
Chapter 7

Message Authentication

In most people’s minds, privacy is the goal most strongly associated to cryptography. But message
authentication is arguably even more important. Indeed you may or may not care if some particular
message you send out stays private, but you almost certainly do want to be sure of the originator
of each message that you act on. Message authentication is what buys you that guarantee.

Message authentication allows one party—the sender—to send a message to another party—
the receiver—in such a way that if the message is modified en route, then the receiver will almost
certainly detect this. Message authentication is also called data-origin authentication. Message
authentication is said to protect the integrity of a message, ensuring that each message that it is
received and deemed acceptable is arriving in the same condition that it was sent out—with no
bits inserted, missing, or modified.

Here we’ll be looking at the shared-key setting for message authentication (remember that
message authentication in the public-key setting is the problem addressed by digital signatures). In
this case the sender and the receiver share a secret key, K, which they’ll use to authenticate their
transmissions. We’ll define the message authentication goal and we’ll describe some different ways
to achieve it. As usual, we’ll be careful to pin down the problem we’re working to solve.

7.1 The setting

It is often crucial for an agent who receives a message to be sure who sent it. If a hacker can
call into his bank’s central computer and produce deposit transactions that appears to be coming
from a branch office, easy wealth is just around the corner. If an unprivileged user can interact
over the network with his company’s mainframe in such a way that the machine thinks that the
packets it is receiving are coming from the system administrator, then all the machine’s access-
control mechanisms are for naught. In such cases the risk is that an adversary A, the forger, will
create messages that look like they come from some other party, S, the (legitimate) sender. The
attacker will send a message M to R, the receiver (or verifier), under S’s identity. The receiver
R will be tricked into believing that M originates with S. Because of this wrong belief, R may
inappropriately act on M .

The rightful sender S could be one of many different kinds of entities, like a person, a corpora-
tion, a network address, or a particular process running on a particular machine. As the receiver R,
you might know that it is S that supposedly sent you the message M for a variety of reasons. For

2 MESSAGE AUTHENTICATION

M
C

Sender

A
KK

C’
E D

Receiver

M’ or

Figure 7.1: An authenticated-encryption scheme. Here we are authenticating messages with what
is, syntactically, just an encryption scheme. The sender transmits a transformed version C of M
and the receiver is able to recover M ′ = M or else obtain indication of failure. Adversary A controls
the communication channel and may even influence messages sent by the sender.

example, the message M might be tagged by an identifier which somehow names S. Or it might
be that the manner in which M arrives is a route dedicated to servicing traffic from S.

Here we’re going to be looking at the case when S and R already share some secret key, K.
How S and R came to get this shared secret key is a separate question, one that we deal with later.

There are several high-level approaches for authenticating transmissions.

1. The most general approach works like this. To authenticate a message M using the key K,
the sender will apply some encryption algorithm E to K, giving rise to a ciphertext C. When
we speak of encrypting M in this context, we are using the word in the broadest possible
sense, as any sort of keyed transformation on the message that obeys are earlier definition for
the syntax of an encryption scheme; in particular, we are not suggesting that C conceals M .
The sender S will transmit C to the receiver R. Maybe the receiver will receive C, or maybe
it will not. The problem is that an adversary A may control the channel on which messages
are being sent. Let C ′ be the message that the receiver actually gets. The receiver R, on
receipt of C ′, will apply some decryption algorithm D to K and C ′. We want that this
should yield one of two things: (1) a message M ′ that is the original message M ; or (2) an
indication ⊥ that C ′ be regarded as inauthentic. Viewed in this way, message authentication
is accomplished by an encryption scheme. We are no longer interested in the privacy of
the encryption scheme but, functionally, it is still an encryption scheme. See Fig. 7.1. We
sometimes use the term authenticated encryption to indicate that we are using an encryption
scheme to achieve authenticity.

2. Since our authenticity goal is not about privacy, most often the ciphertext C that the sender
transmits is simply the original message M together with a tag T ; that is, C = 〈M,T 〉.
When the ciphertext is of this form, we call the mechanism a message-authentication scheme.
A message-authentication scheme will be specified by a tag-generation algorithm TG and
a tag-verification algorithm VF. The former may be probabilistic or stateful; the latter is
neither. The tag-generation algorithm TG produces a tag T $← TGK(M) from a key K and
the message. The tag-verification algorithm VF ← VFK(M ′, T ′) produces a bit from a key
K, a message M ′, and a tag T ′. The intent is that the bit 1 tells the receiver to accept M ′,
while the bit 0 tells the receiver to reject M ′. See Fig. 7.5

Bellare and Rogaway 3

M

M

T

Sender
M’

A KK

M’

T’
TG VF 0 or 1

Receiver

Figure 7.2: A message authentication scheme. This is a special case of the more general framework
from the prior diagram. The authenticated message C is now understood to be the original message
M together with a tag T . Separate algorithms generate the tag and verify the pair.

M

M

T

Sender
M’

A
KK

M’

T’
MAC MAC 0 or 1

Receiver

=
T *

Figure 7.3: A message authentication code. This is a special case of a message authentication
scheme. The authenticated message C is now understood to be the original message M together
with a tag T that is computed as a deterministic and stateless function of M and K. The receiver
verifies the authenticity of messages using the same MACing algorithm.

3. The most common possibility of all occurs when the tag-generation algorithm TG is deter-
ministic and stateless. In this case we call the tag-generation algorithm, and the scheme itself,
a message authentication code, or MAC. When authentication is accomplished using a MAC,
we do not need to specify a separate tag-verification algorithm, for tag-verification always
works he same way: the receiver, having received 〈M ′, T ′〉, computes T ∗ = MACK(M ′). If
this computed-tag T ∗ is identical to the received tag T ′ then the receiver regards the message
M ′ as authentic; otherwise, the receiver regards M ′ as inauthentic. We write T = MACK(M)
for the tag generated by the specified MAC. See Fig. 7.5

When the receiver decides that a message he has received is inauthentic what should he do?
The receiver might want to just ignore the bogus message. Perhaps it was just noise on the channel;
or perhaps taking action will do more harm than good, opening up new possibilities for denial-of-
service attacks. Alternatively, the receiver may want to take more decisive actions, like tearing
down the channel on which the message was received and informing some human being of apparent
mischief. The proper course of action is dictated by the circumstances and the security policy of
the receiver.

4 MESSAGE AUTHENTICATION

We point out that adversarial success in violating authenticity demands an active attack: to
succeed, the adversary has to do more than listen—it has to get some bogus message to the receiver.
In some communication scenarios it may be difficult for the adversary to get its messages to the
receiver. For example, it may be tricky for an adversary to drop its own messages onto a physically
secure phone line or fiber-optic channel. In other environments it may be trivial for the adversary
to put messages onto the channel. Since we don’t know what are the characteristics of the sender—
receiver channel it is best to assume the worst and think that the adversary has plenty of power
over this channel. We will actually assume even more than that, giving the adversary the power of
creating legitimately authenticated messages.

