
This is the second in a two part-series where we explore the use of averages in performance
analysis and capacity planning. Part 1 described some simple experiments that revealed
how the load averages (the LA Triplets) are calculated in the UNIX kernel. In Part 2, I’ll
compare the UNIX load averaging approach with other averaging methods as they apply to
capacity planning and performance analysis.

UNIX Load Average
Part 2:
Not Your Average Average

About the Author
Neil J. Gunther, M.Sc., Ph.D., is an internationally known computer
performance and IT researcher who founded Performance
Dynamics in 1994. Dr. Gunther was awarded Best Technical Paper
at CMG’96 and received the prestigious A.A. Michelson Award at
CMG’08. In 2009 he was elected Senior Member of both ACM and
IEEE. His latest thinking can be read on his blog at perfdynamics.
blogspot.com

http://www.youtube.com/user/TeamQuestOptimizesIT
http://www.teamquest.com/blog
http://twitter.com/TeamQuest_Corp
http://www.linkedin.com/groups?home=&gid=984207&trk=anet_ug_hm

1. Recap of Part 1

This is the second in a two part-series where I explore the use of averages in performance analysis
and capacity planning. There are many manifestations of averages e.g., arithmetic average (the
usual one), moving average (often used in financial planning), geometric average (used in the
SPEC CPU benchmarks), harmonic average (not used enough), just to name a few.

In Part 1, I described some simple experiments that revealed how the load averages (the LA
Triplets) are calculated in the UNIX® kernel (well, the Linux kernel anyway since that source
code is available online). We discovered a C-macro called CALC_LOAD that does all the work.
Taking the 1-minute average as the example, CALC_LOAD is identical to the mathematical
expression:

load(t) = load(t - 1) e-5/60 + n(1 - e-5/60)		 (1)

which corresponds to an exponentially-damped moving average. It says that your current load is
equal to the load you had last time (decayed by an exponential factor appropriate for 1-minute
reporting) plus the number of currently active processes (weighted by a exponentially increasing
factor appropriate for 1-minute reporting). The only difference between the 1-minute load
average shown here and the 5- and 15-minute load averages is the value of the exponential
factors; the magic numbers I discussed in Part 1.

Another point I made in Part 1 was that we, as performance analysts, would be better off if the
LA Triplets were reported in the reverse order: 15, 5, 1, because that ordering concurs with
usual convention that temporal order flows left to right. In this way it would be easier to read
the LA Triplets as a trend (which was part of the original intent, I suspect).

Here, in Part 2, I’ll compare the UNIX load averaging approach with other averaging methods
as they apply to capacity planning and performance analysis.

2. Exponential Smoothing

Exponential smoothing (also called filtering by electrical engineering types) is a general purpose
way of prepping highly variable data before further analysis. Filters of this type are available
in most data analysis tools such as: EXCEL, Mathematica, and Minitab.

The smoothing equation is an iterative function that has the general form:

2 of 9 UNIX Load Average — Part 2 White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

http://www.teamquest.com/resources/gunther/display/5/index.htm

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

where X(t) is the input raw data, Y(t - 1) is the value due to the previous smoothing iteration
and Y(t) is the new smoothed value. If it looks a little incestuous, it’s supposed to be.

2.1 Smooth Loads

Expressing the UNIX load average method (see equation (1)) in the same format produces:

load(t) = load(t-1) + EXP_R [n(t) - load(t-1)]		 (3)

Eqn.(3) is equivalent to (2) if we chose EXP_R = 1 - a. The constant a is called the smoothing
constant and can range between 0.0 and 1.0 (in other words, you can think of it as a percentage).
EXCEL uses the terminology damping factor for the quantity (1 - a).

The value of a determines the percentage by which the current smoothing iteration should
for changes in the data that produced the previous smoothing iteration. Larger values of a
yield a more rapid response to changes in the data but produce coarser rather than smoother
resultant curves (less damped). Conversely, smaller values of a produce very smoother curves
but take much longer to compensate for fluctuations in the data (more damped). So, what
value of a should be used?

