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ABSTRACT
Android provides third-party applications with an extensive
API that includes access to phone hardware, settings, and
user data. Access to privacy- and security-relevant parts of
the API is controlled with an install-time application permis-
sion system. We study Android applications to determine
whether Android developers follow least privilege with their
permission requests. We built Stowaway, a tool that detects
overprivilege in compiled Android applications. Stowaway
determines the set of API calls that an application uses and
then maps those API calls to permissions. We used auto-
mated testing tools on the Android API in order to build
the permission map that is necessary for detecting overpriv-
ilege. We apply Stowaway to a set of 940 applications and
find that about one-third are overprivileged. We investigate
the causes of overprivilege and find evidence that developers
are trying to follow least privilege but sometimes fail due to
insufficient API documentation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
Android, permissions, least privilege

1. INTRODUCTION
Android’s unrestricted application market and open source

have made it a popular platform for third-party applications.
As of 2011, the Android Market includes more applications
than the Apple App Store [10]. Android supports third-
party development with an extensive API that provides ap-
plications with access to phone hardware (e.g., the camera),
WiFi and cellular networks, user data, and phone settings.
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Access to privacy- and security-relevant parts of Android’s
rich API is controlled by an install-time application permis-
sion system. Each application must declare upfront what
permissions it requires, and the user is notified during in-
stallation about what permissions it will receive. If a user
does not want to grant a permission to an application, he or
she can cancel the installation process.

Install-time permissions can provide users with control
over their privacy and reduce the impact of bugs and vul-
nerabilities in applications. However, an install-time per-
mission system is ineffective if developers routinely request
more permissions than they require. Overprivileged applica-
tions expose users to unnecessary permission warnings and
increase the impact of a bug or vulnerability. We study An-
droid applications to determine whether Android developers
follow least privilege or overprivilege their applications.

We present a tool, Stowaway, that detects overprivilege
in compiled Android applications. Stowaway is composed
of two parts: a static analysis tool that determines what
API calls an application makes, and a permission map that
identifies what permissions are needed for each API call. An-
droid’s documentation does not provide sufficient permission
information for such an analysis, so we empirically deter-
mined Android 2.2’s access control policy. Using automated
testing techniques, we achieved 85% coverage of the Android
API. Our permission map provides insight into the Android
permission system and enables us to identify overprivilege.

We apply Stowaway to 940 Android applications from the
Android Market and find that about one-third of applica-
tions are overprivileged. The overprivileged applications
generally request few extra privileges: more than half only
contain one extra permission, and only 6% request more
than four unnecessary permissions. We investigate causes
of overprivilege and find that many developer errors stem
from confusion about the permission system. Our results
indicate that developers are trying to follow least privilege,
which supports the potential effectiveness of install-time per-
mission systems like Android’s.

Android provides developer documentation, but its per-
mission information is limited. The lack of reliable per-
mission information may cause developer error. The doc-
umentation lists permission requirements for only 78 meth-
ods, whereas our testing reveals permission requirements for
1, 259 methods (a sixteen-fold improvement over the docu-
mentation). Additionally, we identify 6 errors in the Android
permission documentation. This imprecision leaves develop-
ers to supplement reference material with guesses and mes-
sage boards. Developer confusion can lead to overprivileged
applications, as the developer adds unnecessary permissions
in an attempt to make the application work correctly.



Contributions. We provide the following contributions:
1. We developed Stowaway, a tool for detecting overpriv-

ilege in Android applications. We evaluate 940 appli-
cations from the Android Market with Stowaway and
find that about one-third are overprivileged.

2. We identify and quantify patterns of developer error
that lead to overprivilege.

3. Using automated testing techniques, we determine An-
droid’s access control policy. Our results represent a
fifteen-fold improvement over the documentation.

Other existing tools [11, 12] and future program analyses
could make use of our permission map to study permission
usage in Android applications. Stowaway and the permis-
sion map data are available at android-permissions.org.

Organization. Section 2 provides an overview of Android
and its permission system, Section 3 discusses our API test-
ing methodology, and Section 4 describes our analysis of the
Android API. Section 5 describes our static analysis tools
for detecting overprivilege, and Section 6 discusses our ap-
plication overprivilege analysis.

2. THE ANDROID PERMISSION SYSTEM
Android has an extensive API and permission system. We

first provide a high-level overview of the Android application
platform and permissions. We then present a detailed de-
scription of how Android permissions are enforced.

2.1 Android Background
Android smartphone users can install third-party appli-

cations through the Android Market [3] or Amazon App-
store [1]. The quality and trustworthiness of these third-
party applications vary widely, so Android treats all appli-
cations as potentially buggy or malicious. Each application
runs in a process with a low-privilege user ID, and applica-
tions can access only their own files by default. Applications
are written in Java (possibly accompanied by native code),
and each application runs in its own virtual machine.

Android controls access to system resources with install-
time permissions. Android 2.2 defines 134 permissions, cat-
egorized into three threat levels:

1. Normal permissions protect access to API calls that
could annoy but not harm the user. For example,
SET_WALLPAPER controls the ability to change the user’s
background wallpaper.

2. Dangerous permissions control access to potentially
harmful API calls, like those related to spending money
or gathering private information. For example, Dan-
gerous permissions are required to send text messages
or read the list of contacts.

3. Signature/System permissions regulate access to the
most dangerous privileges, such as the ability to con-
trol the backup process or delete application pack-
ages. These permissions are difficult to obtain: Sig-
nature permissions are granted only to applications
that are signed with the device manufacturer’s certifi-
cate, and SignatureOrSystem permissions are granted
to applications that are signed or installed in a spe-
cial system folder. These restrictions essentially limit
Signature/System permissions to pre-installed applica-
tions, and requests for Signature/System permissions
by other applications will be ignored.

Applications can define their own permissions for the pur-
pose of self-protection, but we focus on Android-defined per-
missions that protect system resources. We do not consider
developer-defined permissions at any stage of our analysis.
Similarly, we do not consider Google-defined permissions
that are included in Google applications like Google Reader
but are not part of the operating system.