We wish to emphasize that the message-authentication problem is very different from the privacy
problem. We are not worried about secrecy of the message M ; our concern is in whether the
adversary can profit by injecting new messages into the communications stream. Not only is the
problem conceptually different but, as we shall now see, privacy-providing encryption does nothing
to ensure message authenticity.

7.2 Privacy does not imply authenticity

We know how to encrypt data so as to provide privacy, and something often suggested—and
even done—is to encrypt as a way to provide authenticity. Fix a symmetric encryption scheme
SE = (K, E ,D), and let parties S and R share a key K for this scheme. When S wants to send

a message M to R, she encrypts it, transferring a ciphertext M ′ = C generated via C $← EK(M).
The receiver B decrypts it and, if it “makes sense”, he regards the recovered message M = DK(C)
as authentic.

The argument that this works is as follows. Suppose, for example, that S transmits an ASCII
message M100 which indicates that R should please transfer $100 from the checking account of S
to the checking account of some other party A. The adversary A wants to change the amount from
the $100 to $900. Now if M100 had been sent in the clear, A can easily modify it. But if M100

is encrypted so that ciphertext C100 is sent, how is A to modify C100 so as to make S recover the
different message M900? The adversary A does not know the key K, so she cannot just encrypt
M900 on her own. The privacy of C100 already rules out that C100 can be profitably tampered with.

The above argument is completely wrong. To see the flaws let’s first look at a counter-example.
If we encrypt M100 using a one time pad, then all the adversary has to do is to xor the byte of
the ciphertext C100 that encodes the character “1” with the xor of the bytes for 1 and 9. That is,
when we one-time pad encrypt, the privacy of the transmission does not make it difficult for the
adversary to tamper with ciphertext so as to produce related ciphertexts.

How should one react to this counter-example? What you should not conclude is that one-time
pad encryption is unsound. Our goal for the one-time pad was to provide privacy, and nothing we
have said suggests that one-time pad encryption does not. Faulting the one-time pad encryption
scheme for not providing authenticity is like faulting a car for not being able to fly; there is no
reason to expect a tool designed to solve one problem to be effective at solving another.

You should not conclude that the example is contrived, and that you’d fare far better with some
other encryption method. One-time-pad encryption is not at all contrived. And other methods of
encryption, like CBC encryption, are only marginally better at protecting message integrity. This
will be explored in the exercises.

You should not conclude that the failure stemmed from a failure to add “redundancy” before the
message was encrypted. Adding redundancy is something like this: before the sender S encrypts his
data he pads it with some known, fixed string, like 128 bits of zeros. When the receiver decrypts the

Bellare and Rogaway 5

ciphertext he checks whether the decrypted string ends in 128 zeros. He rejects the transmission if
it does not. Such an approach can, and almost always will, fail. For example, the added redundancy
does absolutely nothing for our one-time-pad example.

What you should conclude is that privacy-providing encryption was never an appropriate ap-
proach for protecting its authenticity. With hindsight, this is pretty clear. The fact that data is
encrypted need not prevent an adversary from being able to make the receiver recover data different
from that which the sender had intended. Indeed with most encryption schemes any ciphertext will
decrypt to something, so even a random transmission will cause the receiver to receive something
different from what the sender intended, which was not to send any message at all. Now perhaps
the random ciphertext will look like garbage to the receiver, or perhaps not. Since we do not know
what the receiver intends to do with his data it is impossible to say.

Since the encryption schemes we have discussed were not designed for authenticating messages,
they don’t. We emphasize this because the belief that good encryption, perhaps after adding re-
dundancy, already provides authenticity, is not only voiced, but even printed in books or embedded
into security systems.

Good cryptographic design is goal-oriented. One must understand and formalize our goal. Only
then do we have the basis on which to design and evaluate potential solutions. Accordingly, our
next step is to come up with a definition for a message-authentication scheme and its security.

7.3 Syntax for message authentication

In Section 7.1 we sketched three approaches, each more narrow than then the next, for providing
authenticity. The first, which we called authenticated encryption, one provides authenticity by
using what is a symmetric encryption scheme Π = (K, E ,D). The imagined purpose shifts from
providing privacy to providing authenticity, but the syntax of does not change. Recall that we
already built into our definition of a symmetric encryption scheme the possibility that decryption
would output a distinguished value ⊥. We didn’t use that capability in defining privacy—but we
will need it for authenticity. Intuitively, the decryption mechanism outputting ⊥ is interpreted as
meaning that the ciphertext received (that is, the authenticated message) should be regarded as
invalid.

We also singled out two more specific ways to provide authenticity. special cases of the above
encryption schemes designed The first was a message-authentication scheme. Formally, this is a
pair of algorithms (TG,VF). The first of these may be probabilistic or stateful, while the second
is deterministic. Algorithm TG (for “tag generation”) takes as input a string K ∈ K, for some
associated set K, and a string M ∈ {0, 1}∗. The set K is either finite or otherwise has an associated
probability distribution (we must be able to choose a random point K from K). The tag-generation

algorithm TG produces a tag T
$← TGK(M) ∈ {0, 1}∗ ∪ {⊥}. Algorithm VF (for “verification”)

takes as input strings K ∈, M ∈ {0, 1}∗, and T ∈ {0, 1}∗. It outputs a bit VFK(M,T) ∈ {0, 1}. The

intended semantics is 1 for accept and 0 for reject. We insist that if T
$← TGK(M) and T 6= ⊥ then

VFK(M,T) = 1. Every message-authentication scheme gives rise to an encryption scheme where

EK(M) computes T
$← TGK(M) and returns 〈M,T 〉, and DK(〈M,T 〉) = M if VFK(M,T) = 1

while DK(〈M,T 〉) = ⊥ otherwise. Of course this encryption scheme does nothing to provide
privacy.

A message authentication code (MAC) corresponds to the special case of a message-authentication
scheme in which tag-generation is deterministic and stateful. Formally, a message authentication
code is a deterministic algorithm MAC: K × {0, 1}∗ → {0, 1}∗ ∪ {⊥} where K is a finite set, or is
otherwise endowed with a probability distribution. The tag for a message M is T = MACK(M).

6 MESSAGE AUTHENTICATION

To verify 〈M,T 〉 the receiver checks if T = MACK(M). If so, message M is viewed as authentic;
otherwise, the message is viewed as being a forgery.

Note that our definitions don’t permit stateful message-recovery / verification. Stateful func-
tions for the receiver can be problematic because of the possibility of messages not reaching their
destination—it is too easy for the receiver to be in a state different from the one that we’d like. All
the same, stateful MAC verification functions are essential for detecting “replay attacks.”