2.2 Critical Damping

EXCEL documentation suggests 0.20 to 0.30 are ``reasonable’’ values to choose for a. This is
a patently misleading statement because it does not take into account how much variation in
the data (e.g., error) you are prepared to tolerate.

From the analysis in Section 1 we can now see that EXP_R plays the role of a damping factor
in the UNIX load average. The UNIX load average is therefore equivalent to an exponentially-
damped moving average. The more usual moving average (of the type often used by financial
analysts) is just a simple arithmetic average with over some number of data points.

The following Table 1 shows the respective smoothing and damping factors that are based on
the magic numbers described in Part 1.

3 of 9 UNIX Load Average — Part 2

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

The value of a is calculated from 1 - exp(-5/60R) where R = 1, 5 or 15. From Table 1 we see
that the bigger the correction for variation in the data (i.e., aR), the more responsive the result
is to those variations and therefore we see less damping (1 - aR) in the output.

This is why the 1-minute reports respond more quickly to changes in load than do the 15-minute
reports. Note also, that the largest correction for the UNIX load average is about 8% for the
1-minute report and is nowhere near the 20% or 30% suggested by EXCEL.

3. Other Averages

Next, we compare these time-dependent smoothed averages with some of the more familiar
forms of averaging used in performance analysis and capacity planning.

3.1 Steady-State Averages

The most commonly used average used in capacity planning, benchmarking and other kinds
of performance modeling, is the steady-state average.

Figure 1: Load averages represented as a time series.

In terms of the UNIX load average, this would correspond to observing the reported loads over
a sufficiently long time (T) much as shown in Fig. 1.

Note that sysadmins almost never use the load average metrics in this way. Part of the reason
for that avoidance lies in the fact that the LA metrics are embedded inside other commands
(which vary across UNIX platforms) and need to be extracted. TeamQuest IT Service Analyzer is
an excellent example of the way in which such classic limitations in traditional UNIX performance
tools have been partially circumvented.

4 of 9 UNIX Load Average — Part 2

http://www.teamquest.com/solutions-products/products/it-service-analyzer/index.htm

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

3.2 Example Application

To determine the steady-state average for the above time series we would first need to break
up the area under the plot into set of uniform columns of equal width.

•	 The width of each column corresponds to uniform time step ∆t.
•	 The height of each column corresponds to Q(∆t) the instantaneous queue length.
•	 The area of each column is given by Q(∆t) * ∆t (length * height).
•	 The total area under the curve is ∑Q(∆t) * ∆t

The time-averaged queue length Q (the steady-state value) is then approximated by the
fraction:

The longer the observation period, the more accurate the steady-state value.

Fig. 2 makes this idea more explicit. It shows a time period where six request become enqueued
(the black curve representing approximate columns).

Figure 2: Toy model with exponential smoothing for the 1-minute load average.

Superimposed over the top is the curve that corresponds to the 1-minute load average.

5 of 9 UNIX Load Average — Part 2

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Figure 3: All three load average curves.

Fig. 3 shows all three load average metrics superimposed as well as the 5-second sample
average.

3.3 Little’s Law

Consider the UNIX Timeshare scheduler.

Figure 4: Simple model of UNIX scheduler.

The schematic in Fig. 4 depicts the scheduler states according to the usual UNIX
conventions:

•	 N: processes in the system
•	 R: running or runable processes
•	 D: uninterruptible processes
•	 S: processes in a sleep state

6 of 9 UNIX Load Average — Part 2

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

Applying steady-state averages of the type defined in Section 3.1 to other well-known
performance metrics, such as:

•	 Z: average time spent in sleep state
•	 X: average process completion rate
•	 S: average execution quantum (in CPU ticks)
•	 W: total time spent in both running and runable state

allows us to express some very powerful relationships between them and Q (the steady-state
queue length).

One such relationship is Little’s Law

Q = X W

which relates the average queue length (Q) to the average throughput (X) and the time (W):

In some sense, Q is the average of the load average.

