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Broad Support for Metal



Tools Support

Frame Debugger
Shader Profiler
Shader Editor
State Inspector
Driver Instruments
API Analysis Tools
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Metal OS X

Minimal code change required for existing iOS applications
• Device selection 
• Support for Discrete Memory
• New texture formats for desktop GPUs

















Adopting Metal on OS X
The Foundry

Jack Greasley
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What did we learn?
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Metal Feature Set Definitions

Feature sets represent a collection of capabilities by GPU generation
• Prefix defines the platform
• Family Name is unique to a hardware generation
• Revision number can change as features are added over time
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Metal Feature Set Definitions

Simple query to see if device supports a given feature set

[myMetalDevice supportsFeatureSet:iOS_GPUFamily2_v1]



iOS Metal Feature Sets

Name Introduced Feature Additions Supported Devices

iOS_GPUFamily1_v1 iOS 8 Core Metal features for A7 devices
iPhone 5s
iPad Air
iPhone 6 and 6 Plus
iPad Air 2iOS_GPUFamily1_v2 iOS 9

New texture features
Multi-sample depth resolves
Depth clipping support
Separate stencil reference values

iOS_GPUFamily2_v1 iOS 8 ASTC texture support

iPhone 6 and 6 Plus
iPad Air 2

iOS_GPUFamily2_v2 iOS 9

New texture features
Multi-sample depth resolves
Depth clipping support 
Separate stencil reference values



OS X Metal Feature Sets

Name Introduced Feature Additions Supported Devices

OSX_GPUFamily1_v1 OS X 10.11 

Same core feature as iOS, plus  
BCn texture compression formats
Combined depth stencil formats
Managed resource model
Multi-GPU device selection
Draw and compute indirect  
counting occlusion queries
Layer select 
Texture barriers
New texture features
Multi-sample depth resolves
Depth clipping support
Separate stencil reference values

All Macs since 2012
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Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

 [render_pass setVertexBuffer:constant_buffer offset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
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id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
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for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
}

Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents;

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0];



for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 

[renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
}

Shader Constant Updates
Bind per draw

id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents;

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0];



Shader Constant Updates
Internal constant buffer managed by Metal

for (i=0; i<draw_count; i++) 
{ 
 MyConstants constants = //  generate constants onto the stack 
 [renderpass setVertexBytes:&constants length:sizeof(MyConstants) atIndex:0]; 
  
 //  draw 
} 



Shader Constant Updates
Internal constant buffer managed by Metal

for (i=0; i<draw_count; i++) 
{ 
 MyConstants constants = //  generate constants onto the stack 
 [renderpass setVertexBytes:&constants length:sizeof(MyConstants) atIndex:0]; 
  
 //  draw 
} 
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New Memory Model

Support both unified and Discrete Memory model with minimal code change
New storage modes to specify where the resource should reside
• Shared storage mode
• Private storage mode
• Managed storage mode



Shared Storage Mode

Introduced with iOS 8
Full coherency between CPU and GPU at command buffer boundaries

System Memory

GPUCPU
Shared Buffer

Shared Texture



System Memory

Private Storage Mode

New with iOS 9 and OS X
Resources are only accessible to GPU—blit, render, compute
Metal can store data more optimally for the GPU

GPUCPU
Private Buffer

Private Texture



Private Storage Mode with Discrete Memory
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Managed Storage Mode

New with OS X
Metal manages where the resource resides
Performance of private memory with convenience of shared

System Memory Discrete Memory
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Managed Storage Mode

No extra copy for unified memory systems

System Memory

GPUCPU
Managed Buffer

Managed Texture



Managed Storage Mode

App must notify Metal when modifying a resource with CPU
[myBuffer didModifyRange:…]; 
[myTexture replaceRegion:…]; 

CPU modified data



Managed Storage Mode

App must synchronize resource before CPU read
[blitCmdEncoder synchronizeResource:myBuffer]; 
[cmdBuffer waitUntilCompleted]; // Or use completion handler 
contents = [myBuffer contents]; 

[blitCmdEncoder synchronizeResource:myTexture]; 
[cmdBuffer waitUntilCompleted]; // Or use completion handler 
[myTexture getBytes:…];

CPU read back



id <MTLBuffer> constant_buffer = …; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

for (i=0; i<draw_count; i++) 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
  