Recall that it was essential for the IND-CPA security of an encryption scheme that the en-
cryption algorithm be probabilistic or stateful—you couldn’t achieve IND-CPA security with a
deterministic encryption algorithm. But we will see that probabilism and state are not necessary
for achieving secure message authentication. This realization is built into the fact that we deal
with MACs.

7.4 Definitions of security

Let us concentrate first on message authentication codes. We begin with a discussion of the issues
and then state a formal definition.

The goal that we seek to achieve with a MAC is to be able to detect any attempt by the adversary
to modify the transmitted data. We don’t want the adversary to be able to produce messages that
the receiver will deem authentic—only the sender should be able to do this. That is, we don’t want
that the adversary A to be able to create a pair (M,Tag) such that VFK(M,Tag) = 1, but M
did not originate with the sender S. Such a pair (M,Tag) is called a forgery. If the adversary can
make such a pair, she is said to have forged.

In some discussions of security people assume that the adversary’s goal is to recover the secret
key K. Certainly if it could do this, it would be a disaster, since it could then forge anything. It
is important to understand, however, that an adversary might be able to forge without being able
to recover the key, and if all we asked was for the adversary to be unable to recover the key, we’d
be asking too little. Forgery is what counts, not key recovery.

Now it should be admitted right away that some forgeries might be useless to the adversary.
For example, maybe the adversary can forge, but it can only forge strings that look random;
meanwhile, suppose that all “good” messages are supposed to have a certain format. Should this
really be viewed as a forgery? The answer is yes. If checking that the message is of a certain format
was really a part of validating the message, then that should have been considered as part of the
message-authentication code. In the absence of this, it is not for us to make assumptions about how
the messages are formatted or interpreted; we really have no idea. Good protocol design means the
security is guaranteed no matter what is the application.

In our adversary’s attempt to forge a message we could consider various attacks. The simplest
setting is that the adversary wants to forge a message even though it has never seen any transmission
sent by the sender. In this case the adversary must concoct a pair (M,T) that is valid, even though
it hasn’t obtained any information to help. This is called a no-message attack. It often falls
short of capturing the capabilities of realistic adversaries, since an adversary who can inject bogus
messages onto the communications media can probably see valid messages as well. We should let
the adversary use this information.

Suppose the sender sends the transmission (M,T) consisting of some message M and its legit-
imate tag T . The receiver will certainly accept this—that is built into our definition. Now at once
a simple attack comes to mind: the adversary can just repeat this transmission, (M,T), and get
the receiver to accept it once again. This attack is unavoidable, for our MAC is a deterministic
function that the receiver recomputes. If the receiver accepted (M,T) once, he’s bound to do it

Bellare and Rogaway 7

again.
What we have just described is called a replay attack. The adversary sees a valid (M,T) from

the sender, and at some later point in time it re-transmits it. Since the receiver accepted it the
first time, he’ll do so again.

Should a replay attack count as a valid forgery? In real life it usually should. Say the first
message was “Transfer $1000 from my account to the account of party A.” Then party A may have
a simple way to enriching herself: it just keeps replaying this same authenticated message, happily
watching her bank balance grow.

It is important to protect against replay attacks. But for the moment we will not try to do
this. We will say that a replay is not a valid forgery; to be valid a forgery must be of a message
M which was not already produced by the sender. We will see later that we can always achieve
security against replay attacks by simple means; that is, we can take any message authentication
mechanism which is not secure against replay attacks and modify it—after making the receiver
stateful—so that it will be secure against replay attacks. At this point, not worrying about replay
attacks results in a cleaner problem definition. And it leads us to a more modular protocol-design
approach—that is, we cut up the problem into sensible parts (“basic security” and then “replay
security”) solving them one by one.

Of course there is no reason to think that the adversary will be limited to seeing only one
example message. Realistic adversaries may see millions of authenticated messages, and still it
should be hard for them to forge.

For some message authentication schemes the adversary’s ability to forge will grow with the
number qs of legitimate message-tag pairs it sees. Likewise, in some security systems the number
of valid (M,T) pairs that the adversary can obtain may be architecturally limited. (For example,
a stateful Signer may be unwilling to MAC more than a certain number of messages.) So when we
give our quantitative treatment of security we will treat qs as an important adversarial resource.

How exactly do all these tagged messages arise? We could think of there being some distribution
on messages that the sender will authenticate, but in some settings it is even possible for the
adversary to influence which messages are tagged. In the worst case, imagine that the adversary
itself chooses which messages get authenticated. That is, the adversary chooses a message, gets its
tag, chooses another message, gets its tag, and so forth. Then it tries to forge. This is called an
adaptive chosen-message attack. It wins if it succeeds in forging the MAC of a message which it
has not queried to the sender.

At first glance it may seem like an adaptive chosen-message attack is unrealistically generous to
our adversary; after all, if an adversary could really obtain a valid tag for any message it wanted,
wouldn’t that make moot the whole point of authenticating messages? In fact, there are several
good arguments for allowing the adversary such a strong capability. First, we will see examples—
higher-level protocols that use MACs—where adaptive chosen-message attacks are quite realistic.
Second, recall our general principles. We want to design schemes which are secure in any usage.
This requires that we make worst-case notions of security, so that when we err in realistically
modeling adversarial capabilities, we err on the side of caution, allowing the adversary more power
than it might really have. Since eventually we will design schemes that meet our stringent notions
of security, we only gain when we assume our adversary to be strong.

As an example of a simple scenario in which an adaptive chosen-message attack is realistic,
imagine that the sender S is forwarding messages to a receiver R. The sender receives messages
from any number of third parties, A1, . . . , An. The sender gets a piece of data M from party Ai

along a secure channel, and then the sender transmits to the receiver 〈i〉 ‖M ‖MACK(〈i〉 ‖M).
This is the sender’s way of attesting to the fact that he has received message M from party Ai.
Now if one of these third parties, say A1, wants to play an adversarial role, it will ask the sender

8 MESSAGE AUTHENTICATION

A

VFKTGK

M
T=MACK(M)

(M,T)
0 or 1

Figure 7.4: The model for a message authentication code. Adversary A has access to a tag-

generation oracle and a tag-verification oracle. The adversary wants to get the verification oracle

to answer 1 to some (M,T) for which it didn’t earlier ask the signing oracle M . The verification

oracle returns 1 if T = MACK(M) and 0 if T 6= MACK(M).

to forward its adaptively-chosen messages M1,M2, . . . to the receiver. If, based on what it sees, it
can learn the key K, or even if it can learn to forge message of the form 〈2〉 ‖M , so as to produce
a valid 〈2〉 ‖M ‖MACK(〈2〉 ‖M), then the intent of the protocol will have been defeated.

So far we have said that we want to give our adversary the ability to obtain MACs for messages
of its choosing, and then we want to look at whether or not it can forge: produce a valid (M,T)
pair where it never asked the sender to MAC M . But we should recognize that a realistic adversary
might be able to produce lots of candidate forgeries, and it may be content if any of these turn
out to be valid. We can model this possibility by giving the adversary the capability to tell if a
prospective (M,T) pair is valid, and saying that the adversary forges if it ever finds an (M,T) pair
that is but M was not MACed by the sender.

