
F o r t r a n   9 0



ISO/IEC 1539 : 1991 (E)

2

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Inclusions and exclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3.1 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3.2 Exclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4.1 FORTRAN 77 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Notation used in this International Standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.1 Syntax rules Syntax rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.2 Assumed syntax rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.3 Syntax conventions and characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.4 Text conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Deleted and obsolescent features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.1 Nature of deleted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.2 Nature of obsolescent features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Fortran  terms and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 High level syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Program unit concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Executable program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Execution concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Executable/nonexecutable statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Statement order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 The END statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Execution sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Data concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Data type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Data value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Data entity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Scalar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.5 Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.6 Pointer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.7 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Fundamental terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Name and designator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.4 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Contents



ISO/IEC 1539 : 1991 (E)

3

2.5.5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.6 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.7 Intrinsic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.8 Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.9 Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Characters, lexical tokens, and source form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Processor character set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Digits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Underscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Special characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.5 Other characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Low-level syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Statement labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.6 Delimiters Delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Source form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Free source form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Fixed source form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Including source text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Intrinsic and derived data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The concept of data type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1 Set of values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Relationship of types and values to objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Intrinsic data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Numeric types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Nonnumeric types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Derived types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.1 Derived-type definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Determination of derived types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Derived-type values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.4 Construction of derived-type values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.5 Derived-type operations and assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Construction of array values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5. Data object declarations and specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Type declaration statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.1 Type specifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Attribute specification statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 INTENT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 OPTIONAL statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Accessibility statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4 SAVE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



ISO/IEC 1539 : 1991 (E)

4

5.2.5 DIMENSION statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.6 ALLOCATABLE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.7 POINTER statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.8 TARGET statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.9 DATA statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.10 PARAMETER statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 IMPLICIT statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 NAMELIST statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Storage association of data objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.1 EQUIVALENCE statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.2 COMMON statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Use of data objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.1 Substrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.2 Structure components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.1 Whole arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Array elements and array sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Dynamic association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.1 ALLOCATE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2 NULLIFY statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.3 DEALLOCATE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7. Expressions and assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.1 Form of an expression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.2 Intrinsic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.3 Defined operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.4 Data type, type parameters, and shape of an expression . . . . . . . . . . . . . . . . . 73
7.1.5 Conformability rules for intrinsic operations  . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.6 Scalar and array expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.7 Evaluation of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Interpretation of intrinsic operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.1 Numeric intrinsic operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.2 Character intrinsic operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.3 Relational intrinsic operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.4 Logical intrinsic operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Interpretation of defined operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.1 Unary defined operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Binary defined operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Precedence of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 Assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5.1 Assignment statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5.2 Pointer assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.5.3 Masked array assignment—WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8. Execution control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 Executable constructs containing blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1.1 Rules governing blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1.2 IF construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



ISO/IEC 1539 : 1991 (E)

5

8.1.3 CASE construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.1.4 DO construct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Branching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.1 Statement labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.2 GO TO statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.3 Computed GO TO statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.4 ASSIGN and assigned GO TO statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.5 Arithmetic IF statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 CONTINUE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4 STOP statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5 PAUSE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9. Input/output statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.1.1 Formatted record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.1.2 Unformatted record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.1.3 Endfile record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.1 External files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.2 Internal files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.3 File connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3.1 Unit existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3.2 Connection of a file to a unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3.3 Preconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3.4 The OPEN statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3.5 The CLOSE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.4 Data transfer statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4.1 Control information list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.4.2 Data transfer input/output list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.4.3 Error, end-of-record, and end-of-file conditions . . . . . . . . . . . . . . . . . . . . . . . 120
9.4.4 Execution of a data transfer input/output statement . . . . . . . . . . . . . . . . . . . . 120
9.4.5 Printing of formatted records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.4.6 Termination of data transfer statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.5 File positioning statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5.1 BACKSPACE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5.2 ENDFILE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5.3 REWIND statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.6 File inquiry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.6.1 Inquiry specifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.6.2 Restrictions on inquiry specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.6.3 Inquire by output list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.7 Restrictions on function references and list items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.8 Restriction on input/output statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10. Input/output editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1 Explicit format specification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.1.1 FORMAT statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.1.2 Character format specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.2 Form of a format item list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.2.1 Edit descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.2.2 Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.3 Interaction between input/output list and format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



ISO/IEC 1539 : 1991 (E)

6

10.4 Positioning by format control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.5 Data edit descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.5.1 Numeric editing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.5.2 Logical editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5.3 Character editing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5.4 Generalized editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.6 Control edit descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.6.1 Position editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.6.2 Slash editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.6.3 Colon editing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.6.4 S, SP, and SS editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.6.5 P editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.6.6 BN and BZ editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.7 Character string edit descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.7.1 Character constant edit descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.7.2 H editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.8 List-directed formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.8.1 List-directed input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.8.2 List-directed output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.9 Namelist formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.9.1 Namelist input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.9.2 Namelist output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11. Program units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.1 Main program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.1.1 Main program specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.1.2 Main program executable part  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.1.3 Main program internal procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.2 External subprograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.3.1 Module reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.3.2 The USE statement and use association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.3.3 Examples of the use of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

11.4 Block data program units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

12.1 Procedure classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.1.1 Procedure classification by reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.1.2 Procedure classification by means of definition . . . . . . . . . . . . . . . . . . . . . . . 157

12.2 Characteristics of procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.2.1 Characteristics of dummy arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.2.2 Characteristics of function results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12.3 Procedure interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.3.1 Implicit and explicit interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.3.2 Specification of the procedure interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.4 Procedure reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.4.1 Actual argument list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.4.2 Function reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.4.3 Elemental intrinsic function reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.4.4 Subroutine reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.4.5 Elemental intrinsic subroutine reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.5 Procedure definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



ISO/IEC 1539 : 1991 (E)

7

12.5.1 Intrinsic procedure definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.5.2 Procedures defined by subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.5.3 Definition of procedures by means other than Fortran . . . . . . . . . . . . . . . . . . 175
12.5.4 Statement function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13. Intrinsic procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.1 Intrinsic functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.2 Elemental intrinsic procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.2.1 Elemental intrinsic function arguments and results  . . . . . . . . . . . . . . . . . . . . 177
13.2.2 Elemental intrinsic subroutine arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.3 Positional arguments or argument keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.4 Argument presence inquiry function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5 Numeric, mathematical, character, kind, logical, and bit procedures . . . . . . . . . . . . . . . . 178

13.5.1 Numeric functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.2 Mathematical functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.3 Character functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.4 Character inquiry function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.5 Kind functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.6 Logical function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5.7 Bit manipulation and inquiry procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.6 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.7 Numeric manipulation and inquiry functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.7.1 Models for integer and real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.7.2 Numeric inquiry functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.7.3 Floating point manipulation functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

13.8 Array intrinsic functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.8.1 The shape of array arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.8.2 Mask arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.8.3 Vector and matrix multiplication functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.8.4 Array reduction functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.5 Array inquiry functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.6 Array construction functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.7 Array reshape function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.8 Array manipulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.9 Array location functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.8.10 Pointer association status inquiry functions . . . . . . . . . . . . . . . . . . . . . . . . . . 181

13.9 Intrinsic subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.9.1 Date and time subroutines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.9.2 Pseudorandom numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.9.3 Bit copy subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

13.10 Generic intrinsic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.10.1 Argument presence inquiry function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.10.2 Numeric functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.10.3 Mathematical functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.10.4 Character functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.10.5 Character inquiry function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.6 Kind functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.7 Logical function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.8 Numeric inquiry functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.9 Bit inquiry function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.10 Bit manipulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.11 Transfer function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.10.12 Floating-point manipulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



ISO/IEC 1539 : 1991 (E)

8

13.10.13 Vector and matrix multiply functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.10.14 Array reduction functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.10.15 Array inquiry functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.10.16 Array construction functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.10.17 Array reshape function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.10.18 Array manipulation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.10.19 Array location functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.10.20 Pointer association status inquiry function . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

13.11 Intrinsic subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.12 Specific names for intrinsic functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.13 Specifications of the intrinsic procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14. Scope, association, and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

14.1 Scope of names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.1.1 Global entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.1.2 Local entities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.1.3 Statement entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

14.2 Scope of labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.3 Scope of external input/output units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.4 Scope of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.5 Scope of the assignment symbol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.6 Association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

14.6.1 Name association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.6.2 Pointer association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
14.6.3 Storage association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

14.7 Definition and undefinition of variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.1 Definition of objects and subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.2 Variables that are always defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.3 Variables that are initially defined  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.4 Variables that are initially undefined  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.5 Events that cause variables to become defined . . . . . . . . . . . . . . . . . . . . . . . . 243
14.7.6 Events that cause variables to become undefined . . . . . . . . . . . . . . . . . . . . . . 244

14.8 Allocation status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A. Glossary of technical terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B. Decremental features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

14.9 Deleted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
B.1 Obsolescent features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

B.1.1 Alternate return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
B.1.2 PAUSE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.1.3 ASSIGN and assigned GO TO statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.1.4 Assigned FORMAT specifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.1.5 H editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C. Section notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

14.10 Section 1 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.0.1 Conformance (1.4)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

C.1 Section 2 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.1.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

C.2 Section 3 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257



ISO/IEC 1539 : 1991 (E)

9

C.2.1 Representable characters (3.1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.2.2 Comment lines (3.3.1.1, 3.3.2.1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.2.3 Statement labels (3.2.5)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
C.2.4 Source form (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

C.3 Section 4 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
C.3.1 Zero (4.3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
C.3.2 Characters (4.2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
C.3.3 Intrinsic and derived data types (4.3, 4.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
C.3.4 Selection of the approximation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.3.5 Storage of derived types (4.4.1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.3.6 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

C.4 Section 5 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
C.4.1 Type declaration statements (5.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
C.4.2 The POINTER attribute (5.1.2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
C.4.3 The TARGET attribute (5.1.2.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
C.4.4 PARAMETER statements and IMPLICIT NONE (5.2.10, 5.3)  . . . . . . . . . . . 262
C.4.5 EQUIVALENCE statement extensions (5.5.1) . . . . . . . . . . . . . . . . . . . . . . . . 262
C.4.6 COMMON statement extensions (5.5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

C.5 Section 6 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C.5.1 Substrings (6.1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C.5.2 Array element references (6.2.2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C.5.3 Structure components (6.1.2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
C.5.4 Pointer allocation and association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

C.6 Section 7 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
C.6.1 Character assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
C.6.2 Evaluation of function references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
C.6.3 Pointers in expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
C.6.4 Pointers on the left side of an assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

C.7 Section 8 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
C.7.1 Loop control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
C.7.2 The CASE construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
C.7.3 Examples of invalid DO constructs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

C.8 Section 9 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
C.8.1 Input/output records (9.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
C.8.2 Files (9.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
C.8.3 OPEN statement (9.3.4)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
C.8.4 Connection properties (9.3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
C.8.5 CLOSE statement (9.3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C.8.6 INQUIRE statement (9.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C.8.7 Keyword specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C.8.8 Format specifications (9.4.1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C.8.9 Unformatted input/output (9.4.4.4.1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
C.8.10 Input/output restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
C.8.11 Pointers in an input/output list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
C.8.12 Derived type objects in an input/output list (9.4.2). . . . . . . . . . . . . . . . . . . . . 273

C.9 Section 10 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
C.9.1 Character constant format specification (10.1.2, 10.7.1)  . . . . . . . . . . . . . . . . 273
C.9.2 T edit descriptor (10.6.1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
C.9.3 Length of formatted records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
C.9.4 Number of records (10.3, 10.4, 10.6.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
C.9.5 List-directed input/output (10.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
C.9.6 List-directed input (10.8.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
C.9.7 Namelist list items for character input (10.9.1.3) . . . . . . . . . . . . . . . . . . . . . . 275
C.9.8 Namelist output records (10.9.2.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



ISO/IEC 1539 : 1991 (E)

10

C.10 Section 11 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C.10.1 Main program and block data program unit (11.1, 11.4). . . . . . . . . . . . . . . . . 275
C.10.2 Dependent compilation (11.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C.10.3 Pointers in modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
C.10.4 Example of a module (11.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

C.11 Section 12 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
C.11.1 Examples of host association (12.1.2.2.1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
C.11.2 External procedures (12.3.2.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
C.11.3 Procedures defined by means other than Fortran (12.5.3). . . . . . . . . . . . . . . . 282
C.11.4 Procedure interfaces (12.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
C.11.5 Argument association and evaluation (12.4.1)  . . . . . . . . . . . . . . . . . . . . . . . . 282
C.11.6 Argument intent specification (12.4.1.1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
C.11.7 Dummy argument restrictions (12.5.2.9)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
C.11.8 Pointers and targets as arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
C.11.9 The ASSOCIATED function (13.13.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
C.11.10 Internal procedure restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
C.11.11 The result variable (12.5.2.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

C.12 Section 13 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
C.12.1 Summary of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
C.12.2 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
C.12.3 FORmula TRANslation and array processing. . . . . . . . . . . . . . . . . . . . . . . . . 291
C.12.4 Sum of squared residuals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
C.12.5 Vector norms: infinity-norm and one-norm  . . . . . . . . . . . . . . . . . . . . . . . . . . 293
C.12.6 Matrix norms: infinity-norm and one-norm  . . . . . . . . . . . . . . . . . . . . . . . . . . 293
C.12.7 Logical queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
C.12.8 Parallel computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
C.12.9 Example of element-by-element computation  . . . . . . . . . . . . . . . . . . . . . . . . 294
C.12.10 Bit manipulation and inquiry procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

C.13 Section 14 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
C.13.1 Storage association of zero-sized objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294



ISO/IEC 1539 : 1991 (E)

11

Requirements on statement ordering 11



ISO/IEC 1539 : 1991 (E)

12

Statements allowed in scoping units 12
Special characters 18
  Subscript order value 63
Type of operands and result for the intrinsic operator [ op ] 72
Interpretation of the numeric intrinsic operators 81
Interpretation of the character intrinsic operator // 82
Interpretation of the relational intrinsic operators 82
Interpretation of the logical intrinsic operators 83
The values of operations involving logical intrinsic operators 84
Categories of operations and relative precedences 85
Type conformance for the intrinsic assignment statement variable = expr 87
Numeric conversion and assignment statement variable = expr 87
Values assigned to INQUIRE specifier variables 272



ISO/IEC 1539 : 1991 (E)

13

Foreword 
American National Standard Programming Language Fortran 90, ANSI X3.198-199x, specifies the form and
establishes the interpretation of programs expressed in the Fortran 90 language. The major benefits are to provide
more capability than American National Standard Programming Language FORTRAN, ANSI X3.9-1978 (FORTRAN

77) and to improve the portability of programs.

The designation Fortran 90 is used to distinguish this standard from previous Fortran standards and any possible
future versions. 

The new features that have been added to Fortran 90 are described in the Introduction. All of FORTRAN 77 is
contained within Fortran 90, except for the points as noted in section 1.4.1. FORTRAN 77 is an archival standard in
the United States. 

Fortran 90 was developed jointly by the X3 technical subcommittee X3J3 and IEC/ISO JTC1/SC22/WG5. It is
identical to ISO/IEC 1539:1991, the International Fortran Standard. 

There are six annexes to this standard. No annex is normative; all are informative. 



ISO/IEC 1539 : 1991 (E)

14

Introduction 

Standard programming language Fortran 

This International Standard specifies the form and establishes the interpretation of programs expressed in the
Fortran language (known informally as “Fortran 90”). It consists of the specification of the language Fortran. No
subsets are specified in this International Standard. With limitations noted in 1.4.1, the syntax and semantics of
the International Standard commonly known as “FORTRAN 77” are contained entirely within this International
Standard. Therefore, any standard-conforming FORTRAN 77 program is standard conforming under this
International Standard. New features can be compatibly incorporated into such programs, with any exceptions
indicated in the text of this International Standard. 

