Using Build-Integrated Static Checking to Preserve
Correctness Invariants:

Hao Chen

University of California, Berkeley
hchen@cs.berkeley.edu

ABSTRACT

A key missing link in the creation of secure and robust sys-
tems is finding a cost effective way to demonstrate and pre-
serve correspondence between a software design and its im-
plementation. This paper explores the use of software model
checking techniques to validate selected design invariants in
the EROS operating system kernel. Several global consis-
tency policies in the EROS kernel can be expressed as fi-
nite state automata. Using the MOPS static checker, we
have been able to validate the EROS kernel implementation
against these automata. In the process, we have confirmed
the practical utility of the basic verification technique, iden-
tified a number of desirable enhancements in MOPS, and
located bugs in the EROS implementation.

A key contribution of this paper is establishing that it is
practical to integrate software model checking into normal
development life cycle. Model checking is efficient enough
that it does not add noticeably to our build times. This
allows us to view it as a tool for error prevention rather
than detection. Our work with EROS and MOPS suggests
that domain specific application of software model checking
is a practical and powerful technique for software assurance
and maintenance.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
verification; D.2.4 [Software Engineering]: Software/ Pro-
gram Verification—formal methods, model checking

General Terms

Security, languages, verification

Keywords

Security, model checking, verification, static analysis, assur-
ance, MOPS, EROS

*This research was supported in part by NSF CCR-0326577.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’04, October 25-29, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

Jonathan S. Shapiro
Systems Research Laboratory
Johns Hopkins University

shap@cs.jhu.edu

1. INTRODUCTION

Static checking tools have seen broad success in the last
few years. Tools like BLAST [1] and MECA [2] have been
applied to various open source projects — most notably Linux
— with considerable success. Engler reported discovering 7
confirmed race condition errors in the Linux 2.5.62 kernel
using RacerX [3]. Yang et al. report 36 confirmed user
pointer bugs in a later version of Linux' [2]. Zhang et al.
report 4 authorization check errors within the file system
code using CQUAL [4].

While it is pleasing to know that 47 Linux kernel bugs
have been discovered, the practical impact of these efforts
must be viewed skeptically. With the exception of SLAM
[5], none of these tools have been successfully integrated into
the software development life cycles of the systems they have
checked. Given this, it is unclear whether developers can
successfully create and maintain specifications in the course
of normal development. Some of these tools (MC/MECA)
remain unreleased. Given this, developer investment in ei-
ther tool is risky, as it is questionable whether long-term
support for them can be sustained.?

In this paper, we report our experiences in integrating the
MOPS static checking tool [6] into the development cycle of
the EROS operating system. MOPS is an open source, flow-
sensitive model checker for temporal safety properties. It
operates on unannotated C code using externally provided
property specifications. MOPS has been used successfully to
find security related bugs in mature, widely deployed open
source programs [7]. EROS [8] is a relatively robust, mature,
capability-based operating system. It has supporting formal
access and system models [9], and is architecturally derived
from an earlier system (KeyKOS [10]) with an exceptional
mean time between failures (18 years).

Both the EROS design and its existing development prac-
tices incorporate strong measures to defend against devel-
oper error, and (ignoring active development code) the project
group has discovered fewer than two bugs a year over the
last eight years. In consequence, we did not expect to find

!We believe from examination of the paper that this was
a late 2.5 kernel version, but the version number was not
reported in [2].

MC, which is derived from GCC and therefore “open
source,” has been reporting results for five years; the ab-
sence of a public release enabling independent evaluation
should be cause for skepticism in the research community.
BLAST is built in a programming language (ML) that lacks
broad developer support and relies on two theorem provers
(Simplify and Foci) that are not readily available for general
use or third-party maintenance.

any significant number of errors using static checking. Our
goal was to provide supporting infrastructure that could be
integrated into the development process to prevent the in-
troduction of certain errors into the code.

Because we are concerned here with development integra-
tion, our focus in this paper differs from earlier experiences
reports:

e We are concerned here with bug prevention, rather
than bug discovery. Experience with historical EROS
development suggested several kernel invariants that
were easy to get wrong. A key goal of the work re-
ported here was to build automated checks of these
properties to ensure that new errors did not occur.

e Because of the structure of the EROS system, the im-
plementation should be “friendly” to static checking
approaches. An alleged advantage of the MOPS ap-
proach is the ease of construction of specifications. We
wanted to validate this by having someone who was not
an author of the checking tool create specifications and
check them.

e Our concern with scalability is driven by “time to
check” rather than “lines of code.” We wanted to get
MOPS to the point where the checking process could
be integrated into our compile and build process.

Robust software systems are difficult to design and main-
tain. Lightweight program analysis tools offer one promis-
ing approach for maintenance, but many of them are not
suitable for use in operating system kernels. Dynamic (run-
time) tools are inappropriate, because they impose signifi-
cant overhead during production execution and do not en-
sure exhaustive checking (only the paths that are actually
executed are examined). Static (compile-time) tools offer
much better coverage of program paths. However, some
static tools are designed to identify particular properties
that were envisioned by the tool developer [11, 3]. Some
general tools supporting user-specified properties, such as
MC [12], are not “sound” — the failure to detect an error in
such tools does not guarantee the absence of errors.

An orthogonal issue is that the checking technique must be
modestly invasive of the source base. To achieve robustness,
developers are prepared to revise both their checking tools
and their programming idioms, subject to the requirement
that these changes must not result in less comprehensible
or maintainable code. Experience with annotation-driven
checking tools [11] on a related project makes us skeptical
of how “light” these techniques actually are. The number of
annotations needed in one carefully written system quickly
became explosive, and the resulting code was essentially un-
maintainable.

To overcome these problems, we explored applying appli-
cation specific software model checking as a middle ground
approach for software assurance. We view the system as a
collection of interacting state machines that collectively en-
sure end to end behavior. The transitions of these state ma-
chines can be expressed as temporal safety properties that
can be exhaustively checked using a sound model checker.
Rather than check all the properties of the target system si-
multaneously, we check the properties individually using the
MOPS static checking tool. In the course of our exploration,
we have gained confidence in both the target implementa-
tion and its design, discovered a small number of bugs, and

identified a variety of ways in which the expressive power of
MOPS could be improved without altering the simplicity of
the basic checking technique.