Shader Constant Update
Review



Constant Updates on Discrete Systems
Using Managed Buffers

Fast and easy shader constant uploads
id <MTLBuffer> constant_buffer = [device newBufferWithOptions:MTLResourceStorageModeManaged 
                                                       length:kMyConstantBufferSize]; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

foreach i in draw_count 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
[constant_buffer didModifyRange:NSRangeMake(0, i*sizeof(MyConstants))];
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Constant Updates on Discrete Systems
Using Managed Buffers

Fast and easy shader constant uploads
id <MTLBuffer> constant_buffer = [device newBufferWithOptions:MTLResourceStorageModeManaged 
                                                       length:kMyConstantBufferSize]; 
MyConstants* constant_ptr = constant_buffer.contents; 

[renderpass setVertexBuffer: constant_buffer offset: 0 atIndex: 0]; 

foreach i in draw_count 
{ 
 constant_ptr[i] = // write constants directly into the buffer 
 [renderpass setVertexBufferOffset:i*sizeof(MyConstants) atIndex:0]; 

 //  draw 
} 
[constant_buffer didModifyRange:NSRangeMake(0, i*sizeof(MyConstants))];



Metal Managed Memory Model
Default storage modes

Buffers are shared
Default texture storage mode depends on platform
• iOS default is shared
• OS X default is managed



Use private for GPU-only resources

fbTextureDesc = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:myColorFormat 
                                                           width:myWidth 

                                                                  height:myHeight 
                                                               mipmapped:NO]; 

fbTextureDesc.storageMode = MTLStorageModePrivate; 

fbTexture = [device newTextureWithDescriptor:fbTextureDesc]; 

Customizing Storage Modes
Private textures



Use private for GPU-only resources

fbTextureDesc = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:myColorFormat 
                                                           width:myWidth 

                                                                  height:myHeight 
                                                               mipmapped:NO]; 

fbTextureDesc.storageMode = MTLStorageModePrivate; 

fbTexture = [device newTextureWithDescriptor:fbTextureDesc]; 

Customizing Storage Modes
Private textures



Device Selection
On multi-GPU systems

Use MTLCreateSystemDefaultDevice
• Picks the device connected to the main display
• Activates the discrete GPU on systems with automatic graphics switching



Device Selection

New MTLCopyAllDevices API to enumerate all Metal capable devices
• ‘headless’ property identifies auxiliary GPU

id <MTLDevice> aux_gpu = nil; 
for (id <MTLDevice> device in MTLCopyAllDevices())  
{ 

if ([device isHeadless]) { 
 aux_gpu = device; 
 break; 

    } 
}

Selecting the Auxiliary GPU on a Mac Pro
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Device Selection

New MTLCopyAllDevices API to enumerate all Metal capable devices
• ‘headless’ property identifies auxiliary GPU

id <MTLDevice> aux_gpu = nil; 
for (id <MTLDevice> device in MTLCopyAllDevices())  
{ 

if ([device isHeadless]) { 
 aux_gpu = device; 
 break; 

    } 
}

Selecting the Auxiliary GPU on a Mac Pro



Device Selection
Selecting the ‘best’ device in a dual-GPU MacBook Pro

Ideal for applications that are not full-screen games and want to optimize for power
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• NSViewGlobalFrameDidChangeNotification
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Register for a GPU ‘switch’ notification
• NSViewGlobalFrameDidChangeNotification

Use the CoreGraphics convenience API to query the current active device
• Pass in the current display your view is on

#include <CoreGraphics/CGDirectDisplayMetal.h> 

id <MTLDevice> device = = CGDirectDisplayCopyCurrentMetalDevice(display);

Device Selection
Selecting the ‘best’ device in a dual-GPU MacBook Pro

Ideal for applications that are not full-screen games and want to optimize for power



Layered Rendering

Rasterize to multiple layers of a texture
• Slices of a 2D array texture
• Plane of a 3D texture
• Face of a cube texture



Layered Rendering

Rasterize to multiple layers of a texture
• Slices of a 2D array texture
• Plane of a 3D texture
• Face of a cube texture

Output the target layer from a vertex shader
struct VSOut { 
 float4 position [[position]]; 
 ushort layer [[render_target_array_index]]; 
}