A standard-conforming Fortran processor is also a standard-conforming FORTRAN 77 processor. 

Note that the name of this language, Fortran, differs from that in FORTRAN 77 in that only the first letter is
capitalized. Both FORTRAN 77 and FORTRAN 66 used only capital letters in the official name of the language, but
Fortran 90 does not continue this tradition. 

Overview 
Among the additions to FORTRAN 77 in this International Standard, seven stand out as the major ones: 

(1) Array operations 

(2) Improved facilities for numerical computation 

(3) Parameterized intrinsic data types 

(4) User-defined data types 

(5) Facilities for modular data and procedure definitions 

(6) Pointers 

(7) The concept of language evolution 

A number of other additions are also included in this International Standard, such as improved source form
facilities, more control constructs, recursion, additional input/output facilities, and dynamically allocatable
arrays. 

Array operations 

Computation involving large arrays is an important part of engineering and scientific computing. Arrays may be
used as entities in Fortran. Operations for processing whole arrays and subarrays (array sections) are included in
the language for two principal reasons: (1) these features provide a more concise and higher level language that
will allow programmers more quickly and reliably to develop and maintain scientific/engineering applications,
and (2) these features can significantly facilitate optimization of array operations on many computer
architectures. 

The FORTRAN 77 arithmetic, logical, and character operations and intrinsic (predefined) functions are extended to
operate on array-valued operands. The array extensions include whole, partial, and masked array assignment,
array-valued constants and expressions, and facilities to define user-supplied array-valued functions. New
intrinsic procedures are provided to manipulate and construct arrays, to perform gather/scatter operations, and to
support extended computational capabilities involving arrays. For example, an intrinsic function is provided to
sum the elements of an array. 



ISO/IEC 1539 : 1991 (E)

15

Numerical computation 

Scientific computation is one of the principal application domains of Fortran, and a guiding objective for all of
the technical work is to strengthen Fortran as a vehicle for implementing scientific software. Though nonnumeric
computations are increasing dramatically in scientific applications, numeric computation remains dominant.
Accordingly, the additions include portable control over numeric precision specification, inquiry as to the
characteristics of numeric representation, and improved control of the performance of numerical programs (for
example, improved argument range reduction and scaling). 

Parameterized character data type 

Optional facilities for multibyte character data for languages with large character sets, such as those in China and
Japan, are added by using a kind parameter for the character data type. This facility allows additional character
sets for special purposes as well, such as characters for mathematics, chemistry, or music. 

Derived types

“Derived type” is the term given to that set of features in this International Standard that allows the programmer
to define arbitrary data structures and operations on them. Data structures are user-defined aggregations of
intrinsic and derived data types. Intrinsic uses of structured objects include assignment, input/output, and as
procedure arguments. With no additional derived-type operations defined by the user, the derived data type
facility is a simple data structuring mechanism. With additional operation definitions, derived types provide an
effective implementation mechanism for data abstractions. 

Procedure definitions may be used to define operations on intrinsic or derived types and nonintrinsic assignments
for intrinsic and derived types. 

Modular definitions 

In FORTRAN 77, there was no way to define a global data area in only one place and have all the program units in
an application use that definition. In addition, the ENTRY statement is awkward and restrictive for implementing
a related set of procedures, possibly involving common data objects. Finally, there was no means in FORTRAN 77
by which procedure definitions, especially interface information, could be made known locally to a program unit.
These and other deficiencies are remedied by a new type of program unit that may contain any combination of
data object declarations, derived-type definitions, procedure definitions, and procedure interface information.
This program unit, called a module, may be considered to be a generalization and replacement for the block data
program unit. A module may be accessed by any program unit, thereby making the module contents available to
that program unit. Thus, modules provide improved facilities for defining global data areas, procedure packages,
and encapsulated data abstractions. 

Pointers 

Pointers allow arrays to be sized dynamically and ranged, and structures to be linked to create lists, trees, and
graphs. An object of any intrinsic or derived type may be declared to have the pointer attribute. Once such an
object becomes associated with a target, it may appear almost anywhere a nonpointer object with the same type,
type parameters, and shape may appear. 

Language evolution 

With the addition of new facilities, certain old features become redundant and may eventually be phased out of
the language as their usage declines. For example, the numeric facilities alluded to above provide the
functionality of double precision; with the new array facilities, nonconformable argument association (such as
associating an array element with a dummy array) is unnecessary (and in fact is not useful as an array operation);
and block data program units are redundant and inferior to modules. 



ISO/IEC 1539 : 1991 (E)

16

As part of the evolution of the language, categories of language features (deleted and obsolescent) are provided
which allow unused features of the language to be removed from future standards. 

Organization of this International Standard 
This document is organized in 14 sections, dealing with 7 conceptual areas. These 7 areas, and the sections in
which they are treated, are:

High/low level concepts 

Section 2 (Fortran Terms and Concepts) contains many of the high level concepts of Fortran. This includes the
concept of an executable program and the relationships among its major parts. Also included are the syntax of
program units, the rules for statement ordering, and the definitions of many of the fundamental terms used
throughout the document. 

Section 3 (Characters, Lexical Tokens, and Source Form) describes the low level elements of Fortran, such as the
character set and the allowable forms for source programs. It also contains the rules for constructing literal
constants and names for Fortran entities, and lists all of the Fortran operators. 

Data concepts 

The array operations (arrays as data objects) and data structures provide a rich set of data concepts in Fortran.
The main concepts are those of data type, data object, and the use of data objects, which are described in
Sections 4, 5, and 6, respectively. 

Section 4 (Intrinsic and Derived Data Types) describes the distinction between a data type and a data object, and
then focuses on data type. It defines a data type as a set of data values, corresponding forms (constants) for
representing these values, and operations on these values. The concept of an intrinsic data type is introduced, and
the properties of Fortran’s intrinsic types (INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER) are
described. Note that only type concepts are described here, and not the declaration and properties of data objects. 

Section 4 also introduces the concept of derived (user-defined) data types, which are compound types whose
components ultimately resolve into intrinsic types. The details of defining a derived type are given (note that this
has no counterpart with intrinsic types as intrinsic types are predefined and therefore need not—indeed
cannot—be redefined by the programmer). As with intrinsic types, this section deals only with type properties,
and not with the declaration of data objects of derived type. 

Section 5 (Data Object Declarations and Specifications) describes in detail how named data objects are declared
and given the desired properties (attributes). An important attribute (the only one required for each data object)
is the object’s data type, so the type declaration statement is the main feature of this section. The various
attributes are described in detail, as well as the two ways that attributes may be specified (type declaration
statements and attribute specification statements). Implicit typing and storage association (COMMON and
EQUIVALENCE) are also described in this section, as well as data object value initialization. 

Section 6 (Use of Data Objects) deals mainly with the concept of a variable, and describes the various forms that
variables may take. Scalar variables include character strings and substrings, structured (derived-type) objects,
structure components, and array elements. Arrays are considered to be variables, as are array sections. Among

High/Low Level Concepts Sections 1, 2, 3 
Data Concepts Sections 4, 5, 6 
Computations Sections 7, 13 
Execution Control Section 8 
Input/Output Sections 9, 10 
Program Units Sections 11, 12 
Scoping and Association Rules Section 14 



ISO/IEC 1539 : 1991 (E)

17

the array facilities described here are array sections (subarrays), and array allocation and deallocation (user
controlled dynamic arrays). The section concludes with a summary of the allowed appearances of array names. 

Computations 

Section 7 (Expressions and Assignment) describes how computations are expressed in Fortran. This includes the
forms that expression operands (primaries) may take and the role of operators in these expressions. Operator
precedence is rigorously defined in syntax rules and summarized in tabular form. This description includes the
relationship of defined operators (user-defined operators) to the intrinsic operators (+, ∗, .AND., .OR., etc.). The
rules for both expression evaluation and the interpretation (semantics) of intrinsic and defined operators are
described in detail. 

Section 7 also describes assignment of computational results to data objects, which has three principal forms: the
conventional assignment statement, the pointer assignment statement, and the WHERE statement and construct.
The WHERE statement and construct allow masked array assignment. 

Section 13 (Intrinsic Procedures) describes more than one hundred intrinsic procedures that provide a rich set of
computational capabilities. In addition to the FORTRAN 77 intrinsic functions, this includes many array processing
functions, a comprehensive set of numerical environmental inquiry functions, and a set of procedures for the
manipulation of bits in nonnegative integer data. 

Execution control 

Section 8 (Execution Control) describes the control constructs (IF, CASE, and DO), branching statements
(various forms of GO TO), and other control statements (IF, arithmetic IF, CONTINUE, STOP, and PAUSE).
These are as in FORTRAN 77 except for the addition of the CASE construct and the extension of the DO loop to
include an END DO termination option, additional control clauses, and the addition of the EXIT and CYCLE
statements. 

Input/output 

Section 9 (Input/Output Statements) contains definitions for records, files, file connections (OPEN, CLOSE, and
preconnected files), data transfer statements (READ, WRITE, and PRINT) that include processing of partial and
variable length records, file positioning, and file inquiry (INQUIRE). 

Section 10 (Input/Output Editing) describes input/output formatting. This includes the FORMAT statement and
FMT= specifier, edit descriptors, list-directed I/O, and namelist I/O. 

Program units 

Section 11 (Program Units) describes main programs, external subprograms, modules, and block data program
units. Modules, along with the USE statement, are described as a mechanism for encapsulating data and
procedure definitions that are to be used by (accessible to) other program units. Modules are described as
vehicles for defining global derived-type definitions, global data object declarations, procedure libraries, and
combinations thereof. 

Section 12 (Procedures) contains a comprehensive treatment of procedure definition and invocation, including
that for user-defined functions and subroutines. The concepts of implicit and explicit procedure interfaces are
explained, and situations requiring explicit procedure interfaces are identified. The rules governing actual and
dummy arguments, and their association, are described. 

Section 12 also describes the use of the OPERATOR option on interface blocks to allow function invocation in
the form of infix and prefix operators as well as the traditional functional form. Similarly, the use of the
ASSIGNMENT option on interface blocks is described as allowing an alternate syntax for certain subroutine
calls. This section also contains descriptions of recursive procedures, the RETURN statement, the ENTRY
statement, internal procedures and the CONTAINS statement, statement functions, generic procedure names, and
the means of accessing non-Fortran procedures. 



ISO/IEC 1539 : 1991 (E)

18

Scoping and association rules 

Section 14 (Scope, Association, and Definition) explains the use of the term “scope” (especially important now
because of the addition of internal procedures, modules, and other new features), and describes the scope
properties of various entities, including names and operators. Also described are the general rules governing
procedure argument association, pointer association, and storage association. Finally, Section 14 describes the
events that cause variables to become defined (have predictable values) and events that cause variables to
become undefined. 

Acknowledgements 
American Accredited Standards Committee X3, Information Processing Systems technical subcommittee X3J3
on Fortran, with the guidance of the international Fortran Working Group ISO/IEC JTC1/SC22/WG5, developed
this International Standard. The technical development has been carried out by subgroups, whose work is
reviewed by the full committee. During the period of development of the draft Fortran standard, many persons
served as officers: 

Jeanne C. Adams, Chair

Jerrold L. Wagener, Vice-Chair
Martin N. Greenfield, Vice-Chair (1972-1985)

Walter S. Brainerd, Director, Technical Work

Michael Metcalf, Editor
Lloyd W. Campbell, Editor (1978-1989)

Neldon H. Marshall, Secretary
John K. Reid, Secretary (1987-1990)
Jeanne T. Martin, Secretary (1982-1987)
Loren P. Meissner, Secretary (1978-1982)

Ivor R. Philips, International Representative
E. Andrew Johnson, International Representative (1987-1990)
Frances E. Holberton, International Representative (1978-1982)

Linda J. O’Gara, Librarian
Neldon H. Marshall, Librarian (1984-1990)

Kurt W. Hirchert, Vocabulary Representative
James H. Matheny, Vocabulary Representative (1986-1987)

Jeanne T. Martin, Convener ISO/IEC JTC1/SC22/WG5
Jeanne C. Adams, Convener ISO/SC5/WG9 (1978-1982) 



ISO/IEC 1539 : 1991 (E)

19

Those who contributed to the work by attending four or more meetings (X3J3) or three or more meetings (WG5)
were:

Robert C. Allison
Cornelis G. F. Ampt
Stuart L. Anderson
Charles Arnold
Graham Barber
John R. Barney
Gloria M. Bauer*
Michael J. A. Berry
Keith Bierman
Richard Bleikamp
Valerie G. Bowe
Joanne Brixius
Neil Brutman
Thomas W. Bucken
Albert Buckley
Larry L. Bumgarner
Carl D. Burch*
Winfried A. Burke*
Gary Campbell
John H. Carman
T. C. Chao
Nancy Cheng
P. Alan Clarke
Joel Clinkenbeard
Malcolm Cohen
Joe Cointment
Theodore R. Crowley
Jeremy Du Croz
Ingemar Dahlstrand
Chela Diaz de Villegas
David C. Dillon
Joe L. Dowdell
T. Miles R. Ellis
John T. Engle
Stuart I. Feldman
Francoise Ficheux-Vapne
Murray F. Freeman
Daniel A. Gallagher
Gary L. Graunke
Stephen R. Greenwood
Richard B. Grove*
Leo G. J. ter Haar
Kevin W. Harris*
Richard A. Hendrickson*
Dean A. Herington*
Maureen B. Smith Hoffert*
Tracy Ann Hoover
Fred W. M. Hopper
Sheryl Horowitz

Steve K. Hue
Jagmohan L. Humar
Gregory Johnson
Peter N. Karculias
Henry S. Katz
Richard P. Kelble
Leslie M. Klein
Wilfried Kneis
Werner Koblitz
George T. Komorowski
Joseph A. Korty
Denise A. Lagasse
Thomas M. Lahey
Anil K. Lakhwara
Sharon Lammers*
Dorothy E. Lang
John E. Lauer*
Rochelle Lauer
Herrick S. Lauson
Kay Leonard
William Leonard
Paul C. Libassi
Donald L. Loe
Warren E. Loper
Bruce A. Martin*
Alex L. Marusak
Christian J. Mas
Evelyn S. B. Mast
John Mayer
Edward H. McCall
Keith O. McConnell
Brian L. Meek
Fausto Milinazzo
Geoff Millard
Robert M. Miller
J. Steve Morgan
Leonard J. Moss
Meinolf Munchhausen
David T. Muxworthy
C. Mallory North, Jr.
Rod R. Oldehoeft
John P. Olson*
Rex L. Page*
George Paul
Daniel Pearl*
Odd Pettersen
David Phillimore
Klaus Plasser
Aurelio A. Pollicini

Bruce W. Puerling*
Richard R. Ragan*
Lawrence Rolison
Michael J. Roth
Karl-Heinz Rotthauser
Steven M. Rowan
Paul St. Pierre*
Werner Schenk*
Gerhard J. Schmitt
J. Lawrence Schonfelder
Rick N. Schubert
John C. Schwebel
Mok-Kong Shen
Richard Shepardson
Richard W. Signor*
Paul Sinclair
Brian T. Smith*
Presley Smith
Jan A. M. Snoek
Hieronymus Sobiesiak
Ken Sperka
Guy Steele
Bruce Stowell
Sylvia Sund
Mario Surdi
Richard C. Swift
Andrew D. Tait*
Brian L. Thompson
Julian Tilbury
Christian Ullrich
Robert B. Upshaw*
David M. Vallance
Nico Vossenstijn
Hideo Wada
Wolfgang V. Walter
Graham Warren
Richard W. Weaver
George E. Weekly
Bruce Weinman
Everett H. Whitley
Stanley J. Whitlock
Gunter Wiesner
Edward J. Wilkens
Alan Wilson
John D. Wilson
Tammy Yan
Reza Yazdani

*Subgroup Head 



ISO/IEC 1539 : 1991 (E)

20



ISO/IEC 1539 : 1991 (E)

1

Section 1 : Overview 

1.1 Scope 
This International Standard specifies the form and establishes the interpretation of programs expressed in the
Fortran language. The purpose of this International Standard is to promote portability, reliability, maintainability,
and efficient execution of Fortran programs for use on a variety of computing systems. 

