
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

What’s New in Metal, Part 1

Rav Dhiraj GPU Software

Graphics and Games

Session 603









Metal in Review



Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Metal



Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Game

OpenGL

Metal



Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Game

Metal

Metal



33.3 ms0 ms

GPU GPU Work 
frame N-1

50 ms

CPU GPU API  
frame N

Application  
frame N

Frame Time with CPU as the Bottleneck



33.3 ms 50 ms0 ms

GPU GPU Work 
frame N-1

CPU GPU API  
frame N

Application  
frame N

Frame Time with CPU as the Bottleneck

GPU Idle Time



33.3 ms20 ms0 ms

GPU GPU Work 
frame N-1

CPU GPU API  
frame N

Application  
frame N

Metal Reduces GPU API Overhead



33.3 ms20 ms0 ms

GPU GPU Work 
frame N-1

CPU Application  
frame N

Metal Reduces GPU API Overhead

CPU  
Idle Time



33.3 ms20 ms0 ms

GPU GPU Work 
frame N-1

CPU Application  
frame N

Improve Your Game

CPU  
Idle Time

More Physics 
More AI



33.3 ms0 ms

GPU GPU Work 
frame N-1

CPU Application  
frame N

Or Issue More Draw Calls

More Physics 
More AI

Up to 10x More Draw Calls



33.3 ms0 ms

GPU GPU Work 
frame N-1

CPU Application  
frame N

Or Issue More Draw Calls

More Physics 
More AI

Up to 10x More Draw Calls



Build Time
“Never”

Load Time  
Infrequent

Draw Time 
1000s per 

Frame

Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Shader 
Compilation

State 
Validation



Build Time
“Never”

Load Time  
Infrequent

Draw Time 
1000s per 

Frame

Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Shader 
Compilation

State 
Validation



Build Time
“Never”

Load Time  
Infrequent

Draw Time 
1000s per 

Frame

Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Shader 
Compilation

State 
Validation



Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Command Buffer

Compute 
Command Encoder

Render Command 
Encoder

Render Command 
Encoder



Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

Command Buffer

Compute 
Command Encoder

Render Command 
Encoder

Render Command 
Encoder



Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

t

Thread 1
Pass 1 

Command 
Encoder

Pass 2 
Command 
Encoder

Pass 3 
Command 
Encoder



Metal

Dramatically reduced overhead
Precompiled shaders
Graphics and compute
Efficient multithreading

t

Thread 1
Pass 1 

Command 
Encoder

Pass 2 
Command 
Encoder

Pass 3 
Command 
Encoder

Thread 2 Thread 3



















Your App

GPU

SceneKit 
SpriteKit

Scene Graphs 2D Graphics
and Imaging

High-Efficiency
GPU Access

Core Animation
Core Image

Core Graphics

Metal
OpenGL ES

Standards-Based 
3D Graphics



Your App

GPU

SceneKit 
SpriteKit

Scene Graphs 2D Graphics
and Imaging

High-Efficiency
GPU Access

Core Animation
Core Image

Core Graphics

Metal











Broad Support for Metal



Tools Support

Frame Debugger
Shader Profiler
Shader Editor
State Inspector
Driver Instruments
API Analysis Tools



Metal OS X



Metal OS X

Minimal code change required for existing iOS applications



Metal OS X

Minimal code change required for existing iOS applications
• Device selection 



Metal OS X

Minimal code change required for existing iOS applications
• Device selection 
• Support for Discrete Memory



Metal OS X

Minimal code change required for existing iOS applications
• Device selection 
• Support for Discrete Memory
• New texture formats for desktop GPUs

















Adopting Metal on OS X
The Foundry

Jack Greasley



Courtesy of Framestore, Heyday films, and StudioCanal



© The Witcher 3.  Image courtesy of Platige Image. 



Courtesy of Adidas











Day One



Day One



Day Five



Day Five



Day Fifteen



Day Fifteen



Day Twenty



Day Twenty



Day Twenty-Five



Day Twenty-Five





What did we learn?