From an engineering perspective, one key feature of the
MOPS approach is that the specifications (finite state ma-
chines) can be written by ordinary programmers and the re-
sults (traces) are readily comprehensible. A second is that
the MOPS execution times are short enough to let us inte-
grate these checks into our regular build process.

2. OVERVIEW OF MOPS

MOPS is a static (compile-time) analysis tool [6] that
checks if a program violates temporal safety properties. Tem-
poral safety properties specify the requirement that pro-
grams perform certain operations in defined sequences, and
can express many application security properties. The MOPS
user describes a safety property in a finite state automaton
(FSA). The FSA transitions on syntactic expressions rep-
resented by abstract syntax trees (AST). Any sequence of
transitions that ends in the final state of the FSA is deemed
to violate the safety property.

MOPS counsists of a parser and a model checker. The
parser compiles a C source program into a control flow graph
(CFQG). Then, the model checker decides if any path in the
CFG may violate the property represented by an FSA. Algo-
rithmically, the model checker creates a Pushdown Automa-
ton (PDA) to represent all the paths in the CFG, intersects
the PDA with the FSA, and decides whether the intersec-
tion (also PDA) is empty. If not, MOPS reports error traces,
which are program paths that violate the property, to help
the user identify program errors.

For example, MOPS might be used to check the Yield
Property: the program should not call Yield() when in-
terrupts are disabled. (Section 4.1 explains this property
in details). The kernel may enable an interrupt by calling
irq ENABLE() and disable an interrupt by irq DISABLE().
The MOPS user describes this property by an FSA. Fig-
ure 1(a) shows this FSA, and Figure 1(b) shows a code frag-
ment that violates this property.

In large software systems, invariants such as the Yield
Property are hard to maintain because (a) they do not tend
to respect modularity boundaries, and therefore cannot be
maintained in a single, well-localized place in the source
code, and (b) many such invariants are in effect simultane-
ously. The programmer is forced to maintain a mental model
of global program behavior, and attempts to maintain the
invariants against the model while making localized changes
to software. Too often this process fails, either because the
necessary mental model is too complex or the number of
simultaneous invariants exceeds the programmer’s simulta-
neous reasoning capacity.

2.1 Soundness

MOPS strives for soundness and scalability. A sound tool
will not overlook any violations of the safety property in the
program®, and a scalable tool can check large programs with
moderate computational resources. In the current state of
the art, however, perfect soundness results in poor scalabil-
ity. Since MOPS is designed to be a practical tool for check-
ing safety properties on large programs, it tries to strike a

3In other words, the tool is sound for the theorem “the pro-
gram satisfies the safety property”

irq_DISABLE()

Yield
Enabled Disabled Q

irq_ENABLE()

(a) An FSA describing this property.

f() {// Interrupts are enabled
if (condition)

g();
Yield();

80 {
irq_ DISABLE();

(b) A program fragment that violates this prop-
erty. One path through the function f() satisfies
the property, but the other path violates it.

Figure 1: An FSA describing the property that “the
program should not call Yield() when interrupts are
disabled” and a program fragment that violates it.

balance between soundness and scalability. To strive for
soundness, MOPS is path sensitive, which means that it fol-
lows every path in the program (including arbitrary number
of iterations of loops) except a few minor cases discussed be-
low. MOPS is also context sensitive, which means that it
can match each function return with its call site. Since data-
flow analysis presents many difficulties for scalability, MOPS
chooses to be data-flow insensitive. In general, MOPS ig-
nores most data values in the program and assumes that
each variable may take any value. Because MOPS is value-
insensitive, it assumes that both branches of a conditional
statement may be taken and that a loop may execute any-
where from zero to infinite iterations. As such, MOPS is
mostly suitable for properties that are control-flow centric.

MOPS is sound under the following intrinsic assumptions:

e The program is single-threaded.

e The program is memory safe, which implies that the
program has no buffer overrun bugs.

e The program is written in standard compliant C, aug-
mented by selected GNU C extensions. For example,
MOPS chooses some particular resolution of control
flow order where the C specification is ambiguous: pro-
grams that rely on the ordering of control flow in such
computations are not standard compliant C programs.
As another example, MOPS does not understand in-

4Although due to the lack of data flow analysis, MOPS may
check paths that are infeasible in running programs and may
report errors on these infeasible paths, it is still a sound
path-sensitive analysis tool; since it never merges the analy-
sis of conditional branches, it will not overlook property vi-
olations that a flow-sensitive but path-insensitive tool may
miss.

line assembly code, but it can treat assembly functions
as “external” procedures.

e The program does not violate the soundness assump-
tions required by the user-specified temporal safety
property. Some properties are sound only under cer-
tain assumptions of the program. For example, to
enable the user to express the property “do not call
open() after calling stat() on the same file name”,
MOPS allows the user to declare a generic pattern vari-
able z and then use open(x) and stat(x) in the FSA.
In this case, the variable z in stat(x) and open(x)
refers to any variable that is syntactically used in both
stat () and open(). Since pattern values are based on
syntactic matching, they do not consider value flow
or liveness violations: if the program has “stat(f);
g=f; open(g)”, then MOPS does not know that g is
an alias of f. Similar problems can arise if the value of
f is modified by means of an aliased reference between
the stat (£) and open(g).

The current implementation of MOPS does not consider
control flows that are invisible in the control flow graph,
such as indirect calls via function pointer, signal handlers,
long jumps (setjmp()/longjmp()), and libraries loaded at
runtime (dlopen()). As it happens, the EROS kernel does
not use Longjmp().5

3. OVERVIEW OF EROS

EROS is a capability-based operating system that runs on
commodity hardware. Applications invoke user-implemented
objects and kernel services by invoking kernel-protected ca-
pabilities. Our focus of attention in this paper is the EROS
microkernel, and specifically the invariants of the microker-
nel. A more complete discussion of the EROS design can be
found in [8, 13].