Whether or not a real adversary can try lots of possible forgeries depends on the context.
Suppose the receiver is going to tear down a connection the moment he detects an invalid tag.
Then it is unrealistic to try to use this receiver to help you determine if a candidate pair (M,T) is
valid—one mistake, and you’re done for. In this case, thinking of there being a single attempt to
forge a message is quite adequate.

On the other hand, suppose that a receiver just ignores any improperly tagged message, while
it responds in some noticeably different way if it receives a properly authenticated message. In this
case a quite reasonable adversarial strategy may be ask the verifier about the validity of a large
number of candidate (M,T) pairs. The adversary hopes to find at least one that is valid. When
the adversary finds such an (M,T) pair, we’ll say that it has won.

Let us summarize. To be fully general, we will give our adversary two different capabilities.
The first adversarial capability is to obtain a MAC M for any message that it chooses. We will call
this a signing query. The adversary will make some number of them, qs. The second adversarial
capability is to find out if a particular pair (M,T) is valid. We will call this a verification query.
The adversary will make some number of them, qv. Our adversary is said to succeed—to forge—if
it ever makes a verification query (M,T) and gets a return value of 1 (accept) even though the
message M is not a message that the adversary already knew a tag for by virtue of an earlier signing
query. Let us now proceed more formally.

Let MAC: K×{0, 1}∗ → {0, 1}∗ be an arbitrary message authentication code. We will formalize
a quantitative notion of security against adaptive chosen-message attack. We begin by describing
the model.

We distill the model from the intuition we have described above. There is no need, in the model,
to think of the sender and the verifier as animate entities. The purpose of the sender, from the
adversary’s point of view, is to authenticate messages. So we will embody the sender as an oracle

Bellare and Rogaway 9

that the adversary can use to authenticate any message M . This tag-generation oracle, as we will
call it, is our way to provide the adversary black-box access to the function MACK(·). Likewise,
the purpose of the verifier, from the adversary’s point of view, is to have that will test attempted
forgeries. So we will embody the verifier as an oracle that the adversary can use to see if a candidate
pair (M,T) is valid. This verification oracle, as we will call it, is our way to provide the adversary
black-box access to the function VFK(·) which is 1 if T = MACK(M) and 0 otherwise. Thus, when
we become formal, the cast of characters—the sender, receiver, and the adversary—gets reduced
to just the adversary, running with its oracles.

Definition 7.4.1 [MAC security] Let MAC: K×{0, 1}∗ → {0, 1}∗ be a message authentication
code and let A be an adversary. We consider the following experiment:

Experiment Expuf-cma
MAC (A)

K $←K

Run AMACK(·),VFK(·,·) where VFK(M,T) is 1 if MACK(M) = T and 0 otherwise
if A made a VFK query (M,T) such that
– The oracle returned 1, and
– A did not, prior to making verification query (M,T),

make tag-generation query M
then return 1 else return 0

The uf-cma advantage of A is defined as

Advuf-cma
MAC (A) = Pr

[

Expuf-cma
MAC (A)⇒1

]

.

Let us discuss the above definition. Fix a message authentication code MAC. Then we associate to
any adversary A its “advantage,” or “success probability.” We denote this value as Advuf-cma

MAC (A).
It’s just the chance that A manages to forge. The probability is over the choice of key K and the
probabilistic choices, if any, that the adversary A makes.

As usual, the advantage that can be achieved depends both on the adversary strategy and the
resources it uses. Informally, Π is secure if the advantage of a practical adversary is low.

As usual, there is a certain amount of arbitrariness as to which resources we measure. Certainly
it is important to separate the oracle queries (qs and qv) from the time. In practice, signing queries
correspond to messages sent by the legitimate sender, and obtaining these is probably more difficult
than just computing on one’s own. Verification queries correspond to messages the adversary hopes
the verifier will accept, so finding out if it does accept these queries again requires interaction. Some
system architectures may effectively limit qs and qv. No system architecture can limit t; that is
limited primarily by the adversary’s budget.

We emphasize that there are contexts in which you are happy with a MAC that makes forgery
impractical when qv = 1 and qs = 0 (an “impersonation attack”) and there are contexts in which
you are happy when forgery is impractical when qv = 1 and qs = 1 (a “substitution attack”). But
it is perhaps more common that you’d like for forgery to be impractical even when qs is large, like
250, and when qv is large, too.

Naturally the key K is not directly given to the adversary, and neither are any random choices
or counter used by the MAC-generation algorithm. The adversary sees these things only to the
extent that they are reflected in the answers to her oracle queries.

With a definition for MAC security in hand, it is not hard for us to similarly define authenticity
for encryption schemes and message-authentication schemes. Let us do the former; we will explore
the latter in exercises. We have an encryption scheme Π = (K, E ,D) and we want to measure how
effective an adversary is at attacking its authenticity.

10 MESSAGE AUTHENTICATION

Definition 7.4.2 [Authenticity of an encryption scheme] Let Π = (K, E ,D) be an encryption
scheme and let A be an adversary. We consider the following experiment:

Experiment Expauth
Π (A)

K
$←K

Run AEK(·),VFK(·) where VFK(C) is 1 if DK(C) ∈ {0, 1}∗ and 0 if DK(C) = ⊥
if A made a VFK query C such that
– The oracle returned 1, and
– A did not, prior to making verification query C,

make an encryption query that returned C
then return 1 else return 0

The authenticity advantage of A is defined as

Advauth
Π (A) = Pr[Expauth

Π (A)⇒1] .

We note that we could just as well have provided A with a decryption oracle DK(·) instead of
a verification oracle VFK(·), giving the adversary credit if it ever manages to ask a this oracle a
query C that decrypts to something other than ⊥ and where C was not already returned by the
encryption oracle.

7.5 Examples

Let us examine some example message authentication codes and use the definition to assess their
strengths and weaknesses. We fix a PRF F : K× {0, 1}n → {0, 1}n. Our first scheme MAC1: K×
{0, 1}∗ → {0, 1}∗ works as follows:

algorithm MAC1K(M)
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M = M1 . . . Mm

for i← 1 to m do Yi ← FK(Mi)
T ← Y1 ⊕ · · · ⊕ Yn

return T

Now let us try to assess the security of this message authentication code.
Suppose the adversary wants to forge the tag of a certain given message M . A priori it is unclear

this can be done. The adversary is not in possession of the secret key K, so cannot compute FK

and use it to compute T . But remember that the notion of security we have defined says that the
adversary is successful as long as it can produce a correct tag for some message, not necessarily
a given one. We now note that even without a chosen-message attack (in fact without seeing any
examples of correctly tagged data) the adversary can do this. It can choose a message M consisting
of two equal blocks, say M = X ‖X where X is some n-bit string, set T ← 0n, and make verification
query (M,T). Notice that VFK(M,Tag) = 1 because FK(x) ⊕ FK(x) = 0n = T . In more detail,
the adversary is as follows.

algorithm A
MACK(·),VFK(·,·)
1

Let X be any n-bit string
M ← X ‖X
T ← 0n

d← VFK(M,T)

Bellare and Rogaway 11

Then Advuf-cma
MAC (A1) = 1. Furthermore A1 makes no signing oracle queries, uses t = O(n) time,

and its verification query has length 2n-bits, so it is very practical.

