
CLedger: A Secure Distributed Certificate Ledger
via Named Data

Tianyuan Yu∗, Hongcheng Xie†, Siqi Liu∗, Xinyu Ma∗, Varun Patil∗, Xiaohua Jia†, and Lixia Zhang∗
∗Computer Science Department, University of California, Los Angeles, CA, USA

†Department of Computer Science, City University of Hong Kong, Hong Kong, China

Abstract—Named-Data Networking (NDN) is a novel network
that secures network communication by fetching semantically
named and secured data. All data packets in NDN are signed by
producers and verified by data consumers. Therefore, it is vital to
have producers’ certificates available all the time. In this paper,
we describe the design of CLedger, a secure distributed certificate
ledger, to ensure certificate availability in NDN. CLedger logs
certificate records in an immutable Directed Acyclic Graph (DAG)
structure and replicates the DAG among a set of distributed
loggers. We implemented CLedger using NDN’s pub/sub API, and
evaluated our design through an emulated deployment setting. Our
initial evaluation results show that CLedger is effective, efficient,
and resilient to failures.

I. INTRODUCTION

Named-Data Networking (NDN) secures network communi-
cation by fetching semantically named and secured data [1],
[2]. NDN Data packets are cryptographically signed by their
producers’ keys, this enables data consumers to use the pro-
ducers’ certificates to authenticate all received data packets.
Thus certificate availability is a prerequisite to enabling secure
communications.

In today’s IP-based Internet, almost all web communications
run over secure HTTP, which also needs to authenticate web
servers. The availability of web servers’ certificates is assured
by IP’s always-on model: all web servers are online and
reachable all the time, so that browsers can directly obtain
the certificates from web servers. In contrast, NDN’s data-
centric design enables consumers to fetch data even when
their producers are offline, or unreachable due to temporary
failures. These features enable NDN to support disruption-
tolerant networking natively, but also raise the need for making
certificates available all the time, even when certificate owners
are offline or unreachable.

We propose CLedger, a distributed, secure, and resilient
certificate ledger, to meet the above critical need. CLedger con-
sists of a set of distributed loggers that store certificates from
authorized certificate owners. CLedger makes use of NDN’s
State Vector Sync (SVS), a distributed dataset synchronization
protocol to replicate existing certificates among all loggers;
and SVSPS, a pub/sub API built on top of SVS for secured
multiparty communications. CLedger utilizes an append-only
data structure, HashDAG, which is based on Directed Acyclic
Graph (DAG). HashDAG assures that, once a certificate is
stored in CLedger, it cannot be removed.

Our contributions can be summarized as follows.

• To address certificate availability problem, we developed
a secure distributed certificate ledger, CLedger, to run
in NDN networks. CLedger uses an append-only data
structure shared among all loggers to store certificates.

• We evaluate the performance of CLedger. The evaluation
results show that our proposed ledger network is efficient
and practical to be deployed.

The rest of this paper is organized as follows. §II discusses
basic building blocks we use in our proposed system. §III
formulates the problem and states CLedger design goals. We
present the details of our proposed system in §IV. §V gives
the performance evaluation that verifies CLedger design. We
summarize related works in §VI, discuss other potential usage
of CLedger and some of our design decisions in §VII. Finally,
we conclude our work and discuss future work in §VIII.

II. BACKGROUND

In this section, we provide an overview of the Named-Data
Networking and the two major building blocks used in the
CLedger design, Pub/Sub support over State Vector Sync and
Directed Acyclic Graph.

A. Named Data Networking

Instead of using end-host addresses, Named-Data Network-
ing (NDN) [1] uses application data names for communications.
Consumers fetch data by names carried in Interest packets, and
the network returns the named and secured Data packets.