Permissions may be required when interacting with the
system API, databases, and the message-passing system.
The public API [2] describes 8, 648 methods, some of which
are protected by permissions. User data is stored in Con-
tent Providers, and permissions are required for operations
on some system Content Providers. For example, applica-
tions must hold the READ_CONTACTS permission in order to
execute READ queries on the Contacts Content Provider.
Applications may also need permissions to receive Intents
(i.e., messages) from the operating system. Intents notify
applications of events, such as a change in network connec-
tivity, and some Intents sent by the system are delivered
only to applications with appropriate permissions. Further-
more, permissions are required to send Intents that mimic
the contents of system Intents.

2.2 Permission Enforcement
We describe how the system API, Content Providers, and

Intents are implemented and protected. To our knowledge,
we are the first to describe the Android permission enforce-
ment mechanisms in detail.

2.2.1 The API
API Structure. The Android API framework is composed
of two parts: a library that resides in each application’s vir-
tual machine and an implementation of the API that runs in
the system process(es). The API library runs with the same
permissions as the application it accompanies, whereas the
API implementation in the system process has no restric-
tions. The library provides syntactic sugar for interacting
with the API implementation. API calls that read or change
global phone state are proxied by the library to the API im-
plementation in the system process.

API calls are handled in three steps (Figure 1). First, the
application invokes the public API in the library. Second,
the library invokes a private interface, also in the library.
The private interface is an RPC stub. Third, the RPC stub
initiates an RPC request with the system process that asks a
system service to perform the desired operation. For exam-
ple, if an application calls ClipboardManager.getText(),
the call will be relayed to IClipboard$Stub$Proxy, which
proxies the call to the system process’s ClipboardService.

An application can use Java reflection [19] to access all
of the API library’s hidden and private classes, methods,
and fields. Some private interfaces do not have any corre-
sponding public API; however, applications can still invoke
them using reflection. These non-public library methods
are intended for use by Google applications or the frame-
work itself, and developers are advised against using them
because they may change or disappear between releases [17].
Nonetheless, some applications use them. Java code running
in the system process is in a separate virtual machine and
therefore immune to reflection.
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Figure 1: The architecture of the Android platform. Permission checks occur in the system process.

Permissions. To enforce permissions, various parts of the
system invoke a permission validation mechanism to check
whether a given application has a specified permission. The
permission validation mechanism is implemented as part of
the trusted system process, and invocations of the permis-
sion validation mechanism are spread throughout the API.
There is no centralized policy for checking permissions when
an API is called. Rather, mediation is contingent on the cor-
rect placement of permission validation calls.

Permission checks are placed in the API implementation
in the system process. When necessary, the API implemen-
tation calls the permission validation mechanism to check
that the invoking application has the necessary permissions.
In some cases, the API library may also redundantly check
these permissions, but such checks cannot be relied upon:
applications can circumvent them by directly communicat-
ing with the system process via the RPC stubs. Permission
checks therefore should not occur in the API library. In-
stead, the API implementation in the system process should
invoke the permission validation mechanism.

A small number of permissions are enforced by Unix groups,
rather than the Android permission validation mechanism.
In particular, when an application is installed with the INTER-
NET, WRITE_EXTERNAL_STORAGE, or BLUETOOTH permissions, it
is assigned to a Linux group that has access to the pertinent
sockets and files. Thus, the Linux kernel enforces the access
control policy for these permissions. The API library (which
runs with the same rights as the application) can accordingly
operate directly on these sockets and files, without needing
to invoke the API implementation in the system process.

Native Code. Applications can include native code in ad-
dition to Java code, but native code is still beholden to the
permission system. Attempts to open sockets or files are me-
diated by Linux permissions. Native code cannot communi-
cate directly with the system API. Instead, the application
must create Java wrapper methods to invoke the API on
behalf of the native code. Android permissions are enforced
as usual when the API calls are executed.

2.2.2 Content Providers
System Content Providers are installed as standalone ap-

plications, separate from the system process and API library.
They are protected with both static and dynamic permission
checks, using the same mechanisms that are available to ap-
plications to protect their own Content Providers.

Static declarations assign separate read and write per-
missions to a given Content Provider. By default, these

permissions are applied to all resources stored by the Con-
tent Provider. Restrictions can also be applied at a finer
granularity by associating permissions with a path (e.g.,
content://a/b). For example, a Content Provider that
stores both public and private notes might want to set a
default permission requirement for the whole Content Pro-
vider, but then allow unrestricted access to the public notes.
Extra permission requirements can similarly be set for cer-
tain paths, making data under those paths accessible only
if the calling application has the default permissions for the
provider as well as the path-specific permissions.

Content Providers can also enforce permissions program-
matically: the Content Provider code that handles a query
can explicitly call the system’s permission validation mech-
anism to require certain permissions. This gives the devel-
oper greater control over the granularity of the permission
enforcement mechanism, allowing her to selectively require
permissions for query values or database data.

2.2.3 Intents
Android’s Intent system is used extensively for inter- and

intra-application communication. To prevent applications
from mimicking system Intents, Android restricts who may
send certain Intents. All Intents are sent through the Ac-
tivityManagerService (a system service), which enforces this
restriction. Two techniques are used to restrict the sending
of system Intent. Some Intents can only be sent by appli-
cations with appropriate permissions. Other system Intents
can only be sent by processes whose UID matches the sys-
tem’s. Intents in the latter category cannot be sent by appli-
cations, regardless of what permissions they hold, because
these Intents must originate from the system process.

Applications may also need permissions to receive some
system Intents. The OS uses the standard Android mecha-
nism for restricting its Intent recipients. An application (in
this case, the OS) may restrict who can receive an Intent by
attaching a permission requirement to the Intent [13].

3. PERMISSION TESTING
METHODOLOGY

Android’s access control policy is not well documented,
but the policy is necessary to determine whether applica-
tions are overprivileged. To address this shortcoming, we
empirically determined the access control policy that An-
droid enforces. We used testing to construct a permission
map that identifies the permissions required for each method
in the Android API. In particular, we modified Android 2.2’s



permission verification mechanism to log permission checks
as they occur. We then generated unit test cases for API
calls, Content Providers, and Intents. Executing these tests
allowed us to observe the permissions required to interact
with system APIs. A core challenge was to build unit tests
that obtain call coverage of all platform resources.