One view of a microkernel is that it implements an ex-
tended virtual machine that is derived from and built upon
the underlying hardware architecture. In microkernels, this
extended virtualization generally provides a primitive inter-
val timer, multitasking, virtual memory, and exception en-
capsulation. In addition, microkernels provide a small set of
system calls necessary to direct and manipulate the virtu-
alization performed — to define memory maps, set schedul-
ing policy, and so forth. Allowing for some variations in
individual implementations, there are either three or four
substantive entry points in a typical microkernel:

1. The interval timer interrupt, whose arrival condition-
ally results in a scheduling preemption.

2. The page fault interrupt, which signals to the micro-
kernel that it either needs to translate virtualized map-
pings into hardware mappings or request application-
level action.

3. The system call trap, which directs the performance of
a microkernel service, possibly an interprocess opera-
tion.

4. The major preemption entry point, which is invoked
when the current kernel thread of control has become

®The kernel debugger uses setjmp() to establish a recovery
point, but this code is not compiled in to the production
kernel.

blocked and a new thread of control must be selected.
This entry point only exists in interrupt-style kernels,
including EROS.

While other hardware exceptions have associated entry points,
microkernels generally implement these as “fast path” entry
points whose effect is to record fault information in the pro-
cess control block of the currently executing process and
then invoke the major preemption entry point. We will not
consider exceptions of this kind further in this paper.

Three aspects of the EROS kernel design are particularly
relevant to model checking: the fact that it is an interrupt
style kernel, the single level store, and the state caching
design of the system.

Interrupt-Style Kernel An interrupt-style kernel [14] is
one in which processes do not retain a kernel stack while
blocked. On wakeup, the process resumes by restarting the
system call that originally caused it to sleep.

This style of kernel design imposes a transaction-like struc-
ture on the execution of system calls. Kernel service invoca-
tions proceed by testing preconditions, reaching a “commit
point,” and then performing the requested operation. No
externally visible modifications are permitted prior to the
commit point, and after the commit point the service in-
vocation is required to run to completion successfully. If a
precondition cannot be satisfied, the requesting process is
placed on a queue and is required to restart its invocation
from scratch. One way to think of this is that every system
service invocation carries an implicit “catch block,” and that
any cause of blocking involves a “throw” that is caught at
the system call boundary.

The transactional style of execution naturally results in
temporal safety invariants that must be observed. Proce-
dures that cause externally observable state changes must
not be called prior to the commit point. Procedures that
might remove objects from memory must not be called after
the commit point has been reached. Procedures that check
preconditions (e.g. Is the object we are mutating writable?)
may be viewed as causing typestate transitions [15, 16] in a
temporal safety property. Many of the key temporal safety
invariants of interrupt-style kernels can be expressed as fi-
nite state machines.

Single-Level Store The EROS system implements a trans-
parent single-level store built on a global snapshot and check-
pointing system. One consequence of this design is that an
object descriptor (a capability) refers to an object that can
be either in memory or on disk. Descriptor usage can condi-
tionally induce object faults, and transient pinning is used to
ensure that objects required in a particular operation remain
in memory for the duration of the operation. This induces
restrictions on what procedures can be permissibly called
at what points in the kernel control flow. After a commit
point is reached, no operation is permitted that might result
in an object removal. Prior to a commit point, no externally
visible modifications to kernel state are permitted.

Caching Design EROS implements a caching approach
to managing system state [17]. Process and memory map
state is stored in user-allocated, kernel-protected data struc-
tures called nodes. Hardware-manipulable page tables and
process control blocks are managed as a software-managed
write-back cache of the state in these nodes [13]. This
software-management strategy demands data structures for
dependency tracking. EROS requires that the code that

maintains these data structures must follow certain control
flow invariants, many of which can be checked by a model
checker. For example, one invariant requires that the code
should not modify any page table entry without a preceding
call to create an entry in the data structures for dependency
tracking.

Collectively, the state machines associated with these prop-
erties govern the majority of the EROS kernel’s function. If
we can establish through formal techniques that the transi-
tion rules of these state machines are satisfied, considerable
confidence emerges in the global structure of the system.
Better still, these formal checks serve as a guard against
inadvertent error during maintenance. Model checking will
not allow us to find local errors in the code, but may signif-
icantly reduce exposure to violations of global design rules.
The aggregate constraint behavior of a large, complex sys-
tem results from complex interactions between relatively
simple individual state machines that guard particular as-
pects of overall consistency. By model checking these state
machines individually, with some attention to the interac-
tion points between them, the satisfaction of complex overall
constraints can be assured.

4. PROPERTIES AND EXPERIMENTS

To evaluate the effectiveness of MOPS in establishing as-
surance, we modeled five properties of the EROS implemen-
tation. The first three can be expressed purely as control
flow invariants, and fall directly within the space of prop-
erties that MOPS was designed to check. The remaining
properties are typestate properties [15, 16]. We were inter-
ested in part to determine whether we could adequately ap-
proximate these using MOPS pattern variables, and also to
determine whether it would be worthwhile to extend MOPS
or some related tool with support for typestate.

It should be emphasized that EROS is in many respects
an ideal subject system for this sort of analysis, and in con-
sequence a frustrating one. The history of “design by in-
variant” in EROS and its predecessor KeyKOS collectively
extends back over 30 years. This has the effect of making
the system friendly to the type of analysis reported here.
In the eyes of the checker, however, it is also somewhat
frustrating: invariant discipline is very effective in resisting
bugs, and there were relatively few to find. To safeguard
MOPS against implementation errors that cause MOPS to
miss bugs, for each property we artificially inserted bugs into
the EROS kernel and ensured that MOPS found them.