1.2 Processor 
The combination of a computing system and the mechanism by which programs are transformed for use on that
computing system is called a processor in this International Standard. 

1.3 Inclusions and exclusions 
This International Standard specifies the bounds of the Fortran language by identifying both those items included
and those items excluded. 

1.3.1 Inclusions 

This International Standard specifies: 

(1) The forms that a program written in the Fortran language may take 

(2) The rules for interpreting the meaning of a program and its data 

(3) The form of the input data to be processed by such a program 

(4) The form of the output data resulting from the use of such a program 

1.3.2 Exclusions 

This International Standard does not specify: 

(1) The mechanism by which programs are transformed for use on computing systems 

(2) The operations required for setup and control of the use of programs on computing systems 

(3) The method of transcription of programs or their input or output data to or from a storage medium 

(4) The program and processor behavior when the rules of this International Standard fail to establish
an interpretation except for the processor detection and reporting requirements in items (2) to (8) of
1.4 

(5) The size or complexity of a program and its data that will exceed the capacity of any specific
computing system or the capability of a particular processor 

(6) The physical properties of the representation of quantities and the method of rounding,
approximating, or computing numeric values on a particular processor 

(7) The physical properties of input/output records, files, and units 

(8) The physical properties and implementation of storage 



ISO/IEC 1539 : 1991 (E)

2

1.4 Conformance 
The requirements, prohibitions, and options specified in this International Standard refer primarily to permissible
forms and relationships for a standard-conforming program rather than for a processor. 

An executable program (2.2.1) is a standard-conforming program if it uses only those forms and relationships
described herein and if the executable program has an interpretation according to this International Standard. A
program unit (2.2) conforms to this International Standard if it can be included in an executable program in a
manner that allows the executable program to be standard conforming. 

A processor conforms to this International Standard if: 

(1) It executes any standard-conforming program in a manner that fulfills the interpretations herein,
subject to any limits that the processor may impose on the size and complexity of the program. 

(2) It contains the capability to detect and report the use within a submitted program unit of a form
designated herein as deleted or obsolescent, insofar as such use can be detected by reference to the
numbered syntax rules and their associated constraints. 

(3) It contains the capability to detect and report the use within a submitted program unit of an
additional form or relationship that is not permitted by the numbered syntax rules or their associated
constraints. 

(4) It contains the capability to detect and report the use within a submitted program unit of kind type
parameter values (4.3) not supported by the processor. 

(5) It contains the capability to detect and report the use within a submitted program unit of source
form or characters not permitted by Section 3. 

(6) It contains the capability to detect and report the use within a submitted program of name usage not
consistent with the scope rules for names, labels, operators, and assignment symbols in Section 14. 

(7) It contains the capability to detect and report the use within a submitted program unit of intrinsic
procedures whose names are not defined in Section 13. 

(8) It contains the capability to detect and report the reason for rejecting a submitted program. 

However, in a format-specification that is not part of a format-stmt (10.1.1), a processor is not required to detect
or report the use of deleted or obsolescent features, or the use of additional forms or relationships. 

A standard-conforming processor may allow additional forms and relationships provided that such additions do
not conflict with the standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of a procedure in a
standard-conforming program. If such a conflict occurs and involves the name of an external procedure, the
processor is permitted to use the intrinsic procedure unless the name is given an interface body or the
EXTERNAL attribute in the same scoping unit (14). A standard-conforming program must not use nonstandard
intrinsic procedures that have been added by the processor. 

Note that a standard-conforming program must not use any forms or relationships that are prohibited by this
International Standard, but a standard-conforming processor may allow such forms and relationships if they do
not change the proper interpretation of a standard-conforming program. For example, a standard-conforming
processor may allow a nonstandard data type. 

Because a standard-conforming program may place demands on a processor that are not within the scope of this
International Standard or may include standard items that are not portable, such as external procedures defined
by means other than Fortran, conformance to this International Standard does not ensure that a standard-
conforming program will execute consistently on all or any standard-conforming processors. 

In some cases, this International Standard allows the provision of facilities that are not completely specified in
the International Standard. These facilities are identified as processor dependent, and they must be provided,
with methods or semantics determined by the processor. 



ISO/IEC 1539 : 1991 (E)

3

1.4.1 FORTRAN 77 compatibility 

Except as noted in this section, this International Standard is an upward compatible extension to the preceding
Fortran International Standard, ISO 1539:1980, informally referred to as FORTRAN 77, and a standard-conforming
processor for this International Standard is a standard-conforming processor for FORTRAN 77. Any standard-
conforming FORTRAN 77 program remains standard conforming under this International Standard; however, see
item (4) below regarding intrinsic procedures. This International Standard restricts the behavior for some features
that were processor dependent in FORTRAN 77. Therefore, a standard-conforming FORTRAN 77 program that uses
one of these processor-dependent features may have a different interpretation under this International Standard,
yet remain a standard-conforming program. The following FORTRAN 77 features have different interpretations in
this International Standard: 

(1) FORTRAN 77 permitted a processor to supply more precision derived from a real constant than can be
contained in a real datum when the constant is used to initialize a DOUBLE PRECISION data
object in a DATA statement. This International Standard does not permit a processor this option. 

(2) If a named variable that is not in a common block is initialized in a DATA statement and does not
have the SAVE attribute specified, FORTRAN 77 left its SAVE attribute processor dependent. This
International Standard specifies (5.2.9) that this named variable has the SAVE attribute. 

(3) FORTRAN 77 required that the number of characters required by the input list must be less than or
equal to the number of characters in the record during formatted input. This International Standard
specifies (9.4.4.4.2) that the input record is logically padded with blanks if there are not enough
characters in the record, unless the PAD= ’NO’ option is specified in an appropriate OPEN
statement. 

(4) This International Standard has more intrinsic functions than did FORTRAN 77 and adds a few
intrinsic subroutines. Therefore, a standard-conforming FORTRAN 77 program may have a different
interpretation under this International Standard if it invokes a procedure having the same name as
one of the new standard intrinsic procedures, unless that procedure is specified in an EXTERNAL
statement as recommended for nonintrinsic functions in the appendix to the FORTRAN 77 standard. 

(5) A value of 0 for a list item in a formatted output statement will be formatted in a different form for
some G edit descriptors. In addition, the Fortran 90 standard specifies how rounding of values will
affect the output field form, but FORTRAN 77 did not address this issue: therefore, some FORTRAN 77
processors may produce a different output form than Fortran 90 processors for certain combinations
of values and G edit descriptors.

1.5 Notation used in this International Standard 
In this International Standard, “must” is to be interpreted as a requirement; conversely, “must not” is to be
interpreted as a prohibition. 

1.5.1 Syntax rules Syntax rules 

are used to help describe the form that Fortran lexical tokens, statements, and constructs may take. These syntax
rules are expressed in a variation of Backus-Naur form (BNF) in which: 

(1) Characters from the Fortran character set (3.1) are to be written as shown, except where otherwise
noted. 

(2) Lower-case italicized letters and words (often hyphenated and abbreviated) represent general
syntactic classes for which specific syntactic entities must be substituted in actual statements. 

Some common abbreviations used in syntactic terms are:

stmt for statement attr for attribute 
expr for expression decl for declaration 



ISO/IEC 1539 : 1991 (E)

4

(3) The syntactic metasymbols used are: 

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or two-
digit section number and nn is a two-digit sequence number within that section. The syntax rules are
distributed as appropriate throughout the text, and are referenced by number as needed. Some rules
in Sections 2 and 3 are more fully described in later sections; in such cases, the section number s is
the number of the later section where the rule is repeated. The rules also are collected in Annex D. 

(5) The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used
to generate automatically a Fortran parser; where a syntax rule is incomplete, it is accompanied by
the corresponding constraints and text. 

(6) Obsolescent features (1.6) are shown in a distinguishing type size.   This is an example of the size used for
obsolescent features.  

An example of the use of the syntax rules is: 

digit-string is digit [ digit ] ... 

The following forms are examples of forms for a digit string allowed by the above rule: 

digit 
digit digit 
digit digit digit digit 
digit digit digit digit digit digit digit digit 

When specific entities are substituted for digit, actual digit strings might be: 

4 
67 
1999 
10243852 

1.5.2 Assumed syntax rules 

In order to minimize the number of additional syntax rules and convey appropriate constraint information, the
following rules are assumed. The letters “xyz” stand for any legal syntactic class phrase: 

xyz-list is xyz [ , xyz ] ... 

xyz-name is name 

scalar-xyz is xyz 

Constraint: scalar-xyz must be scalar. 

spec for specifier def for definition 
int for integer desc for descriptor 
arg for argument op for operator 

is introduces a syntactic class definition 
or introduces a syntactic class alternative 
[ ] encloses an optional item 
[ ] ... encloses an optionally repeated item which 

may occur zero or more times 
■ continues a syntax rule 



ISO/IEC 1539 : 1991 (E)

5

1.5.3 Syntax conventions and characteristics 

(1) Any syntactic class name ending in “-stmt” follows the source form statement rules: it must be
delimited by end-of-line or semicolon, and may be labeled unless it forms part of another statement
(such as an IF or WHERE statement). Conversely, everything considered to be a source form
statement is given a “-stmt” ending in the syntax rules.

(2) The rules on statement ordering are described rigorously in the definition of program-unit (R202-
R216). Expression hierarchy is described rigorously in the definition of expr (R723).

(3) The suffix “-spec” is used consistently for specifiers, such as keyword actual arguments and
input/output statement specifiers. It also is used for type declaration attribute specifications (for
example, “array-spec” in R512), and in a few other cases.

(4) When reference is made to a type parameter, including the surrounding parentheses, the term
“selector” is used. See, for example, “length-selector” (R507) and “kind-selector” (R505).

(5) The term “subscript” (for example, R617, R618, and R619) is used consistently in array definitions.

1.5.4 Text conventions 

In the descriptive text, the normal English word equivalent of a BNF syntactic term is usually used. Specific
statements and attributes are identified in the text by the upper-case keyword, e.g., “END statement”. Boldface
words are used in the text where they are first defined with a specialized meaning. 

1.6 Deleted and obsolescent features 
This International Standard protects the users’ investment in existing software by including all of the language
elements of FORTRAN 77 that are not processor dependent. This document identifies two categories of outmoded
features. There are none in the first category, deleted features, which consists of features considered to have
been redundant in FORTRAN 77 and largely unused. Those in the second category, obsolescent features, are
considered to have been redundant in FORTRAN 77, but are still used frequently. 

1.6.1 Nature of deleted features 

(1) Better methods existed in FORTRAN 77.

(2) These features are not included in this revision of Fortran.

1.6.2 Nature of obsolescent features 

(1) Better methods existed in FORTRAN 77.

(2) It is recommended that programmers use these better methods in new programs and convert existing
code to these methods.

(3) These features are identified in the text of this document by a distinguishing type font (1.5.1).

(4) If the use of these features has become insignificant in Fortran programs, it is recommended that
future Fortran standards committees consider deleting them from the next revision.

(5) It is recommended that the next Fortran standards committee consider for deletion only those
language features that appear in the list of obsolescent features.

(6) It is recommended that processors supporting the Fortran language continue to support these
features as long as they continue to be used widely in Fortran programs.



ISO/IEC 1539 : 1991 (E)

6

1.7 Modules 
This International Standard provides facilities that encourage the design and use of modular and reusable
software. Data and procedure definitions may be organized into nonexecutable program units, called modules,
and made available to any other program unit. In addition to global data and procedure library facilities, modules
provide a mechanism for defining data abstractions and certain language extensions. Modules are described in
11.3. 

A module may be standardized as a separate collateral standard. A standard module must not use any
obsolescent feature, nor any nonstandard form or relationship. 

1.8 Normative references 
The following standards contain provisions which, through reference in this text, constitute provisions of this
International Standard. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based upon this International Standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO
maintain registers of currently valid International Standards. 

ISO 8601:1988, Data Elements and Interchange Formats—Information interchange— 
Representation of dates and times. 

ISO 646:1983, Information processing—ISO 7-bit coded character set for information interchange. 
CCIR Recommendation 460-2. 



ISO/IEC 1539 : 1991 (E)

7

Section 2 : Fortran  terms and concepts 

2.1 High level syntax 
This section introduces the terms associated with program units and other Fortran concepts above the construct,
statement, and expression levels and illustrates their relationships. The syntax rule notation is described in 1.5.1.
Note that some of the syntax rules in this section are subject to constraints that are given only at the appropriate
places in later sections. 

R201 executable-program is program-unit 
[ program-unit ] ... 

An executable-program must contain exactly one main-program program-unit. 

R202 program-unit is main-program 
or external-subprogram 
or module 
or block-data 

R1101 main-program is [ program-stmt ] 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-program-stmt 

R203 external-subprogram is function-subprogram 
or subroutine-subprogram 

R1215 function-subprogram is function-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-function-stmt 

R1219 subroutine-subprogram is subroutine-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-subroutine-stmt 

R1104 module is module-stmt 
[ specification-part ] 
[ module-subprogram-part ] 
end-module-stmt 

R1110 block-data is block-data-stmt 
[ specification-part ] 
end-block-data-stmt 

R204 specification-part is [ use-stmt ] ... 
[ implicit-part ] 
[ declaration-construct ] ... 

R205 implicit-part is [ implicit-part-stmt ] ... 
implicit-stmt 



ISO/IEC 1539 : 1991 (E)

8

R206 implicit-part-stmt is implicit-stmt 
or parameter-stmt 
or format-stmt 
or entry-stmt 

R207 declaration-construct is derived-type-def 
or interface-block 
or type-declaration-stmt 
or specification-stmt 
or parameter-stmt 
or format-stmt 
or entry-stmt 
or stmt-function-stmt 

R208 execution-part is executable-construct 
[ execution-part-construct ] ... 

R209 execution-part-construct is executable-construct 
or format-stmt 
or data-stmt 
or entry-stmt 

R210 internal-subprogram-part is contains-stmt 
internal-subprogram 
[ internal-subprogram ] ... 

R211 internal-subprogram is function-subprogram 
or subroutine-subprogram 

R212 module-subprogram-part is contains-stmt 
module-subprogram 
[ module-subprogram ] ... 

R213 module-subprogram is function-subprogram 
or subroutine-subprogram 

R214 specification-stmt is access-stmt 
or allocatable-stmt 
or common-stmt 
or data-stmt 
or dimension-stmt 
or equivalence-stmt 
or external-stmt 
or intent-stmt 
or intrinsic-stmt 
or namelist-stmt 
or optional-stmt 
or pointer-stmt 
or save-stmt 
or target-stmt 

R215 executable-construct is action-stmt 
or case-construct 
or do-construct 
or if-construct 
or where-construct 

R216 action-stmt is allocate-stmt 
or assignment-stmt 



ISO/IEC 1539 : 1991 (E)

9

or backspace-stmt 
or call-stmt 
or close-stmt 
or computed-goto-stmt 
or continue-stmt 
or cycle-stmt 
or deallocate-stmt 
or endfile-stmt 
or end-function-stmt 
or end-program-stmt 
or end-subroutine-stmt 
or exit-stmt 
or goto-stmt 
or if-stmt 
or inquire-stmt 
or nullify-stmt 
or open-stmt 
or pointer-assignment-stmt 
or print-stmt 
or read-stmt 
or return-stmt 
or rewind-stmt 
or stop-stmt 
or where-stmt 
or write-stmt 
or arithmetic-if-stmt 
or assign-stmt 
or assigned-goto-stmt 
or pause-stmt 

Constraint: An execution-part must not contain an end-function-stmt, end-program-stmt, or end-subroutine-
stmt. 

2.2 Program unit concepts 
Program units are the fundamental components of a Fortran program. A program unit may be a main program,
an external subprogram, a module, or a block data program unit. A subprogram may be a function subprogram or
a subroutine subprogram. A module contains definitions that are to be made accessible to other program units. A
block data program unit is used to specify initial values for data objects in named common blocks. Each type of
program unit is described in Section 11 or 12. An external subprogram is a subprogram that is not contained
within a main program, a module, or another subprogram. An internal subprogram is a subprogram that is
contained within a main program or another subprogram. A module subprogram is a subprogram that is
contained in a module but is not an internal subprogram. 