3.1 The API
As described in §2.2.1, the Android API provides applica-

tions with a library that includes public, private, and hidden
classes and methods. The set of private classes includes the
RPC stubs for the system services.1 All of these classes and
methods are accessible to applications using Java reflection,
so we must test them to identify permission checks. We con-
ducted testing in three phases: feedback-directed testing;
customizable test case generation; and manual verification.

3.1.1 Feedback-Directed Testing
For the first phase of testing, we used Randoop, an auto-

mated, feedback-directed, object-oriented test generator for
Java [20, 22]. Randoop takes a list of classes as input and
searches the space of possible sequences of methods from
these classes. We modified Randoop to run as an Android
application and to log every method it invokes. Our modi-
fications to Android log every permission that is checked by
the Android permission validation mechanism, which lets us
deduce which API calls trigger permission checks.

Randoop searches the space of methods to find methods
whose return values can be used as parameters for other
methods. It maintains a pool of valid initial input sequences
and parameters, initially seeded with primitive values (e.g.,
int and String). Randoop builds test sequences incremen-
tally by randomly selecting a method from the test class’s
methods and selecting sequences from the input pool to
populate the method’s arguments. If the new sequence is
unique, then it is executed. Sequences that complete suc-
cessfully (i.e., without generating an exception) are added
to the sequence pool. Randoop’s goal is full coverage of the
test space. Unlike comparable techniques [4,9,21], Randoop
does not need a sample execution trace as input, making
large-scale testing such as API fuzzing more manageable.
Because Randoop uses Java reflection to generate the test
methods from the supplied list of classes, it supports test-
ing non-public methods. We modified Randoop to also test
nested classes of the input classes.

Limitations. Randoop’s feedback-guided space exploration
is limited by the objects and input values it has access to.
If Randoop cannot find an object of the correct type needed
to invoke a method in the sequence pool, then it will never
try to invoke the method. The Android API is too large to
test all interdependent classes at once, so in practice many
objects are not available in the sequence pool. We mitigated
this problem by testing related classes together (for example,
Account and AccountManager) and adding seed sequences
that return common Android-specific data types. Unfortu-
nately, this was insufficient to produce valid input parame-
ters for many methods. Many singleton object instances can
only be created through API calls with specific parameters;

1The operating system also includes many internal methods
that make permission checks. However, applications cannot
invoke them because they are not currently exposed with
RPC stubs. Since we are focused on the application-facing
API, we do not test or discuss these permission checks.

for example, a WifiManager instance can be obtained by call-
ing android.content.Context.getSystemService(String)

with the parameter "wifi". We addressed this by augment-
ing the input pool with specific primitive constants and se-
quences. Additionally, some API calls expect memory ad-
dresses that store specific values for parameters, which we
were unable to solve at scale.

Randoop also does not handle ordering requirements that
are independent of input parameters. In some cases, An-
droid expects methods to precede each other in a very spe-
cific order. Randoop only generates sequence chains for the
purpose of creating arguments for methods; it is not able to
generate sequences to satisfy dependencies that are not in
the form of an input variable. Further aggravating this prob-
lem, many Android methods with underlying native code
generate segmentation faults if called out of order, which
terminates the Randoop testing process.

3.1.2 Customizable Test Case Generation
Randoop’s feedback-directed approach to testing failed to

cover certain types of methods. When this happened, there
was no way to manually edit its test sequences to control
sequence order or establish method pre-conditions. To ad-
dress these limitations and improve coverage, we built our
own test generation tool. Our tool accepts a list of method
signatures as input, and outputs at least one unit test for
each method. It maintains a pool of default input parame-
ters that can be passed to methods to be called. If multiple
values are available for a parameter, then our tool creates
multiple unit tests for that method. (Tests are created com-
binatorially when multiple parameters of the same method
have multiple possible values.) It also generates tests using
null values if it cannot find a suitable parameter. Because
our tool separates test case generation from execution, a hu-
man tester can edit the test sequences produced by our tool.
When tests fail, we manually adjust the order of method
calls, introduce extra code to satisfy method pre-conditions,
or add new parameters for the failing tests.

Our test generation tool requires more human effort than
Randoop, but it is effective for quickly achieving coverage
of methods that Randoop was unable to properly invoke.
Overseeing and editing a set of generated test cases pro-
duced by our tool is still substantially less work than manu-
ally writing test cases. Our experience with large-scale API
testing was that methods that are challenging to invoke by
feedback-directed testing occur often enough to be problem-
atic. When a human tester has the ability to edit failing
sequences, these methods can be properly invoked.

3.1.3 Manual Verification
The first two phases of testing generate a map of the per-

mission checks performed by each method in the API. How-
ever, these results contain three types of inconsistencies.
First, the permission checks caused by asynchronous API
calls are sometimes incorrectly associated with subsequent
API calls. Second, a method’s permission requirements can
be argument-dependent, in which case we see intermittent
or different permission checks for that method. Third, per-
mission checks can be dependent on the order in which API
calls are made. To identify and resolve these inconsistencies,
we manually verified the correctness of the permission map
generated by the first two phases of testing.



We used our customizable test generation tool to create
tests to confirm the permission(s) associated with each API
method in our permission map. We carefully experimented
with the ordering and arguments of the test cases to en-
sure that we correctly matched permission checks to asyn-
chronous API calls and identified the conditions of permis-
sion checks. When confirming permissions for potentially
asynchronous or order-dependent API calls, we also created
confirmation test cases for related methods in the perti-
nent class that were not initially associated with permission
checks. We ran every test case both with and without their
required permissions in order to identify API calls with mul-
tiple or substitutable permission requirements. If a test case
throws a security exception without a permission but suc-
ceeds with a permission, then we know that the permission
map for the method under test is correct.

Testing The Internet Permission. Applications can access
the Internet through the Android API, but other packages
such as java.net and org.apache also provide Internet ac-
cess. In order to determine which methods require access
to the Internet, we scoured the documentation and searched
the Internet for any and all methods that suggest Internet
access. Using this list, we wrote test cases to determine
which of those methods require the INTERNET permission.