New Features





Device Selection

New Shader Constant Update APIs

Multi-sample Depth resolves

MetalKit Metal Performance Shaders

New Compressed Texture Formats

Depth Clipping Support

GPU Family Sets

Separate front/back stencil reference values

New Memory ModelCounting Occlusion Queries

New Texture Features Layer Select

Draw and Compute Indirect

Texture Barriers

Metal System Trace Tool



New Memory ModelCounting Occlusion Queries

New Texture Features

New Compressed Texture Formats

Layer Select

Draw and Compute Indirect

Texture BarriersDevice Selection

New Shader Constant Update APIs

Multi-sample Depth resolves Depth Clipping Support

GPU Family Sets

MetalKit Metal Performance Shaders

Separate front/back stencil reference values

Metal System Trace



New Memory ModelCounting Occlusion Queries

New Texture Features

New Compressed Texture Formats

Layer Select

Draw and Compute Indirect

Texture BarriersDevice Selection

New Shader Constant Update APIs

Multi-sample Depth resolves Depth Clipping Support

GPU Family Sets

MetalKit Metal Performance Shaders

Separate front/back stencil reference values

Metal System Trace Tool



Metal Feature Set Definitions



Metal Feature Set Definitions

Feature sets represent a collection of capabilities by GPU generation

iOS_GPUFamily2_v1



Metal Feature Set Definitions

Feature sets represent a collection of capabilities by GPU generation
• Prefix defines the platform

iOS_GPUFamily2_v1



iOS_GPUFamily2_v1

Metal Feature Set Definitions

Feature sets represent a collection of capabilities by GPU generation
• Prefix defines the platform
• Family Name is unique to a hardware generation



iOS_GPUFamily2_v1

Metal Feature Set Definitions

Feature sets represent a collection of capabilities by GPU generation
• Prefix defines the platform
• Family Name is unique to a hardware generation
• Revision number can change as features are added over time



Metal Feature Set Definitions

Simple query to see if device supports a given feature set



Metal Feature Set Definitions

Simple query to see if device supports a given feature set

[myMetalDevice supportsFeatureSet:iOS_GPUFamily2_v1]



iOS Metal Feature Sets

Name Introduced Feature Additions Supported Devices

iOS_GPUFamily1_v1 iOS 8 Core Metal features for A7 devices
iPhone 5s
iPad Air
iPhone 6 and 6 Plus
iPad Air 2iOS_GPUFamily1_v2 iOS 9

New texture features
Multi-sample depth resolves
Depth clipping support
Separate stencil reference values

iOS_GPUFamily2_v1 iOS 8 ASTC texture support

iPhone 6 and 6 Plus
iPad Air 2

iOS_GPUFamily2_v2 iOS 9

New texture features
Multi-sample depth resolves
Depth clipping support 
Separate stencil reference values



OS X Metal Feature Sets

Name Introduced Feature Additions Supported Devices

OSX_GPUFamily1_v1 OS X 10.11 

Same core feature as iOS, plus  
BCn texture compression formats
Combined depth stencil formats
Managed resource model
Multi-GPU device selection
Draw and compute indirect  
counting occlusion queries
Layer select 
Texture barriers
New texture features
Multi-sample depth resolves
Depth clipping support
Separate stencil reference values

All Macs since 2012



Shader Constant Updates



Shader Constant Updates

Command Buffer

Draw 1

Draw 2

Draw 3

Draw n



Shader Constant Updates

Command Buffer

Shader 
Constants 1

Constant Data 
for Draw 2

Constant Data 
for Draw 3

Constant Data 
for Draw n

Draw 1

Draw 2

Draw 3

Draw n



Shader Constant Updates

Command BufferConstant Buffer

Shader 
Constants 1

Constant Data 
for Draw 2

Constant Data 
for Draw 3

Constant Data 
for Draw n

Draw 1

Draw 2

Draw 3

Draw n



Shader Constant Updates

Command BufferConstant Buffer

Shader 
Constants 1

Constant Data 
for Draw 2

Constant Data 
for Draw 3

Constant Data 
for Draw n

Draw 1

Draw 2

Draw 3

Draw n



Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 

Shader Constant Updates
Bind per draw



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

Shader Constant Updates
Bind per draw

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 
[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 
[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 

Shader Constant Updates
Bind per draw



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 
[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 

Shader Constant Updates
Bind per draw



for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
}

Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents;

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0];



for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
}

Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents;

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0];



Shader Constant Updates
Internal constant buffer managed by Metal

for (i=0; i<draw_count; i++) 
{ 
 MyConstants constants = //  generate constants onto the stack 
 [renderpass setVertexBytes:&constants length:sizeof(MyConstants) atIndex:0]; 
  