To effectively verify the trustworthiness of received data, data
consumers use a set of rules, called trust schemas, to define trust
relations among NDN entities1. These rules defines which key
(identified by the key’s semantically meaningful name) should
be used to sign which piece of data. All the entities managed by
the same administrator form a trust domain [3], and each entity
is bootstrapped with the administrator’s self-signed certificate
as its trust anchor, together with its trust schema which defines
its trust relations with other entities in the same domain. All
certificate signing chains in this trust domain derive from the
trust anchor.

B. State Vector Sync (SVS) and SVSPS

State Vector Sync (SVS) [4] is a distributed dataset synchro-
nization protocol running over NDN networks. Utilizing SVS,

1An NDN entity is an application process or network communication
participant in an NDN network.



SVS Publish/Subscribe API (SVSPS) provides secured multi-
party communications. SVSPS enables application developers
to write distributed applications by focusing on high-level appli-
cation logic, naming conventions and security policies, without
dealing with low-level protocol details. Applications can join
the same Pub/Sub group to start secured data communications.
When an application process wishes to publish a data object to
the group, SVSPS takes the object, segments as needed, and
signs into Data packets, then informs others of the new data
through SVS protocol. All packet exchanges within SVSPS are
signed so that SVSPS is able to determine whether a Pub/Sub
participant is authorized based on the trust schema, and discards
packets from unauthorized participants.

C. Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a directed graph without
cycles. In the field of storage, DAG is a graph-based data
structure where nodes are data records and directed edges are
reference relations among data records.

DAG has been used in several distributed storage designs [5]–
[7]. Unlike blockchain-based designs, a storage node can insert
a received record to its local DAG copy immediately, and the
DAG in each storage node can be different at a specific time
point. These DAGs can merge efficiently and reach eventual
consistency, i.e., every record is stored by all DAGs eventually.
Moreover, if references are built by hash functions, a record
will contain a cryptographic hash of the previous record.
Modifications to that record are detectable unless its referrers
are also compromised.

III. PROBLEM STATEMENTS

A. Problem Formulation

We consider a scenario as follows. There is a distributed
ledger CLedger, multiple CertOwners who want their certifi-
cates to be stored in the ledger, and multiple CertFetchers who
want to fetch certificates. As shown in Figure 1, their roles are
summarized as follows.

• Logger: CLedger consists of Loggers who accept legiti-
mate certificate submissions from CertOwners and publish
records within CLedger. Each record is a semantically
named and secured data object that includes a certificate
from CertOwner.

• CertOwner: CertOwners are legitimate certificate owners
who are authorized by the trust schema of CLedger to
submit certificates to Loggers.

• CertFetcher: CertFetchers are application data consumers
who use CLedger to fetch the data producers’ certificates.

A viable design that consists of the above components should
have no single point of failure and ensure record immutability,
so that a recorded certificate cannot be removed from the
system.

B. Design Goals

We design CLedger for systems which have less than 𝐾 Log-
gers making operational errors or performing malicious attacks,

CertOwner

Securely Submits 

Certificate

Logger

CertFetcher

Fetches 

Certificate

Named Data 

Network

Logger

Logger

CertOwner

CertFetcher

Fig. 1: A scenario where CLedger has Loggers deployed in the
network, and CertOwners would like to use CLedger to provide
their certificate availability, while CertFetchers want to obtain
certificates from CLedger in order to validate application data.

by either refusing CertFetcher certificate fetching request or
deleting the record from their local storage. This assumption is
a generalization of the assumption in Practical Byzantine Fault
Tolerance [8]. With the above assumption, our design achieves
the following three goals:

• Certificates are available if any Logger is available.
• Only authorized CertOwners are allowed to submit certifi-

cates to Loggers.
• If a Logger accepts an authorized submission from a

CertOwner, this record is stored in at least 𝐾 loggers.

IV. CLEDGER

In this section, we first identify questions that must be
addressed in the CLedger design and describe our solutions
to each question. We then show the overall system workflows
when CLedger is in operation.
Design Question 1: How do CertOwners submit certificates
to Loggers?