3.2 Content Providers
Our Content Provider test application executes query,

insert, update, and delete operations on Content Pro-
vider URIs associated with the Android system and pre-
installed appliactions. We collected a list of URIs from the
android.provider package to determine the core set of Con-
tent Providers to test. We additionally collected Content
Provider URIs that we discovered during other phases of
testing. For each URI, we attempted to execute each type
of database operation without any permissions. If a security
exception was thrown, we recorded the required permission.
We added and tested combinations of permissions to iden-
tify multiple or substitutable permission requirements. Each
Content Provider was tested until security exceptions were
no longer thrown for a given operation, indicating the mini-
mum set of permissions required to complete that operation.
In addition to testing, we also examined the system Content
Providers’ static permission declarations.

3.3 Intents
We built a pair of applications to send and receive In-

tents. The Android documentation does not provide a sin-
gle, comprehensive list of the available system Intents, so we
scraped the public API to find string constants that could
be the contents of an Intent.2 We sent and received Intents
with these constants between our test applications. In order
to test the permissions needed to receive system broadcast
Intents, we triggered system broadcasts by sending and re-
ceiving text messages, sending and receiving phone calls,
connecting and disconnecting WiFi, connecting and discon-
necting Bluetooth devices, etc. For all of these tests, we
recorded whether permission checks occurred and whether
the Intents were delivered or received successfully.

2For those familiar with Android terminology, we searched
for Intent action strings.

4. PERMISSION MAP RESULTS
Our testing of the Android application platform resulted

in a permission map that correlates permission requirements
with API calls, Content Providers, and Intents. In this sec-
tion, we discuss our coverage of the API, compare our results
to the official Android documentation, and present charac-
teristics of the Android API and permission map.

4.1 Coverage
The Android API consists of 1, 665 classes with a total

of 16, 732 public and private methods. We attained 85%
coverage of the Android API through two phases of testing.
(We define a method as covered if we executed it without
generating an exception; we do not measure branch cover-
age.) Randoop attained an initial method coverage of 60%,
spread across all packages. We supplemented Randoop’s
coverage with our proprietary test generation tool, accom-
plishing close to 100% coverage of the methods that belong
to classes with at least one permission check.

The uncovered portion of the API is due to native calls
and the omission of second-phase tests for packages that did
not yield permission checks in the first phase. First, native
methods often crashed the application when incorrect pa-
rameters were supplied, making them difficult to test. Many
native method parameters are integers that represent point-
ers to objects in native code, making it difficult to supply
correct parameters. Approximately one-third of uncovered
methods are native calls. Second, we decided to omit sup-
plemental tests for packages that did not reveal permission
checks during the Randoop testing phase. If Randoop did
not trigger at least one permission check in a package, we
did not add more tests to the classes in the package.

4.2 Comparison With Documentation
Clear and well-developed documentation promotes correct

permission usage and safe programming practices. Errors
and omissions in the documentation can lead to incorrect
developer assumptions and overprivilege. Android’s docu-
mentation of permissions is limited, which is likely due to
their lack of a centralized access control policy. Our test-
ing identified 1, 259 API calls with permission checks. We
compare this to the Android 2.2 documentation.

We crawled the Android 2.2 documentation and found
that it specifies permission requirements for 78 methods.
The documentation additionally lists permissions in several
class descriptions, but it is not clear which methods of the
classes require the stated permissions. Of the 78 permission-
protected API calls in the documentation, our testing indi-
cates that the documentation for 6 API calls is incorrect. It
is unknown to us whether the documentation or implemen-
tation is wrong; if the documentation is correct, then these
discrepancies may be security errors.

Three of the documentation errors list a different permis-
sion than was found through testing. In one place, the doc-
umentation claims an API call is protected by the Danger-
ous permission MANAGE_ACCOUNTS, when it actually can be
accessed with the lower-privilege Normal permission GET_

ACCOUNTS. Another error claims an API call requires the
ACCESS_COARSE_UPDATES permission, which does not exist.
As a result, 5 of the 900 applications that we study in §6.2
request this non-existent permission. A third error states
that a method is protected with the BLUETOOTH permission,
when the method is in fact protected with BLUETOOTH_ADMIN.



Permission Usage
BLUETOOTH 85
BlUETOOTH_ADMIN 45
READ_CONTACTS 38
ACCESS_NETWORK_STATE 24
WAKE_LOCK 24
ACCESS_FINE_LOCATION 22
WRITE_SETTINGS 21
MODIFY_AUDIO_SETTINGS 21
ACCESS_COARSE_LOCATION 18
CHANGE_WIFI_STATE 16

Table 1: Android’s 10 most checked permissions.

The other three documentation errors pertain to methods
with multiple permission requirements. In one error, the
documentation claims that a method requires one permis-
sion, but our testing shows that two are required. For the
last two errors, the documentation states that two methods
require one permission each; in practice, however, the two
methods both accept two permissions (i.e., they are ORs).

4.3 Characterizing Permissions
Based on our permission map, we characterize how per-

mission checks are distributed throughout the API.

4.3.1 API Calls
We examined the Android API to see how many methods

and classes have permission checks. We present the number
of permission checks, unused permissions, hierarchical per-
missions, permission granularity, and class characteristics.

Number of Permissions Checks. We identified 1, 244
API calls with permission checks, which is 6.45% of all API
methods (including hidden and private methods). Of those,
816 are methods of normal API classes, and 428 are methods
of RPC stubs that are used to communicate with system ser-
vices. We additionally identified 15 API calls with permis-
sion checks in a supplementary part of the API added by a
manufacturer, for a total of 1, 259 API calls with permission
checks. Table 1 provides the rates of the most commonly-
checked permissions for the normal API.

Signature/System Permissions. We found that 12% of
the normal API calls are protected with Signature/System
permissions, and 35% of the RPC stubs are protected with
Signature/System permissions. This effectively limits the
use of these API calls to pre-installed applications.

Unused Permissions. We found that some permissions
are defined by the platform but never used within the API.
For example, the BRICK permission is never used, despite
being oft-cited as an example of a particularly dire permis-
sion [26]. The only use of the BRICK permission is in dead
code that is incapable of causing harm to the device. Our
testing found that 15 of the 134 Android-defined permis-
sions are unused. For each case where a permission was
never found during testing, we searched the source tree to
verify that the permission is not used. After examining sev-
eral devices, we discovered that one of the otherwise unused
permissions is used by the custom classes that HTC and
Samsung added to the API to support 4G on their phones.