 //  draw 
} 



Shader Constant Updates
Internal constant buffer managed by Metal

for (i=0; i<draw_count; i++) 
{ 
 MyConstants constants = //  generate constants onto the stack 
 [renderpass setVertexBytes:&constants length:sizeof(MyConstants) atIndex:0]; 
  
 //  draw 
} 



New Memory Model



New Memory Model

Support both unified and Discrete Memory model with minimal code change



New Memory Model

Support both unified and Discrete Memory model with minimal code change
New storage modes to specify where the resource should reside
• Shared storage mode
• Private storage mode
• Managed storage mode



Shared Storage Mode

Introduced with iOS 8
Full coherency between CPU and GPU at command buffer boundaries

System Memory

GPUCPU
Shared Buffer

Shared Texture



System Memory

Private Storage Mode

New with iOS 9 and OS X
Resources are only accessible to GPU—blit, render, compute
Metal can store data more optimally for the GPU

GPUCPU
Private Buffer

Private Texture



Private Storage Mode with Discrete Memory

System Memory Discrete Memory

GPUCPU
Private Buffer

Private Texture



Managed Storage Mode

New with OS X
Metal manages where the resource resides
Performance of private memory with convenience of shared

System Memory Discrete Memory

GPUCPU
Managed Buffer

Managed Texture

Managed Buffer

Managed Texture



Managed Storage Mode

No extra copy for unified memory systems

System Memory

GPUCPU
Managed Buffer

Managed Texture



Managed Storage Mode

App must notify Metal when modifying a resource with CPU
[myBuffer didModifyRange:…]; 
[myTexture replaceRegion:…]; 

CPU modified data



Managed Storage Mode

App must synchronize resource before CPU read
[blitCmdEncoder synchronizeResource:myBuffer]; 
[cmdBuffer waitUntilCompleted]; // Or use completion handler 
contents = [myBuffer contents]; 

[blitCmdEncoder synchronizeResource:myTexture]; 
[cmdBuffer waitUntilCompleted]; // Or use completion handler 
[myTexture getBytes:…];

CPU read back



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
  

Shader Constant Update
Review



Constant Updates on Discrete Systems
Using Managed Buffers

Fast and easy shader constant uploads
id <MTLBuffer> constant_buffer = [device newBufferWithOptions:MTLResourceStorageModeManaged 
                                                       length:kMyConstantBufferSize]; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

foreach i in draw_count 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
[constant_buffer didModifyRange:NSRangeMake(0, i*sizeof(MyConstants))];



Constant Updates on Discrete Systems
Using Managed Buffers

Fast and easy shader constant uploads
id <MTLBuffer> constant_buffer = [device newBufferWithOptions:MTLResourceStorageModeManaged 
                                                       length:kMyConstantBufferSize]; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

foreach i in draw_count 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
[constant_buffer didModifyRange:NSRangeMake(0, i*sizeof(MyConstants))];



Constant Updates on Discrete Systems
Using Managed Buffers

Fast and easy shader constant uploads
id <MTLBuffer> constant_buffer = [device newBufferWithOptions:MTLResourceStorageModeManaged 
                                                       length:kMyConstantBufferSize]; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

foreach i in draw_count 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
[constant_buffer didModifyRange:NSRangeMake(0, i*sizeof(MyConstants))];



Metal Managed Memory Model
Default storage modes

Buffers are shared
Default texture storage mode depends on platform
• iOS default is shared
• OS X default is managed



Use private for GPU-only resources

fbTextureDesc = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:myColorFormat 
                                                           width:myWidth 

                                                                  height:myHeight 
                                                               mipmapped:NO]; 

fbTextureDesc.storageMode = MTLStorageModePrivate; 

fbTexture = [device newTextureWithDescriptor:fbTextureDesc]; 

Customizing Storage Modes
Private textures



Use private for GPU-only resources

fbTextureDesc = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:myColorFormat 
                                                           width:myWidth 

                                                                  height:myHeight 
                                                               mipmapped:NO]; 

fbTextureDesc.storageMode = MTLStorageModePrivate; 

fbTexture = [device newTextureWithDescriptor:fbTextureDesc]; 

Customizing Storage Modes
Private textures



Device Selection
On multi-GPU systems

Use MTLCreateSystemDefaultDevice
• Picks the device connected to the main display
• Activates the discrete GPU on systems with automatic graphics switching