A program unit consists of a set of nonoverlapping scoping units. A scoping unit is 

(1) A derived-type definition (4.4.1), 

(2) A procedure interface body, excluding any derived-type definitions and procedure interface bodies
contained within it (12.3.2.1), or 

(3) A program unit or subprogram, excluding derived-type definitions, procedure interface bodies, and
subprograms contained within it. 

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit. 



ISO/IEC 1539 : 1991 (E)

10

2.2.1 Executable program 

An executable program consists of exactly one main program unit and any number (including zero) of other
kinds of program units. The set of program units may include any combination of the different kinds of program
units in any order. 

2.2.2 Main program 

The main program is described in 11.1. 

2.2.3 Procedure 

A procedure encapsulates an arbitrary sequence of computations that may be invoked directly during program
execution. Procedures are either functions or subroutines. A function is a procedure that is invoked in an
expression; its invocation causes a value to be computed which is then used in evaluating the expression. The
variable that returns the value of a function is called the result variable. A subroutine is a procedure that is
invoked in a CALL statement or by a defined assignment statement (12.4.4, 7.5.1.3). A subroutine may be used
to change the program state by changing the values of any of the data objects accessible to the subroutine; a
function may do this in addition to computing the function value. 

Procedures are described further in Section 12. 

2.2.3.1 External procedure 

An external procedure is a procedure that is defined by an external subprogram or by means other than Fortran.
An external procedure may be invoked by the main program or by any procedure of an executable program. 

2.2.3.2 Module procedure 

A module procedure is a procedure that is defined by a module subprogram (R213). A module procedure may
be invoked by another module subprogram in the module or by any scoping unit using the module. The module
containing the subprogram is called the host of the module procedure. 

2.2.3.3 Internal procedure 

An internal procedure is a procedure that is defined by an internal subprogram (R211). The containing main
program or subprogram is called the host of the internal procedure. An internal procedure is local to its host in
the sense that the internal procedure is accessible within the scoping units of the host and all its other internal
procedures but is not accessible elsewhere. 

2.2.3.4 Procedure interface block 

The purpose of a procedure interface block is to describe the interfaces (12.3) to a set of procedures and to
permit them to be invoked through either a single generic name, a defined operator, or a defined assignment. It
determines the forms of reference through which the procedures may be invoked. 

2.2.4 Module 

A module contains (or accesses from other modules) definitions that are to be made accessible to other program
units. These definitions include data object declarations, type definitions, procedure definitions, and procedure
interface blocks. The purpose of a module is to make the definitions it contains accessible to all other program
units in an executable program that request such accessibility. A scoping unit in another program unit may
request access to the definitions contained in a module. Modules are further described in Section 11. 



ISO/IEC 1539 : 1991 (E)

11

2.3 Execution concepts 
Each Fortran statement is classified as either an executable statement or a nonexecutable statement. There are
restrictions on the order in which statements may appear in a program unit, and certain executable statements
may appear only in certain executable constructs. 

2.3.1 Executable/nonexecutable statements 

Program execution is a sequence, in time, of computational actions. An executable statement is an instruction to
perform or control one or more of these actions. Thus, the executable statements of a program unit determine the
computational behavior of the program unit. The executable statements are all of those that make up the syntactic
class of executable-construct. 

Nonexecutable statements do not specify actions; they are used to configure the program environment in which
computational actions take place. The nonexecutable statements are all those not classified as executable. All
statements in a block data program unit must be nonexecutable. A module may contain executable statements
only within a subprogram in the module. 

2.3.2 Statement order 

The syntax rules of Section 2.1 specify the statement order within program units and subprograms. These rules
are illustrated in Figure 2.1 and Table 2.1. Figure 2.1 shows the ordering rules for statements and applies to all
program units and subprograms. Vertical lines delineate varieties of statements that may be interspersed and
horizontal lines delineate varieties of statements that must not be interspersed. USE statements, if any, must
appear immediately after the program unit heading. Internal or module subprograms must follow a CONTAINS
statement. Between USE and CONTAINS statements in a subprogram, nonexecutable statements generally
precede executable statements, though the FORMAT statement, DATA statement, and ENTRY statement may
appear among the executable statements. Table 2.1 shows which statements are allowed in a scoping unit.

PROGRAM, FUNCTION, SUBROUTINE
MODULE, or BLOCK DATA statement 

USE statements 

FORMAT
and

ENTRY
statements

IMPLICIT NONE 

PARAMETER
statements

IMPLICIT 
statements 

PARAMETER
and DATA
statements

Derived-type definitions,
interface blocks,

type declaration statements,
statement function statements,
and specification statements

DATA
statements

Executable 
constructs 

CONTAINS statement 

Internal subprograms
or module subprograms

END statement 

Figure 2.1 Requirements on statement ordering



ISO/IEC 1539 : 1991 (E)

12

2.3.3 The END statement 

An end-program-stmt, end-function-stmt, end-subroutine-stmt, end-module-stmt, or end-block-data-stmt is an
END statement. Each program unit, module subprogram, and internal subprogram must have exactly one END
statement. The end-program-stmt, end-function-stmt, and end-subroutine-stmt statements are executable, and may
be branch target statements. Executing an end-program-stmt causes termination of execution of the executable
program. Executing an end-function-stmt or end-subroutine-stmt is equivalent to executing a return-stmt in a
subprogram. 

The end-module-stmt and end-block-data-stmt statements are nonexecutable. 

2.3.4 Execution sequence 

Execution of an executable program begins with the first executable construct of the main program. The
execution of a main program or subprogram involves execution of the executable constructs within its scoping
unit. When a procedure is invoked, execution begins with the first executable construct appearing after the
invoked entry point. With the following exceptions, the effect of execution is as if the executable constructs are
executed in the order in which they appear in the main program or subprogram until a STOP, RETURN, or END
statement is executed. The exceptions are: 

(1) Execution of a branching statement (8.2) changes the execution sequence. These statements
explicitly specify a new starting place for the execution sequence. 

(2) IF constructs, CASE constructs, and DO constructs contain an internal statement structure and
execution of these constructs involves implicit (i.e., automatic) internal branching. See Section 8 for
the detailed semantics of each of these constructs. 

(3) Alternate return and END=, ERR=, and EOR= specifiers may result in a branch. 

Internal subprograms may precede the END statement of a main program or a subprogram. The execution
sequence excludes all such definitions. 

2.4 Data concepts 
Nonexecutable statements are used to define the characteristics of the data environment. This includes typing
variables, declaring arrays, and defining new data types. 

Table 2.1 Statements allowed in scoping units 

Kind of Scoping Unit: Main
Program Module Block

Data
External
Subprog

Module
Subprog

Internal
Subprog

Interface 
Body 

USE Statement Yes Yes Yes Yes Yes Yes Yes
ENTRY Statement No No No Yes Yes No No
FORMAT Statement Yes No No Yes Yes Yes No
Misc. Declarations (See Note) Yes Yes Yes Yes Yes Yes Yes
DATA Statement Yes Yes Yes Yes Yes Yes No
Derived-Type Definition Yes Yes Yes Yes Yes Yes Yes
Interface Block Yes Yes No Yes Yes Yes Yes
Statement Function Yes No No Yes Yes Yes No
Executable Statement Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No 
Note: Misc. Declarations are PARAMETER Statements, IMPLICIT Statements, Type Declaration Statements,
and Specification Statements. Note that the scoping unit of a module does not include any module
subprograms that the module contains. 



ISO/IEC 1539 : 1991 (E)

13

2.4.1 Data type 

A data type is a named category of data that is characterized by a set of values, together with a way to denote
these values and a collection of operations that interpret and manipulate the values. This central concept is
described in 4.1. 

There are two categories of data types: intrinsic types and derived types. 

2.4.1.1 Intrinsic type 

An intrinsic type is a type that is defined implicitly, along with operations, and is always accessible. The
intrinsic types are INTEGER, REAL, COMPLEX, CHARACTER, and LOGICAL. The properties of intrinsic
types are described in 4.3. An intrinsic type may be parameterized, in which case the set of data values depends
on the values of the parameters. Such a parameter is called a type parameter (4.3). The type parameters are
KIND and LEN. 

The kind type parameter indicates the decimal exponent range for the integer type (4.3.1.1), the decimal
precision and exponent range for the real and complex types (4.3.1.2, 4.3.1.3), and the representation methods for
the character and logical types (4.3.2.1, 4.3.2.2). The length type parameter specifies the number of characters
for the character type. 

2.4.1.2 Derived type 

A derived type is a type that is not defined implicitly but requires a type definition to declare components of
intrinsic or of other derived types. A scalar object of such a derived type is called a structure (5.1.1.7). The only
intrinsic operation for derived types is assignment with type agreement (4.4.5). For each derived type, structure
constructors are available to provide values (4.4.4). In addition, data objects of derived type may be used as
procedure arguments and function results, and may appear in input/output lists. If additional operations are
needed for a derived type, they must be supplied as procedure definitions. 

Derived types are described further in 4.4. 

2.4.2 Data value 

Each intrinsic type has associated with it a set of values that a datum of that type may take. The values for each
intrinsic type are described in 4.3. Because derived types are ultimately specified in terms of components of
intrinsic types, the values that objects of a derived type may assume are determined by the type definition and the
sets of values of the intrinsic types. 

2.4.3 Data entity 

A data entity is a data object, the result of the evaluation of an expression, or the result of the execution of a
function reference (called the function result). A data entity has a data type (either intrinsic or derived) and has,
or may have, a data value (the exception is an undefined variable). Every data entity has a rank and is thus either
a scalar or an array. 

2.4.3.1 Data object 

A data object (often abbreviated to object ) is a constant (4.1.2), a variable (6), or a subobject of a constant. The
type of a named data object may be specified explicitly (5) or implicitly (5.3). 

Subobject s are portions of certain named objects that may be referenced and defined (variables only)
independently of the other portions. These include portions of arrays (array elements and array sections), portions
of character strings (substrings), and portions of structures (components). Subobjects are themselves data objects,
but subobjects are referenced only by subobject designators. A subobject of a variable is a variable. Subobjects
are described in Section 6. 

Objects referenced by a name are: 



ISO/IEC 1539 : 1991 (E)

14

a named scalar (a scalar object) 
a named array (an array object) 

Subobjects referenced by a subobject designator are: 

an array element (a scalar subobject) 
an array section (an array subobject) 
a structure component (a scalar or an array subobject) 
a substring (a scalar subobject) 

2.4.3.1.1 Variable 

A variable may have a value and may be defined and redefined during execution of an executable program. 

2.4.3.1.2 Constant 

A constant has a value and cannot become defined or redefined during execution of an executable program. A
constant with a name is called a named constant and has the PARAMETER attribute (5.1.2.1). A constant
without a name is called a literal constant (4.3). 

2.4.3.1.3 Constant subobject 

A constant subobject is a portion of a constant. The portion referenced may depend on the value of a variable. 

For example, given: 

CHARACTER (LEN = 10), PARAMETER :: DIGITS = ’0123456789’ 
CHARACTER (LEN = 1) :: DIGIT 
INTEGER :: I 

... 
DIGIT = DIGITS (I:I) 

DIGITS is a named constant and DIGITS (I:I) designates a constant subobject of DIGITS. 

2.4.3.2 Expression 

An expression produces a data entity when evaluated. An expression (7.1) represents either a data reference or a
computation, and is formed from operands, operators, and parentheses. The type, value, and rank of an
expression result are determined by the rules in Section 7. 

2.4.3.3 Function reference 

A function reference (12.4.2) produces a data entity when the function is executed during expression evaluation.
The type and rank of a function result are determined by the interface of the function (12.2.2). The value of a
function result is determined by execution of the function. 

2.4.4 Scalar 

A scalar is a datum that is not an array. Scalars may be of any intrinsic type or derived type. Note that a structure
is scalar even if it has arrays as components. The rank of a scalar is zero. The shape of a scalar is represented by
a rank-one array of size zero. 

2.4.5 Array 

An array is a set of scalar data, all of the same type and type parameters, whose individual elements are
arranged in a rectangular pattern. An array element is one of the individual elements in the array and is a scalar.
An array section is a subset of the elements of an array and is itself an array. 

An array may have up to seven dimensions, and any extent (number of elements) in any dimension. The rank of
the array is the number of dimensions, and its size is the total number of elements which is equal to the product



ISO/IEC 1539 : 1991 (E)

15

of the extents. An array may have zero size. The shape of an array is determined by its rank and its extent in
each dimension, and may be represented as a rank-one array whose elements are the extents. All named arrays
must be declared, and the rank of a named array is specified in its declaration. The rank of a named array, once
declared, is constant and the extents may be constant also. However, the extents may vary during execution for a
dummy argument array, an automatic array, a pointer array, and an allocatable array. 

Two arrays are conformable if they have the same shape. A scalar is conformable with any array. Any intrinsic
operation defined for scalar objects may be applied to conformable objects. Such operations are performed
element-by-element to produce a resultant array conformable with the array operands. Element-by-element
operation means corresponding elements of the operand arrays are involved in a “scalar-like” operation to
produce the corresponding element in the result array, and all such element operations may be performed in any
order or simultaneously. Such an operation is described as elemental. 

A rank-one array may be constructed from scalars and other arrays and may be reshaped into any allowable array
shape (4.5). 

Arrays may be of any intrinsic type or derived type and are described further in 6.2. 

2.4.6 Pointer 

A pointer is a variable that has the POINTER attribute. A pointer is associated with a target by allocation (6.3.1)
or pointer assignment (7.5.2). A pointer must not be referenced or defined until it is associated. A pointer is
disassociated following execution of a NULLIFY or DEALLOCATE statement or following pointer association
with a disassociated pointer. A disassociated pointer is not currently associated with a target (14.6.2). If the
pointer is an array, the rank is declared, but the extents are determined when the pointer is associated with a
target. 

2.4.7 Storage 

Many of the facilities of this International Standard make no assumptions about the physical storage
characteristics of data objects. However, program units that include storage association dependent features must
observe certain storage constraints (14.6.3). 

2.5 Fundamental terms 
The following terms are defined here and used throughout this International Standard. 

2.5.1 Name and designator 

A name is used to identify a program constituent, such as a program unit, named variable, named constant,
dummy argument, or derived type. The rules governing the construction of names are given in 3.2.2. A
subobject designator is a name followed by one or more of the following: component selectors, array section
selectors, array element selectors, and substring selectors. 

2.5.2 Keyword 

The term keyword is used in two ways in this International Standard. A word that is part of the syntax of a
statement is a statement keyword. These keywords are not reserved words; that is, names with the same
spellings are allowed. Examples of statement keywords are: IF, READ, UNIT, KIND, and INTEGER. 

An argument keyword is a dummy argument name. Section 13 specifies argument keywords for all of the
intrinsic procedures. Argument keywords for external procedures may be specified in a procedure interface block
(12.3.2.1). 



ISO/IEC 1539 : 1991 (E)

16

2.5.3 Declaration 

The term declaration refers to the specification of attributes for various program entities. Often this involves
specifying the data type of a named data object or specifying the shape of a named array object. 

2.5.4 Definition 

The term definition is used in two ways. First, when a data object is given a valid value during program
execution, it is said to become defined. This is often accomplished by execution of an assignment statement or
input statement. Under certain circumstances, a variable does not have a predictable value and is said to be
undefined. Section 14 describes the ways in which variables may become defined and undefined. The second
use of the term definition refers to the declaration of derived types and procedures. 

2.5.5 Reference 

A data object reference is the appearance of the data object name or data subobject designator in a context
requiring its value at that point during execution. 

A procedure reference is the appearance of the procedure name or its operator symbol or the assignment symbol
in a context requiring execution of the procedure at that point. 

The appearance of a data object name, data subobject designator, or procedure name in an actual argument list
does not constitute a reference to that data object, data subobject, or procedure unless such a reference is needed
to complete the specification of the actual argument. 

A module reference is the appearance of a module name in a USE statement (11.3.1). 

2.5.6 Association

Association may be name association (14.6.1), pointer association (14.6.2), or storage association (14.6.3). Name
association may be argument association, host association, or use association. 

Storage association causes different entities to use the same storage. Any association permits an entity to be
identified by different names in the same scoping unit or by the same name or different names in different
scoping units. 