There are many other attacks. For example we note that

T = FK(M1) ⊕ FK(M2)

is not only the tag of M1M2 but also the tag of M2M1. So it is possible, given the tag of a message,
to forge the tag of a new message formed by permuting the blocks of the old message. We leave it
to the reader to specify the corresponding adversary and compute its advantage.

Let us now try to strengthen the scheme to avoid these attacks. Instead of applying FK to a
data block, we will first prefix the data block with its index. To do this, first pick some parameter ι
with 1 ≤ ι ≤ n − 1. We will write each block’s index as an ι-bit string. The MAC-generation
algorithm is the following:

algorithm MAC2K(M)
η ← n− ι
if (|M | mod η 6= 0 or |M | = 0 or |M |/η ≥ 2ι) then return ⊥
Break M into η-bit blocks M = M1 . . . Mm

for i← 1 to m do Yi ← FK([i]
ι
‖Mi)

T ← Y1 ⊕ · · · ⊕ Ym

return Tag

As the code indicates, we divide M into blocks, but the size of each block is smaller than in
our previous scheme: it is now only η = n− ι bits. Then we prefix the i-th message block with the
value i itself, the block index, written in binary as a string of length exactly m bits. It is to this
padded block that we apply FK before taking the xor.

Note that encoding of the block index i as an iota-bit string is only possible if i < 2ι. This means
that we cannot authenticate a message M having more 2ι blocks. This explains the conditions under
which the MAC returns ⊥. However this is a feasible restriction in practice, since a reasonable value
of ι, like ι = 32, is large enough that very long messages will be in the message space.

Anyway, the question we are really concerned with is the security. Has this improved from
scheme MAC1? Begin by noticing that the attacks we found on MAC1 no longer work. For
example if X is an η-bit string and we let M = X ‖X then its tag is not likely to be 0n. Similarly,
the second attack discussed above, namely that based on permuting of message blocks, also has
low chance of success against the new scheme. Why? In the new scheme, if M1,M2 are strings of
length η, then

MAC2K(M1M2) = FK([1]
ι
‖M1) ⊕ FK([2]

ι
‖M2)

MAC2K(M2M1) = FK([1]m ‖M2) ⊕ FK([2]ι ‖M1) .

These are unlikely to be equal. As an exercise, a reader might upper bound the probability that
these values are equal in terms of the value of the advantage of F at appropriate parameter values.

All the same, MAC2 is still insecure. The attack however require a more non-trivial usage of
the chosen-message attacking ability. The adversary will query the tagging oracle at several related
points and combine the responses into the tag of a new message. We call it A2–

algorithm A
MACK(·),VFK(·)
2

Let A1, B1 be distinct, η-bit strings
Let A2, B2 be distinct η-bit strings
T1 ← MACK(A1A2) ; T2 ← MACK(A1B2) ; T3 ← MACK(B1A2)

12 MESSAGE AUTHENTICATION

T ← T1 ⊕ T2 ⊕ T3

d← VFK(B1B2, T)

We claim that Advuf-cma
MAC2 (A2) = 1. Why? This requires two things. First that VFK(B1B2, T) = 1,

and second that B1B2 was never a query to MACK(·) in the above code. The latter is true because
we insisted above that a1 6= b1 and a2 6= b2, which together mean that B1B2 6∈ {A1A2, A1B2, B1A2}.
So now let us check the first claim. We use the definition of the tagging algorithm to see that

T1 = FK([1]ι ‖A1) ⊕ FK([2]ι ‖ A2)

T2 = FK([1]
ι
‖A1) ⊕ FK([2]

ι
‖B2)

T3 = FK([1]
ι
‖B1) ⊕ FK([2]

ι
‖ A2) .

Now look how A2 defined T and do the computation; due to cancellations we get

T = T1 ⊕ T2 ⊕ T3

= FK([1]
ι
‖B1) ⊕ FK([2]

ι
‖B2) .

This is indeed the correct tag of B1B2, meaning the value T ′ that VFK(B1B2, T) would compute,
so the latter algorithm returns 1, as claimed. In summary we have shown that this scheme is
insecure.

It turns out that a slight modification of the above, based on use of a counter or random number
chosen by the MAC algorithm, actually yields a secure scheme. For the moment however we want
to stress a feature of the above attacks. Namely that these attacks did not cryptanalyze the PRF F .
The attacks did not care anything about the structure of F ; whether it was DES, AES, or anything
else. They found weaknesses in the message authentication schemes themselves. In particular, the
attacks work just as well when FK is a random function, or a “perfect” cipher. This illustrates
again the point we have been making, about the distinction between a tool (here the PRF) and
its usage. We need to make better usage of the tool, and in fact to tie the security of the scheme
to that of the underlying tool in such a way that attacks like those illustrated here are provably
impossible under the assumption that the tool is secure.

7.6 The PRF-as-a-MAC paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way is an excellent
approach. Here we show why PRFs are good MACs, and determine the concrete security of the
underlying reduction. The following shows that the reduction is almost tight—security hardly
degrades at all.

Let F : K×D → {0, 1}τ be a family of functions. We associate to F a message authentication
code MAC: K ×D → {0, 1}τ via

algorithm MACK(M)
if (M 6∈ D) then return ⊥
T ← FK(M)
return T

Note that when we think of a PRF as a MAC it is important that the domain of the PRF be
whatever one wants as the domain of the MAC. So such a PRF probably won’t be realized as a
blockcipher. It may have to be realized by a PRF that allows for inputs of many different lengths,

Bellare and Rogaway 13

since you might want to MAC messages of many different lengths. As yet we haven’t demonstrated
that we can make such PRFs. But we will. Let us first relate the security of the above MAC to
that of the PRF.

Proposition 7.6.1 Let F : K×D→ {0, 1}τ be a family of functions and let MAC be the associated
message authentication code as defined above. Let A by any adversary attacking Π, making qs

MAC-generation queries of total length µs, qv MAC-verification queries of total length µv, and
having running time t. Then there exists an adversary B attacking F such that

Advuf-cma
Π (A) ≤ Advprf

F (B) +
qv

2τ
. (7.1)

Furthermore B makes qs + qv oracle queries of total length µs + µv and has running time t.