4.1 Interrupt Enable and Disable, Yield

The simplest property we attempted was ensuring that
interrupt enables and disables are properly bracketed. Every
disable should be balanced by a corresponding enable, and
there should not be redundant enables. In addition, the
Yield() function (which abandons the current system call)
should not be called while interrupts are disabled. This is
because Yield() abandons the current kernel control flow
and invokes a kernel system call, but all kernel system calls
are expected to be invoked with interrupts enabled. The
FSA in Figure 2 describes this property.

A problem with checking interrupt enable and disable is
that it requires a stack or a counter. Finite state automata
are not powerful enough to implement counters, but in prac-
tice the enable/disable depth of a well-structured kernel is
not deep. To cover the current behavior of the kernel, we

irq_DISABLE()

TN
g

irq_ENABLE()

l irq_DISABLE()

Yield()

irq_DISABLE()

Figure 2: An FSA describing the property: (1) each
irq_DISALBE() should be balanced by an irq ENABLE();
(2) there should be no redundant irq ENABLE(); (3)
Yield() should not be called while interrupts are dis-
abled.

implemented five distinct disabled states, and used these to
simulate up to five levels of nesting. Additionally, we used
the error state as a guard state to validate that five levels
were enough. The need for fixing a maximum number of
nesting levels came as an unpleasant surprise; one of the
ancillary outcomes of this analysis was a decision to review
the use or interrupt nesting to reduce this depth.

Consistent with our expectations, we did not find any vi-
olations of this property. We did modify the EROS source
code to convert a table-driven capability handler dispatch
mechanism into an equivalent switch-driven mechanism so
that the checker would be able to see that these routines
are reachable. The resulting code is functionally equivalent
and probably more efficient, as the compiler now has the
option to implement the dispatch using a vector of branch
instructions. We also modified one place to rewrite a cor-
rectly conditionalized disable/enable pair so that the static
checker would not report a false positive error trace. This
was a false positive that could readily be resolved through
conditional liveness analysis [16].

4.2 Yield, Commit

As has previously been mentioned, EROS is an interrupt-
style kernel. The flow of operation proceeds by first check-
ing preconditions and then performing the operation itself.
These two phases are separated by what we call a “commit
point.” A kernel invocation can yield before the commit
point, but not after. This constraint leads to two rules:

e Every system call control path should invoke exactly
one of Yield() or Commit().

e Following a call to Commit(), it is a bug to subse-
quently call Yield().

The Yield() function does not return, so we do not check
for Commit () after Yield() or Yield() after Yield(). The
FSA in Figure 3 describes these rules.

The “yield or commit” design rule is fundamental to the
EROS security model. The consistency of our security model
is predicated on an argument about atomic, stepwise correct
evolution of the protection graph [9]. The yield or commit
design rule is the rule that guarantees the atomicity of the
protection graph transformations. This was in fact the prop-
erty that we attempted first, because we were struck by how

Commit()

Syscall

Return Yield()

Figure 3: An FSA describe the property: (1) every
system call control path should invoke exactly one of
Yield() or Commit (); (2) following Commit (), the kernel
should not call Yield().

direct this property corresponds to the previous formal ver-
ification work on the EROS confinement mechanism [9].

Sadly or happily (depending on which author you ask), we
found a bug in the course of this analysis. After a commit
point, when the EROS kernel is midway through a transi-
tion to more dynamic heap management, one system service
call used by user-mode drivers allocates heap memory from
a finite kernel pool by calling malloc(). Should this allo-
cation fail, malloc() calls Yield(). This violation of the
“yield or commit” design rule revealed that we had entirely
failed to consider this challenge when we decided to intro-
duce malloc() into the kernel. The correct repair in the
context of the current EROS design is to allocate all re-
quired memory during a “dry run” phase prior to the com-
mit point. Fortunately, this is the only system service in the
EROS kernel that invokes malloc() after startup initializa-
tion has completed, so we do not anticipate great difficulties
in correcting this flaw.

4.3 Sleep and Yield

One very effective way to create problems in a kernel is to
mishandle process sleep and wakeup. Kernels have a large
number of stall queues, and mishandling of these queues can
easily lead to lost processes or data corruption. Because stall
queue manipulation occurs with interrupts disabled, these
errors are difficult to debug. Sleep handling in EROS differs
from widely-used kernels in two significant regards:

e A process can be asleep on at most one stall queue at
a time. There is no equivalent to the UNIX select ()
operation in the EROS kernel.

e The Sleep() and Yield() operations are not atomi-
cally joined. In an interrupt-style kernel, it is some-
times convenient to place the process to sleep on the
appropriate stall queue and to perform additional pro-
cessing using the kernel thread of control before relin-
quishing the processor.

The first property implies that no path through the kernel
should call Sleep() more than once, and the second implies
that every call to Sleep() should be followed at some later
point by a call to Yield(). The FSA in Figure 4 describes
these properties.

There is a third property that is almost but not univer-
sally true: nearly every call to Yield() follows a Sleep()
of some sort. Conceptually, this is because a Yield() gen-
erally means that there was some reason that an operation
could not be completed immediately, and all of the opera-
tions that might eliminate such an impediment signal their

Yield()
l Sleep() Sleep()

Init »(_Slept > .‘@

O Syscall

Retry() Yield() Return

Figure 4: An FSA describing the property: (1) no
path should call Steep() more than once; (2) after a
Steep() call, the kernel must call Yield(); (3) before
a Yield() call, the kernel must call Sleep(), unless it
has called Retry().

completion by waking up a stall queue somewhere. Given
this, one would expect that a yielding process should be on a
stall queue somewhere, which is achieved by calling Sleep().

When we originally specified this property as above, we
neglected an important exceptional case. There are certain
cases where the kernel may be in an inconsistent state but
does not know for sure. For example, a system call or a
page fault may rely on the continued existence of a page
table entry, but may need to bring an object into memory,
which may invoke the aging logic to evict something to make
room. The eviction may invalidate one or more page table
entries, and these page table entries may turn out to be
the ones that the current operation is relying on.® It is
not cost-effective to remember which page table entries are
specifically implicated by the current call; instead, the kernel
keeps a global boolean flag PteZapped, which is cleared on
entry to the kernel and is set whenever a page table entry is
invalidated. This approach is conservative, but effective.

