
Domain-Specific Languages
Walid Taha

Department of Computer Science
Rice University

Houston, TX 77005 USA
Email: taha@rice.edu

Abstract—Recently, there has been a growing interest in what
have come to be known as domain-specific languages (DSLs).
This paper introduces a definition for DSLs, explains how DSLs
can have a far-reaching impact on our lives, and discusses why
DSLs are here to stay.

INTRODUCTION

Computer science is undergoing a revolution today, in
which language designers are shifting attention from general-
purpose programming languages to so-called domain-specific
languages (DSLs) [1], [2], [3]. General-purpose languages like
Java, C#, C++, and C have long been the primary focus
of language research. The idea was to create one language
that would be better suited for programming than any other
language. Ironically, we now have so many different general-
purpose languages that it is hard to imagine how this goal
could be attained. In fact, the stream of such languages
seems endless, and we are continually seeing new ones being
introduced.

Instead of aiming to be the best for solving any kind of
computing problem, DSLs aim to be particularly good for
solving a specific class of problems, and in doing so they
are often much more accessible to the general public than tra-
ditional programming languages. A widely known example of
a DSL is Excel, Microsoft’s spreadsheet application. Spread-
sheets may not be the best language for writing scientific
computing codes, for creating three-dimensional animations,
or for programming embedded and real-time systems, but they
are nevertheless excellent for expressing many important types
of calculations. In addition, they require only limited training
beyond what is needed to understand the calculation that one
actually wants to perform. As a result, Excel is probably the
most widely used programming language in the world [4].

There are several seminal papers on the topic, such as [5],
[6], [7], [8], [9], [10], that provide a very good introduction
for the specialist. This paper, on the other hand, aims to
prepare the general reader for the oncoming DSL revolution.
In particular, three key questions are addressed:

I) What is a DSL,
II) How DSLs will transform our lives, and

III) Why DSLs are here to stay.
My hope is that this introduction will provide the reader with
both a basic appreciation for the potential that DSLs hold
and an understanding of how he or she can collaborate with
programming-language experts to create a DSL.

I. WHAT IS A DSL

Today, there is no universally accepted definition of what
constitutes a DSL. It is easy to recognize specific examples —
in addition to Excel, other widely used examples include Au-
toCAD for architectural design, ProEngineer for mechanical
modeling, Verilog for hardware description, and Mathematica
for symbolic computing. However, the absence of a more
abstract definition for DSLs is problematic. Having such a
definition would provide a basis for evaluating DSLs and
would guide the development of the principles and methods
for designing and implementing new DSLs.

I propose that DSLs can be defined by four key character-
istics, as follows:

A) The domain is well-defined and central.
B) The notation is clear.
C) The informal meaning is clear.
D) The formal meaning is clear and is implemented.

The first three characteristics define what constitutes a jargon,
and the last characteristic tells us when a jargon can be
considered a DSL. In the rest of this section, we explain each
of these characteristics in the context of familiar, everyday
domains.

A. The Domain is Well-Defined and Central

There are two qualitatively different ways in which a
domain can be defined. The first is when the domain is well-
defined mathematically. Examples of such domains include
linear algebra and differential equations. The second way is
societal. Here, a domain is defined purely by human activity.
Examples of such domains range from washing dishes to
building nanotubes. Often, we find that there is a group of
people who have special expertise in a particular domain, and
frequently such domain experts will have a special language,
or a jargon, to communicate ideas relating to their domain.
Legal language is a good example of such jargon. Focusing
on the jargon of a problem domain rather than on the jargon
of a computer implementation is a pervasive characteristic of
successful DSLs.

DSL development is a natural candidate for collaboration
between domain experts and programming-language experts.
While being well-defined mathematically makes a domain
more amenable to the development of a DSL, we believe
that being defined by human activity is more important for
the success of a DSL. Therefore, we advocate a DSL design



strategy that begins with a focus on an area of activity and
then moves to finding the mathematical tools that can help
serve the purpose of the activity.

B. The Notation is Clear

Notation is the form a language takes as it is transmitted
from the source to the target. Notation can take on many
forms. In spoken language, it is sound, and in typed language
it is sequences of key strokes. Modern musical notation [11]
represents another distinct and widely used form. The domain
for musical notation is obvious, and musicians are most
comfortable using this notation. It is also worth noting that this
notation existed independently of computers, and it was then
natural to adopt as a way to instruct a computer to generate a
particular musical sequence.

Part of the design of a DSL is finding a good notation,
and for practical reasons of storage and processing it is
often convenient to use symbols that are easy to enter using
a keyboard, mouse, or similar input devices. It should be
noted, too, that using a keyboard does not limit us to English
alphabet. The QWERTY keyboard is easily used for entering
written forms of other languages and specialized notations
ranging from musical notation to mathematical formulae.