Hierarchical Permissions. The names of many permis-
sions imply that there are hierarchical relationships between
them. Intuitively, we expect that more powerful permissions

should be substitutable for lesser permissions relating to the
same resource. However, we find no evidence of planned hi-
erarchy. Our testing indicates that BLUETOOTH_ADMIN is not
substitutable for BLUETOOTH, nor is WRITE_CONTACTS substi-
tutable for READ_CONTACTS. Similarly, CHANGE_WIFI_STATE

cannot be used in place of ACCESS_WIFI_STATE.
Only one pair of permissions has a hierarchical relation-

ship: ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION.
Every method that accepts the COARSE permission also ac-
cepts FINE as a substitute. We found only one exception to
this, which may be a bug: TelephonyManager.listen() ac-
cepts either ACCESS_COARSE_LOCATION or READ_PHONE_STATE,
but it does not accept ACCESS_FINE_LOCATION.

Permission Granularity. If a single permission is applied
to a diverse set of functionality, applications that request the
permission for a subset of the functionality will have unnec-
essary access to the rest. Android aims to prevent this by
splitting functionality into multiple permissions when possi-
ble, and their approach has been shown to benefit platform
security [15]. As a case study, we examine the division of
Bluetooth functionality, as the Bluetooth permissions are
the most heavily checked permissions.

We find that the two Bluetooth permissions are applied
to 6 large classes. They are divided between methods that
change state (BLUETOOTH_ADMIN) and methods that get de-
vice information (BLUETOOTH). The BluetoothAdapter class
is one of several that use the Bluetooth permissions, and
it appropriately divides most of its permission assignments.
However, it features some inconsistencies. One method only
returns information but requires the BLUETOOTH_ADMIN per-
mission, and another method changes state but requires
both permissions. This type of inconsistency may lead to
developer confusion about which permissions are required
for which types of operations.

Class Characteristics. Figure 2 presents the percentage
of methods that are protected per class. We initially ex-
pected that the distribution would be bimodal, with most
classes protected entirely or not at all. Instead, however, we
see a wide array of class protection rates. Of these classes,
only 8 require permissions to instantiate an object, and 4 re-
quire permissions only for the object constructor.
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Figure 2: A histogram of the number of classes,
sorted by the percentage of the classes’ methods that
require permissions. The numbers shown represent
ranges, i.e., 10% represents [10− 20%). We only con-
sider classes with at least 1 permission check.



4.3.2 Content Providers and Intents
We examined Content Providers to determine whether

they are protected by permissions. We investigated a total
of 62 Content Providers. We found that there are 18 Con-
tent Providers that do not have permissions for any of the
methods that we tested (insert, query, update, and delete).
All of the Content Providers that lack permissions are asso-
ciated with the content://media content URI.

We examined Intent communication and measured whether
permissions are required for sending and receiving Intents.
When sending broadcast Intents, 62 broadcasts are prohib-
ited by non-system senders, 6 require permissions before
sending the Intent, and 2 can be broadcast but not received
by system receivers. Broadcast receivers must have permis-
sions to receive 23 broadcast Intents, of which 14 are pro-
tected by a Bluetooth permission. When sending Intents
to start Activities, 7 Intent messages require permissions.
When starting Services, 2 Intents require permissions.

5. APPLICATION ANALYSIS TOOL
We built a static analysis tool, Stowaway, which analyzes

an Android application and determines the maximum set of
permissions it may require. Stowaway analyzes the applica-
tion’s use of API calls, Content Providers, and Intents and
then uses the permission map built in §3 to determine what
permissions those operations require.

Compiled applications for the Android platform include
Dalvik executable (DEX) files that run on Android’s Dalvik
Virtual Machine. We disassemble application DEX files us-
ing the publicly available Dedexer tool [23]. Each stage of
Stowaway takes the disassembled DEX as input.

5.1 API Calls
Stowaway first parses the disassembled DEX files and iden-

tifies all calls to standard API methods. Stowaway tracks
application-defined classes that inherit methods from An-
droid classes so we can differentiate between invocations of
application-defined methods and Android-defined inherited
methods. We use heuristics to handle Java reflection and
two unusual permissions.

Reflection. Java reflection is a challenging problem [6, 18,
24]. In Java, methods can be reflectively invoked with java.

lang.reflect.Method.invoke() or java.lang.reflect.

Constructor.newInstance(). Stowaway tracks which Class
objects and method names are propagated to the reflec-
tive invocation. It performs flow-sensitive, intra-procedural
static analysis, augmented with inter-procedural analysis to
a depth of 2 method calls. Within each method body, it
tracks the value of each String, StringBuilder, Class, Method,
Constructor, Field, and Object. We also track the state of
static member variables of these types. We identify method
calls that convert strings and objects to type Class, as well
as method calls that convert Class objects to Methods, Con-
structors, and Fields.

We also apply Android-specific heuristics to resolving re-
flection by handling methods and fields that may affect re-
flective calls. We cannot model the behavior of the en-
tire Android and Java APIs, but we identify special cases.
First, Context.getSystemService(String) returns differ-
ent types of objects depending on the argument. We main-
tain a mapping of arguments to the types of return objects.
Second, some API classes contain private member variables

that hold references to hidden interfaces. Applications can
only access these member variables reflectively, which ob-
scures their type information. We created a mapping be-
tween member variables and their types and propagate the
type data accordingly. If an application subsequently ac-
cesses methods on a member variable after retrieving it, we
can resolve the member variable’s type.

Internet. Any application that includes a WebView must
have the Internet permission. A WebView is a user interface
component that allows an application to embed a web site
into its UI. WebViews can be instantiated programmatically
or declared in XML files. Stowaway identifies programmatic
instantiations of WebViews. It also decompiles application
XML files and parses them to detect WebView declarations.

External Storage. If an application wants to access files
stored on the SD card, it must have the WRITE_EXTERNAL_

STORAGE permission. This permission does not appear in
our permission map because it (1) is enforced entirely using
Linux permissions and (2) can be associated with any file
operation or API call that accesses the SD card from within
the library. We handle this permission by searching the ap-
plication’s string literals and XML files for strings that con-
tain sdcard; if any are found, we assume WRITE_EXTERNAL_

STORAGE is needed. Additionally, we assume this permission
is needed if we see API calls that return paths to the SD card,
such as Environment.getExternalStorageDirectory().