Proof: Remember that B is given an oracle for a function f : D → {0, 1}τ . It will run A, providing
it an environment in which A’s oracle queries are answered by B.

algorithm Bf

d← 0 ; S ← ∅
Run A

When A asks its signing oracle some query M :
Answer f(M) to A ; S ← S ∪ {M}

When A asks its verification oracle some query (M,Tag):
if f(M) = Tag then

answer 1 to A ; if M 6∈ S then d← 1
else answer 0 to A

Until A halts
return d

We now proceed to the analysis. We claim that

Pr
[

Expprf-1
F (B)⇒1

]

= Advuf-cma
Π (A) (7.2)

Pr
[

Expprf-0
F (B)⇒1

]

≤
qv

2τ
. (7.3)

Subtracting, we get Equation (7.1). Let us now justify the two equations above.

In the first case f is an instance of F , so that the simulated environment that B is providing for A
is exactly that of experiment Expuf-cma

Π (A). Since B returns 1 exactly when A makes a successful
verification query, we have Equation (7.2).

In the second case, A is running in an environment that is alien to it, namely one where a random
function is being used to compute MACs. We have no idea what A will do in this environment, but
no matter what, we know that the probability that any particular verification query (M,Tag) with
M 6∈ S will be answered by 1 is at most 2−τ , because that is the probability that Tag = f(M).
Since there are at most qv verification queries, Equation (7.3) follows.

14 MESSAGE AUTHENTICATION

EK

+

EK

+

EK

+

EK

M1 M2 M3 M4

X1 X2 X3 X4

T

C
1 C

2
C

3
C

4

Figure 7.5: The CBC MAC, here illustrated with a message M of four blocks, M = M1M2M3M4.

7.7 The CBC MAC

A very popular class of MACs is obtained via cipher-block chaining of a given blockcipher. The
method is as follows:

Scheme 7.7.1 CBC MAC] Let E: K×{0, 1}n → {0, 1}n be a blockcipher. The CBC MAC over
blockcipher E has key space K and is given by the following algorithm:

algorithm MACK(M)
if M 6∈ ({0, 1}n)+ then return ⊥
Break M into n-bit blocks M1 · · ·Mm

C0 ← 0n

for i = 1 to m do Ci ← EK(Ci−1 ⊕Mi)
return Cm

See Fig. 7.5 for an illustration with m = 4.

As we will see below, the CBC MAC is secure only if you restrict attention to strings of some
one particular length: the domain is restricted to {0, 1}mn for some constant m. If we apply the
CBC MAC across messages of varying lengths, it will be easy to distinguish this object from a
random function.

Theorem 7.7.2 [1] Fix n ≥ 1, m ≥ 1, and q ≥ 2. Let A be an adversary that asks at most q
queries, each of mn bits. Then that

Advprf
CBC[Func(mn,n)](A) ≤

m2q2

2n
.

Proof: Let A be an adversary that asks exactly q queries and assume without loss of generality
that it never repeats a query. Refer to games C0–C9 in Fig. 7.6. Let us begin by explaining the
notation used there. Each query M s in the games is required to be a string of blocks, and we silently
parse M s to M s = M s

1M s
2 · · ·M

s
m where each Mi is a block. Recall that M s

1→i = M s
1 · · ·M

s
i . The

function π: {0, 1}n → {0, 1}n is initially undefined at each point. The set Domain(π) grows as we
define points π(X), while Range(π), initially {0, 1}n, correspondingly shrinks. The table Y stores
blocks and is indexed by strings of blocks P having at most m blocks. A random block will come
to occupy selected entries Y [X] except for Y [ε], which is initialized to the constant block 0n and

Bellare and Rogaway 15

On the sth query F (Ms) Game C1
100 P ← Prefix(M1, . . . , Ms)
101 C ← Y [P]
102 for j ← ‖P‖n + 1 to m do
103 X ← C ⊕Ms

j

104 C
$
←{0, 1}n ց

105 if C∈Range(π) then bad← true, C
$
←Range(π)

106 if X∈Domain(π) then bad← true, C ← π(X)
107 π(X)← C ր
108 Y [Ms

1→j]← C omit for Game C0
109 return C

On the sth query F (Ms) Game C2
200 P ← Prefix(M1, . . . , Ms)
201 C ← Y [P]
202 for j ← ‖P‖n + 1 to m do
203 X ← C ⊕Ms

j

204 C
$
←{0, 1}n

205 if X ∈ Domain(π) then bad← true

206 π(X)← C

207 Y [Ms
1→j]← C

208 return C

On the sth query F (Ms) Game C3
300 P ← Prefix(M1, . . . , Ms)
301 C ← Y [P]
302 for j ← ‖P‖n + 1 to m do
303 X ← C ⊕Ms

j

304 C
$
←{0, 1}n

305 if X ∈ Domain(π) then bad← true

306 π(X)← defined

307 Y [Ms
1→j]← C

308 return C

On the sth query F (Ms) Game C4
400 P ← Prefix(M1, . . . , Ms)
401 C ← Y [P]
402 for j ← ‖P‖n + 1 to m do
403 X ← C ⊕Ms

j

404 if X ∈ Domain(π) then bad← true

405 π(X)← defined

406 C ← Y [Ms
1→j]

$
←{0, 1}n

407 Zs $
←{0, 1}n

408 return Zs

500 for s← 1 to q do Game C5
501 P

s ← Prefix(M1, . . . , Ms)
502 C ← Y [Ps]
503 for j ← ‖Ps‖n + 1 to m do
504 X ← C ⊕ M

s
j

505 if X ∈ Domain(π) then bad← true

506 π(X)← defined

507 C ← Y [Ms
1→j]

$
←{0, 1}n

600 for s← 1 to q do Game C6
601 P

s ← Prefix(M1, . . . , Ms)
602 C ← Y [Ps]
603 X ← C ⊕ M

s
‖Ps‖n+1

604 if X ∈ Domain(π) then bad← true

605 π(X)← defined

606 C ← Y [Ms
1→‖Ps‖n+1]

$
←{0, 1}n

607 for j ← ‖Ps‖n + 2 to m do
608 X ← C ⊕ M

s
j

609 if X ∈ Domain(π) then bad← true

610 π(X)← defined

611 C ← Y [Ms
1→j]

$
←{0, 1}n

700 for X ∈ {0, 1}+ do Y [X]
$
←{0, 1}n Game C7

701 for s← 1 to q do
702 P

s ← Prefix(M1, . . . , Ms)
703 if Y [Ps]⊕Ms

‖Ps‖n+1∈Domain(π) then bad← true

704 π(Y [Ps] ⊕ M
s
‖Ps‖n+1)← defined

705 for j ← ‖Ps‖n + 2 to m do
706 ifY [Ms

1→j−1]⊕M
s
j ∈Domain(π) then bad← true

707 π(Y [Ms
1→j−1] ⊕ M

s
j)← defined

800 for X ∈ {0, 1}+ do Y [X]
$
←{0, 1}n Game C8

801 for s← 1 to q do
802 P

s ← Prefix(M1, . . . , Ms)
803 if Y [Ps] ⊕ M

s
‖Ps‖n+1∈Domain(π) thenbad← true

804 π(Y [Ps] ⊕ M
s
‖Ps‖n+1)← defined

805 for j ← ‖Ps‖n + 1 to m− 1 do
806 if Y [Ms

1→j]⊕M
s
j+1∈Domain(π) then bad← true

807 π(Y [Ms
1→j] ⊕ M

s
j+1)← defined

900 for X ∈ {0, 1}+ do Y [X]
$
←{0, 1}n Game C9

901 for s← 1 to q do P
s ← Prefix(M1, . . . , Ms)