2.5.7 Intrinsic 

The qualifier intrinsic signifies that the term to which it is applied is defined in this International Standard.
Intrinsic applies to data types, procedures, and operators. All intrinsic data types, procedures, and operators may
be used in any scoping unit without further definition or specification. 

2.5.8 Operator 

An operator specifies a particular computation involving one (unary operator) or two (binary operator) data
values (operands). Fortran contains a number of intrinsic operators (e.g., the arithmetic operators +, –, ∗, /, and
∗∗ with numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional
operators also may be defined within an executable program (7.1.3).

2.5.9 Sequence 

A sequence is a set ordered by a one-to-one correspondence with the numbers 1, 2, through . The number of
elements in the sequence is . A sequence may be empty, in which case it contains no elements. 

The elements of a nonempty sequence are referred to as the first element, second element, etc. The th element,
where  is the number of elements in the sequence, is called the last element. An empty sequence has no first or
last element. 

n
n

n
n



ISO/IEC 1539 : 1991 (E)

17

Section 3 : Characters, lexical tokens, and source form 
This section describes the Fortran character set and the various lexical tokens such as names and operators. This
section also describes the rules for the forms that Fortran programs may take.

3.1 Processor character set 
The processor character set is processor dependent. The structure of a processor character set is: 

(1) Control characters (“newline”, for example) 

(2) Graphic characters 

(a) Letters (3.1.1) 

(b) Digits (3.1.2) 

(c) Underscore (3.1.3) 

(d) Special characters (3.1.4) 

(e) Other characters (3.1.5) 

The letters, digits, underscore, and special characters make up the Fortran character set. 

R301 character is alphanumeric-character 
or special-character 

R302 alphanumeric-character is letter 
or digit 
or underscore 

Except for the currency symbol, the graphics used for the characters must be as given in 3.1.1, 3.1.2, 3.1.3, and
3.1.4. However, the style of any graphic is not specified. 

3.1.1 Letters 

The twenty-six letters are: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

The set of letters defines the syntactic class letter. 

If a processor also permits lower-case letters, the lower-case letters are equivalent to the corresponding upper-
case letters in program units except in a character context (3.3). 

3.1.2 Digits 

The ten digits are: 

0 1 2 3 4 5 6 7 8 9 

The ten digits define the syntactic class digit. 

3.1.3 Underscore 

R303 underscore is _ 

The underscore may be used as a significant character in a name. 



ISO/IEC 1539 : 1991 (E)

18

3.1.4 Special characters 

The twenty-one special characters are shown in Table 3.1. 

The twenty-one special characters define the syntactic class special-character. The special characters are used for
operator symbols, bracketing, and various forms of separating and delimiting other lexical tokens. The special
characters $ and ? have no specified use.

3.1.5 Other characters 

Additional characters may be representable in the processor, but may appear only in character constants,
character string edit descriptors, comments, and input/output records (4.3.2.1, 10.2.1, 3.3.1.1, 3.3.2.1, 9.1.1). 

The default character type must support a character set that includes the Fortran character set. Other character
sets may be supported by the processor in terms of nondefault character types. The characters available in the
nondefault character types are not specified, except that one character in each nondefault character type must be
designated as a blank character to be used as a padding character. 

3.2 Low-level syntax 
The low-level syntax describes the fundamental lexical tokens of a program unit. Lexical tokens are sequences
of characters with indivisible interpretations that constitute the building blocks of a program. They are keywords,
names, literal constants other than complex literal constants, operators, labels, delimiters, comma, =, =>, :, ::, ;,
and %. 

3.2.1 Keywords 

Keywords appear as upper-case words in the syntax rules in Sections 4 through 12. 

3.2.2 Names

Names are used for various entities such as variables, program units, dummy arguments, named constants, and
derived types. 

R304 name is letter [ alphanumeric-character ] ... 

Constraint: The maximum length of a name is 31 characters. 

Examples of names: 

A1 
NAME_LENGTH (single underscore) 

Table 3.1 Special characters

Character Name of Character Character Name of Character 
Blank : Colon

= Equals ! Exclamation Point
+ Plus " Quotation Mark or Quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ; Semicolon
( Left Parenthesis < Less Than
) Right Parenthesis > Greater Than
, Comma ? Question Mark
. Decimal Point or Period $ Currency Symbol
’ Apostrophe



ISO/IEC 1539 : 1991 (E)

19

S_P_R_E_A_D__O_U_T (two consecutive underscores) 
TRAILER_ (trailing underscore) 

3.2.3 Constants 

R305 constant is literal-constant 
or named-constant 

R306 literal-constant is int-literal-constant 
or real-literal-constant 
or complex-literal-constant 
or logical-literal-constant 
or char-literal-constant 
or boz-literal-constant 

R307 named-constant is name 

R308 int-constant is constant 

Constraint: int-constant must be of type integer. 

R309 char-constant is constant 

Constraint: char-constant must be of type character. 

3.2.4 Operators 

R310 intrinsic-operator is power-op 
or mult-op 
or add-op 
or concat-op 
or rel-op 
or not-op 
or and-op 
or or-op 
or equiv-op 

R708 power-op is ∗∗

R709 mult-op is ∗
or / 

R710 add-op is + 
or – 

R712 concat-op is // 

R714 rel-op is .EQ. 
or .NE. 
or .LT. 
or .LE. 
or .GT. 
or .GE. 
or == 
or /= 
or < 
or <= 
or > 
or >= 



ISO/IEC 1539 : 1991 (E)

20

R719 not-op is .NOT. 

R720 and-op is .AND. 

R721 or-op is .OR. 

R722 equiv-op is .EQV. 
or .NEQV. 

R311 defined-operator is defined-unary-op 
or defined-binary-op 
or extended-intrinsic-op 

R704 defined-unary-op is . letter [ letter ] ... . 

R724 defined-binary-op is . letter [ letter ] ... . 

R312 extended-intrinsic-op is intrinsic-operator 

Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 letters and must not
be the same as any intrinsic-operator or logical-literal-constant. 

3.2.5 Statement labels 

A statement label provides a means of referring to an individual statement. 

R313 label is digit [ digit [ digit [ digit [ digit ] ] ] ] 

Constraint: At least one digit in a label must be nonzero. 

If a statement is labeled, the statement must contain a nonblank character. The same statement label must not be
given to more than one statement in a scoping unit. Leading zeros are not significant in distinguishing between
statement labels. For example: 

99999 
10 
010 

are all statement labels. The last two are equivalent. 

3.2.6 Delimiters Delimiters 

are used to enclose syntactic lists. The following pairs are delimiters: 

( ... ) 
/ ... / 
(/ ... /) 

3.3 Source form 
A Fortran program unit is a sequence of one or more Fortran statements, comments, and INCLUDE lines. A
Fortran statement is a sequence of one or more complete or partial lines. A line is a sequence of zero or more
characters. Lines following a program unit END statement are not part of that program unit. 

A character context means characters within a character literal constant (4.3.2.1) or within a character string
edit descriptor (10.7). 

A comment may contain any character that may occur in any character context. 

There are two source forms: free and fixed. Free form and fixed form must not be mixed in the same program
unit. The means for specifying the source form of a program unit are processor dependent. 



ISO/IEC 1539 : 1991 (E)

21

3.3.1 Free source form 

In free source form, each source line may contain from zero to 132 characters and there are no restrictions on
where a statement (or portion of a statement) may appear within a line. However, if a line contains any character
that is not of default kind (4.3.2.1), the number of characters allowed on the line is processor dependent. 

In free form, blank characters must not appear within lexical tokens other than in a character context. Blanks may
be inserted freely between tokens to improve readability; for example, blanks may occur between the tokens that
form a complex literal constant. A sequence of blank characters outside of a character context is equivalent to a
single blank character. 

A blank must be used to separate names, constants, or labels from adjacent keywords, names, constants, or
labels. For example, in 

REAL X 
READ 10 
30 DO K=1,3 

the blanks are required after REAL, READ, 30, and DO. 

One or more blanks must be used to separate certain adjacent keywords and may be optionally used between
others, as follows.

3.3.1.1 Free form commentary 

The character “!” initiates a comment except when it appears within a character context. The comment extends
to the end of the source line. If the first nonblank character on a line is an “!”, the line is called a comment line.
Lines containing only blanks or containing no characters are also comment lines. Comments may appear
anywhere in a program unit and may precede the first statement of a program unit. Comments have no effect on
the interpretation of the program unit. 

3.3.1.2 Free form statement separation 

The character “;” separates statements, or partial statements, on a single source line except when it appears in a
character context or in a comment. If a “;” separator is followed by zero or more blanks and one or more “;”
separators, the sequence from the first “;” to the last, inclusive, is interpreted as a single “;” separator. A “;”

Blanks Optional Blank Mandatory 
BLOCK DATA CASE DEFAULT
DOUBLE PRECISION DO WHILE
ELSE IF IMPLICIT type-spec
END BLOCK DATA IMPLICIT NONE
END DO INTERFACE ASSIGNMENT
END FILE INTERFACE OPERATOR
END FUNCTION MODULE PROCEDURE
END IF RECURSIVE FUNCTION
END INTERFACE RECURSIVE SUBROUTINE
END MODULE RECURSIVE type-spec
END PROGRAM type-spec FUNCTION
END SELECT type-spec RECURSIVE
END SUBROUTINE
END TYPE
END WHERE
GO TO
IN OUT
SELECT CASE 



ISO/IEC 1539 : 1991 (E)

22

separator that is the last nonblank character on a line, or the last nonblank character ahead of commentary, is
ignored. 

3.3.1.3 Free form statement continuation 

The character “&” is used to indicate that the current statement is continued on the next line that is not a
comment line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may occur
within a continued statement. When used for continuation, the “&” is not part of the statement. No line may
contain a single “&” as the only nonblank character or as the only nonblank character before an “!”. 

3.3.1.3.1 Noncharacter context continuation 

If an “&” not in a comment is the last nonblank character on a line or the last nonblank character before an “!”,
the statement is continued on the next line that is not a comment line. If the first nonblank character on the next
noncomment line is an “&”, the statement continues at the next character position following the “&”; otherwise,
it continues with the first character position of the next noncomment line. 

If a lexical token is split across the end of a line, the first nonblank character on the first following noncomment
line must be an “&” immediately followed by the successive characters of the split token. 

3.3.1.3.2 Character context continuation 

If a character context is to be continued, the “&” must be the last nonblank character on the line and must not be
followed by commentary. An “&” must be the first nonblank character on the next line that is not a comment line
and the statement continues with the next character following the “&”. 

3.3.1.4 Free form statements 

A label may precede any statement not forming part of another statement. Note that no Fortran statement begins
with a digit. A free form statement must not have more than 39 continuation lines. 

3.3.2 Fixed source form 

In fixed source form, there are restrictions on where a statement may appear within a line. If a source line
contains only default kind characters, it must contain exactly 72 characters; otherwise, its maximum number of
characters is processor dependent. 

Except in a character context, blanks are insignificant and may be used freely throughout the program. 

3.3.2.1 Fixed form commentary 

The character “!” initiates a comment except when it appears within a character context or in character position
6. The comment extends to the end of the line. If the first nonblank character on a line is an “!” in any character
position other than character position 6, the line is a comment line. Lines beginning with a “C” or “∗” in
character position 1 and lines containing only blanks are also comments. Comments may appear anywhere within
a program unit and may precede the first statement of the program unit. Comments have no effect on the
interpretation of the program unit.

3.3.2.2 Fixed form statement separation 

The character “;” separates statements, or partial statements, on a single source line except when it appears in a
character context or in a comment. If a “;” separator is followed by zero or more blanks and one or more “;”
separators, the sequence from the first “;” to the last, inclusive, is interpreted as a single “;” separator. A “;”
separator that is the last nonblank character on a line, or the last nonblank character ahead of commentary, is
ignored. 



ISO/IEC 1539 : 1991 (E)

23

3.3.2.3 Fixed form statement continuation 

Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains
a blank or zero, this line is the initial line of a new statement which begins in character position 7. If character
position 6 contains any character other than blank or zero, character positions 7–72 of this line constitute a
continuation of the preceding noncomment line. Note that an “!” or “;” in character position 6 indicates a
continuation of the preceding noncomment line. Comment lines cannot be continued. Comment lines may occur
within a continued statement. 

3.3.2.4 Fixed form statements 

A label, if present, must occur in character positions 1 through 5 of the first line of a statement; otherwise,
positions 1 through 5 must be blank. Blanks may appear anywhere within a label. Note that a statement following
a “;” on the same line must not be labeled. Character positions 1 through 5 of any continuation lines must be
blank. A fixed form statement must not have more than 19 continuation lines. The program unit END statement
must not be continued. A statement whose initial line appears to be a program unit END statement must not be
continued. 

3.4 Including source text 
Additional text may be incorporated into the source text of a program unit during processing. This is
accomplished with the INCLUDE line, which has the form 

INCLUDE char-literal-constant 

The char-literal-constant must not have a kind type parameter value that is a named-constant. 

An INCLUDE line is not a Fortran statement. 

An INCLUDE line must appear on a single source line where a statement may appear; it must be the only
nonblank text on this line other than an optional trailing comment. Thus, a statement label is not allowed. 

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior
to program processing. Included text may contain any source text, including additional INCLUDE lines; such
nested INCLUDE lines are similarly replaced with the specified source text. The maximum depth of nesting of
any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an INCLUDE line
must not, at any level of nesting, result in inclusion of the same source text. 

When an INCLUDE line is resolved, the first included statement line must not be a continuation line and the last
included statement line must not be continued. 

The interpretation of char-literal-constant is processor dependent. An example of a possible valid interpretation
is that char-literal-constant is the name of a file that contains the source text to be included. 



ISO/IEC 1539 : 1991 (E)

24

Section 4 : Intrinsic and derived data types 
Fortran provides an abstract means whereby data may be categorized without relying on a particular physical
representation. This abstract means is the concept of data type. Each data type has a name. The names of the
intrinsic types are predefined by the language; the names of any derived types must be defined in type definitions
(4.4.1). A data type is characterized by a set of values, a means to denote the values, and a set of operations that
can manipulate and interpret the values. 

For example, the logical data type has a set of two values, denoted by the lexical tokens .TRUE. and .FALSE.,
which are manipulated by logical operations. 

An example of a less restricted data type is the integer data type. This data type has a processor-dependent set of
integer numeric values, each of which is denoted by an optional sign followed by a string of digits, and which
may be manipulated by integer arithmetic operations and relational operations. 

The means by which a value is denoted indicates both the type of the value and a particular member of the set of
values characterizing that type. Intrinsic data types are parameterized. In this case, the set of values is
constrained by the value of the parameter or parameters. For example, the character data type has a length
parameter that constrains the set of character values to those whose length is equal to the value of the parameter. 

An intrinsic type is one that is predefined by the language. The intrinsic types are integer, real, complex,
character, and logical. The phrase “defined intrinsically” will be used later in this section to mean “predefined”
in this sense. 

In addition to the intrinsic types, application specific types may be derived. Objects of derived type have
components. Each component is of an intrinsic type or of a derived type. A type definition (4.4.1) is required to
supply the name of the type and the names and types of its components. For example, if the complex type were
not intrinsic but had to be derived, a type definition would be required to supply the name “complex” and declare
two components, each of type real. 

Means are provided to denote values of a derived type (4.4.4) and to define operations that can be used to
manipulate objects of a derived type (4.4.5). A derived type must be defined in the executable program, whereas
an intrinsic type is predefined. 

A derived type may be used only where its definition is accessible (4.4.1). An intrinsic type is always accessible. 

4.1 The concept of data type 
A data type has (1) a name, (2) a set of valid values, (3) a means to denote such values (constants), and (4) a set
of operations to manipulate the values. 

4.1.1 Set of values 

For each data type, there is a set of valid values. The set of valid values may be completely determined, as is the
case for logical, or may be determined by a processor-dependent method, as is the case for integer and real. For
complex or derived types, the set of valid values consists of the set of all the combinations of the values of the
individual components. For parameterized types, the set of valid values depends on the values of the parameters. 

4.1.2 Constants 

For each of the intrinsic data types, the syntax for literal constants of that type is specified in this standard. These
literal constants are described in 4.3 for each intrinsic type. Within an executable program, all literal constants
that have the same form have the same value. 

