

 Developing Audio Products with

Cortex-M3/NuttX/C++11

Masayuki.Ishikawa@sony.com

Senior Software Engineer
Sony Video & Sound Products Inc.

Agenda

 Product outline
 Typical software development
 Porting NuttX to MCU
 Power management and fast ELF loading
 C++11 and standard library
 Debugging with apps
 adb support and testing with adb
 Demo videos

2

Product Outline

3

ICD-UX560 ICD-SX2000 NW-WS410

• Water proof (salt water)
• Ambient sound mode
• Up to 12h of battery life

• LPCM recording (up to 96k/24bit)
• FLAC/LPCM playback (up to 192k/24bit)
• Wireless control with REC Remote

• microSDHC and microSDXC
support

• Focus and wide mic mode
• Digital Pitch Control

Hardware Comparison

4

Model name ICD-UX560 ICD-SX2000 NW-WS410

Public release
RTM*

2015/10
2015/09

2016/01
2015/12

2016/02
2015/11

CPU package TQFP WLP WLP

eMMC 4GB, 8GB 16GB 4GB, 8GB

SD card microSDHC
microSDXC

microSDHC
microSDXC

-

Audio CODEC DA7213 DA7211x2 + CXD3774GF CS47L01

Display OLED 128x128 STN LCD 128x128 -

Serial Flash - Winbond 2MB -

NFC - CXD2249GG (HCI) -

Bluetooth - CSR8811 (HCI) -

FM Tuner Si4708 - -

*RTM = Release To Manufacturing

Typical Software Development

5

Product models Android based Linux based RTOS based

CPU ARM Cortex-A series w/
MMU

ARM Cortex-A series w/ MMU ARM Cortex-M series w/o
MMU

Clock 1GHz - 500MHz - 100MHz –

Memory mDDR2 512MB - mDDR 64MB - SRAM 128KB –

SPI Flash Not used Not used Normally used

Toolchain arm gcc (Google provides) arm gcc (SoC vendor provides) Provided by MCU vendor

BSP (Board Support Package) Provided by SoC vendor Provided by SoC vendor Provided by MCU vendor

Programming Language Java + native (C/C++) C/C++ C (C++)

Debug commands Can load dynamically Can load dynamically Need to link statically

Debug tools adb, gdb + gdb server gdb + gdb server Commercial ICE

Why we chose NuttX

 POSIX and libc are supported
 Can reuse existing software
 Can reduce training costs

 ELF* is supported
 Can divide into small apps

 Driver framework is supported
 Helps us implement drivers

 Has Linux-like configuration system
 Helps us develop multiple products

 Many MCUs and boards are supported
 Helps us port NuttX to new MCU

 BSD license is available

6

From http://www.nuttx.org/

* ELF = Executable and Linking Format

Technical Challenges

 Porting NuttX to MCU
 How to use open tools such as openocd
 Need to consider small RAM size
 How to reuse existing software
 How to apply modern software development

7

http://openocd.org/

http://www.stroustrup.com/4th.html http://wiki.qemu.org/Logo https://github.com

http://www.nuttx.org/

Software Stack and tools

8

NuttX 7.5 + peripheral drivers

GUI apps Non GUI apps

UI toolkit Application Manager
Debug

commands Services BT stack NFC stack

tools: gcc-arm-none-eabi-4_8-2014q1, openocd-0.9.0-dev

MCU (LC823450) * QEMU 1.4.0

*MCU is not a part of software stack.

LC823450 Features

 ARM Cortex-M3 dual core
 32bit fixed point, dual-MAC original DSP
 Internal SRAM (1656KB) for ARM and DSP
 I2S I/F with 16/24/32bit, MAX 192kHz (2chx2)
 Hard wired audio functions
 MP3 encoder and decoder, EQ (6-band equalizer), etc.

 Integrated analog functions
 Low-power Class D HP amplifier, system PLL
 Dedicated audio PLL, ADC

 Various interfaces
 USB2.0 HS device / host (not OTG), eMMC, SD card, SPI, I2C, etc.