Device Selection

New MTLCopyAllDevices API to enumerate all Metal capable devices
• ‘headless’ property identifies auxiliary GPU

id <MTLDevice> aux_gpu = nil; 
for (id <MTLDevice> device in MTLCopyAllDevices())  
{ 

if ([device isHeadless]) { 
 aux_gpu = device; 
 break; 

    } 
}

Selecting the Auxiliary GPU on a Mac Pro



Device Selection

New MTLCopyAllDevices API to enumerate all Metal capable devices
• ‘headless’ property identifies auxiliary GPU

id <MTLDevice> aux_gpu = nil; 
for (id <MTLDevice> device in MTLCopyAllDevices())  
{ 

if ([device isHeadless]) { 
 aux_gpu = device; 
 break; 

    } 
}

Selecting the Auxiliary GPU on a Mac Pro



Device Selection

New MTLCopyAllDevices API to enumerate all Metal capable devices
• ‘headless’ property identifies auxiliary GPU

id <MTLDevice> aux_gpu = nil; 
for (id <MTLDevice> device in MTLCopyAllDevices())  
{ 

if ([device isHeadless]) { 
 aux_gpu = device; 
 break; 

    } 
}

Selecting the Auxiliary GPU on a Mac Pro



Device Selection
Selecting the ‘best’ device in a dual-GPU MacBook Pro

Ideal for applications that are not full-screen games and want to optimize for power



Register for a GPU ‘switch’ notification
• NSViewGlobalFrameDidChangeNotification

Device Selection
Selecting the ‘best’ device in a dual-GPU MacBook Pro

Ideal for applications that are not full-screen games and want to optimize for power



Register for a GPU ‘switch’ notification
• NSViewGlobalFrameDidChangeNotification

Use the CoreGraphics convenience API to query the current active device
• Pass in the current display your view is on

#include <CoreGraphics/CGDirectDisplayMetal.h> 

id <MTLDevice> device = = CGDirectDisplayCopyCurrentMetalDevice(display);

Device Selection
Selecting the ‘best’ device in a dual-GPU MacBook Pro

Ideal for applications that are not full-screen games and want to optimize for power



Layered Rendering

Rasterize to multiple layers of a texture
• Slices of a 2D array texture
• Plane of a 3D texture
• Face of a cube texture



Layered Rendering

Rasterize to multiple layers of a texture
• Slices of a 2D array texture
• Plane of a 3D texture
• Face of a cube texture

Output the target layer from a vertex shader
struct VSOut { 
 float4 position [[position]]; 
 ushort layer [[render_target_array_index]]; 
}



Texture Barriers

GPUs overlap execution of many draw calls
Output of one draw cannot be safely read by a later draw
New API to insert barriers between draw calls

Draw 1

Draw 2 Draw 3

Draw 4

Draw 5



Texture Barriers

GPUs overlap execution of many draw calls
Output of one draw cannot be safely read by a later draw
New API to insert barriers between draw calls

Draw 1

Draw 2 Draw 3

Draw 4

Draw 5Ba
rri

er



Texture Barriers
Example

// start render pass, drawing to Texture A 
[renderPass draw…];

[renderPass setFragmentTexture:textureA atIndex:0]; 
[renderPass draw…];



Texture Barriers
Example

// start render pass, drawing to Texture A 
[renderPass draw…];

[renderPass textureBarrier];

[renderPass setFragmentTexture:textureA atIndex:0]; 
[renderPass draw…];



iOS  
GPUFamily1

iOS  
GPUFamily2

OS X  
GPUFamily1

Max Number of Textures  
per Shader Stage 31 31 128

Max Texture Size 8k 8k 16k

Max Render Target Count 4 8 8

MSAA 2x, 4x 2x, 4x 4x, 8x

Cube Array Support - - Yes

Compute Pixel Writes Int32, Float32 Int32, Float32 Int32, Float32, packed

New Texture Features

8k 8k

Yes

Int32, Float32 Int32, Float32 Int32, Float32, packed

2x, 4x 2x, 4x 4x, 8x



New Texture Features
Texture usage

New property in the texture descriptor to declare how a texture will be used
Allows the Metal implementation to optimize for that usage

MTLTextureUsageUnknown 
 MTLTextureUsageShaderRead 

MTLTextureUsageShaderWrite 
MTLTextureUsageRenderTarget 
MTLTextureUsageBlit



New Texture Features
Texture usage

New property in the texture descriptor to declare how a texture will be used
Allows the Metal implementation to optimize for that usage