We utilize the submission protocol developed by our previous
work [9] to enable secured certificate submission.

When submitting an certificate, which is a Data packet,
the CertOwner encapsulates it into another Data packet, and
sends an notification Interest to inform CLedger that there is
a certificate ready to be submitted. CLedger Loggers register a
shared routing prefix (e.g.,“/ndnfit/LEDGER”). Therefore, when
CertOwners express an Interest with CLedger’s prefix, the
network will anycast the packet to its nearest Logger.

After receiving the notification, a Logger sends another
Interest back to retrieve the submission. After validating both
the CertOwner’s submission Data and the submitted certificate
in this Data, this Logger replies to the CertOwner’s notification
Interest with a Data packet as an acknowledgment. Thus,



R1

R3

R4R2

R5

Immutable Record

Pending Record

Fig. 2: A DAG example where 𝐾 = 3 and each record is
published by an unique Logger.

the CertOwner is informed the submission process has been
completed.

When submitting certificates, a CertOwner signs the sub-
mission with its certificate private key, so Loggers are able to
authenticate the CertOwner and validate whether the CertOwner
is authorized by the trust schema to use CLedger. Upon
receiving a validated submission, a Logger produces a record
to log the submission.

Loggers securely synchronize records via SVSPS (§II-B),
where Loggers join the same Publish/Subscribe group and
subscribe to new records produced by other Loggers.
Design Question 2: How does CLedger ensure a record is
immutable?

Since CLedger defines record immutability as at having
replications in least 𝐾 Loggers, a natural answer to this question
is having 𝐾 Loggers’ signatures on the record, claiming they
have replicated it.

CLedger realizes this idea by introducing a new data struc-
ture HashDAG inspired by IOTA Tangle [5]. In HashDAG,
each vertex is a record, and each directed edge refers to a
previous record, which is implemented by storing the hash
of the previous record in the current record. HashDAG edges
represent replication relations. For instance, 𝑅5 in Figure 2
refers to 𝑅3 and 𝑅4 directly, and refers to 𝑅1 and 𝑅2 indirectly.
This reference relation indicates the Logger who produces 𝑅5
claims it has seen and replicated 𝑅3 and 𝑅4 and all their
dependencies (i.e., 𝑅1 and 𝑅2) and replicated them into its local
copy of HashDAG. Therefore, if a record has been referred by
more than 𝐾 unique Loggers, that record becomes immutable;
otherwise, we refer to its status as pending. For example, 𝑅1
and 𝑅2 in Figure 2 are immutable since their parents are
produced by three unique Loggers, while 𝑅3, 𝑅4, and 𝑅5 are
still pending.

Obviously, the latency for a pending record to become
immutable is up to how often Loggers are publishing. However,
Logger publication rate further depends on how many nearby
CertOwners are submitting certificates. If only a few Loggers
are publishing records, the immutability latency increases, or
even becomes infinite when there is no new Logger contribute
references by producing record and refer to the existing tail.

In order to address this problem, we design the dummy record
mechanism for CLedger. Each Logger maintains a timer and
refreshes it whenever the Logger receives a new record from
SVSPS. If no records are received in a given amount of time,
the Logger publishes a dummy record that does not contain a

certificate but only refers to all tail records.
We made two decisions to prevent CLedger keeping publish-

ing dummy records when there is no new certificate submission.
First, a Logger will not refresh its timer when receiving a
dummy record. Second, a dummy record can only refer to
the records that contain certificates. Therefore when HashDAG
growth stalls, more Loggers can participate to help pending
records to be immutable.
CLedger In Operation Now we use an example shown in
Figure 3 to further demonstrate CLedger operations.

We consider a case where Alice is a CertOwner and Bob is a
CertFetcher. At the beginning, Alice submits her certificate to
CLedger using the submission protocol. Alice’s nearest Logger
receives the submission, validates it with trust schema, and
publishes a record 𝑅5 that includes Alice’s certificate and
references to all HashDAG tail records 𝑅3 and 𝑅4.