902 bad←∃(r, i) 6=(s, j)(r≤s)(i≥‖Pr‖n+1)(j≥‖Ps‖n+1)
903 Y [Pr]⊕Mr

‖Pr‖n+1 =Y [Ps] ⊕ M
s
‖Ps‖n+1 and r<s or

904 Y [Mr
1→i] ⊕ M

r
i+1 = Y [Ps] ⊕ M

s
‖Ps‖n+1 or

905 Y [Mr
1→i] ⊕ M

r
i+1 = Y [Ms

1→j] ⊕ M
s
j+1 or

906 Y [Pr] ⊕ M
r
‖Pr‖n+1 = Y [Ms

1→j] ⊕ M
s
j+1

Figure 7.6: Games used in the CBC MAC analysis. Let Prefix(M1, . . . ,Ms) be ε if s = 1, else
the longest string P ∈ ({0, 1}n)∗ s.t. P is a prefix of M s and M r for some r < s. In each game,
Initialize sets Y [ε]← 0n.

16 MESSAGE AUTHENTICATION

is never changed. The value defined (introduced at line 306) is an arbitrary point of {0, 1}n, say 0n.
Finally, Prefix(M1, . . . ,Ms) is the longest string of blocks P = P1 · · ·Pp that is a prefix of M s and
is also a prefix of M r for some r < s. If Prefix is applied to a single string the result is the empty
string, Prefix(P 1) = ε. As an example, letting A, B, and C be distinct blocks, Prefix(ABC) = ε,
Prefix(ACC, ACB, ABB, ABA) = AB, and Prefix(ACC, ACB, BBB) = ε.

We briefly explain the game chain up until the terminal game. Game C0 is obtained from game C1
by dropping the assignment statements that immediately follow the setting of bad. Game C1 is
a realization of CBCm[Perm(n)] and game C0 is a realization of Func(mn,n). Games C1 and C0
are designed so that the fundamental lemma applies, so the advantage of A in attacking the CBC
construction is at most Pr[AC0 sets bad]. C0→C2: The C0 → C2 transition is a lossy transition
that takes care of bad getting set at line 105, which clearly happens with probability at most
(0 + 1 + · · · + (mq − 1))/2n ≤ 0.5 m2q2/2n, so Pr[AC0 sets bad] ≤ Pr[AC2 sets bad] + 0.5 m2q2/2n.
C2→C3: Next notice that in game C2 we never actually use the values assigned to π, all that
matters is that we record that a value had been placed in the domain of π, and so game C3 does
just that, dropping a fixed value defined = 0n into π(X) when we want X to join the domain of π.
C3→C4: Now notice that in game C3 the value returned to the adversary, although dropped into
Y [M s

1 · · ·M
s
m], is never subsequently used in the game so we could as well choose a random value Zs

and return it to the adversary, doing nothing else with Zs. This is the change made for game C4.
The transition is conservative. C4→C5: Changing game C4 to C5 is by the “coin-fixing” technique.
Coin-fixing in this case amounts to letting the adversary choose the sequence of queries M1, . . . , Mm

it asks and the sequence of answers returned to it. The queries still have to be valid: each M s is an
mn-bit string different from all prior ones: that is the query/response set. For the worst M1, . . . , Mm,
which the coin-fixing technique fixes, Pr[AC4 sets bad] ≤ Pr[C5 sets bad]. Remember that, when
applicable, coin-fixing is safe. C5→C6: Game C6 unrolls the first iteration of the loop at lines 503–
507. This transformation is conservative. C6→C7: Game C7 is a rewriting of game C6 that omits
mention of the variables C and X, directly using values from the Y -table instead, whose values are
now chosen at the beginning of the game. The change is conservative. C7→C8: Game C8 simply
re-indexes the for loop at line 705. The change is conservative. C8→C9: Game C9 restructures
the setting of bad inside the loop at 802–807 to set bad in a single statement. Points were into the
domain of π at lines 804 and 807 and we checked if any of these points coincide with specified other
points at lines 803 and 806. The change is conservative.

At this point, we have only to bound Pr[AC9 sets bad]. We do this using the sum bound and a case
analysis. Fix any r, i, s, j as specified in line 902. Consider the following ways that bad can get set
to true.

Line 903. We first bound Pr[Y [Pr] ⊕ M
r
‖Pr‖n+1 = Y [Ps] ⊕ M

s
‖Ps‖n+1]. If P

r = P
s = ε then

Pr[Y [Pr] ⊕ M
r
‖Pr‖n+1 = Y [Ps] ⊕ M

s
‖Ps‖n+1] = Pr[Mr

1 = M
s
1] = 0 because M

r and M
s, having only ε as a

common block prefix, must differ in their first block. If Pr = ε but Ps 6= ε then Pr[Y [Pr] ⊕ M
r
‖Pr‖n+1 =

Y [Ps] ⊕ M
s
‖Ps‖n+1] = Pr[Mr

1 = Y [Ps] ⊕ M
s
‖Ps‖n+1] = 2−n since the probability expression involves the

single random variable Y [Ps] that is uniformly distributed in {0, 1}n. If Pr 6= ε and P
s = ε the

same reasoning applies. If Pr 6= ε and P
s 6= ε then Pr[Y [Pr] ⊕ M

r
‖Pr‖n+1 = Y [Ps] ⊕ M

s
‖Ps‖n+1] = 2−n

unless P
r = P

s, so assume that to be the case. Then Pr[Y [Pr] ⊕ M
r
‖Pr‖n+1 = Y [Ps] ⊕ M

s
‖Ps‖n+1] =

Pr[Mr
‖Pr‖n+1 = M

s
‖Ps‖n+1] = 0 because P

r = P
s is the longest block prefix that coincides in M

r and M
s.