MTLTextureUsageUnknown 
 MTLTextureUsageShaderRead 

MTLTextureUsageShaderWrite 
MTLTextureUsageRenderTarget 
MTLTextureUsageBlit



New Texture Features
Texture usage

New property in the texture descriptor to declare how a texture will be used
Allows the Metal implementation to optimize for that usage

MTLTextureUsageUnknown 
 MTLTextureUsageShaderRead 

MTLTextureUsageShaderWrite 
MTLTextureUsageRenderTarget 
MTLTextureUsageBlit



New Texture Features
Depth/stencil textures

Mac GPUs only support combined depth and stencil formats
• Depth32Float_stencil8

- Supported on all Metal Devices
• Depth24Unorm_stencil8

- If available and meets your precision requirements



New Texture Features
iOS texture compression formats

Format Bits Per Pixel Support Properties

PVRTC 2, 4 All iOS devices RGB content
Widest support

ETC2 4 - RGB
8 - RGBA All Metal devices RGB content

Good alpha support

EAC 4 - One channel
8 - Two channels All Metal devices

Height/Bump Maps
Normal Maps
Alpha Masks

ASTC 0.9 - 8 iOS GPUFamily2
Highest quality at all sizes

Many size vs. quality options
Slowest encoding



New Texture Features
iOS texture compression formats

Format Bits Per Pixel Support Properties

PVRTC 2, 4 All iOS devices RGB content
Widest support

ETC2 4 - RGB
8 - RGBA All Metal devices RGB content

Good alpha support

EAC 4 - One channel
8 - Two channels All Metal devices

Height/Bump Maps
Normal Maps
Alpha Masks

ASTC 0.9 - 8 iOS GPUFamily2
Highest quality at all sizes

Many size vs. quality options
Slowest encoding

ASTC 0.9 - 8 iOS GPUFamily2
Highest quality at all sizes

Many size vs. quality options
Slowest encoding



New Texture Features
ASTC format



New Texture Features
ASTC format

Very high-quality compression



New Texture Features
ASTC format

Very high-quality compression
Great for a broad range of usages
• Photographic content
• Height maps 
• Normal maps
• Sprites



New Texture Features
ASTC format

Very high-quality compression
Great for a broad range of usages
• Photographic content
• Height maps 
• Normal maps
• Sprites

Finer grained control of size vs. quality
• 1-8 bits per pixel



New Texture Features
ASTC format

Very high-quality compression
Great for a broad range of usages
• Photographic content
• Height maps 
• Normal maps
• Sprites

Finer grained control of size vs. quality
• 1-8 bits per pixel

New in GPUFamily2



New Texture Features
OS X texture compression formats

Format Bits Per Pixel Also Known As Properties

BC1 4 S3TC, DXT1 RGB content
Very fast encoding

BC2, BC3 8 S3TC, DXT3, DXT5 RGBA content
Very fast encoding

BC4, BC5 4 - One channel
8 - Two channels RGTC

Height/Bump Maps
Normal Maps
Alpha Masks

BC6, BC7 8 BPTC RGBA content
Slowest encoding



Metal and App Thinning



Art Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



Game Binary

Art Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



App StoreArt Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



App StoreArt Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



Art Pipeline App Store

Legacy Metal Capable

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



Art Pipeline App Store

Legacy Metal Capable

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets



Legacy Metal Capable

Art Pipeline App Store

Game Binary

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets

Game Binary

Legacy Legacy Legacy Legacy Game Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsGame Assets
Legacy Legacy Legacy Legacy Game Assets



Legacy Metal Capable

Art Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

App Store

Game Binary

Legacy Legacy Legacy Legacy Legacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets



Legacy Metal Capable

Art Pipeline

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

App Store

Game Binary

Legacy Legacy Legacy Legacy Legacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets
Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy Legacy Legacy Legacy Metal Assets
Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets



App Store

Game Binary

Legacy Legacy Legacy Legacy Legacy Assets

Legacy Legacy Legacy Legacy Metal Assets

Art Pipeline Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy Metal Capable

Game BinaryGame Binary

Legacy Legacy Legacy Legacy Legacy Assets

Legacy Legacy Legacy Legacy Metal Assets



App Store

Game Binary

Legacy Legacy Legacy Legacy Legacy Assets

Legacy Legacy Legacy Legacy Metal Assets

Art Pipeline Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy Metal Capable

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets



App Store

Game Binary

Legacy Legacy Legacy Legacy Legacy Assets

Legacy Legacy Legacy Legacy Metal Assets

Art Pipeline Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Legacy Metal Capable