5.2 Content Providers
Content Providers are accessed by performing a database

operation on a URI. Stowaway collects all strings that could
be used as Content Provider URIs and links those strings to
the Content Providers’ permission requirements. Content
Provider URIs can be obtained in two ways:

1. A string or set of strings can be passed into a method
that returns a URI. For example, the API call android.
net.Uri.parse("content://browser/bookmarks") re-
turns a URI for accessing the Browser bookmarks. To
handle this case, Stowaway finds all string literals that
begin with content://.

2. The API provides Content Provider helper classes that
include public URI constants. For example, the value
of android.provider.Browser.BOOKMARKS_URI is
content://browser/bookmarks. Stowaway recognizes
known URI constants, and we created a mapping from
all known URI constants to their string values.

A limitation of our tool is that we cannot tell which database
operations an application performs with a URI; there are
many ways to perform an operation on a Content Provider,
and users can set their own query strings. To account for
this, we say that an application may require any permission
associated with any operation on a given Content Provider
URI. This provides an upper bound on the permissions that
could be required in order to use a specific Content Provider.

5.3 Intents
We use ComDroid [8] to detect the sending and receiv-

ing of Intents that require permissions. ComDroid performs
flow-sensitive, intra-procedural static analysis, augmented
with limited inter-procedural analysis that follows method
invocations to a depth of one method call. ComDroid tracks
the state of Intents, registers, sinks (e.g., sendBroadcast),
and application components. When an Intent object is in-



stantiated, passed as a method parameter, or obtained as
a return value, ComDroid tracks all changes to it from its
source to its sink and outputs all information about the In-
tent and all components expecting to receive messages.

Stowaway takes ComDroid’s output and, for each sent In-
tent, checks whether a permission is required to send that
Intent. For each Intent that an application is registered to
receive, Stowaway checks whether a permission is required
to receive the Intent. Occasionally ComDroid is unable to
identify the message or sink of an Intent. To mitigate these
cases, Stowaway searches for protected Intents in the list of
all string literals in the application.

6. APPLICATION ANALYSIS RESULTS
We applied Stowaway to 940 Android applications to iden-

tify the prevalence of overprivilege. Applications with un-
necessary permissions violate the principle of least privilege.
Overprivilege undermines the benefits of a per-application
permission system: extra permissions unnecessarily condi-
tion users to casually accept dangerous permissions and need-
lessly exacerbate application vulnerabilities.

Stowaway calculates the maximum set of Android permis-
sions that an application may need. We compare that set to
the permissions actually requested by the application. If the
application requests more permissions, then it is overprivi-
leged. Our full set of applications consists of 964 Android
2.2 applications.3 We set aside 24 randomly selected appli-
cations for tool testing and training, leaving 940 for analysis.

6.1 Manual Analysis

6.1.1 Methodology
We randomly selected 40 applications from the set of 940

and ran Stowaway on them. Stowaway identified 18 appli-
cations as overprivileged. We then manually analyzed each
overprivilege warning to attribute it to either tool error (i.e.,
a false positive) or developer error. We looked for false pos-
itives due to three types of failures:

1. Stowaway misses an API, Content Provider, or Intent
operation that needs a permission. For example, Stow-
away misses an API call when it cannot resolve the
target of a reflective call.

2. Stowaway correctly identifies the API, Content Pro-
vider, or Intent operation, but our permission map
lacks an entry for that platform resource.

3. The application sends an Intent to some other ap-
plication, and the recipient accepts Intents only from
senders with a certain permission. Stowaway cannot
detect this case because we cannot determine the per-
mission requirements of other non-system applications.

We reviewed the 18 applications’ bytecode, searching for
any of these three types of error. If we found functionality
that could plausibly pertain to a permission that Stowaway
identified as unnecessary, we manually wrote additional test
cases to confirm the accuracy of our permission map. We
investigated the third type of error by checking whether the
application sends Intents to pre-installed or well-known ap-
plications. When we determined that a warning was not a
false positive, we attempted to identify why the developer
had added the unnecessary permission.
3In October 2010, we downloaded the 100 most popular paid
applications, the 764 most popular free applications, and 100
recently added free applications from the Android Market.

We also analyzed overprivilege warnings by running the
application in our modified version of Android (which records
permission checks as they occur) and interacting with it. It
was not possible to test all applications at runtime; for ex-
ample, some applications rely on server-side resources that
have moved or changed since we downloaded them. We were
able to test 10 of the 18 application in this way. In each case,
runtime testing confirmed the results of our code review.

6.1.2 False Positives
Stowaway identified 18 of the 40 applications (45%) as

having 42 unnecessary permissions. Our manual review de-
termined that 17 applications (42.5%) are overprivileged,
with a total of 39 unnecessary permissions. This represents
a 7% false positive rate.

All three of the false warnings were caused by incom-
pleteness in our permission map. Each was a special case
that we failed to anticipate. Two of the three false positives
were caused by applications using Runtime.exec to execute
a permission-protected shell command. (For example, the
logcat command performs a READ_LOGS permission check.)
The third false positive was caused by an application that
embeds a web site that uses HTML5 geolocation, which re-
quires a location permission. We wrote test cases for these
scenarios and updated our permission map.

Of the 40 applications in this set, 4 contain at least one
reflective call that our static analysis tool cannot resolve or
dismiss. 2 of them are overprivileged. This means that 50%
of the applications with at least one unresolved reflective call
are overprivileged, whereas other applications are overpriv-
ileged at a rate of 42%. However, a sample size of 4 is too
small to draw conclusions. We investigated the unresolved
reflective calls and do not believe they led to false positives.

6.2 Automated Analysis
We ran Stowaway on 900 Android applications. Over-

all, Stowaway identified 323 applications (35.8%) as hav-
ing unnecessary permissions. Stowaway was unable to re-
solve some applications’ reflective calls, which might lead
to a higher false positive rate in those applications. Con-
sequently, we discuss applications with unresolved reflective
calls separately from other applications.

6.2.1 Applications With Fully Handled Reflection
Stowaway was able to handle all reflective calls for 795 of

the 900 applications, meaning that it should have identified
all API access for those applications. Stowaway produces
overprivilege warnings for 32.7% of the 795 applications. Ta-
ble 2 shows the 10 most common unnecessary permissions
among these applications.