A constant value may be given a name (5.1.2.1, 5.2.10). 



ISO/IEC 1539 : 1991 (E)

25

A constant value of derived type may be constructed (4.4.4) using a structure constructor from an appropriate
sequence of constant expressions (7.1.6.1). Such a constant value is considered to be a scalar even though the
value may have components that are arrays. 

4.1.3 Operations 

For each of the intrinsic data types, a set of operations and corresponding operators are defined intrinsically.
These are described in Section 7. The intrinsic set may be augmented with operations and operators defined by
functions with the OPERATOR interface (12.3.2.1). Operator definitions are described in Sections 7 and 12. 

For derived types, the only intrinsic operation is assignment. All other operations must be defined by the
executable program (4.4.5). 

4.2 Relationship of types and values to objects 
The name of a data type serves as a type specifier and may be used to declare objects of that type. A declaration
specifies the type of a named object. A data object may be declared explicitly or implicitly. Once a derived type
is defined, an object may be declared to be of that type. Data objects may have attributes in addition to their
types. Section 5 describes the way in which a data object is declared and how its type and other attributes are
specified. 

An array is a collection of subobjects. 

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array of the
same type and type parameters. An array is an object and has a type and type parameters just as a scalar object
does. 

A scalar object of derived type is referred to as a structure. The components of a structure are subobjects. 

Variables may be objects or subobjects. The data type of a variable determines which values that variable may
take. Assignment provides one means of defining or redefining the value of a variable of any type. Assignment
is defined intrinsically for all types when the type, type parameters, and shape of both the variable and the value
to be assigned to it are identical. Assignment between objects of certain differing intrinsic types, type parameters,
and shapes is described in Section 7. For example, assignment of an integer value to a real variable is defined
intrinsically. A subroutine (7.5.1.3) and an ASSIGNMENT interface block (12.3.2.1) define an assignment that is
not defined intrinsically or redefines an intrinsic derived-type assignment. 

The data type of a variable determines the operations that may be used to manipulate the variable. 

4.3 Intrinsic data types 
The intrinsic data types are: 

numeric types: Integer, Real, and Complex 
nonnumeric types: Character and Logical 

4.3.1 Numeric types 

The numeric types are provided for numerical computation. The normal operations of arithmetic, addition (+),
subtraction (–), multiplication (∗), division (/), exponentiation (∗∗), negation (unary –), and identity (unary +),
are defined intrinsically for this set of types. 

Each numeric type includes a zero value, which is considered to be neither negative nor positive. The value of a
signed zero is the same as the value of an unsigned zero. In this standard, the unqualified term “literal constant”
means “unsigned literal constant” when applied to numeric types. 



ISO/IEC 1539 : 1991 (E)

26

4.3.1.1 Integer type 

The set of values for the integer type is a subset of the mathematical integers. A processor must provide one or
more representation methods that define sets of values for data of type integer. Each such method is
characterized by a value for a type parameter called the kind type parameter. The kind type parameter of a
representation method is returned by the intrinsic inquiry function KIND (13.13.51). Among the kind values that
provide a given range, one providing the smallest range is returned by the intrinsic function
SELECTED_INT_KIND (13.13.92). The decimal exponent range of a representation method is returned by the
intrinsic function RANGE (13.13.85). 

The type specifier (R502) for the integer type is the keyword INTEGER. 

If the kind type parameter is not specified, the default kind value is KIND (0) and the data entity is of type
default integer. 

Any integer value may be represented as a signed-int-literal-constant. 

R401 signed-digit-string is [ sign ] digit-string 

R402 digit-string is digit [ digit ] ... 

R403 signed-int-literal-constant is [ sign ] int-literal-constant 

R404 int-literal-constant is digit-string [ _ kind-param ] 

R405 kind-param is digit-string 
or scalar-int-constant-name 

R406 sign is +
or – 

Constraint: The value of kind-param must be nonnegative. 

Constraint: The value of kind-param must specify a representation method that exists on the processor. 

The optional kind type parameter following digit-string specifies the kind type parameter of the integer constant;
if it is not present, the constant is of type default integer. 

Examples of unsigned and signed integer literal constants are: 

473 
+56
-101
21_2
21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant whose value must be a valid kind type parameter value for the
integer type. 

An integer constant is interpreted as a decimal value. 

In a DATA statement (5.2.9), an unsigned binary, octal, or hexadecimal literal constant must correspond to an
integer scalar variable. 

R407 boz-literal-constant is binary-constant 
or octal-constant 
or hex-constant 

Constraint: A boz-literal-constant may appear only in a DATA statement. 

R408 binary-constant is B ’ digit [ digit ] ...’ 
or B " digit [ digit ] ... "

Constraint: digit must have one of the values 0 or 1. 



ISO/IEC 1539 : 1991 (E)

27

R409 octal-constant is O ’ digit [ digit ] ... ' 
or O " digit [ digit ] ... "

Constraint: digit must have one of the values 0 through 7. 

R410 hex-constant

R411 hex-digit

is Z ’ hex-digit [ hex-digit ] ...’ 
or Z " hex-digit [ hex-digit ] ... "

is digit 
or A 
or B 
or C 
or D 
or E 
or F 

In these constants, the binary, octal, and hexadecimal digits are interpreted according to their respective number
systems. If the processor supports lower-case letters in the source form, the hex-digits A through F may be
represented by their lower-case equivalents. 

4.3.1.2 Real type 

The real type has values that approximate the mathematical real numbers. A processor must provide two or more
approximation methods that define sets of values for data of type real. Each such method has a representation
method and is characterized by a value for a type parameter called the kind type parameter. The kind type
parameter of an approximation method is returned by the intrinsic inquiry function KIND (13.13.51). Among the
kind values that provide a given precision and a given exponent range, one providing the smallest decimal
precision is returned by the intrinsic function SELECTED_REAL_KIND (13.13.93). The decimal precision and
decimal exponent range of an approximation method are returned by the intrinsic functions PRECISION
(13.13.79) and RANGE (13.13.85). 

The type specifier for the real type is the keyword REAL and the type specifier for the double precision real type
is the keyword DOUBLE PRECISION. 

If the type keyword REAL is specified and the kind type parameter is not specified, the default kind value is
KIND (0.0) and the data entity is of type default real. If the type keyword DOUBLE PRECISION is specified,
a kind type parameter must not be specified and the data entity is of type double precision real. The kind type
parameter of such an entity has the value KIND (0.0D0). The decimal precision of the double precision real
approximation method must be greater than that of the default real method. 

R412 signed-real-literal-constant is [ sign ] real-literal-constant 

R413 real-literal-constant is significand [ exponent-letter exponent ] [ _ kind-param ] 
or digit-string exponent-letter exponent [ _ kind-param ] 

R414 significand is digit-string . [ digit-string ] 
or . digit-string

R415 exponent-letter is E 
or D 

R416 exponent is signed-digit-string 

Constraint: If both kind-param and exponent-letter are present, exponent-letter must be E. 

Constraint: The value of kind-param must specify an approximation method that exists on the processor. 

A real literal constant without a kind type parameter is a default real constant if it is without an exponent part or
has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal constant
written with a kind type parameter is a real constant with the specified kind type parameter. 



ISO/IEC 1539 : 1991 (E)

28

The exponent represents the power of ten scaling to be applied to the significand or digit string. The meaning of
these constants is as in decimal scientific notation. 

The significand may be written with more digits than a processor will use to approximate the value of the
constant. 

Examples of signed real literal constants are: 

-12.78
+1.6E3
2.1
-16.E4_8
0.45E-4
10.93E7_QUAD
.123
3E4

In 10.93E7_QUAD, the named constant QUAD must have been defined and its value must be a valid kind type
parameter value for the real type. 

4.3.1.3 Complex type 

The complex type has values that approximate the mathematical complex numbers. The values of a complex
type are ordered pairs of real values. The first real value is called the real part, and the second real value is
called the imaginary part. 

Each approximation method used to represent data entities of type real must be available for both the real and
imaginary parts of a data entity of type complex. A kind type parameter may be specified for a complex entity
and selects for both parts the real approximation method characterized by this kind type parameter value. 

The type specifier for the complex type is the keyword COMPLEX. There is no keyword for double precision
complex. If the type keyword COMPLEX is specified and the kind type parameter is not specified, the default
kind value is the same as that for default real, the type of both parts is default real, and the data entity is of type
default complex. 

R417 complex-literal-constant is ( real-part , imag-part ) 

R418 real-part is signed-int-literal-constant 
or signed-real-literal-constant 

R419 imag-part is signed-int-literal-constant 
or signed-real-literal-constant 

If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter value
of the complex literal constant is the kind type parameter value of the part with the greater decimal precision; if
the precisions are the same, it is the kind type parameter value of one of the parts as determined by the processor.
If a part has a kind type parameter value different from that of the complex literal constant, the part is converted
to the approximation method of the complex literal constant. 

If both the real and imaginary parts are signed integer literal constants, they are converted to the default real
approximation method and the constant is of type default complex. If only one of the parts is a signed integer
literal constant, the signed integer literal constant is converted to the approximation method selected for the
signed real literal constant and the kind type parameter value of the complex literal constant is that of the signed
real literal constant. 

Examples of complex literal constants are: 

(1.0, -1.0) 
(3, 3.1E6) 
(4.0_4, 3.6E7_8) 



ISO/IEC 1539 : 1991 (E)

29

4.3.2 Nonnumeric types 

The nonnumeric types are provided for nonnumeric processing. The intrinsic operations defined for each of
these types are given below. 

4.3.2.1 Character type 

The character type has a set of values composed of character strings. A character string is a sequence of
characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of
characters in the string is called the length of the string. The length is a type parameter; its value is greater than
or equal to zero. Strings of different lengths are all of type character. 

A processor must provide one or more representation methods that define sets of values for data of type
character. Each such method is characterized by a value for a type parameter called the kind type parameter. The
kind type parameter of a representation method is returned by the intrinsic inquiry function KIND (13.13.51).
Any character of a particular representation method representable in the processor may occur in a character string
of that representation method. 

If the kind type parameter is not specified, the default kind value is KIND (’A’) and the data entity is of type
default character. 

The type specifier for the character type is the keyword CHARACTER. 

A character literal constant is written as a sequence of characters, delimited by either apostrophes or quotation
marks. 

R420 char-literal-constant is [ kind-param _ ] ’ [ rep-char ] ...’ 
or [ kind-param _ ] " [ rep-char ] ..."

Constraint: The value of kind-param must specify a representation method that exists on the processor. 

The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of the
character constant; if it is not present, the constant is of type default character. 

For the type character with kind kind-param, if present, and for type default character otherwise, a representable
character, rep-char, is: 

(1) Any character in the processor-dependent character set in fixed source form. A processor may
restrict the occurrence of some or all of the control characters.

(2) Any graphic character in the processor-dependent character set in free source form.

The delimiting apostrophes or quotation marks are not part of the value of the character literal constant. 

An apostrophe character within a character constant delimited by apostrophes is represented by two consecutive
apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one character.
Similarly, a quotation mark character within a character constant delimited by quotation marks is represented by
two consecutive quotation marks (without intervening blanks) and the two quotation marks are counted as one
character. 

A zero-length character literal constant is represented by two consecutive apostrophes (without intervening
blanks) or two consecutive quotation marks (without intervening blanks) outside of a character context. 

The intrinsic operation concatenation (//) is defined between two data entities of type character (7.2.2) with the
same kind type parameter. 

Examples of character literal constants are: 

"DON’T" 
’DON’’T’ 

both of which have the value DON’T and 

’’ 



ISO/IEC 1539 : 1991 (E)

30

which has the zero-length character string as its value. 

Examples of nondefault character literal constants, where the processor supports the corresponding character sets,
are: 

CYRILLIC_’’ 
HINDI_’’
MAGYAR_’’ 
NIHONGO_’’

where CYRILLIC, HINDI, MAGYAR, and NIHONGO are named constants whose values are the kind type
parameters for Cyrillic (Russian and other Slavic languages), Hindi, Magyar (Hungarian), and Nihongo
(Japanese) characters, respectively. Note that Nihongo is a very large (ideographic) character set, whereas
Cyrillic, Hindi, and Magyar are alphabetic. 

4.3.2.1.1 Collating sequence 

Each implementation defines a collating sequence for the character set of each kind of character. A collating
sequence is a one-to-one mapping of the characters into the nonnegative integers such that each character
corresponds to a different nonnegative integer. The intrinsic functions CHAR and ICHAR (see Section 13)
provide conversions between the characters and the integers according to this mapping. Thus, 

ICHAR ( ’character’ ) 

returns the integer value of the specified character according to the collating sequence of the processor. 

For the default character type, the only constraints on the collating sequence are: @.EQ delim $$ @.EN 

(1) ICHAR (’A’) < ICHAR (’B’) < ... < ICHAR (’Z’) for the twenty-six letters.

(2) ICHAR (’0’) < ICHAR (’1’) < ... < ICHAR (’9’) for the ten digits.

(3) ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’A’) or ICHAR (’ ’) < ICHAR (’A’) <
ICHAR (’Z’) < ICHAR (’0’).

(4) ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’), if the processor supports lower-case letters.

(5) ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’a’) or ICHAR (’ ’) < ICHAR (’a’) <
ICHAR (’z’) < ICHAR (’0’), if the processor supports lower-case letters.

Except for blank, there are no constraints on the location of the special characters and underscore in the collating
sequence, nor is there any specified collating sequence relationship between the upper-case and lower-case
letters. 

ISO 646:1983 (International Reference Version) assigns numerical codes to a set of characters that includes the
letters, digits, underscore, and special characters; the sequence of such codes is called in this standard the ASCII
collating sequence. Note that ISO 646:1983 is the international equivalent of ANSI X3.4-1986, commonly
known as ASCII. The intrinsic functions ACHAR and IACHAR provide conversions between these characters
and the integers of the ASCII collating sequence. The intrinsic functions LGT, LGE, LLE, and LLT provide
comparisons between strings based on the ASCII collating sequence. International portability is guaranteed if the
set of characters used is limited to the letters, digits, underscore, and special characters. 

4.3.2.2 Logical type 

The logical type has two values which represent true and false. 

A processor must provide one or more representation methods for data of type logical. Each such method is
characterized by a value for a type parameter called the kind type parameter. The kind type parameter of a
representation method is returned by the intrinsic inquiry function KIND (13.13.51). 

If the kind type parameter is not specified, the default kind value is KIND (.FALSE.) and the data entity is of
type default logical. 



ISO/IEC 1539 : 1991 (E)

31

R421 logical-literal-constant is .TRUE. [ _ kind-param ] 
or .FALSE. [ _ kind-param ] 

Constraint: The value of kind-param must specify a representation method that exists on the processor. 

The optional kind type parameter following the trailing delimiter specifies the kind type parameter of the logical
constant; if it is not present, the constant is of type default logical. 

The intrinsic operations defined for data entities of logical type are: negation (.NOT.), conjunction (.AND.),
inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (.NEQV.) as described in
7.2.4. There is also a set of intrinsically defined relational operators that compare the values of data entities of
other types and yield a value of type default logical. These operations are described in 7.2.3. 

The type specifier for the logical type is the keyword LOGICAL. 

4.4 Derived types 
Additional data types may be derived from the intrinsic data types. A type definition is required to define the
name of the type and the names and types of its components. Ultimately, a derived type is resolved into ultimate
components that are either of intrinsic type or are pointers. 

By default, derived types defined in the specification part of a module are accessible (5.1.2.2, 5.2.3) in any
scoping unit that accesses the module. This default may be changed to restrict the accessibility of such types to
the host module itself. A particular type definition may be declared to be public or private regardless of the
default accessibility declared for the module. In addition, a type may be accessible while its components are
private. 

By default, no storage sequence is implied by the order of the component definitions. However, if the definition
of a derived type contains a SEQUENCE statement, the type is a sequence type. The order of the component
definitions in a sequence type specifies a storage sequence for objects of that type. 

The type specifier for derived types is the keyword TYPE followed by the name of the type in parentheses
(R502). 