As all Loggers are in the Publish/Subscribe group, other
Loggers receive this 𝑅5 from record subscription, and append
it into their HashDAG. Because 𝑅5 has become the tail record,
when other Loggers publish new records, their records will
refer to 𝑅5. When there are at least 𝐾 Loggers have directly
or indirectly referred to 𝑅5 in their record publications, 𝑅5
becomes immutable.

We assume that Bob starts fetching Alice’s certificate af-
ter Alice’s certificate submission finishes. Bob expresses an
Interest with Alice’s certificate name2. Bob’s nearest Logger
receives the Interest and looks up its local copy of HashDAG
for the record that contains Alice’s certificate.

If such a record exists in HashDAG, the Logger extracts
Alice’s certificate from it and replies to the Interest with the
certificate found. Otherwise, the Logger replies to the Interest
with a Data packet that shares the same name prefix with Bob’s
Interest but has an empty content. Logger signs the reply to
inform Bob that CLedger has no record for which certificate3.

In the case shown in Figure 3, the Logger nearest to Bob
has learned 𝑅5 from SVSPS, hence successfully looks up 𝑅5
from its local copy of HashDAG and replies to Bob’s Interest
with Alice’s certificate.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of CLedger with
various parameter settings, including the submission latency,
the fetching latency, the immutability latency, and the Certifi-
cate/Total record ratio.

A. Evaluation Setup

To evaluate CLedger’s performance, we implemented a pro-
totype4 based on ndn-cxx. Our prototype uses LevelDB as
loggers’ local database.

2Interest packets can carry forwarding hint that hints the routers where to
forward the packet. In our case, Bob’s certificate fetching Interest carries the
forwarding hint to the CLedger shared routing prefix.

3The Logger can use the Data FreshnessPeriod to control the timeliness of
this information, so that Bob knows when to resend the request.

4https://github.com/UCLA-IRL/cert-ledger



Record Name

Signature

Tail Record Hash

Tail Record Hash

Certificate

…… Data Name

Content

Signature

Data Name

Content…

Record Name

Tail Record Hash

Tail Record Hash

Certificate

……

SVSPS as secure transport
Record receivingRecord publishing

Named Data 

Network

R1

R3

R4R2

R5

R1

R3

R4R2

R5

R1

R3

R4R2

R5

Submits certificate

Fetches certificate

Bob

Alice

Fig. 3: An CLedger example where Alice is the CertOwner while Bob is the CertFetcher.

0 5 10 15

Number of Loggers

0

50

100

150

L
at

en
cy

 (
m

s)

Submission

Fetching

(a) Availability Latency

0 5 10 15 20

Submissions Per Second

0

5

10

15

20

Im
m

u
ta

b
ili

ty
 L

a
te

n
c
y
 (

s
)

K=3

K=5

0 0.5 1
0

10

20

(b) Immutability Latency

Fig. 4: Latency Performance

We use Mini-NDN [10] to emulate CLedger in a real-world
ISP network topology [11] that includes 115 nodes. They
are connected to each other via 10 ms per-link delay. Our
evaluations were hosted on a server equipped with Ubuntu
20.04, AMD EPYC 7702P with 64 cores and 256 GB RAM.
Each evaluation result is the mean of 10 trials.

0 5 10 15 20

Submissions Per Second

0.5

0.6

0.7

0.8

0.9

1

C
e
rt

if
ic

a
te

/T
o
ta

l 
R

e
c
o
rd

 R
a
ti
o

K=3

K=5

0 0.5 1
0.5

0.6

0.7

Fig. 5: Certificate/Total Record Ratio

B. Submission Latency and Fetching Latency

We measure the certificate submission latency and the fetch-
ing latency in this section, to evaluate the performance of
certificate availability provided by CLedger. According to §IV,
we define that submission latency is the time elapsed from
CertOwner sending the notification interest to receiving the
acknowledgement. Fetching latency is the time elapsed from
CertFetch sending a certificate Interest to receiving the re-
quested certificate. In order to serve more CertOwners, Loggers
in actual deployments are more likely on the nodes which have
more neighbours. Therefore to emulate the logger selection
process, we sort all the nodes in descending order of edge
counts, and select the top 𝑁 nodes as Loggers in each trial5,
with 𝑁 ranging from 1 to 15.