These same kind of averages are used in performance analyzer tools like Pretty Damn Quick
and TeamQuest Model.

Note, that such insightful relationships are virtually impossible to recognize without taking
steady-state averages. Little’s law is a case in point. It had existed as a piece of performance
folklore many years prior to 1961 when J. D. Little published his now famous proof of the
relationship.

4. Summary

So, what have we learnt from all this? Those three little numbers tucked away innocently in
certain UNIX commands are not so trivial after all. The first point is that load in this context
refers to run-queue length (i.e., the sum of the number of processes waiting in the run-queue
plus the number currently executing). Therefore, the number is absolute (not relative) and thus
it can be unbounded; unlike utilization (AKA ``load’’ in queueing theory parlence).

Moreover, they have to be calculated in the kernel and therefore they must be calculated
efficiently. Hence, the use of fixed-point arithmetic and that gives rise to those very strange
looking constants in the kernel code. At the end of Part 1 I showed you that the magic number
are really just exponential decay and rise constants expressed in fixed-point notation.

7 of 9 UNIX Load Average — Part 2

http://www.teamquest.com/solutions-products/products/model/index.htm

White Paper

Copyright ©2010 TeamQuest Corporation. All Rights Reserved.

In Part 2 we found out that these constants are actually there to provide exponential smoothing
of the raw instantaneous load values. More formally, the UNIX load average is an exponentially
smoothed moving average function. In this way sudden changes can be damped so that they
don’t contribute significantly to the longer term picture. Finally, we compared the exponentially
damped average with the more common type of averages that appear as metrics in benchmarks
and performance models.

On average, the UNIX load average metrics are certainly not your average average.

8 of 9 UNIX Load Average — Part 2

TeamQuest Corporation

www.teamquest.com

Americas
info@teamquest.com

+1 641.357.2700
+1 800.551.8326

Europe, Middle East and Africa
emea@teamquest.com

Sweden
+46 (0)31 80 95 00

United Kingdom
+44 (0)1865 338031

Germany
+49 (0)69 6 77 33 466

Asia Pacific
asiapacific@teamquest.com

+852 3579-4200

Copyright ©2010 TeamQuest Corporation
All Rights Reserved

TeamQuest and the TeamQuest logo are registered trademarks in the US, EU, and elsewhere. All other
trademarks and service marks are the property of their respective owners. No use of a third-party mark is
to be construed to mean such mark’s owner endorses TeamQuest products or services.
The names, places and/or events used in this publication are purely fictitious and are not intended
to correspond to any real individual, group, company or event. Any similarity or likeness to any real
individual, company or event is purely coincidental and unintentional.
NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a license
agreement. The only warranties made, remedies given, and liability accepted by TeamQuest, if any, with
respect to the products described in this document are set forth in such license agreement. TeamQuest
cannot accept any financial or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special, or consequential damages.
You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.
The information contained herein is subject to change without notice. Revisions may be issued to advise
of such changes and/or additions. U.S. Government Rights. All documents, product and related material
provided to the U.S. Government are provided and delivered subject to the commercial license rights and
restrictions described in the governing license agreement. All rights not expressly granted therein are
reserved.

Follow the TeamQuest Community at:

mailto:asiapacific@teamquest.com?Subject=Gunther: Application Performance Agents
mailto:emea@teamquest.com?Subject=Gunther: Application Performance Agents
mailto:info@teamquest.com?Subject=Gunther: Application Performance Agents
http://www.youtube.com/user/TeamQuestOptimizesIT
http://www.teamquest.com/blog
http://twitter.com/TeamQuest_Corp
http://www.linkedin.com/groups?home=&gid=984207&trk=anet_ug_hm

	Button 34:
	Button 35:
	Button 36:
	Button 37:
	Button 39:
	Page 9: Off

	Button 40:
	Page 9: Off

	Button 41:
	Page 9: Off

	Button 42:
	Page 9: Off

	Button 43:
	Page 9: Off

	Button 44:
	Page 9: Off

	Button 45:
	Page 9: Off

	Button 46:
	Page 9: Off