56% of overprivileged applications have 1 extra permis-
sion, and 94% have 4 or fewer extra permissions. Although
one-third of applications are overprivileged, the low degree
of per-application overprivilege indicates that developers are
attempting to add correct permissions rather than arbitrar-
ily requesting large numbers of unneeded permissions. This
supports the potential effectiveness of install-time permis-
sion systems like Android’s.

We believe that Stowaway should produce approximately
the same false positive rate for these applications as it did
for the set of 40 that we evaluated in §6.1. If we assume
that the 7% false positive rate from our manual analysis
applies to these results, then 30.4% of the 795 applications



Permission Usage
ACCESS_NETWORK_STATE 16%
READ_PHONE_STATE 13%
ACCESS_WIFI_STATE 8%
WRITE_EXTERNAL_STORAGE 7%
CALL_PHONE 6%
ACCESS_COARSE_LOCATION 6%
CAMERA 6%
WRITE_SETTINGS 5%
ACCESS_MOCK_LOCATION 5%
GET_TASKS 5%

Table 2: The 10 most common unnecessary permis-
sions and the percentage of overprivileged applica-
tions that request them.

Apps with Total
Warnings Apps Rate

Reflection, failures 56 105 53%
Reflection, no failures 151 440 34%
No reflection 109 355 31%

Table 3: The rates at which Stowaway issues over-
privilege warnings, by reflection status.

are truly overprivileged. Applications could also be more
overprivileged in practice than indicated by our tool, due to
unreachable code. Stowaway does not perform dead code
elimination; dead code elimination for Android applications
would need to take into account the unique Android lifecycle
and application entry points. Additionally, our overapprox-
imation of Content Provider operations (§5.2) might over-
look some overprivilege. We did not quantify Stowaway’s
false negative rate, and we leave dead code elimination and
improved Content Provider string tracking to future work.

6.2.2 The Challenges of Java Reflection
Reflection is commonly used in Android applications. Of

the 900 applications, 545 (61%) use Java reflection to make
API calls. We found that reflection is used for many pur-
poses, such as to deserialize JSON and XML, invoke hidden
or private API calls, and handle API classes whose names
changed between versions. The prevalence of reflection indi-
cates that it is important for an Android static analysis tool
to handle Java reflection, even if the static analysis tool is
not intended for obfuscated or malicious code.

Stowaway was able to fully resolve the targets of reflective
calls in 59% of the applications that use reflection. We han-
dled a further 117 applications with two techniques: elim-
inating failures where the target class of the reflective call
was known to be defined within the application, and man-
ually examining and handling failures in 21 highly popular
libraries. This left us with 105 applications with reflective
calls that Stowaway could not resolve or dismiss, which is
12% of the 900 applications.

Stowaway identifies 53.3% of the 105 applications as over-
privileged. Table 3 compares this to the rate at which warn-
ings are issued for applications without unhandled reflec-
tions. There are two possible explanations for the difference:
Stowaway might have a higher false positive rate in appli-
cations with unresolved reflective calls, or applications that
use Java reflection in complicated ways might have a higher
rate of actual overprivilege due to a correlated trait.

We suspect that both factors play a role in the higher over-
privilege warning rate in applications with unhandled reflec-

tive calls. Although our manual review (§6.1) did not find
that reflective failures led to false positives, a subsequent re-
view of additional applications identified several erroneous
warnings that were caused by reflection. On the other hand,
developer error may increase with the complexity associated
with complicated reflective calls.

Improving the resolution of reflective calls in Android ap-
plications is an important open problem. Stowaway’s re-
flection analysis fails when presented with the creation of
method names based on non-static environment variables,
direct generation of Dalvik bytecode, arrays with two point-
ers that reference the same location, or Method and Class

objects that are stored in hash tables. Stowaway’s primar-
ily linear traversal of a method also experiences problems
with non-linear control flow, such as jumps; we only handle
simple gotos that appear at the ends of methods. We also
observed several applications that iterate over a set of classes
or methods, testing each element to decide which one to in-
voke reflectively. If multiple comparison values are tested
and none are used within the block, Stowaway only tracks
the last comparison value beyond the block; this value may
be null. Future work may be able to solve some of these
problems, possibly with the use of dynamic analysis.

6.3 Common Developer Errors
In some cases, we are able to determine why developers

asked for unnecessary permissions. Here, we consider the
prevalence of different types of developer error among the
40 applications from our manual review and the 795 fully
handled applications from our automated analysis.

Permission Name. Developers sometimes request permis-
sions with names that sound related to their applications’
functionality, even if the permissions are not required. For
example, one application from our manual review unnec-
essarily requests the MOUNT_UNMOUNT_FILESYSTEMS permis-
sion to receive the android.intent.action.MEDIA_MOUNTED

Intent. As another example, the ACCESS_NETWORK_STATE

and ACCESS_WIFI_STATE permissions have similar-sounding
names, but they are required by different classes. Develop-
ers often request them in pairs, even if only one is necessary.
Of the applications that unnecessarily request the network
permission, 32% legitimately require the WiFi permission.
Of the applications that unnecessarily request the WiFi per-
mission, 71% legitimately need the network permission.

Deputies. An application can send an Intent to another
deputy application, asking the deputy to perform an op-
eration. If the deputy makes a permission-protected API
call, then the deputy needs a permission. The sender of the
Intent, however, does not. We noticed instances of appli-
cations requesting permissions for actions that they asked
deputies to do. For example, one application asks the An-
droid Market to install another application. The sender asks
for INSTALL_PACKAGES, which it does not need because the
Market application does the installation.

We find widespread evidence of this type of error. Of the
applications that unnecessarily request the CAMERA permis-
sion, 81% send an Intent that opens the default Camera
application to take a picture. 82% of the applications that
unnecessarily request INTERNET send an Intent that opens a
URL in the browser. Similarly, 44% of the applications that
unnecessarily request CALL_PHONE send an Intent to the de-
fault Phone Dialer application.