For submission latency evaluation, we assume that submis-
sion events have a Poisson distribution and set 𝜆 as 10, i.e.,
the expected number of submissions per second is 10. For
each submission, we randomly choose a node as a CertOwner

5We exclude the top 2% nodes before the selection, because these nodes are
probably routers in the real-world scenario.



and submit its certificate. The submission evaluation lasts for
120 seconds, and we evaluate the mean submission latency of
all submitted certificates. As shown in Fig. 4a, the submission
latency decreases as the number of Loggers increases, because
the larger number of Loggers, the higher probability that a
CertOwner can find a nearby Logger with small hops.

After all certificates are submitted into the system, we
evaluate the certificate fetching latency. We also assume that
fetching events have the same distribution as submission events.
For each fetching request, we randomly choose a node as
a CertFetcher and fetch a random certificate already in the
system. We assume that the fetched certificates have the Zipf
distribution. It also lasts for 120 seconds, and we evaluate the
mean latency of all fetching requests. As shown in Fig. 4a,
the fetching latency remains stable as the number of Loggers
increases, because popular certificates are fetched several times
under Zipf distribution. Due to the cache mechanism in NDN,
they are cached by the intermediate nodes so that a CertFetcher
can fetch them from the intermediate routers.

C. Immutability Latency

In this section, we measure the immutability latency to
evaluate the immutability performance provided by CLedger.
In this experiment, we picked 15 Loggers with the same node
selection process. The dummy record timer for each Logger
is set randomly from 0.1 s to 20 s. As illustrated in Fig. 4b,
we evaluate the immutability latency with different submission
speed rates and K settings, where the figure on the corner
shows the immutability latency with low submission speed. The
immutability latency in both cases 𝐾 = 3 and 𝐾 = 5 decrease
as the submission rate increases. The increasing number of
submitted records per second makes a newly submitted record
referenced quickly. The latency in the case 𝐾 = 5 is higher
than that in the case 𝐾 = 3, because a submitted record needs
more descendent records for larger 𝐾 . Our evaluation results
show that our record can be immutable after a short period of
time. When the submission speed is 20 records per second and
𝐾 = 5, a record only needs 862.89 ms to be immutable.

D. Certificate/Total Record Ratio

As CLedger uses dummy records to accelerate the im-
mutability, we evaluate the proportion of certificate records in
all records. In Fig. 5, we evaluate the proportion of certificates
from CertOwners with different submission speed rates and 𝐾
settings, where the figure on the corner shows the immutability
latency with low submission speed. The number of Loggers is
set as 15, and we select them based on the same policy we
used in §V-C. We can find that the proportions in both cases
𝐾 = 3 and 𝐾 = 5 increase when the submission speed rate
increases. When the submission speed rates are over 15 records
per second, the proportions of certificate records are over 95%.

VI. RELATED WORKS

A. Certificate Transparency

Today’s Internet has a decade of experience in logging
certificates in append-only data structures. Certificate Trans-

parency (CT) [12] is a solution that logs issued certificates
in Merkle Tree, an append-only data structure. The Merkle
Tree with logged certificates is stored in multiple independent
CT log servers. CT helps mitigate the misissuance problem
in Certificate Authorities (CA) through browser-end forcing.
Browsers, such as Chrome, require that a certificate must be
logged in multiple CT servers. Otherwise, it will be rejected
by the browser. Meanwhile, monitors periodically check the
latest update of CT log servers. Thus they can detect misissued
certificates in Web through analyzing CT logs.