Line 904. We want to bound Pr[Y [Ps] ⊕ M
s
‖Ps‖n+1 = Y [Mr

1→i] ⊕ M
r
i+1]. If Ps = ε then Pr[Y [Ps] ⊕ M

s
‖Ps‖n+1 =

Y [Mr
1→i] ⊕ M

r
i+1] = Pr[Ms

‖Ps‖n+1 = Y [Mr
1→i] ⊕ M

r
i+1] = 2−n because it involves a single random value

Y [Mr
1→i]. So assume that P

s 6= ε. Then Pr[Y [Ps] ⊕ M
s
‖Ps‖n+1 = Y [Mr

1→i] ⊕ M
r
i+1] = 2−n unless

Bellare and Rogaway 17

P
s = M

r
1→i in which case we are looking at Pr[Ms

‖Ps‖n+1 = M
r
‖Ps‖n+1]. But this is 0 because P

s = M
r
1→i

means that the longest prefix that Ms shares with M
r is Ps and so M

s
‖Ps‖n+1 6= M

r
‖Ps‖n+1.

Line 905. What is Y [Ms
1→j] ⊕ M

s
j+1 = Y [Mr

1→i] ⊕ M
r
i+1. It is 2−n unless i = j and M

s
1→j = M

r
1→i.

In that case ‖Ps‖n ≥ j and ‖Pr‖n ≥ i, contradicting our choice of allowed values for i and j at
line 902.

Line 906. We must bound Pr[Y [Pr] ⊕ M
r
‖Pr‖n+1 = Y [Ms

1→j] ⊕ M
s
j+1]. As before, this is 2−n unless

P
r = M

s
1→j but we can not have that Pr = M

s
1→j because j ≥ ‖Ps‖n + 1.

There are at most 0.5m2q2 tuples (r, i, s, j) considered at line 902 and we now know that for
each of them bad gets set with probability at most 2−n. So Pr[Game C9 sets bad] ≤ 0.5m2q2/2n.
Combining with the loss from the C0→C2 transition we have that Pr[Game C0 setsbad] ≤ m2q2/2n,
completing the proof.

7.8 The universal-hashing approach

We have shown that one paradigm for making a good MAC is to make something stronger: a good
PRF. Unfortunately, out-of-the-box PRFs usually operate on strings of some fixed length, like 128
bits. That’s almost certainly not the domain that we want for our MAC’s message space. In this
section we describe a simple paradigm for extending the domain of a PRF by using a universal
hash-function family. Several MACs can be seen as instances of this approach.

Definition 7.8.1 Let H: K ×M → {0, 1}n and let δ be a real number. We say that H is δ-AU

(read this as δ almost-universal) if for all distinct M,M ′ ∈M, Pr[K
$←K : HK(M) = HK(M ′)] ≤

δ.

Definition 7.8.2 Let H: K ×M → {0, 1}n and F : K′ × {0, 1}n → {0, 1}τ be function families.
Then F ◦H is the function family F ◦H: (K × K′) ×M → {0, 1}τ defined by F ◦H(K,K ′)(M) =
FK ′(HK(M)).

Theorem 7.8.3 Let H: K ×M → {0, 1}n be a δ-AU function family and let F = Func(n,τ) be
the family of all functions from n bits to τ bits. Let A be an adversary that asks at most q queries.
Then Advprf

F◦H(A) ≤
(q
2

)

δ2.

To be continued. Give a CW mod-p arithmetic MAC. Then describe EMAC and CMAC, and

HMAC, probably in different sections.

7.9 Problems

Problem 1 Consider the following variant of the CBC MAC, intended to allow one to MAC
messages of arbitrary length. The construction uses a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n,
which you should assume to be secure. The domain for the MAC is ({0, 1}n)+. To MAC M under
key K compute CBCK(M ‖ |M |), where |M | is the length of M , written in n bits. Of course K has
k bits. Show that this MAC is completely insecure: break it with a constant number of queries.

Problem 2 Consider the following variant of the CBC MAC, intended to allow one to MAC
messages of arbitrary length. The construction uses a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n,
which you should assume to be secure. The domain for the MAC is ({0, 1}n)+. To MAC M under
key (K,K ′) compute CBCK(M) ⊕ K ′. Of course K has k bits and K ′ has n bits. Show that this
MAC is completely insecure: break it with a constant number of queries.

18 MESSAGE AUTHENTICATION

Problem 3 Let SE = (K, E ,D) be a symmetric encryption scheme and let MA = (K′,MAC,VF)
be a message authentication code. Alice (A) and Bob (B) share a secret key K = (K1,K2) where
K1← K and K2← K′. Alice wants to send messages to Bob in a private and authenticated way.
Consider her sending each of the following as a means to this end. For each, say whether it is a
secure way or not, and briefly justify your answer. (In the cases where the method is good, you
don’t have to give a proof, just the intuition.)

(a) M,MACK2(EK1(M))

(b) EK1(M,MACK2(M))

(c) MACK2(EK1(M))

(d) EK1(M),MACK2(M)

(e) EK1(M), EK1(MACK2(M))

(f) C,MACK2(C) where C = EK1(M)

(g) EK1(M,A) where A encodes the identity of Alice; B decrypts the received ciphertext C and
checks that the second half of the plaintext is “A”.

In analyzing these schemes, you should assume that the primitives have the properties guaran-
teed by their definitions, but no more; for an option to be good it must work for any choice of a
secure encryption scheme and a secure message authentication scheme.

Now, out of all the ways you deemed secure, suppose you had to choose one to implement for
a network security application. Taking performance issues into account, do all the schemes look
pretty much the same, or is there one you would prefer?

Problem 4 Refer to problem 4.3. Given a blockcipher E: K×{0, 1}n → {0, 1}n construct a cipher
E′: K′ × {0, 1}2n → {0, 1}2n. Formalize and prove a theorem that shows that E′ is a secure PRP
if E is.

Problem 5 Let H: {0, 1}k ×D → {0, 1}L be a hash function, and let Π = (K,MAC,VF) be the
message authentication code defined as follows. The key-generation algorithm K takes no inputs
and returns a random k-bit key K, and the tagging and verifying algorithms are:

algorithm MACK(M)
Tag ← H(K,M)
return Tag

algorithm VFK(M,Tag ′)
Tag ← H(K,M)
if Tag = Tag ′ then return 1
else return 0

Show that

Advcr2-hk
H (t, q, µ) ≤ (q − 1) ·Advuf-cma

Π (t′, q − 1, µ, q − 1, µ)

for any t, q, µ with q ≥ 2, where t′ is t + O(log(q)). (This says that if Π is a secure message
authentication code then H was a CR2-HK secure hash function.)

Bibliography

[1] M. Bellare, J. Kilian and P. Rogaway. The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences , Vol. 61, No. 3,
Dec 2000, pp. 362–399.

[2] M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message auth-
entication. Advances in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science
Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast
and secure message authentication. Advances in Cryptology – CRYPTO ’99, Lecture Notes
in Computer Science Vol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[4] J. Black and P. Rogaway. CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions. Advances in Cryptology – CRYPTO ’00, Lecture Notes in Computer Science
Vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