In defensive cases such as the one described above, it is
appropriate for the current operation to perform a Yield()
voluntarily. Because the process has not gone to sleep, it has
not relinquished its ownership of the CPU, and will retry
the current operation. Assuming that there were no real
impediments to completion, the system call will complete
successfully during the second pass.

To capture both the property and the intent correctly,
we modified the source code to call Retry() in these spe-
cial cases (which is simply a wrapper for Yield()), and we
modified the property to stop in a successful state whenever
Retry() is called, as shown in Figure 4. With this modifi-
cation, no further errors were found in the kernel.

4.4 Prepare Before GetRegs

The next property validates one of the caching require-
ments of the EROS kernel. Certain process-related opera-
tions, such as proc_GetRegs32(), operate by fetching values
from the process control block. Because the process may be
inactive when registers are requested, it is necessary to en-
cache the process first by calling proc_Prepare(). The prop-
erty that we would like to check here is a typestate property:
any call to proc_GetRegs32(p) requires that the typestate
of process p is “cached.” proc_Prepare(p) changes the type-
state of process p from “unknown” to “cached.”

5We discovered this bug the hard way in 1998, and had a
fun time working out how to build an effective torture test
for it.

proc_GetRegs32()

proc_Prepare()

Figure 5: An FSA describing the property: be-
fore a proc_GetRegs32() call, the kernel must call
proc_Prepare().

MOPS does not implement typestate checking, but it does
provide a feature called “pattern variables.” Using pattern
variables, we can statically verify that given a code sequence
of the form

proc_Prepare(paraml)

proc_GetRegs32(param2, ®set)

the arguments passed in as param! and param2 are textu-
ally identical (by which we mean that their abstract syntax
trees match). This is a much weaker check than the types-
tate check, but it is pragmatically sufficient for our purposes.
The EROS kernel does, in fact, use the same variable in
both calls, and we know from the implementation that any
attempt to decache the process must ultimately call either
proc_NeedRevalidate () or proc_Unload(). As long as nei-
ther of these functions is called, a cached process will remain
cached. Therefore, so long as the value of parami has not
changed before the call to proc_GetRegs32, we know that
the process remains cached. The FSA in Figure 5 describes
this property.

Note that because of the possibility of an intervening de-
cache, the property we are trying to test is truly a typestate
property; static types are insufficient to describe the control
flow constraints we have described. The point of our trial
was to understand how, in practice, typestate analysis would
be helpful in validating properties about this sort of kernel.
Our conclusion is that typestate is an essential tool for val-
idation of this sort, but we note that in an interrupt kernel
a surprising number of typestate properties can be checked
without risk of ambiguities that might arise from failures of
alias analysis. In this case, it is sufficient to know (a) that
the argument process p was cached, (b) that this value of p
reached the call to proc_GetRegs (), and that (c) there was
no intervening decaching operation on any process.

We found no error in checking this property.

4.5 PTE Dependency Tracking

Our final check attempted to validate the consistency of
the EROS memory management subsystem. EROS appli-
cations specify their address space structures using a tree
of fixed-size capability lists (c-lists). The kernel traverses
these structures on demand to construct page table entries.
If a capability in one of the translated c-lists is subsequently
overwritten, the derived page table entries must be invali-
dated. To ensure this, EROS maintains a dependency track-
ing data structure known as a depend table that maps from
capability addresses (the address of the traversed slot in the
c-list) to page table entry addresses. Whenever a c-list en-
try is overwritten, the depend table is used to invalidate the
appropriate page table entries.

The design rule that we wanted to check is that no page

pte_set()

Depend_AddKey()
KeyAdded

Figure 6: An FSA describing the property: before a
pte_set () call, the kernel must call Depend_AddKey().

table entry should be modified without a preceding call to
create a depend table entry. This test is approximate. Since
MOPS does not provide either typestate or value tracing,
we did not attempt to check that the depend table entry
was associated with the right page table entry. The overall
goal of the algorithm is to ensure that every path in the
hardware mapping table tree corresponds to some path in
the node tree. The FSA in Figure 6 describes this design
rule.

The check of this property revealed five places where page
table entries were set without any dependency entry con-
struction that MOPS could detect. Examination of the cases
was sufficient to show that all five statements were correct,
and that all five in fact did obey the property, but that this
could not be detected statically. The cases arose because
of an optimization in which a restarted page fault could
bypass translation steps that are known to have been pre-
viously performed, because the required dependency table
entries have been constructed in the previous pass. It is not
entirely surprising that this check fails. The optimization in
question is based on a correspondence between two trees of
different arity in which the second tree (the mapping table
hierarchy) is a lazily generated partial projection of the first
(the node tree) [13]. Because of the difference in tree arity,
the correctness of the correspondence — never mind the im-
plementation — is not immediately obvious, and the correct
implementation of this projection by the code is less so.

Matters are further complicated by the fact that the algo-
rithm takes advantage of reverse correspondences between
the two trees to avoid traversing the more expensive map-
ping structure when possible. The algorithm relies heavily
on checks of values produced by previous passes through the
translation code to determine the correct translation strat-
egy. It is not clear whether the temporal safety properties
of this code can be validated even with typestate support,
because the automaton is unable to consider the cumulative
effect of successive invocations of the address translation
subsystem.

In our view, there are two lessons to take away from the
failure of this check. The obvious one is that not every in-
variant can be reduced easily to temporal safety properties.
The less obvious one is that most invariants can: of the
many invariants that we attempted to check in the EROS
kernel, this is the only one that failed entirely. Others would
have required typestate analysis, but clearly fall within the
scope of what model checking technique can do.

5. EVALUATION

We argue that usability and performance are two key cri-
teria for evaluating the feasibility of integrating a static anal-
ysis tool into software development process. The usability

criterion measures how easy it is for non-tool developers
to write domain specific properties, and how disruptive the
tool is to the source code and to the build process. The per-
formance criterion measures how much overhead the static
checking adds to the build process.