 ARM and DSP clock max frequency
 160MHz at 1.2V
 100MHz at 1.0V

9

ON Semiconductor LC823450

From http://www.onsemi.com/PowerSolutions/product.do?id=LC823450

Porting NuttX to MCU

 Started with LC823450 FPGA
 FPGA code was provided by ON Semiconductor
 Ported NuttX-7.4 first, then merged 7.5
 Cortex-M3 (20MHz), NVIC, Timer, UART, GPIO
 eMMC, SD, DMA, SPI, LCD
 I2C, I2S, Audio Buffer, Audio CODEC
 RTC, ADC, USB
 SPI-Flash, Bluetooth, DSP

 After LC823450 ES arrived
 Test MAX CPU clock with PLL
 Test eMMC boot
 Implement power management
 Implement suspend & resume

10

Xilinx VC707 + sub boards

OpenOCD

 The very first step
 Need to prepare before porting NuttX

 Version 0.9.0-dev
 SWD (Serial Wire Debug) supported
 With FTDI FT232H board

 Prepare startup scripts
 Cortex-M sysreset
 Be careful with adaptor clock

 Load the program to SRAM
 Load to SPI-Flash
 Implement SPI-Flash driver

11

LC823450
SWD

FT232H
USB

openocd is running on Linux host

openocd

eMMC/SD driver

 Implement as a block device
 Call ROM APIs
 identifycard, readsector, writesector, etc.
 instead of using eMMC driver in NuttX

 Use fixed partitions
 due to ROM code restrictions

 Use DMA
 to reduce CPU load

 Work with hotplug driver
 i.e. SD card detection
 newly introduced

12

eMMC SD

ROM API lc823450_sdc.c

mtd_lc823450.c

Block device API

File Systems

 Using NuttX file systems
 procfs for debugging, wake_lock, etc.
 vfat for program files, properties, database

 Add eVFAT
 Provided by ON Semiconductor
 FAT32, exFAT supported
 IC recorder specific APIs supported
 Cache control supported

 Others
 Add read only option
 Add remount option

13

df & mount on ICD-SX2000

eVFAT

 Implement using NuttX VFS* APIs
 Call ROM APIs
 mount, open, read, write, lseek, …, etc

 Add new IOCTLs
 divide, …

 Add UTF-8 from/to UTF-16 conversion
 Use a dedicated stack like IRQ
 Because some APIs need more stacks

14

fs/evfat ROM API

mtdblock

VFS API

* VFS = Virtual File System

Audio Support

 Features
 H/W MP3 encoder and decoder
 H/W Audio Buffer (64KB)
 Beep generator
 Mute & volume control
 In DSP
 Decoders (WMA, AAC, FLAC, etc)
 Audio signal processing

 Implementation
 NuttX has an audio subsystem
 Technically possible to use existing features
 But we decided to develop new APIs like alsa-lib
 Non-blocking API

 15

From LC823450-D.PDF

Audio Playback Example (AAC,…)

16

bufD

bufL

SSRC meter

EQ3 mute beep I2S0

DSP

DSP

bufC

bufF

bufK ARM

 Cortex-M3
 Set up audio routing and buffers
 Set up external audio CODEC
 Load DSP code and boot
 Read a file on eMMC/SD
 Parse audio frame
 Write the frame to the Audio Buffer

 DSP
 Decode the frame
 Do post process
 Write PCM data to the Audio Buffer

DSP

Audio Buffer

Audio Recording example (MP3)

 Cortex-M3
 Set up audio routing and buffers
 Set up external audio CODEC
 Load DSP code and boot
 Wait for the buffer to be filled
 Write the audio frame to a file

 DSP
 Wait for the audio buffer from I2S
 Perform preprocessing of the frame
 Write to the Audio Buffer

 MP3 Encoder
 Wait for the audio buffer from DSP
 Encode the PCM data
 Write to the Audio Buffer

17

bufD

bufL

bufE

bufA MP3 Enc

mute

SSRC meter

EQ3 I2S0

DSP

DSP

bufB

bufC

bufK

ARM

DSP

Audio Buffer

Power Management

 Clock gating
 Disable clocks for unused blocks

 Power gating
 Disable power for unused blocks
 ISOLATED-A : Audio
 ISOLATED-B/C/D : SRAM
 ISOLATED-E : USB Host
 ISOLATED-G : SPI-Flash cache

 DVFS
 Suspend & Resume

18

From LC823450-D.PDF

DVFS* (1/2)

 Voltage control
 1.2V at 160MHz, 1.0V at 100MHz

 Clock control
 CPU/DSP clock, AHB clock

 Clock table example
 Active mode: 160M/80M/40M/24M
 Idle mode: 24M/12M/6M/3M

 Autonomous control
 Calculates the idle ratio
 Controls divider and selector

 Boost the clock
 when the keys are pressed
 while loading applications

19

Cortex-M3
PLL

XT1

div

selector

time

WFI WFI IRQ IRQ

idle mode idle mode

active mode

* DVFS = Dynamic Voltage and Frequency Scaling

e.g. 24MHz

DVFS (2/2)