4.4.1 Derived-type definition 

R422 derived-type-def is derived-type-stmt 
[ private-sequence-stmt ] ... 
component-def-stmt 
[ component-def-stmt ] ... 
end-type-stmt 

R423 private-sequence-stmt is PRIVATE 
or SEQUENCE 

R424 derived-type-stmt is TYPE [ [ , access-spec ] :: ] type-name 

Constraint: The same private-sequence-stmt must not appear more than once in a given derived-type-def. 

Constraint: If SEQUENCE is present, all derived types specified in component definitions must be sequence
types. 

Constraint: An access-spec (5.1.2.2) or a PRIVATE statement within the definition is permitted only if the
type definition is within the specification part of a module. 

Constraint: If a component of a derived type is of a type declared to be private, either the derived type
definition must contain the PRIVATE statement or the derived type must be private. 

Constraint: A derived type type-name must not be the same as the name of any intrinsic type nor the same as
any other accessible derived type type-name. 



ISO/IEC 1539 : 1991 (E)

32

R425 end-type-stmt is END TYPE [ type-name ] 

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as that in the
corresponding derived-type-stmt. 

R426 component-def-stmt is type-spec [ [ , component-attr-spec-list ] :: ] ■  
■  component-decl-list 

R427 component-attr-spec is POINTER 
or DIMENSION ( component-array-spec ) 

Constraint: No component-attr-spec may appear more than once in a given component-def-stmt. 

Constraint: If the POINTER attribute is not specified for a component, a type-spec in the component-def-stmt
must specify an intrinsic type or a previously defined derived type. 

Constraint: If the POINTER attribute is specified for a component, a type-spec in the component-def-stmt
must specify an intrinsic type or any accessible derived type including the type being defined. 

R428 component-array-spec is explicit-shape-spec-list 
or deferred-shape-spec-list 

R429 component-decl is component-name [ ( component-array-spec ) ] ■  
■  [ ∗ char-length ] 

Constraint: If the POINTER attribute is not specified, each component-array-spec must be an explicit-shape-
spec-list. 

Constraint: If the POINTER attribute is specified, each component-array-spec must be a deferred-shape-spec-
list. 

Constraint: The ∗ char-length option is permitted only if the type specified is character. 

Constraint: The character length specified by the char-length in a component-decl or the char-selector in a
type-spec (5.1, 5.1.1.5) must be a constant specification expression (7.1.6.2). 

Constraint: Each bound in the explicit-shape-spec (R428) must be a constant specification expression
(7.1.6.2). 

If the SEQUENCE statement is present, the type is a sequence type. If all of the ultimate components are of
type default integer, default real, double precision real, default complex, or default logical and are not pointers,
the type is a numeric sequence type. If all of the ultimate components are of type default character and are not
pointers, the type is a character sequence type. 

Note that the double colon separator in a component-def-stmt is required only if the DIMENSION attribute, the
POINTER attribute, or both are specified; otherwise, it is optional. 

A component is an array if its component-decl contains a component-array-spec or its component-def-stmt
contains the DIMENSION attribute. If the component-decl contains a component-array-spec, it specifies the
array bounds (5.1.2.4.1); otherwise, the component-array-spec in the DIMENSION attribute specifies the array
bounds. 

The accessibility of a derived type may be declared explicitly by an access-spec in its derived-type-stmt or in an
access-stmt (5.2.3). The accessibility is the default if it is not declared explicitly. If a type definition is private,
then the type name, the structure value constructor (4.4.4) for the type, any entity that is of the type, and any
procedure that has a dummy argument or function result that is of the type are accessible only within the module
containing the definition. 

If a type definition contains a PRIVATE statement, the component names for the type are accessible only within
the module containing the definition, even if the type itself is public (5.1.2.2). The component names and hence
the internal structure of the type are inaccessible in any scoping unit accessing the module via a USE statement.
Similarly, the structure constructor for such a type may be employed only within the defining module. 



ISO/IEC 1539 : 1991 (E)

33

An example of a derived-type definition is: 

TYPE PERSON 
INTEGER AGE 
CHARACTER (LEN = 50) NAME 

END TYPE PERSON 

An example of declaring a variable CHAIRMAN of type PERSON is: 

TYPE (PERSON) :: CHAIRMAN

A type definition may have a component that is an array. For example: 

TYPE LINE 
REAL, DIMENSION (2, 2) :: COORD ! X1, Y1, X2, Y2
REAL :: WIDTH ! Line width in centimeters 
INTEGER :: PATTERN ! 1 for solid, 2 for dash, 3 for dot 

END TYPE LINE 

An example of declaring a variable LINE_SEGMENT to be of the type LINE is: 

TYPE (LINE) :: LINE_SEGMENT 

The scalar variable LINE_SEGMENT has a component that is an array. In this case, the array is a subobject of a
scalar. Note that the double colon in the definition for COORD is required; the double colon in the definition for
WIDTH and PATTERN is optional. 

An example of a type with private components is: 

MODULE DEFINITIONS 
TYPE POINT 

PRIVATE 
REAL :: X, Y 

END TYPE POINT 
END MODULE 

Such a type definition is accessible in any scoping unit accessing the module via a USE statement; however, the
components, X and Y, are accessible only within the module. 

A derived-type definition may have a component that is of a derived type. For example: 

TYPE TRIANGLE 
TYPE (POINT) :: A, B, C 

END TYPE TRIANGLE 

An example of declaring a variable T to be of type TRIANGLE is: 

TYPE (TRIANGLE) :: T 

An example of a private type is: 

TYPE, PRIVATE :: AUXILIARY 
LOGICAL :: DIAGNOSTIC 
CHARACTER (LEN = 20) :: MESSAGE 

END TYPE AUXILIARY 

Such a type would be accessible only within the module in which it is defined. 

An example of a numeric sequence type is: 

TYPE NUMERIC_SEQ 
SEQUENCE 
INTEGER :: INT_VAL 
REAL :: REAL_VAL 



ISO/IEC 1539 : 1991 (E)

34

LOGICAL :: LOG_VAL 
END TYPE NUMERIC_SEQ 

A derived type may have a component that is a pointer. For example: 

TYPE REFERENCE 
INTEGER :: VOLUME, YEAR, PAGE 
CHARACTER (LEN = 50) :: TITLE 
CHARACTER, DIMENSION (:), POINTER :: ABSTRACT 

END TYPE REFERENCE 

Any object of type REFERENCE will have the four components VOLUME, YEAR, PAGE, and TITLE, plus a
pointer to an array of characters holding ABSTRACT. The size of this target array will be determined by the
length of the abstract. The space for the target may be allocated (6.3.1) or the pointer component may be
associated with a target in a pointer assignment statement (7.5.2). 

A pointer component of a derived type may have as its target an object of the type of which it is a component.
For example: 

TYPE NODE 
INTEGER :: VALUE 
TYPE (NODE), POINTER :: NEXT_NODE 

END TYPE 

A type such as this may be used to construct linked lists of objects of type NODE. 

4.4.2 Determination of derived types 

A particular type name may be defined at most once in a scoping unit. Derived-type definitions with the same
type name may appear in different scoping units, in which case they may be independent and describe different
derived types or they may describe the same type. 

Two data entities have the same type if they are declared with reference to the same derived-type definition. The
definition may be accessed from a module or from a host scoping unit. Data entities in different scoping units
also have the same type if they are declared with reference to different derived-type definitions that have the
same name, have the SEQUENCE property, and have structure components that do not have PRIVATE
accessibility and agree in order, name, and attributes. Otherwise, they are of different derived types. A data entity
declared using a type with the SEQUENCE property is not of the same type as an entity of a type declared to be
PRIVATE or which has components that are PRIVATE. 

An example of declaring two entities with reference to the same derived-type definition is: 

TYPE POINT 
REAL X, Y 

END TYPE POINT 
TYPE (POINT) :: X1 
CALL SUB (X1) 

... 
CONTAINS 

SUBROUTINE SUB (A) 
TYPE (POINT) :: A 

... 
END SUBROUTINE SUB 

The definition of derived type POINT is known in subroutine SUB because the scoping unit of SUB is contained
within the scoping unit of the containing program unit (host association). Because the declarations of X1 and A
both reference the same derived-type definition, X1 and A have the same type. X1 and A also would have the
same type if the derived-type definition was in a module and both SUB and its containing program unit accessed
the module. 



ISO/IEC 1539 : 1991 (E)

35

An example of data entities in different scoping units having the same type is: 

PROGRAM PGM 
TYPE EMPLOYEE 

SEQUENCE 
INTEGER ID_NUMBER 
CHARACTER (50) NAME 

END TYPE EMPLOYEE 
TYPE (EMPLOYEE) PROGRAMMER 
CALL SUB (PROGRAMMER) 

... 
END PROGRAM PGM 

SUBROUTINE SUB (POSITION) 
TYPE EMPLOYEE 

SEQUENCE 
INTEGER ID_NUMBER 
CHARACTER (50) NAME 

END TYPE 
TYPE (EMPLOYEE) POSITION 
... 

END SUBROUTINE SUB 

The actual argument PROGRAMMER and the dummy argument POSITION have the same type because they are
declared with reference to a derived-type definition with the same name, the SEQUENCE property, and
components that agree in order, name, shape, type, and type parameters. 

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the component names
are not identical to the component names in derived type EMPLOYEE in the main program, the actual argument
PROGRAMMER would not be of the same type as the dummy argument POSITION. Thus, the program would
not be standard conforming. 

4.4.3 Derived-type values 

The set of values of a specific derived type consists of all possible sequences of component values consistent
with the definition of that derived type. 

4.4.4 Construction of derived-type values 

A derived-type definition implicitly defines a corresponding structure constructor that allows a scalar value of
derived type to be constructed from a sequence of values, one value for each component of the derived type. 

R430 structure-constructor is type-name ( expr-list ) 

The sequence of expressions in a structure constructor specifies component values that must agree in number and
order with the components of the derived type. If necessary, each value is converted according to the rules of
intrinsic assignment (7.5.1.4) to a value that agrees in type and type parameters with the corresponding
component of the derived type. For nonpointer components, the shape of the expression must conform with the
shape of the component. A structure constructor whose component values are all constant expressions is a
derived-type constant expression. A structure constructor must not appear before the referenced type is defined. 

This example illustrates a derived-type constant expression using a derived type defined in 4.4.1: 

PERSON (21, ’JOHN SMITH’)

A derived-type definition may have a component that is an array. Also, an object may be an array of derived
type. Such arrays may be constructed using an array constructor (4.5). 



ISO/IEC 1539 : 1991 (E)

36

Where a component in the derived type is a pointer, the corresponding constructor expression must evaluate to an
object that would be an allowable target for such a pointer in a pointer assignment statement (7.5.2). For
example, if the variable TEXT were declared (5.1) to be 

CHARACTER, DIMENSION (1:400), TARGET :: TEXT 

and BIBLIO were declared using the derived-type definition REFERENCE in 4.4.1 

TYPE (REFERENCE) :: BIBLIO 

the statement 

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced & 
&paper", TEXT) 

is valid and it identifies the ABSTRACT component of the object BIBLIO with the target object TEXT. 

Note that a constant expression must not be constructed for a derived type containing a pointer component
because a constant value is not an allowable target in a pointer assignment statement. 

4.4.5 Derived-type operations and assignment 

Any operation on derived-type entities or nonintrinsic assignment for derived-type entities must be defined
explicitly by a function or a subroutine and a procedure interface block (12.3.2.1). Arguments and function
values may be of any derived or intrinsic type. 

4.5 Construction of array values 
An array constructor is defined as a sequence of specified scalar values and is interpreted as a rank-one array
whose element values are those specified in the sequence. 

R431 array-constructor is (/ ac-value-list /) 

R432 ac-value is expr 
or ac-implied-do 

R433 ac-implied-do is ( ac-value-list , ac-implied-do-control ) 

R434 ac-implied-do-control is ac-do-variable = scalar-int-expr , ■  
■  scalar-int-expr [ , scalar-int-expr ] 

R435 ac-do-variable is scalar-int-variable 

Constraint: ac-do-variable must be a named variable. 

Constraint: Each ac-value expression in the array-constructor must have the same type and type parameters. 

If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-value is an
array expression, the values of the elements of the expression, in array element order (6.2.2.2), specify the
corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-do, it is expanded to
form an ac-value sequence under the control of the ac-do-variable, as in the DO construct (8.1.4.4). 

For an ac-implied-do, the loop initialization and execution is the same as for a DO construct. The ac-do-variable
of an ac-implied-do that is contained within another ac-implied-do must not appear as the ac-do-variable of the
containing ac-implied-do. 

An empty sequence forms a zero-sized rank-one array. 

The type and type parameters of an array constructor are those of the ac-value expressions. 

If every expression in an array constructor is a constant expression, the array constructor is a constant expression.
An example is: 

REAL X (3) 



ISO/IEC 1539 : 1991 (E)

37

X = (/ 3.2, 4.01, 6.5 /) 

A one-dimensional array may be reshaped into any allowable array shape using the RESHAPE intrinsic function
(13.13.88). An example is: 

Y = RESHAPE (SOURCE = (/ 2.0, (/ 4.5, 4.5 /), X /), SHAPE = (/ 3, 2 /)) 

This results in Y having the 3 × 2 array of values: 

2.0 3.2 
4.5 4.01 
4.5 6.5 

Examples of array constructors containing an implied-DO are: 

(/ (I, I = 1, 1075) /) 

and 

(/ 3.6, (3.6 / I, I = 1, N) /) 

Using the type definitions for PERSON and LINE of 4.4.1, an example of the construction of a derived-type
array value is: 

(/ PERSON (20, ’SMITH’), PERSON (20, ’JONES’) /) 

and an example of the construction of a derived-type scalar value with an array component is: 

LINE (RESHAPE ( (/ 0.0, 1.0, 0.0, 2.0 /), (/ 2, 2 /) ), 0.1, 1) 

In the latter example, the RESHAPE intrinsic function is used to construct a value that represents a solid line
from (0, 0) to (1, 2) of width 0.1 centimeters. 



ISO/IEC 1539 : 1991 (E)

38

Section 5 : Data object declarations and specifications 
Every data object has a number of properties (for example, type, rank, and shape) that determine the
characteristics of the data and the uses of the object. Collectively, these properties are termed the attributes of the
data object. A named data object must not be specified explicitly to have a particular attribute more than once in
a scoping unit. The type of a named data object is either determined implicitly by the first letter of its name (5.3)
or is specified explicitly in a type declaration statement. Additional attributes also may be specified by separate
specification statements; all of them may be included in a type declaration statement. 

For example: 

INTEGER INCOME, EXPENDITURE 

declares the two data objects named INCOME and EXPENDITURE to have the type integer. 

REAL, DIMENSION (-5:+5) :: X, Y, Z 

declares three data objects with names X, Y, and Z. These all have default real type and are explicit-shape rank-
one arrays with a lower bound of –5, an upper bound of +5, and therefore a size of 11. 

5.1 Type declaration statements 
R501 type-declaration-stmt is type-spec [ [ , attr-spec ] ... :: ] entity-decl-list 

R502 type-spec is INTEGER [ kind-selector ] 
or REAL [ kind-selector ] 
or DOUBLE PRECISION 
or COMPLEX [ kind-selector ] 
or CHARACTER [ char-selector ] 
or LOGICAL [ kind-selector ] 
or TYPE ( type-name ) 

R503 attr-spec is PARAMETER 
or access-spec 
or ALLOCATABLE 
or DIMENSION ( array-spec ) 
or EXTERNAL 
or INTENT ( intent-spec ) 
or INTRINSIC 
or OPTIONAL 
or POINTER 
or SAVE 
or TARGET 

R504 entity-decl is object-name [ ( array-spec ) ] ■  
■  [ ∗ char-length ] [ = initialization-expr ] 

or function-name] [ ∗ char-length ] 

R505 kind-selector is ( [ KIND = ] scalar-int-initialization-expr ) 

Constraint: The same attr-spec must not appear more than once in a given type-declaration-stmt. 

Constraint: The function-name must be the name of an external function, an intrinsic function, a function
dummy procedure, or a statement function. 

Constraint: The = initialization-expr must appear if the statement contains a PARAMETER attribute (5.1.2.1). 



ISO/IEC 1539 : 1991 (E)

39

Constraint: If = initialization-expr appears, a double colon separator must appear before the entity-decl-list. 