We acknowledge that CT has made significant contributions
to today’s Internet security. But we also note that, system
consistency is a non-goal when CT was first proposed. A key
difference in CT design is that, each Logger independently
maintains its own certificate storage. The stored certificates may
differ among different Loggers, which leads to system incon-
sistency. Therefore, browser vendors control the trust policy
that decides to accept which Logger. On the contrary, CLedger
synchronizes records among Loggers via SVSPS, and secures
the system by executing trust schema that is bootstrapped to
all domain entities.

Moreover, as we mentioned in §I, today’s Internet follows
an always-on model. CT aims at addressing the transparency
issue. It supposes that the browser should have the certificate
from the server, which cannot be used to address the certificate
availability problem.

B. Blockchain-based Certificate Ledger

Many Proposals [13]–[15] are built on using the blockchain
to achieve X.509 certificate transparency. Cecoin [13] uses
Merkle Patricia Tree to represent its domains and the certificates
records and accepts modification to this tree using blockchain
and its cryptographic verification methods. The proposal by
Ze et al. [14] builds the function of CT with blockchain
and builds domain ownership proof with a group of verifying
parties. The proposal by Kubilay et al [15] provides a model
of building a decentralized Byzantine fault tolerant trust on a
blockchain, with inherent support of public append-only log
property provided by the clock-chain.

However, CLedger differs from the blockchain-based designs
in the following two ways. First, based on whether require
authorization to publish and access records or not, blockchain-
based ledger can be further categorized into permissioned and
permissionless ledger. Different from IP-based permissioned
ledgers, CLedger realizes record authorization with a data-
centric design that leverages semantically meaningful names
in the network layer, which can authorize record publications
according to trust schema, without adding a map from ledger
identifier to its address.

Second, the blockchain technique requires the system achiev-
ing global consensus on record orders, which leads to extra
communication overhead. However, as certificates are stateless,
the consistency of record order is not important. DAG in
CLedger does not require a total order among all records but
still ensures the immutability for each record. It is a lightweight
design that is more suitable for certificate availability.



VII. DISCUSSION

Revocation Availability Although CLedger aims to address
the certificate availability problem, the same solution can also
be applied to the availability of certificate revocation records.
The revocation framework CertRevoke [9] requires a ledger
that immutably stores the revocation records and guarantees
their availability. CLedger is a natural fit for that need.
Supporting Inter-domain Availability Although the current
CLedger design started from providing the certificate availabil-
ity within one trust domain, CLedger can also achieves the
same goals for multiple domains. In a multi-domain deploy-
ment, each domain contributes Loggers with trust schema that
specifies rules on how to authenticate and authorize packets
from other trust domains [16]. Therefore, federated Loggers
can provide immutable certificate storage for CertOwners and
CertFetchers from multiple domains.
Dummy Record Timer CLedger relies on a dummy record
timer to enable records to be immutable timely. However,
system operators should carefully consider the timer interval.

First, the interval of the timer should present system op-
erators’ consideration of how urgently records need to be
immutable. As shown in Figure 5, when CLedger only has
few submissions per second, the ratio between CertOwner-
submitted records and dummy records drops significantly. This
indicates CLedger immutably stores certificates with higher
communication overhead.

Second, in order to prevent multiple Loggers from publishing
dummy records simultaneously, each Logger should use a
variable length timer. In our evaluation, each Logger uses a
randomized timer whose interval is evenly distributed but with
the same mean value. This might not be the optimal choice,
since the urgency of record immutability is increasing as time
increases when no one is publishing new records. A better
randomization strategy is to have the probability distribution
function prefers shorter timers.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a secure distributed certificate
ledger, CLedger, via named data. CLedger provides certifi-
cate and revocation availability based on immutably repli-
cated records. Our evaluation results showed that our proposed
CLedger is feasible and efficient.