5.1 Usability

5.1.1 Property Specification

The five properties that we checked in Section 4 are design
invariants in the EROS system. Historically, EROS has a
long track record of specifying invariants before implement-
ing them. While these specifications have not been collected
in a single place (but ought to be), they have been published
in email discussions, design notes that are part of the source
tree, and the original KeyKOS design document [18].

In the course of this experiment, our use of MOPS was
iterative. It took us just a few minutes to write the initial
property specification, but we would check this property and
found that it produced errors because the specification was
in some way incomplete. Then we would add new states and
transitions to the specification to address the deficiency and
would re-run the property. Two or three iterations of this
were generally sufficient to capture the property accurately.
We wrote the properties described here during the course of
roughly sixteen hours spread over several conference trips; a
long attention span was not required. The paper describing
them took longer to write than the properties themselves.

This experiment is a joint effort between the two authors:
one being an expert only on the tool (MOPS) and the other
an expert only on the system (EROS). The system expert
alone easily formalized and checked many properties, includ-
ing several ones that are not discussed in this paper. This ex-
perience suggests that MOPS can be used successfully with
minimal training on the tool by ordinary developers that
know only the system well.

In general, we found few false traces with the refined
FSAs. Most of these were due to failures of conditional
liveness analysis, and were resolved by making minor modi-
fications to the EROS code. In contrast to some other tools
we have used, the modifications yield more readable and
more maintainable code. In one or two cases we were un-
able to eliminate the last one or two false positives within a
reasonable amount of effort. These cases and their explana-
tions are now documented in the source code.

5.1.2 Integration into the Build Process

MOPS is minimally disruptive to the source code and to
the build process. As we mentioned before, MOPS checks
Gcc-compliant C code and does not require code annotation.
Running MOPS on EROS requires two steps: first, build a
CFG for each source file and link all the CFGs together;
second, model check the linked CFG against each property
respectively. MOPS’s parser produces CFG files in exactly
the way that GCC’s parser produces object files.

Integrating the MOPS processing into the EROS build
process required only minor changes to the existing Make-
files. After these changes, the Makefiles automatically main-
tain the CFG files as part of the normal build cycle.

5.2 Performance

From the developer perspective, a key concern with MOPS
was the run time cost of generating and building the CFG

files. The EROS kernel has approximately 25,704 lines of
code, of which 4,153 are header lines that are widely in-
cluded. Building the default configuration of the EROS ker-
nel without MOPS checking takes 12.13 seconds. When run-
ning the current version of MOPS on EROS, building and
linking the same configuration takes 31.34 seconds, the ma-
jority of which is spent in Java I/O. Model checking all the
five properties in Section 4 takes 100.13 seconds. This is a
large enough addition of time that we tend to omit it dur-
ing the “edit compile debug” loop, but small enough that
we can make it a routine part of our major builds without
noticeable cost.

Earlier versions of MOPS suffered from naively imple-
mented I/O. The I/O code was easily improved, and the ac-
tual processing time used for managing the CFG was never
a source of concern. However, the Java stream I/O pack-
age is difficult to use efficiently, and garbage collection is not
well suited to applications that retain large graph structures
for extended processing. Our sense is that an implementa-
tion crafted in a more conventional systems programming
language might well yield a factor of ten improvement in
the performance of the checking phase, and reduce the CFG
construction times down to something less than the normal
compile phase. This would be sufficient to let us run MOPS
in every build we do.

6. DESIRABLE ENHANCEMENTS TO MOPS

The initial goal of MOPS was to check control-flow centric
properties in security-critical application programs. When
we tried to use MOPS on EROS, we found that we needed
to improve MOPS in several minor ways that were described
in Section 2. Several desirable improvements emerged that
require non-trivial changes to the design of MOPS, and
we have started work to implement these enhancements in
future tools. We restrict ourselves here to improvements
that preserve the desirable properties of MOPS: soundness,
minimal invasiveness, developer-specifiable properties, and
developer-comprehensible results.

Stronger AST Predicates There are many cases where
one would like to write transition predicates that cannot
practically or maintainably be written using ASTs. An
example from the EROS kernel is that we would like to
know that every capability assignment is made to an “un-
hazarded” capability. If a capability is unhazarded, no cache
state needs to be invalidated by the assignment. Unfortu-
nately, there are a very large number of ASTs in which a
capability assignment occurs. What we would like to write
is an AST pattern matcher like:

{={var x } { any }} s.t. typeof($x)==Capability
That is: “match any assignment to a variable where the type
of that variable is capability.” This sort of “meta-pattern”
enhances the expressive power of the tool, but not its fun-
damental complexity.

AST Instance Annotation AST specification is extremely
flexible, but it is limited to pattern matching unless the pro-
gram can be annotated directly. On occasion, one wishes to
write a transition rule that fires when a particular statement
has completed. This requires AST instance matching rather
than AST pattern matching, and is most effectively accom-
plished by labeling the statement in the source code. While
C statement labels can be used for this purpose, many com-
pilers complain about unused labels or labels that are not

followed by a statement. Programmers respond to warnings
by removing the offending labels. Our sense is that MOPS-
specific syntactic annotation comments would be more ro-
bust for this purpose than statement labels.

Typestate Typestate [15, 16] is a property that tracks
the evolution of dynamic type as a function of control flow.
For example, the cache status of an EROS process is ei-
ther encached, decached, or unknown. Certain operations
on processes are safe only if the process is cached. This
is not a property that can readily be captured by the static
type (Process), but can be tracked as a mapping of the form:
(variable, ProgramCounter) — typestatesof(typeof(variable))
A great many of the properties we want to check can be
expressed as typestate properties. In contrast to global
control-flow properties, typestate can be sensibly expressed
in the source code using syntactic comments. We can anno-
tate each type declaration with its known type states, and
annotate procedures with the typestate transitions or pre-
conditions that they establish.

Liveness Analysis and Value Flow MOPS pattern
variables provide a coarse approximation to reaching defi-
nitions. In practice, we would like to know not only that
the same variable was passed, but that its value has not
changed. More generally, we would like to have value flow
analysis to detect distinct value continuity across FSA tran-
sitions.