C. The Informal Meaning is Clear

Expressions (utterances) in a DSL are often concise and to
the point. For example, musical notation may not be well-
suited to express arbitrary ideas. However, it does have a
clear and well-defined meaning to trained musicians. Simple
examples include traffic lights and traffic signs. Note that while
they might have different meanings in different countries, it
is important that traffic lights have a well-defined meaning in
each. Similarly, notations exist for specifying football game
strategies and for dance routines. A key part of what makes
these notations work is that they have a clear meaning shared
by all those who use them to communicate.

The programming-language literature provides the princi-
ples and the aesthetics [12] for achieving clarity of informal
meaning, and I believe that we can teach issues relating to
principles and aesthetics to a broad audience. Although there
is a shortage of such teaching and tutorial materials today,
we expect to see many of these developed over the coming
years. And it is important to realize that, with or without such
materials, successful development of a DSL requires involving
both users and programming-language experts throughout the
process, including the design of the notation and evaluation
of the clarity of informal meanings and the aesthetics of the
language.

D. The Formal Meaning is Clear and is Implemented

This feature distinguishes a DSL from a jargon: it means
being amenable to rigorous, formal treatment, and as such be-
ing well-suited for sensible implementation by a machine. For
example, musical notation can be given a formal mathematical
meaning by mapping each note to a frequency, a volume, and a
duration. While this definition is too simplistic to be acceptable

for a musician (e.g., it does not address the issue of producing
a reasonable imitation of a musical instrument), it captures the
essential idea necessary for achieving such a goal. Assigning
such a meaning to notes does not preclude humans from being
allowed to assign them a different meaning each time they play
them, but for processing by a computer it is essential to assign
at least one rigorous meaning.

The programming-languages literature also provides the
formal tools [13] needed to deal with the formal meaning
and implementation. I believe that the design, implementation,
and formal aspects require extensive training. The only way
to prepare the workforce of programming-language experts is
to teach these formal aspects to computer science students at
the undergraduate level.

II. HOW DSLS WILL TRANSFORM OUR LIVES

Because DSLs focus on a particular domain of life rather
than on the computer, they are often much more accessible to
the interested layman than traditional programming languages.
This accessibility means that DSLs have the potential to impact
our daily lives much more dramatically than any other advance
in programming technology.

To give the reader an idea of the impact that DSLs can
have on our lives, I will give some examples that shed light
on different ways in which DSLs can be useful.

A. The Household

The realm of the household has an abundance of domains
that are readily amenable for formalization, and we can save
significant time and energy if we are able to design and
implement DSLs that help us in this realm. We can envision
a world in which we are able to specify our grocery shopping
needs and our expectations in terms of maintaining an orderly
house or maintaining a garden. However, these may seem
like “luxury domains,” so we will focus on a more obvious
and almost universal domain: cooking. Recipes are essentially
a sequence of instructions, and as such they are a classic
example of a program. Yet, today it is common for at least
one person in each household to spend an hour or more
preparing at least one meal every day. Of course, often it
can be significantly more than that. Eating prepared meals
is an alternative, but it is not without cost — in addition
to paying someone else to do this work for us, there is a
vast loss of control over the preparation. Preparing one’s own
food is also healthier because you can control the quality of
the ingredients, the amount of salt used, and the fat, protein,
nutrients, and portion sizes much more precisely. A DSL that
could enable us to implement recipes would save us time,
provide us with more control over our diet, and even allow us
to perfectly reproduce healthy, gourmet dishes with a snap of
a finger.

B. Personal Security

Many factors affect personal security. To illustrate the role
that DSLs can have in this realm, we consider the two closely
related areas of insurance and privacy. As we consider these



two domains, we point out several parallels between the role
that DSLs can play in each of them.

Our insurance and privacy needs are greater today than they
have ever been. Financial instruments provide insurance for
our cars, homes, belongings, computers, and even our very
lives. Yet, insurance policies are formidable documents that
are often hard to understand when we sign them, and we
often forget the details soon afterward. Thus, when we are
confronted with the question of which of our insurance policies
(if any) covers a certain type of incident that may have taken
place, finding the answer can be difficult. Similarly, electronic
commerce and various modes of sharing data have given rise to
new concerns about privacy. In the United States, a significant
body of law exists to regulate how a company keeping personal
information may or may not use or share this information.

Similarly, every utility company, bank, or merchant with
which we interact sends us a mailing at least once a year
containing their privacy policy, which represents how they take
care not to misuse our personal data. Not only is this a lot of
material for us to read, close inspection of privacy policies
reveals that they often contain ambiguities, gaps, and in some
cases inconsistencies [14].

Personalized health records are an area with significant
privacy concerns. As Google Health, Microsoft HealthVault,
Health Revolution and others come online and attempt to
interface and interact with hospital and clinical electronic med-
ical record systems, there will be pressing need for effective
management of privacy concerns.