Related Methods. As shown in Figure 2, most classes con-
tain a mix of permission-protected and unprotected meth-
ods. We have observed applications that use unprotected
methods but request permissions that are required for other
methods in the same class. For example, android.provider.
Settings.Secure is a convenience class in the API for ac-
cessing the Settings Content Provider. The class includes
both setters and getters. The setters require the WRITE_

SETTINGS permission, but the getters do not. Two of the
applications that we manually reviewed use only the getters
but request the WRITE_SETTINGS permission.

Copy and Paste. Popular message boards contain An-
droid code snippets and advice about permission require-
ments. Sometimes this information is inaccurate, and de-
velopers who copy it will overprivilege their applications.
For example, one of the applications that we manually re-
viewed registers to receive the android.net.wifi.STATE_

CHANGE Intent and requests the ACCESS_WIFI_STATE permis-
sion. As of May 2011, the third-highest Google search re-
sult for that Intent contains the incorrect assertion that it
requires that permission [25].

Deprecated Permissions. Permissions that are unneces-
sary in Android 2.2 could be necessary in older Android re-
leases. Old or backwards-compatible applications therefore
might have seemingly extra permissions. However, develop-
ers may also accidentally use these permissions because they
have read out-of-date material. 8% of the overprivileged ap-
plications request either ACCESS_GPS or ACCESS_LOCATION,
which were deprecated in 2008. Of those, all but one specify
that their lowest supported API version is higher than the
last version that included those permissions.

Testing Artifacts. A developer might add a permission
during testing and then forget to remove it when the test
code is removed. For example, ACCESS_MOCK_LOCATION is
typically used only for testing but can be found in released
applications. All of the applications in our data set that un-
necessarily include the ACCESS_MOCK_LOCATION permission
also include a real location permission.

Signature/System Permissions. We find that 9% of
overprivileged applications request unneeded Signature or
SignatureOrSystem permissions. Standard versions of An-
droid will silently refuse to grant those permissions to appli-
cations that are not signed by the device manufacturer. The
permissions were either requested in error, or the developers
removed the related code after discovering it did not work
on standard handsets.

We can attribute many instances of overprivilege to de-
veloper confusion over the permission system. Confusion
over permission names, related methods, deputies, and dep-
recated permissions could be addressed with improved API
documentation. To avoid overprivilege due to related meth-
ods, we recommend listing permission requirements on a
per-method (rather than per-class) basis. Confusion over
deputies could be reduced by clarifying the relationship be-
tween permissions and pre-installed system applications.

Despite the number of unnecessary permissions that we
can attribute to error, it is possible that some developers
request extra permissions intentionally. Developers are in-
centivized to ask for unnecessary permissions because ap-
plications will not receive automatic updates if the updated
version of the application requests more permissions [15].

7. RELATED WORK
Android Permissions. Previous studies of Android ap-
plications have been limited in their understanding of per-
mission usage. Our permission map can be used to greatly
increase the scope of application analysis. Enck et al. apply
Fortify’s Java static analysis tool to decompiled applications;
they study their API use [11]. However, they are limited to
studying applications’ use of a small number of permissions
and API calls. In a recent study, Felt et al. manually classify
a small set of Android applications as overprivileged or not,
but they were limited by the Android documentation [15].
Kirin [12] reads application permission requirements dur-
ing installation and checks them against a set of security
rules. They rely solely on developer permission requests,
rather than examining whether or how permissions are used
by applications. Barrera et al. examine 1, 100 Android ap-
plications’ permission requirements and use self-organizing
maps to visualize which permissions are used in applications
with similar characteristics [5]. Their work also relies on the
permissions requested by the applications.

Vidas et al. [27] provide a tool that performs an overpriv-
ilege analysis on application source code. Their tool could
be improved by using our permission map; theirs is based
on the limited Android documentation. Our static analysis
tool also performs a more sophisticated application analysis.
Unlike their Eclipse plugin, Stowaway attempts to handle
reflective calls, Content Providers, and Intents.

In concurrent work, Gibler et al. [16] applied static anal-
ysis to the Android API to find permission checks. Their
permission map includes internal methods within the sys-
tem process that are not reachable across the RPC bound-
ary, which we excluded because applications cannot access
them. Unlike our dynamic approach, their static analysis
might have false positives, will miss permission checks in
native code, and will miss Android-specific control flow.

Java Testing. Randoop is not the only Java unit test gen-
eration tool. Tools like Eclat [21], Palulu [4] and JCrasher [9]
work similarly but require an example execution as input.
Given the size of the Android API, building such an example
execution would be a challenge. Enhanced JUnit [14] gen-
erates tests by chaining constructors to some fixed depth.
However, it does not use subtyping to provide instances and
relies on bytecode as input. Korat [7] requires formal specifi-
cations of methods as input, which is infeasible for post-facto
testing of the Android API.

Java Reflection. Handling Java reflection is necessary to
develop sound and complete program analyses. However, re-
solving reflective calls is an area of open research. Livshits et
al. created a static algorithm which approximates reflective
targets by tracking string constants passed to reflections [18].
Their approach falls short when the reflective call depends
on user input or environment variables. We use the same ap-
proach and suffer from the same limitations. They improve
their results with developer annotations, which is not a fea-
sible approach for our domain. A more advanced technique
combines static analysis with information about the environ-
ment of the Java program in order to resolve reflections [24].
However, their results are sound only if the program is exe-
cuted in an identical environment as the original evaluation.
Even with their modifications, they are able to resolve only
74% of reflective calls in the Java 1.4 API. We do not claim



to improve the state of the art in resolving Java reflection;
instead, we focus on domain-specific heuristics for how re-
flection is used in Android applications. We are the first to
discuss reflection in Android applications.

8. CONCLUSION
In this paper, we developed tools to detect overprivilege in

Android applications. We applied automated testing tech-
niques to Android 2.2 to determine the permissions required
to invoke each API method. Our tool, Stowaway, generates
the maximum set of permissions needed for an application
and compares them to the set of permissions actually re-
quested. Currently, Stowaway is unable to handle some
complex reflective calls, and we identify Java reflection as an
important open problem for Android static analysis tools.

We applied Stowaway to 940 Android applications and
found that about one-third of them are overprivileged. Our
results show that applications generally are overprivileged
by only a few permissions, and many extra permissions can
be attributed to developer confusion. This indicates that
developers attempt to obtain least privilege for their appli-
cations but fall short due to API documentation errors and
lack of developer understanding.
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