Collectively, these enhancements would not bring MOPS
to the full power of a theorem proving system, and there are
many properties that the enhanced MOPS would remain un-
able to check. They would, however, substantially improve
the utility of MOPS for assurance purposes.

7. RELATED WORK

Formal verification is an objective approach to demon-
strate the correlation between a software design and its im-
plementation. In this approach, the user specifies the be-
havior of a program, and the verification tool checks if the
program satisfies the specification. LARCH [19] is such a
tool. Another example is the B-Method [20], which pro-
vides a notation, a method, and a toolkit for requirement
modeling, software interface specification, software design,
implementation and maintenance. Although these tools can
lead to astonishingly strong code, the work to create the
specification is often heavy, and the skills needed are be-
yond most software programmers.

Light-weight formal verification has been proposed to over-
come the complexity and scalability problems in full formal
verification. Instead of creating a precise but complex spec-
ification of the program, in light-weight verification the user
selects a set of simple properties that are easy to specify
and computationally cheap to verify. As such, light-weight
verification tools can afford to use relatively simple and scal-
able machinery. Splint [11] is a tool for statically checking
C programs for a pre-defined set of common coding errors.
Since it checks only those properties that were envisioned by
the tool developer, it cannot be used to check application-
specific properties.

SLAM [5] uses software model checking to verify user-
specifiable temporal safety properties in programs. It itera-
tively finds error traces using a model checker, rejects infea-
sible traces using a theorem prover, and refines a boolean
abstraction of the source program. BLAST [1], a software

model checker similar to SLAM, uses lazy abstraction to
reduce unnecessary abstraction refinement. ESP [21] is a
tool for verifying temporal safety properties in C/C++ pro-
grams. It uses a global context sensitive, control flow insen-
sitive analysis in the first phase and an inter-procedural, con-
text sensitive dataflow analysis in the second phase. Among
these tools, SLAM/BLAST are the most precise and least
scalable, MOPS is the most scalable and least precise, and
ESP is between SLAM/BLAST and MOPS in precision and
scalability. SLAM, BLAST, and ESP might satisfy our need
for typestate (Section 6), but SLAM and ESP are publicly
unavailable and BLAST is not mature enough. CMC [22]
model checks a system for erratic behaviors. The state of the
system is the union of the states of all its processes along
with the contents of the shared memory, and the state of
each process consists of its global variables, heap, stack, and
context registers. CMC handles its state explosion problem
by using hash tables and heuristics, which effectively com-
promises soundness.

Rather than focus on temporal safety properties, some
tools are concerned mainly with data flow properties. Koved
et al. used context sensitive, flow sensitive, inter-procedural
data flow analysis to compute access rights requirement in
Java with optimizations to keep the analysis tractable [23].
CQUAL [24] is a type-based analysis tool that provides a
mechanism for specifying and checking properties of C pro-
grams. It has been used to detect format string vulnerabil-
ities [25] and to verify authorization hook placement in the
Linux Security Model framework [4], which are examples of
the development of sound analysis for verification of partic-
ular security properties. The application of CQUAL, how-
ever, is limited by its flow insensitivity. CQUAL may also
satisfy our need for typestate. Extended Static Checker for
Java (ESC/Java) [26] uses verification-condition generation
and automatic theorem-proving techniques to find common
programming errors. Compared to MOPS, ESC/Java re-
quires the user to annotate programs to express their design
decisions, which makes it harder to use and maintain in the
software development process.

Aside from light-weight verification tools, there are light-
weight bug finding tools. They do not attempt to verify the
absence of bugs in a program; rather they find bugs in a pro-
gram at best-effort. MC [12] is such a tool, which checks for
rule violations in operating systems using meta-level com-
pilation to write system-specific compiler extensions. Al-
though MC has been used successfully to find many bugs, it
does not provide assurance for any property. Furthermore,
MC is not publicly available.

Specification and verification trails are usually considered
proprietary data. Roger Schell, for example, views the trail
of evidence supporting the assurance results for the Blacker
kernel [27] as a proprietary data, not only because of what
it reveals about the Blacker kernel, but because of what it
reveals about how to achieve such verifications [28].

Perhaps the best documented effort to verify properties
about a substantial software system is the verification work
on PSOS [29, 30]. The PSOS verification method relies on
a hierarchical structuring of the system design and its im-
plementation followed by a theorem-proving verification of
properties across the layers of the design. While this method
generates justifiably higher confidence than the one used by
MOPS, the effort required is substantially larger and the
confidence of full verification is not required in all applica-

tions. At some threshold, bounding the maintenance cost of
assurance over the course of the software life cycle becomes
more important than achieving a higher degree of assurance.
In such situations, lighter methods such as MOPS may pro-
vide a more effective cost/benefit trade-off.

8. CONCLUSION

In this paper we have reported on our use of the MOPS
static checker to verify selected temporal safety properties
on the EROS operating system kernel. In the process, we
have both demonstrated the utility of the technique and ar-
rived at greater confidence in the design and implementation
of the EROS system.

In order to be effective as a tool for preventing the intro-
duction of temporal safety errors, a verification technique
must meet several requirements:

e It must be sufficiently sound (and must document clearly
the conditions under which it may become unsound).
The tool must not fail silently.

e Its specifications must be expressed in a form that typ-
ical programmers can write.

e It must not require invasive changes to the code base.

e It must be efficient enough to be incorporated into the
normal build process.

The MOPS checker satisfies all of these properties.

Pragmatically, the cost, complexity, and time of verifica-
tion must be balanced against developer utility and con-
fidence gained. MOPS offers a reasonable trade-off in this
cost/benefit continuum. It builds on specification techniques
that are already known to programmers (FSAs) and reports
errors in a form that programmers understand (traces). At
the same time, the fact that safety properties can be formal-
ized as finite state automata provides confidence that the
system has been designed and implemented in a structured,
principled, and robust way. Initial utility can be obtained
by developers in hours, and substantial end-to-end checks
in a few weeks. Once constructed, specifications provide a
continuing guard against the introduction of temporal safety
errors. No complex training in theorem proving is required.