 NuttX has CPU load monitoring
 To monitor each task load
 But the load in IRQ handler is not considered

 Need more accurate idle time
 With simple calculation
 Accumulate sleep time in usec during WFI
 Calculate the idle ratio

 Use an internal H/W timer for tick
 Instead of SYSTICK in Cortex-M3
 As the timer is not affected by clock change
 Results in simple calculation

20

time

WFI WFI IRQ IRQ

sleep_time sleep_time

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 =
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛−1)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Cortex-M3
PLL

Timer XT1
10ms

div

e.g. 24MHz

selector

Suspend & Resume

 Introduce wake_lock
 Provides APIs similar to those of Android kernel
 If the power state is set to “mem” and no wake_lock exists,

enter to SLEEPDEEP mode

 Implementation
 Use a kernel thread
 Power down unused blocks
 e.g. Audio, SD, etc…
 USB Suspend must be considered

 Set SLEEPDEEP flag in NVIC and issue WFI
 Woken up by interrupt when the following are received
 i.e. GPIO, RTC alarm, USB resume

 Power on the blocks if needed
 Synchronize the kernel time with RTC

21

wake_lock power_state

wake lock kernel thread

 /proc

suspend
sequence

resume
sequence

IRQ
handler

 interrupt SLEEPDEEP

ELF* support

 Motivation
 To overcome limited memory
 More flexible than overlay

 Divide into small applications
 e.g: Home, Settings, Play, Rec, …etc.

 Can use separate debug commands
 without linking them to the applications.
 e.g: ps, free, …

22

ps & free on ICD-SX2000

* ELF = Executable and Linking Format

Fast ELF loading

1. Section data cache
 Allocate a big heap to hold tables to reduce

eMMC access.
 Use unused SRAM areas, if possible
 e.g. DSP program & work area

2. Symbol name replacement
 Shorten symbols by hashing their names
 Sort A-Z and do binary-search in find-by-name
 Need to modify the build system

23

 {"pthread_condattr_setclock", &pthread_condattr_setclock},

 {"a895afc", &pthread_condattr_setclock},

0

500

1000

1500

2000

2500

3000

3500

4000

NuttX 7.5 1. data cache 2. short name

App1 App2 App3

 ms

Developing with QEMU*

 Motivation
 To port the Bluetooth stack
 To port in-house GUI toolkit
 To develop applications

 Implementation
 Start with 1.4.0
 Use TI Stellaris for QEMU hardware
 Use lm3s6965-ek for NuttX
 Increase SRAM size to 4MB
 Fix SD driver
 Fix NVIC issue

24

NuttX 7.5 (lm3s6965-ek)

BT stack

BT sample app

GUI toolkit

GUI apps

Linux host

CSR8811
UART

NuttX 7.5 (lm3s6965-ek)

GUI toolkit

Linux host

CSR8811

*QEMU is open source CPU emulator

C++11

 Motivation
 Improve productivity
 Performance benefits

 Features
 auto keyword
 the compiler determines the type

 Lambda expression to define function objects
 New smart pointer
 to avoid memory leaks
 introduced std::unique_ptr<> and
std::shared_ptr<>

 Move semantics to optimize copying
 introduced move constructor and assignment
 introduced std::move()

 override, final, nullptr, constexpr
…

25

From http://cpprocks.com/9-reasons-to-start-using-c11/

can be replaced with

C++ Standard library

26

libc++ libstdcxx libstdc++ STLPort

Maintained by APACHE GNU STLPort

C++11 support Fully supported Not supported Fully supported

Not supported

License MIT and UIUC
(BSD-like)

Apache GPLv3 (mainline)
GPLv2 (ver 4.2)

Boris Fomitchev

Others LLVM and Clang
supported
Newer codebase
and easier to port

4.2.1 released in
2008/05

Tightly integrated
with g++

5.2.1 released in
2008/10

From http://libcxx.llvm.org/

Code size reduction

 Example
 kernel and static libraries

 Approaches
1. Started with ‘-O2’
2. Plus Compile with ‘-Os’
3. Plus GC of unused sections at link
4. Plus Symbol name replacement