A DSL that could provide clear formal meaning to an
insurance policy or a privacy policy would enable mechanical
checking, which means that we would be able to give such
policies to a computer, ask it to check them for internal
consistency, ask it whether a certain event is covered by the
policies, or ask it if they satisfy our own preferences for what
information we are or are not willing to allow the company to
share with others. For privacy policies, such a DSL would
also allow us to address another key weakness in current
industrial practice: enforcement. In particular, corporations
would be able to mechanically check that their work flow and
information systems abide by the rules of the policies that they
have promised to follow.

C. The Arts

Art is fundamentally about self expression, and a work of art
communicates a thought that was not expressible in any other
form. Art is full of opportunities for DSLs that can radically
change the way artists work. For example, scriptwriters and
playwrights constantly compete for the attention of producers
around the world. Playwrights often have to work hard to
convince producers to take the time to read through their
scripts and visualize the imaginary world that they have so
carefully and meticulously constructed. This experience would
be dramatically different if scripts were in a DSL that we
could give to a computer to animate. Granted, it would require
that the script carefully explain movements on the stage and
how certain parts should be delivered, and the process could

be computationally intensive, but it would allow one artist to
produce, single handedly, his or her work to the point where
he or she could put up a video on YouTube, for example.
Once we have reached that point, the world is our audience,
and it becomes much easier for artists to independently make
the case for the value of their creative works.

Interestingly, while writing this paper I heard Mimi Hol-
loway, Houston’s Theatre Southwest producer, saying that “If
you see something on a page, it’s just not the same as seeing it
on stage.” This was said in the opening remarks of the Eleventh
Annual Festival of Originals. Although each of the five plays
presented that evening was exceptional, one wonders how the
fate of the rest of the three hundred submissions could have
been different if such a DSL had been available to them.

III. WHY DSLS ARE HERE TO STAY

There are many reasons to believe that we are just opening
the floodgates to the idea of DSLs. Here are the ones that I
find most compelling:

Codification is a natural, age-old process. A key step in
the birth of a DSL is codification, which is the process of
taking informal ideas and giving them form. This codification
is something that humans have been doing for millennia and
will continue to do. It is one of the most important tools that
we have for organizing the world around us. Designing a DSL
is not fundamentally different from codifying an oral tradition,
which is an activity that began as soon as script was devised.

Codification is an iterative process. Codification, even
for non-computing domains, tends to be an iterative process.
A case in point is the Napoleonic Code [15], [16], which
was introduced in the early nineteenth century and is widely
considered to be the first successful codification of European
law. While this codification was done quickly, it built on
numerous prior codifications of European law that had been
created over at least half a century. Interestingly, the key
features of such a code, often described as “clarity” and
“accessibility,” are also what we often find in a successful
DSL such as Excel or AutoCAD.

As we express bigger ideas, new patterns emerge. Lan-
guages are patterns for expressing ideas. Since it is inevitable
that we will continue to express more complex and sophis-
ticated ideas, it is therefore also inevitable that new patterns
will continue emerge. Such emergent patterns can be found in
domains as diverse as dance [17] and cell biology [18].

CONCLUSION

I hope that this paper has provided the reader with a new
perspective on computing and how it can have a broader role in
all aspects of our lives through DSLs. The reader is encouraged
to try out this new perspective and to contact me with any
questions or insights about DSLs.

ACKNOWLEDGMENTS

I wish to thank Prof. Hossam M. Fahmy and the organizers
of The 2008 IEEE International Conference on Computer



Engineering and Systems (ICCES 2008) for inviting me to
give the plenary talk and write this paper.

Kirsten Jones, Prof. Robert (Corky) Cartwright, Prof.
Jeremy Gibbons, Dr. Edwin Westbrook, Kapil Dev, and Dr.
Abd-Elhamid Taha provided me with detailed comments on
an earlier draft of this paper. Cherif Salama kindly assisted
me with formatting and proof reading. Mathias Ricken, Dr.
Stephen Wong, Dr. John Greiner, and Tony Elam provided me
with helpful feedback on an earlier draft.

This work is supported by NSF CAREER award #0747431,
NSF EHS award #0720857, and NSF SoD award #0439017.

REFERENCES

[1] D. Spinellis, “Notable design patterns for domain specific languages,”
Journal of Systems and Software, vol. 56, no. 1, pp. 91–99, Feb. 2001.

[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Survies, vol. 37, no. 4, pp.
316–344, 2005.

[3] “IFIP Working Conference on Domain Specific Languages (DSL
WC),” 2009, call for papers. Available online at http://www.smart-
generators.org/DSLWC.

[4] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach to
functions in Excel.” ICFP, pp. 165–176, 2003.

[5] P. J. Landin, “The next 700 programming languages,” Communications
of the ACM, vol. 9, no. 3, 1966.