Based on our experiences in this experiment, we sug-
gest that checking of this kind should be incorporated more
broadly into the development processes of critical software
systems.

9. ACKNOWLEDGMENTS

While it has diverged in recent years, the original EROS
architecture was closely derived from that of KeyKOS. No
work derived from KeyKOS could be complete without ac-
knowledging the principal architects and implementors of
that system: Norman Hardy, Charlie Landau, and William
Frantz. Each of these individuals has participated in and
encouraged work on the EROS system.

David Wagner initiated the MOPS project, identified sev-
eral original algorithms in MOPS, and provided lots of in-
sightful feedback. The work described here would not be
possible without his help. Robert Johnson contributed to
the initial implementation of generic pattern variables in
MOPS.

10.

[1]

[2

—

3

—_

[4

[llum)

[5

—_

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Thomas A. Henziger, Ranjit Jhala, Rupak Majumdar,
George C. Necula, Gregoire Sutre, and Westley
Weimer. Temporal-safety proofs for systems code. In
Proc. 14th International Conference on
Computer-Aided Verification, pages 526-538, 2002.
Junfeng Yang, Ted Kremenek, Yichen Xie, and
Dawson Engler. MECA: an extensible, expressive
system and language for statically checking security
properties. In Proc. 10th ACM Conference on
Computer and Communications Security, 2003.
Dawson Engler and Ken Ashcraft. RacerX: Effective,
static detection of race conditions and deadlocks. In
Proc. 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, October 2003.
Xiaolan Zhang, Antony Edwards, and Trent Jaeger.
Using CQUAL for static analysis of authorization
hook placement. In Proceedings of the Eleventh
USENIX Security Symposium, August 2002.
Thomas Ball and Sriram K. Rajamani. The SLAM
project: Debugging system software via static
analysis. In POPL ’02: Proceedings of the ACM
SIGPLAN-SIGACT Conference on Principles of
Programming Languages, 2002.

Hao Chen and David Wagner. MOPS: an
infrastructure for examining security properties of
software. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS),
Washington, DC, 2002.

Hao Chen, Drew Dean, and David Wagner. Model
checking one million lines of C code. In Proceedings of
the 11th Annual Network and Distributed System
Security Symposium, San Diego, CA, 2004.
Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: A fast capability system. In
Proc. 17th ACM Symposium on Operating Systems
Principles, pages 170-185, Kiawah Island Resort, near
Charleston, SC, USA, December 1999. ACM.

J. S. Shapiro and S. Weber. Verifying the EROS
confinement mechanism. In Proc. 2000 IEEE
Sympostum on Security and Privacy, pages 166-176,
Oakland, CA, USA, 2000.

Norman Hardy. The KeyKOS architecture. Operating
Systems Review, 19(4):8-25, October 1985.

David Evans and David Larochelle. Improving security
using extensible lightweight static analysis. IEEE
Software, 19(1), January 2002.

Seth Hallem, Benjamin Chelf, Yichen Xie, and
Dawson Engler. A system and language for building
system-specific, static analyses. In PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and
Implementation, Berlin, Germany, June 2002.

J. S. Shapiro. EROS: A Capability System. PhD
thesis, University of Pennsylvania, Philadelphia, PA
19104, 1999.

Bryan Ford, Mike Hibler, Jay Lepreau, Roland
McGrath, and Patrick Tullmann. Interface and
execution models in the fluke kernel. In Proc. 8rd
Symposium on Operating System Design and
Implementation, pages 101-115, February 1999.
Robert E. Strom and Shaula Yemini. Typestate: A

[16]

[17]

(18]
[19]

[20]

(21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

programming language concept for enhancing software
reliability. IEEE Trans. on Software Engineering,
(1):157-171, January 1986.

Robert E. Strom and Daniel M. Yellin. Extending
typestate checking using conditional liveness analysis.
IEEE Trans. on Software Engineering, (5):478-485,
May 1993.

David R. Cheriton and Kenneth J. Duda. A caching
model of operating system kernel functionality. In
Proc. USENIX Symposium on Operating Systems
Design and Implementation, pages 179-193, 1994.
Key Logic, Inc. GNOSIS Design Documentation, 1990.
John V. Guttag, James J. Horning, S. J. Garland,

K. D. Jones, A. Modet, and J. M. Wing. LARCH:
Languages and Tools for Formal Specification.
Springer-Verlag, New York, NY, 1993.

Emil Sekerinski and Kaisa Sere, editors. Program
Development by Refinement. Springer, 1999.

Manuvir Das, Sorin Lerner, and Mark Seigle. ESP:
Path-sensitive program verification in polynomial
time. In PLDI ’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design
and Implementation, Berlin, Germany, June 2002.
Madanlal Musuvathi, David Y.W. Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: A
pragmatic approach to model checking real code. In
OSDI ’02: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation,
Boston, MA, December 2002.

Larry Koved, Marco Pistoia, and Aaron
Kershenbaum. Access rights analysis for Java. In
Proceedings of the 17th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, 2002.

Jeffrey Foster, Manuel Fahndrich, and Alexander
Aiken. A theory of type qualifiers. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI’99), May 1999.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and
David Wagner. Detecting format string vulnerabilities
with type qualifiers. In Proceedings of the 10th
USENIX Security Symposium, 2001.

Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for java. In
Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and
Implementation, Berlin, Germany, 2002.

Roger R. Schell. Evaluating security properties of
computer systems. In Proc. 1988 IEEE Symposium on
Security and Privacy, pages 89-95, 1983.

Roger R. Schell. Evidence Trails as Proprietary Data,
2002. Personal communication.

R. Feiertag and P. Neumann. The foundations of a
provably secure operating system (PSOS). In Proc.
1979 National Computer Conference, 1979.

P.G. Neumann and R.J. Feiertag. PSOS revisited. In
Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC 2008), Classic
Papers section, Las Vegas, Nevada, December 2003.