Texture Barriers

GPUs overlap execution of many draw calls
Output of one draw cannot be safely read by a later draw
New API to insert barriers between draw calls
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Texture Barriers

GPUs overlap execution of many draw calls
Output of one draw cannot be safely read by a later draw
New API to insert barriers between draw calls
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Texture Barriers
Example

// start render pass, drawing to Texture A 
[renderPass draw…];

[renderPass setFragmentTexture:textureA atIndex:0]; 
[renderPass draw…];



Texture Barriers
Example

// start render pass, drawing to Texture A 
[renderPass draw…];

[renderPass textureBarrier];

[renderPass setFragmentTexture:textureA atIndex:0]; 
[renderPass draw…];



iOS  
GPUFamily1

iOS  
GPUFamily2

OS X  
GPUFamily1

Max Number of Textures  
per Shader Stage 31 31 128

Max Texture Size 8k 8k 16k

Max Render Target Count 4 8 8

MSAA 2x, 4x 2x, 4x 4x, 8x

Cube Array Support - - Yes

Compute Pixel Writes Int32, Float32 Int32, Float32 Int32, Float32, packed

New Texture Features

8k 8k

Yes

Int32, Float32 Int32, Float32 Int32, Float32, packed

2x, 4x 2x, 4x 4x, 8x



New Texture Features
Texture usage

New property in the texture descriptor to declare how a texture will be used
Allows the Metal implementation to optimize for that usage

MTLTextureUsageUnknown 
 MTLTextureUsageShaderRead 

MTLTextureUsageShaderWrite 
MTLTextureUsageRenderTarget 
MTLTextureUsageBlit
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New Texture Features
Depth/stencil textures

Mac GPUs only support combined depth and stencil formats
• Depth32Float_stencil8

- Supported on all Metal Devices
• Depth24Unorm_stencil8

- If available and meets your precision requirements



New Texture Features
iOS texture compression formats

Format Bits Per Pixel Support Properties

PVRTC 2, 4 All iOS devices RGB content
Widest support

ETC2 4 - RGB
8 - RGBA All Metal devices RGB content

Good alpha support

EAC 4 - One channel
8 - Two channels All Metal devices

Height/Bump Maps
Normal Maps
Alpha Masks

ASTC 0.9 - 8 iOS GPUFamily2
Highest quality at all sizes

Many size vs. quality options
Slowest encoding
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New Texture Features
ASTC format

Very high-quality compression
Great for a broad range of usages
• Photographic content
• Height maps 
• Normal maps
• Sprites

Finer grained control of size vs. quality
• 1-8 bits per pixel

New in GPUFamily2



New Texture Features
OS X texture compression formats

Format Bits Per Pixel Also Known As Properties

BC1 4 S3TC, DXT1 RGB content
Very fast encoding

BC2, BC3 8 S3TC, DXT3, DXT5 RGBA content
Very fast encoding

BC4, BC5 4 - One channel
8 - Two channels RGTC

Height/Bump Maps
Normal Maps
Alpha Masks

BC6, BC7 8 BPTC RGBA content
Slowest encoding



Metal and App Thinning
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With App Thinning, only the 
assets applicable to the device 
are downloaded on install
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Custom Tools Pipelines

Publicly documented JSON file format
Easily integrated into custom toolchain
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Retrieving Named Data

NSDataAsset class provides correctly matched data resource from Asset Catalog

#import <UIKIt/NSDataAsset.h>

NSDataAsset *asset = [[NSDataAsset alloc] initWithName:@“NormalMaps”]; 
NSData *data = asset.data;
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Summary

Developers are using Metal to create next-generation games and professional apps
Metal now available for OS X
New Xcode Metal tools 
New API features in iOS 9 and OS X
Support Metal-specific assets with App Thinning



More Information

Metal Documentation and Videos
http://developer.apple.com/metal
Apple Developer Forums
http://developer.apple.com/forums
Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Allan Schaffer, Game Technologies Evangelist
aschaffer@apple.com



Related Sessions

What’s New in Metal, Part 2 Mission Thursday 9:00AM

Metal Performance Optimization Techniques Pacific Heights Friday 11:00AM



Labs

Metal Lab Graphics, Games, 
and Media Lab C Wednesday 11:00AM

Metal Lab Graphics, Games, 
and Media Lab D Friday 12:00PM