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsMetal Assets

Game Binary

Legacy AssetsLegacy AssetsLegacy AssetsLegacy AssetsLegacy Assets

With App Thinning, only the 
assets applicable to the device 
are downloaded on install



Capability Matrix

512MB 1GB 2GB

Metal GPUFamily2

Metal GPUFamily1

OpenGL ES Legacy



Metal GPUFamily1

OpenGL ES Legacy

Capability Matrix
Typical normal map example



Metal GPUFamily1

OpenGL ES Legacy

Capability Matrix
Typical normal map example

512x512 
EAC



Metal GPUFamily1

OpenGL ES Legacy

Capability Matrix
Typical normal map example

512x512 
RG8

512x512 
EAC



Metal GPUFamily1

OpenGL ES Legacy

Capability Matrix
Typical normal map example

512x512 
RG8

512x512 
EAC



Capability Matrix

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

512x512 
RG8

512x512 
EAC

512x512 
ASTC

1024x1024 
ASTC

256x256 
RG8

Extended normal map example



Capability Matrix
Extended normal map example

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

512x512 
EAC

512x512 
ASTC

512x512 
RG8

1024x1024 
ASTC

256x256 
RG8



Capability Matrix
Extended normal map example

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

512x512 
EAC

512x512 
ASTC

1024x1024 
ASTC

512x512 
RG8

256x256 
RG8



Capability Matrix
Extended normal map example

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

512x512 
EAC

512x512 
RG8

256x256 
RG8

512x512 
ASTC

1024x1024 
ASTC



Capability Matrix
Extended normal map example

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

512x512 
ASTC

512x512 
EAC

512x512 
RG8

256x256 
RG8

1024x1024 
ASTC



Capability Matrix
Extended normal map example

Format 512MB 1GB 2GB

Metal 
GPUFamily2

Metal 
GPUFamily1

OpenGL ES 
Legacy

1024x1024 
ASTC

512x512 
ASTC

512x512 
EAC

256x256 
RG8

512x512 
RG8







512x512 
EAC

512x512 
RG8



512x512 
EAC

512x512 
RG8



Custom Tools Pipelines



Custom Tools Pipelines

Publicly documented JSON file format
Easily integrated into custom toolchain



Retrieving Named Data



Retrieving Named Data

NSDataAsset class provides correctly matched data resource from Asset Catalog



Retrieving Named Data

NSDataAsset class provides correctly matched data resource from Asset Catalog

#import <UIKIt/NSDataAsset.h>



Retrieving Named Data

NSDataAsset class provides correctly matched data resource from Asset Catalog

#import <UIKIt/NSDataAsset.h>

NSDataAsset *asset = [[NSDataAsset alloc] initWithName:@“NormalMaps”]; 
NSData *data = asset.data;



Art Pipeline

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC



Art Pipeline Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC



Art Pipeline Game Binary App Store

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC



Art Pipeline Game Binary App Store

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC



Art Pipeline Game Binary App Store

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game BinaryGame BinaryGame Binary

512x512 
EAC

512x512 
ASTC

512x512 
RG8



iPad Air 2iPad 2 iPad Air

Art Pipeline Game Binary App Store

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game BinaryGame BinaryGame Binary

512x512 
EAC

512x512 
ASTC

512x512 
RG8



iPad Air 2iPad 2 iPad Air

Art Pipeline Game Binary App Store

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary

512x512 
RG8

512x512 
EAC

512x512 
ASTC

Game Binary Game Binary Game Binary

512x512 
EAC

512x512 
ASTC

512x512 
RG8



Summary

Developers are using Metal to create next-generation games and professional apps
Metal now available for OS X
New Xcode Metal tools 
New API features in iOS 9 and OS X
Support Metal-specific assets with App Thinning



More Information

Metal Documentation and Videos
http://developer.apple.com/metal
Apple Developer Forums
http://developer.apple.com/forums
Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Allan Schaffer, Game Technologies Evangelist
aschaffer@apple.com



Related Sessions

What’s New in Metal, Part 2 Mission Thursday 9:00AM

Metal Performance Optimization Techniques Pacific Heights Friday 11:00AM



Labs

Metal Lab Graphics, Games, 
and Media Lab C Wednesday 11:00AM

Metal Lab Graphics, Games, 
and Media Lab D Friday 12:00PM




