality to be deployed to client systems, and for co-
operation between client-side and server-side handlers.
Handlers can also be added and removed at run-time; this
enables the application of reflective and adaptive
techniques within a MOM service.

7. Acknowledgement

The support of the Informatics Research Initiative of
Enterprise Ireland is gratefully acknowledged.

8. References

[1] L. Gilman and R. Schreiber, Distributed Computing with
IBM MQSeries. New York: John Wiley, 1996.
[2] D. Skeen, "An Information Bus Architecture for Large-
Scale, Decision-Support Environments," presented at USENIX
Winter Conference, 1992.
[3] L. F. Cabrera, M. B. Jones, and M. Theimer, "Herald:
Achieving a Global Event Notification Service," presented at 8th
Workshop on Hot Topics in OS, 2001.
[4] P. R. Pietzuch, "Event-Based Middleware: A New Paradigm
for Wide-Area Distributed Systems?," 2002.
[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Achieving
Expressiveness and Scalability in an Internet-Scale Event
Notification Service," presented at Nineteenth ACM Symposium
on Principles of Distributed Computing (PODC2000), Portland
OR, 2000.
[6] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B.
Mukherjee, D. Sturman, and M. Ward, "Gryphon: An
Information Flow Based Approach to Message Brokering,"
presented at International Symposium on Software Reliability
Engineering, Paderborn, Germany, 1998.
[7] G. Cugola, E. D. Nitto, and A. Fuggetta, "The JEDI Event-
Based Infrastructure and Its Application to the Development of
the OPSS WFMS," IEEE Transactions on Software
Engineering, vol. 27, pp. 827--850, 2001.
[8] L. Fiege and G. Mühl, "Rebeca",
http://gkpc14.rbg.informatik.tu-darmstadt.de/rebeca/
[9] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, vol. 2: Wiley & Sons,
2000.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley, 1995.
[11] M. Fleury and F. Reverbel, "The JBoss Extensible Server,"
presented at Middleware 2003, Rio de Janeiro, Brazil, 2003.
[12] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout,
"Java Message Service Specification v1.1," Sun Microsystems,
Inc., 2002.
[13] D. M. Chess, "Security issues in mobile code systems," in
Mobile Agents and Security, vol. 1419, Lecture Notes in
Computer Science: Springer-Verlag, 1998.
[14] F. Kon, F. Costa, G. Blair, and R. H. Campbell, "The Case
for Reflective Middleware," Communications of the ACM, vol.
45, 2002.
[15] R. E. Schantz and D. C. Schmidt, "Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications," in Encyclopedia of Software
Engineering: Wiley & Sons, 2001.
[16] E. Curry, D. Chambers, and G. Lyons, "Could Message
Hierarchies Contemplate?," presented at 17th European
Conference on Object-Oriented Programming (ECOOP 2003),
Darmstadt, Germany, 2003.
[17] P. R. Pietzuch and J. M. Bacon, "Hermes: A Distributed
Event-Based Middleware Architecture," 2002.
[18] E. Curry, D. Chambers, and G. Lyons, "Reflective Channel
Hierarchies," presented at 2nd Workshop on Reflective and
Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil,
2003.