27

0

100

200

300

400

500

600

700

1. -O2 2. -Os 3. gc-sections 4. short name

co
de

 s
iz

e
(K

B)

Debugging with apps (1/2)

 openocd supports some OSes
 Linux, FreeRTOS, ChibiOS, …
 The feature is very useful to debug deadlocks
 Unfortunately NuttX is not supported

 Implementation*
 Similar to other RTOSes (e.g. ChibiOS)
 Prepare symbol list to look up
 i.e. g_readytorun, g_tasklisttable, …

 Implement update_threads callback
 Fix memory corruption in rtos.c

28

openocd LC823450
SWD

emacs + arm-none-eabi-gdb-7.6

FT232H
USB

*The code is now available on https://github.com/sony/openocd-nuttx

Debugging with apps (2/2)

 Typical scenario
 Crash occurs when testing
 Crash logs are saved in RAM
 Reboot by WDT
 Save the logs to a file when booting
 Pull the log with adb
 Analyze the log with debug symbols

29

adb* support

 Motivation
 To test the system without proprietary tools
 To retrieve internal logs

 Features
 push, pull and shell with a remote execution
 The feature is disabled at the factory before

shipping
 Implementation
 Start with the NuttX USB serial driver
 composite version

 Change the USB descriptors
 Implement the protocols from scratch

30

* adb = Android Debug Bridge

Integration & testing with adb

 For development
1. Push codes and create a pull request
2. Build the code
3. Deploy the software to each product
4. Test the products with adb
5. Store the test results with Jenkins

 At factory
 PCB* tests are done with adb
 After all tests pass, adb is disabled

31

1)

2)

4)
3)

5)

*PCB = Printed Circuit Board

Automated Unit-testing with googletest
 Google Test
 Google’s C++ testing framework
 Port to NuttX and libc++ environment

 Motivation
 To find bugs early
 To clarify interfaces between modules
 To refactor code safely
 To make sure code works correctly on new

target boards
 Executing Test
 Transfer and execute test cases with adb
 Faster-cycle of developing and testing

32

DSP software development

 Procedure
 Develop code on the simulator
 Run the sample app on Cortex-M3

and wait for loading DSP code
 Load the DSP code via DSP-ICE

then start the DSP
 Continue the app on Cortex-M3

33

Demo videos

 Video #1 : adb, fast ELF loading, DVFS
 Video #2 : stress testing tool like Android monkey

34

Thank you

ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All
rights reserved. APACHE is registered in Australia, Norway, Switzerland, Japan, Brazil, and is pending in other
countries, as our house mark symbolizing our high quality community-led, volunteer built software products
provided for the public good. Xilinx is a registered trademark of Xilinx, Inc. Linux is a registered trademark of Linus
Torvalds. FreeRTOS is a trademark of Real Time Engineers Limited. QEMU is a trademark of Fabrice Bellard.
Android is a trademark of Google Inc. POSIX is a registered trademark of the IEEE. BSD is a registered trademark
of UUnet Technologies, Inc. The jenkins logo is released under the Creative Commons Attribution-ShareAlike 3.0
Unported License and created by the jenkins project (https://jenkins.io/) GITHUB, the GITHUB logo design,
OCTOCAT and the OCTOCAT logo design are exclusive trademarks registered in the United States by GitHub, Inc.
Microsoft Azure is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries. Stellaris is a registered trademark of Texas Instruments Incorporated. “WALKMAN” and
“WALKMAN” logo are registered trademarks of Sony Corporation. SONY is a registered trademark of Sony
Corporation.

Copyright 2016 Sony Video & Sound Products Inc.

35

	Developing Audio Products with �Cortex-M3/NuttX/C++11
	Agenda
	Product Outline
	Hardware Comparison
	Typical Software Development
	Why we chose NuttX
	Technical Challenges
	Software Stack and tools
	LC823450 Features
	Porting NuttX to MCU
	OpenOCD
	eMMC/SD driver
	File Systems
	eVFAT
	Audio Support
	Audio Playback Example (AAC,…)
	Audio Recording example (MP3)
	Power Management
	DVFS* (1/2)
	DVFS (2/2)
	Suspend & Resume
	ELF* support
	Fast ELF loading
	Developing with QEMU*
	C++11
	C++ Standard library
	Code size reduction
	Debugging with apps (1/2)
	Debugging with apps (2/2)
	adb* support
	Integration & testing with adb
	Automated Unit-testing with googletest
	DSP software development
	Demo videos
	Thank you