A lesson we learned from designing CLedger is that a trust
schema enables CLedger security design through semantically
matching data name with its signer name. Therefore, CLedger
is able to control not only who can submit certificates, but
also who can submit which certificate, without adding another
layer of indirection. Hence, CLedger does not need a separate
security design to authorize CertOwners, but relies on the trust
schema to validate their submission data and ensure every
submission is authenticated and legitimate.

We also learned SVSPS is a useful tool to build secure NDN
applications. By using SVSPS, CLedger securely synchronizes
records without dealing with low-level protocol details, but only
handles high-level data naming and security policies.

In the future, we will investigate an adaptive timer for the
dummy record design to further reduce the records’ immutabil-
ity latency while remaining the HashDAG efficiency. We also
plan to deploy CLedger on NDN Testbed [17] as a solution to
Testbed certificate availability problem and support certificate
availability across multiple trust domains.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable comments. This work was supported in part by
US National Science Foundation under awards 2019085 and
2126148, and Research Grants Council of Hong Kong under
CityU 11213920 and R1012-21.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,” pp.
66–73, 2014.

[2] A. Afanasyev, T. Refaei, L. Wang, and L. Zhang, “A brief introduction
to Named Data Networking,” in Proc. of MILCOM, Oct. 2018.

[3] K. Nichols, V. Jacobson, and R. King, “Defined-Trust Transport
(DeftT) Protocol for Limited Domains,” Internet Engineering Task
Force, Internet-Draft draft-nichols-tsv-defined-trust-transport-00, 07 2022,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-nichols-tsv-defined-trust-transport

[4] P. Moll, V. Patil, N. Sabharwal, and L. Zhang, “A brief introduction
to state vector sync,” NDN, NDN Memo, Technical Report NDN-0073,
Revision 2, 2021.

[5] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,
“Direct acyclic graph-based ledger for internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643–1656, 2020.

[6] Z. Zhang, V. Vasavada, R. King, and L. Zhang, “Proof of authentication
for private distributed ledger,” in Proceedings of the NDSS Workshop on
Decentralised IoT Systems and Security (DISS), 2019.

[7] S. Liu, P. Moll, and L. Zhang, “Mnemosyne: An immutable distributed
logging framework over named data networking,” in Proceedings of the
8th ACM Conference on Information-Centric Networking, ser. ICN ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
130–132. [Online]. Available: https://doi.org/10.1145/3460417.3483375

[8] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Pro-
ceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI ’99. USA: USENIX Association, 1999, p.
173–186.

[9] T. Yu, H. Xie, S. Liu, X. Ma, X. Jia, and L. Zhang, “Certrevoke: A certifi-
cate revocation framework for named data networking,” in Proceedings
of the 9th ACM Conference on Information-Centric Networking, 2022.

[10] The NDN Team, “Mini-NDN: A Mininet based NDN emulator,”
2022, accessed: 2022-11-01. [Online]. Available: https://github.com/
named-data/mini-ndn

[11] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with
rocketfuel,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 133–145, 2002.

[12] B. Laurie, “Certificate transparency: Public, verifiable, append-only logs,”
Queue, vol. 12, no. 8, pp. 10–19, 2014.

[13] B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin: A
decentralized pki mitigating mitm attacks,” Future Generation Computer
Systems, vol. 107, pp. 805–815, 2020.

[14] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing, “Blockchain-based
certificate transparency and revocation transparency,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 1, pp. 681–697, 2022.

[15] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “Certledger: A
new pki model with certificate transparency based on blockchain,”
Computers & Security, vol. 85, pp. 333–352, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818313014

[16] T. Yu, X. Ma, H. Xie, Y. Kocaoğullar, and L. Zhang, “Intertrust:
establishing inter-zone trust relationships,” in Proceedings of the 9th ACM
Conference on Information-Centric Networking, 2022, pp. 180–182.

[17] The NDN Team, “Ndn testbed,” Online at https://named-data.net/ndn-
testbed/, 2022.