[6] D. L. Parnas, “On the design and development of program families,”
IEEE Transactions on Software Engineering, vol. SE-2, no. 1, pp. 1–9,
Mar. 1976.

[7] K. J. Gough, “Little language processing, an alternative to courses on
compiler construction,” SIGCSE Bulletin, vol. 13, no. 3, pp. 31–34, 1981.

[8] J. Bentley, “Programming pearls: little languages,” Communications of
the ACM, vol. 29, no. 8, pp. 711–721, 1986.

[9] P. Hudak, “Domain specific languages,” 1997, available from author on
request.

[10] D. M. Weiss and C. T. R. Lai, Software product-line engineering:
a family-based software development process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[11] Wikipedia, “Musical noation — Wikipedia, the free encyclope-
dia,” 2008, accessed September 18th, 2008. Available online from
http://en.wikipedia.org/wiki/Musical Notation.

[12] B. J. MacLennan, Principles of Programming Languages: Design,
Evaluation, and Implementation, 3rd ed. Oxford University Press, 1999.

[13] B. Pierce, Types and Programming Languages. MIT Press, 2002.
[14] C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of

natural language parsing of privacy policy rules using the sparcle policy
workbench,” in SOUPS ’06: Proceedings of the second symposium on
Usable privacy and security. New York, NY, USA: ACM, 2006, pp.
8–19.

[15] Wikipedia, “Napoleonic code — Wikipedia, the free encyclope-
dia,” 2008, accessed September 18th, 2008. Available online from
http://en.wikipedia.org/wiki/Napoleonic Code.

[16] Britannica, “Napoleonic code — Britannica online encyclopedia,”
2008, accessed September 18th, 2008. Available online from
http://www.britannica.com/EBchecked/topic/403196/Napoleonic-Code.

[17] I. Hagendoorn, “Emergent patterns in dance improvisation and chore-
ography,” in Proceedings of the International Conference on Complex
Systems, 2002.

[18] S. J. Morrison, N. M. Shah, and D. J. Anderson, “Regulatory mecha-
nisms in stem cell biology,” Cell, vol. 88, pp. 287–298, 1997.

[19] W. Taha and T. Sheard, “MetaML: Multi-stage programming with
explicit annotations,” Theoretical Computer Science, vol. 248, no. 1-2,
2000.

[20] K. Czarnecki1, J. O’Donnell, J. Striegnitz, and W. Taha, “DSL im-
plementation in metaocaml, template haskell, and C++,” in Dagstuhl
Workshop on Domain-specific Program Generation, ser. LNCS, Batory,
Consel, Lengauer, and Odersky, Eds., 2004.

[21] S. Fogarty, E. Pasalic, J. Siek, and W. Taha, “Concoqtion: indexed types
now!” in PEPM ’07: Proceedings of the 2007 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation.
New York, NY, USA: ACM, 2007, pp. 112–121.

[22] S. Ellner and W. Taha, “The semantics of graphical languages,” in PEPM
’07: Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. New York,
NY, USA: ACM, 2007, pp. 122–133.

[23] J. Gillenwater, G. Malecha, C. Salama, A. Y. Zhu, W. Taha, J. Grundy,
and J. O’Leary, “Synthesizable high level hardware descriptions: using
statically typed two-level languages to guarantee verilog synthesizabil-
ity,” in PEPM ’08: Proceedings of the 2008 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation. New
York, NY, USA: ACM, 2008, pp. 41–50.

[24] R. Kaiabachev, W. Taha, and A. Zhu, “E-FRP with priorities,” in
EMSOFT ’07: Proceedings of the 7th ACM & IEEE international
conference on Embedded software. New York, NY, USA: ACM, 2007,
pp. 221–230.

ABOUT THE AUTHOR

Walid Taha is a professor at Rice University, Houston, TX,
USA. His interests span programming language semantics,
type systems, compilers, program generation, real-time sys-
tems, and physically safe computing. His research on DSLs
focuses on building tools for rapidly constructing efficient
implementations of DSLs [19], [20], [21] and on graphical
languages [22]. In collaboration with researchers and prac-
titioners at Intel, Schlumberger, and National Instruments, he
has developed DSLs for hardware description [23] and for
reactive and real-time systems [24].

Prof. Taha is the principal investigator on a number of
National Science Foundation (NSF), Texas Advanced Technol-
ogy Program (ATP), and Semiconductor Research Consortium
(SRC) research projects. He is the principal designer of
MetaOCaml, Acumen, and the Verilog Preprocessor (VPP)
system. He founded the ACM Conference on Generative Pro-
gramming and Component Engineering (GPCE), the IFIP
Working Group on Program Generation (WG 2.11), and the
Middle Earth Programming Languages Seminar (MEPLS). He
is the program chair for the IFIP Working Conference on
Domain-Specific Languages [3].