Constraint: The = initialization-expr must not appear if object-name is a dummy argument, a function result,
an object in a named common block unless the type declaration is in a block data program unit,
an object in blank common, an allocatable array, a pointer, an external name, an intrinsic name, or
an automatic object. 

Constraint: The ∗ char-length option is permitted only if the type specified is character. 

Constraint: The ALLOCATABLE attribute may be used only when declaring an array that is not a dummy
argument or a function result. 

Constraint: An array declared with a POINTER or an ALLOCATABLE attribute must be specified with an
array-spec that is a deferred-shape-spec-list (5.1.2.4.3). 

Constraint: An array-spec for an object-name that is a function result that does not have the POINTER
attribute must be an explicit-shape-spec-list. 

Constraint: If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified. 

Constraint: If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified. 

Constraint: The PARAMETER attribute must not be specified for dummy arguments, pointers, allocatable
arrays, functions, or objects in a common block. 

Constraint: The INTENT and OPTIONAL attributes may be specified only for dummy arguments. 

Constraint: An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute. 

Constraint: The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object. 

Constraint: An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute. 

Constraint: An entity in a type-declaration-stmt must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function. 

Constraint: An array must not have both the ALLOCATABLE attribute and the POINTER attribute. 

Constraint: An entity must not be given explicitly any attribute more than once in a scoping unit. 

Constraint: The value of scalar-int-initialization-expr must be nonnegative and must specify a representation
method that exists on the processor. 

Note that the double colon separator in a type-declaration-stmt is required only if an attr-spec or = initialization-
expr is specified; otherwise, the separator is optional. 

A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.12. An explicit
type declaration statement is not required; however, it is permitted. Specifying a type for a generic intrinsic
function name in a type declaration statement is not sufficient, by itself, to remove the generic properties from
that function. 

The specification-expr (7.1.6.2) of a type-param-value (5.1.1.5) or an array-spec (5.1.2.4) may be a nonconstant
expression provided the specification expression is in an interface body (12.3.2.1) or in the specification part of
a subprogram. If the data object being declared depends on the value of such a nonconstant expression and is not
a dummy argument, such an object is called an automatic data object. An automatic object must not appear in
a SAVE or DATA statement nor be declared with a SAVE attribute nor be initially defined by an = initialization-
expr. 

If a length-selector is a nonconstant expression, the length is declared at the entry of the procedure and is not
affected by any redefinition or undefinition of the variables in the specification expression during execution of
the procedure. 



ISO/IEC 1539 : 1991 (E)

40

If an entity-decl contains an = initialization-expr and the object-name does not have the PARAMETER attribute,
object-name is a variable whose value is initially defined. The object-name becomes defined with the value
determined from initialization-expr in accordance with the rules of intrinsic assignment (7.5.1.4). A variable, or
part of a variable, must not be initialized more than once in an executable program. 

The presence of = initialization-expr implies that object-name is saved, except for an object-name in a named
common block. The implied SAVE attribute may be reaffirmed by explicit use of the SAVE attribute in the type
declaration statement, or by inclusion of the object-name in a SAVE statement (5.2.4). 

Examples of type declaration statements are: 

REAL A (10) 
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2 
COMPLEX :: CUBE_ROOT = (-0.5, 0.866) 

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4) 
REAL (KIND (0.0D0)) A 
REAL (KIND = 2) B 
COMPLEX (KIND = KIND (0.0D0)) :: C 
INTEGER (SHORT) K ! Range at least –9999 to 9999. 
TYPE (PERSON) :: CHAIRMAN 

5.1.1 Type specifiers 

A type specifier specifies the type of all entities declared in an entity declaration list. This type may override or
confirm the implicit type indicated by the first letter of the entity name as declared by the implicit typing rules in
effect (5.3). 

5.1.1.1 INTEGER 

The INTEGER type specifier specifies that all entities whose names are declared in this statement are of intrinsic
type integer (4.3.1.1). The kind selector, if present, specifies the integer representation method. If the kind
selector is absent, the kind type parameter is KIND (0) and the entities declared are of type default integer. An
entity declared with a type specifier INTEGER (KIND (0)) is of the same kind as one declared with the type
specifier INTEGER. 

5.1.1.2 REAL 

The REAL type specifier specifies that all entities whose names are declared in this statement are of intrinsic
type real (4.3.1.2). The kind selector, if present, specifies the real approximation method. If the kind selector is
absent, the kind type parameter is KIND (0.0) and the entities declared are of type default real. An entity
declared with a type specifier REAL (KIND (0.0)) is of the same kind as one declared with the type specifier
REAL. 

5.1.1.3 DOUBLE PRECISION 

The DOUBLE PRECISION type specifier specifies that all entities whose names are declared in this statement
are of intrinsic type double precision real (4.3.1.2). The kind parameter value is KIND (0.0D0). An entity
declared with a type specifier REAL (KIND (0.0D0)) is of the same kind as one declared with the type specifier
DOUBLE PRECISION. 

5.1.1.4 COMPLEX 

The COMPLEX type specifier specifies that all entities whose names are declared in this statement are of
intrinsic type complex (4.3.1.3). The kind selector, if present, specifies the real approximation method of the two
real values making up the real and imaginary parts of the complex value. If the kind selector is absent, the kind
type parameter is KIND (0.0) and the entities declared are of type default complex. An entity declared with a
type specifier COMPLEX (KIND (0.0)) is of the same kind as one declared with the type specifier COMPLEX. 



ISO/IEC 1539 : 1991 (E)

41

5.1.1.5 CHARACTER 

The CHARACTER type specifier specifies that all entities whose names are declared in this statement are of
intrinsic type character (4.3.2.1). 

R506 char-selector is length-selector 
or ( LEN = type-param-value , ■  

■  KIND = scalar-int-initialization-expr ) 
or ( type-param-value , ■  

■  [ KIND = ] scalar-int-initialization-expr ) 
or ( KIND = scalar-int-initialization-expr ■  

■  [ , LEN =  type-param-value ] ) 

R507 length-selector is ( [ LEN = ] type-param-value ) 
or ∗ char-length [ , ] 

R508 char-length is ( type-param-value ) 
or scalar-int-literal-constant 

Constraint: The optional comma in a length-selector is permitted only in a type-spec in a type-declaration-
stmt. 

Constraint: The optional comma in a length-selector is permitted only if no double colon separator appears in
the type-declaration-stmt. 

Constraint: The value of scalar-int-initialization-expr must be nonnegative and must specify a representation
method that exists on the processor. 

Constraint: The scalar-int-literal-constant must not include a kind-param. 

The char-selector in a CHARACTER type-spec and the ∗ char-length in an entity-decl  or in a component-decl
of a type definition specify character length. The * char-length in an entity-decl or component-decl specifies an
individual length and overrides the length specified in the char-selector, if any. If a * char-length is not specified
in an entity-decl or component-decl, the length-selector or type-param-value specified in the char-selector is the
character length. If the length is not specified in a char-selector or a * char-length, the length is 1.

R509 type-param-value is specification-expr 
or ∗

Constraint: A function name must not be declared with an asterisk type-param-value if the function is an
internal or module function, array-valued, pointer-valued, or recursive. 

An assumed type parameter is a type parameter of a dummy argument that is specified with an asterisk type-
param-value. 

If the length type parameter value evaluates to a negative value, the length of character entities declared is zero.
A length type parameter value of ∗ may be used only in the following ways: 

(1) It may be used to declare a dummy argument of a procedure, in which case the dummy argument
assumes the length of the associated actual argument when the procedure is invoked.

(2) It may be used to declare a named constant, in which case the length is that of the constant value.

(3) In an external function, the name of the function result may be specified with a length type
parameter value of ∗; in this case, any scoping unit invoking the function must declare the function
name with a length type parameter value other than ∗ or access such a definition by host or use
association. When the function is invoked, the length of the result variable in the function is
assumed from the value of this type parameter.

The length specified for a character-valued statement function or statement function dummy argument of type
character must be an integer constant expression. 



ISO/IEC 1539 : 1991 (E)

42

The kind selector, if present, specifies the character representation method. If the kind selector is absent, the kind
type parameter is KIND (’A’) and the entities declared are of type default character. 

Examples of character type declaration statements are: 

CHARACTER (LEN = 10, KIND = 2) A 
CHARACTER *10 B, C *20 

5.1.1.6 LOGICAL 

The LOGICAL type specifier specifies that all entities whose names are declared in this statement are of intrinsic
type logical (4.3.2.2). 

The kind selector, if present, specifies the representation method. If the kind selector is absent, the kind type
parameter is KIND (.FALSE.) and the entities declared are of type default logical. 

5.1.1.7 Derived type 

A TYPE type specifier specifies that all entities whose names are declared in this statement are of the derived
type specified by the type-name. The components of each such entity also are declared to be of the types
specified by the corresponding component-def statements of the derived-type-def (4.4.1). When a data entity is
declared explicitly to be of a derived type, the derived type must have been defined previously in the scoping
unit or be accessible there by use or host association. 

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE property, a scalar entity of
the type is a sequence structure. A scalar entity of numeric sequence type (4.4.1) is a numeric sequence
structure. A scalar entity of character sequence type (4.4.1) is a character sequence structure. 

A declaration for a nonsequence derived-type dummy argument must specify a derived type that is accessed by
use association or host association because the same definition must be used to declare both the actual and
dummy arguments to ensure that both are of the same derived type. This restriction does not apply to arguments
of sequence type (4.4.2). 

5.1.2 Attributes 

The additional attributes that may appear in the attribute specification of a type declaration statement further
specify the nature of the entities being declared or specify restrictions on their use in the program. 

5.1.2.1 PARAMETER attribute 

The PARAMETER attribute specifies that entities whose names are declared in this statement are named
constants. The object-name becomes defined with the value determined from the initialization-expr that appears
on the right of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4). The appearance of a
PARAMETER attribute in a specification requires that the = initialization-expr option appear for all objects in
the entity-decl-list. 

Any named constant that appears in the initialization expression must have been defined previously in the same
type declaration statement, defined in a prior PARAMETER statement or type declaration statement using the
PARAMETER attribute, or made accessible by use association or host association. A named constant must not be
referenced in any other context unless it has been defined in a prior PARAMETER statement or type declaration
statement using the PARAMETER attribute, or made accessible by use association or host association. 

A named constant must not appear within a format specification (10.1.1). 

Examples of declarations with a PARAMETER attribute are: 

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0 
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /) 



ISO/IEC 1539 : 1991 (E)

43

5.1.2.2 Accessibility attribute 

The accessibility attribute specifies the accessibility of entities and derived-type definitions. 

R510 access-spec is PUBLIC 
or PRIVATE 

Constraint: An access-spec attribute may appear only in the scoping unit of a module. 

Entities that are declared with a PRIVATE attribute are not accessible outside the module. Entities that are
declared with a PUBLIC attribute may be made accessible in other program units by the USE statement. Entities
without an explicitly specified access-spec have default accessibility, which is PUBLIC unless the default has
been changed by a PRIVATE statement (5.2.3). 

An example of an accessibility specification is: 

REAL, PRIVATE :: X, Y, Z 

5.1.2.3 INTENT attribute 

An INTENT attribute specifies the intended use of the dummy argument. 

R511 intent-spec is IN 
or OUT 
or INOUT 

Constraint: The INTENT attribute must not be specified for a dummy argument that is a dummy procedure or
a dummy pointer. 

The INTENT (IN) attribute specifies that the dummy argument must not be redefined or become undefined
during the execution of the procedure. 

The INTENT (OUT) attribute specifies that the dummy argument must be defined before a reference to the
dummy argument is made within the procedure and any actual argument that becomes associated with such a
dummy argument must be definable. On invocation of the procedure, such a dummy argument becomes
undefined. 

The INTENT (INOUT) attribute specifies that the dummy argument is intended for use both to receive data from
and to return data to the invoking scoping unit. Any actual argument that becomes associated with such a dummy
argument must be definable. 

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of the associated
actual argument (12.5.2.1, 12.5.2.2, 12.5.2.3). 

An example of an INTENT specification is: 

SUBROUTINE MOVE (FROM, TO) 
USE PERSON_MODULE 
TYPE (PERSON), INTENT (IN) :: FROM 
TYPE (PERSON), INTENT (OUT) :: TO 

5.1.2.4 DIMENSION attribute 

The DIMENSION attribute specifies that entities whose names are declared in this statement are arrays. The
rank or the rank and shape are specified by the array-spec, if there is one, in the entity-decl, or by the array-spec
in the DIMENSION attribute otherwise. An array-spec in an entity-decl specifies either the rank or the rank and
shape for a single array and overrides the array-spec in the DIMENSION attribute. If the DIMENSION attribute
is omitted, an array-spec must be specified in the entity-decl to declare an array in this statement. 

R512 array-spec is explicit-shape-spec-list 
or assumed-shape-spec-list 
or deferred-shape-spec-list 



ISO/IEC 1539 : 1991 (E)

44

or assumed-size-spec 

Constraint: The maximum rank is seven. 

Examples of DIMENSION attribute specifications are: 

SUBROUTINE EX (N, A, B, S) 
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array 
REAL A (:), B (0:) ! Assumed-shape arrays 
REAL, POINTER :: D (:, :) ! Array pointer 
REAL, DIMENSION (:), POINTER :: P ! Array pointer 
REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array 
REAL :: S (N, *) ! Assumed-size array 

5.1.2.4.1 Explicit-shape array 

An explicit-shape array is a named array that is declared with an explicit-shape-spec-list. This specifies explicit
values for the bounds in each dimension of the array. 

R513 explicit-shape-spec is [ lower-bound : ] upper-bound 

R514 lower-bound is specification-expr 

R515 upper-bound is specification-expr 

Constraint: An explicit-shape array whose bounds depend on the values of nonconstant expressions must be a
dummy argument, a function result, or an automatic array of a procedure. 

An automatic array is an explicit-shape array that is declared in a procedure subprogram, is not a dummy
argument, and has bounds that are nonconstant specification expressions. 

If an explicit-shape array has bounds that are nonconstant specification expressions, the bounds, and hence shape,
are determined at entry to the procedure by evaluating the bounds expressions. The bounds of such an array are
unaffected by any redefinition or undefinition of the specification expression variables during execution of the
procedure. 

The values of each lower-bound and upper-bound determine the bounds of the array along a particular dimension
and hence the extent of the array in that dimension. The value of a lower bound or an upper bound may be
positive, negative, or zero. The subscript range of the array in that dimension is the set of integer values between
and including the lower and upper bounds, provided the upper bound is not less than the lower bound. If the
upper bound is less than the lower bound, the range is empty, the extent in that dimension is zero, and the array
is of zero size. If the lower-bound is omitted, the default value is 1. The number of sets of bounds specified is the
rank. 

5.1.2.4.2 Assumed-shape array 

An assumed-shape array is a nonpointer dummy argument array that takes its shape from the associated actual
argument array. 

R516 assumed-shape-spec is [ lower-bound ] : 

The rank is equal to the number of colons in the assumed-shape-spec-list. 

The extent of a dimension of an assumed-shape array is the extent of the corresponding dimension of the
associated actual argument array. If the lower bound value is  and the extent of the corresponding dimension of
the associated actual argument array is , then the value of the upper bound is . The lower bound is
lower-bound, if present, and 1 otherwise. 

5.1.2.4.3 Deferred-shape array 

A deferred-shape array is an array pointer or an allocatable array. 

d
s s d 1–+



ISO/IEC 1539 : 1991 (E)

45

An allocatable array is a named array that has the ALLOCATABLE attribute and a specified rank, but its
bounds, and hence shape, are determined when space is allocated for the array by execution of an ALLOCATE
statement (6.3.1). 

The ALLOCATABLE attribute may be specified for an array in a type declaration statement or in an
ALLOCATABLE statement (5.2.6). An array with the ALLOCATABLE attribute must be declared with a
deferred-shape-spec-list in a type declaration statement, an ALLOCATABLE statement, a DIMENSION
statement (5.2.5), or a TARGET statement (5.2.8). The type and type parameters may be specified in a type
declaration statement. 

An array pointer is an array with the POINTER attribute and a specified rank. Its type, type parameters, and
rank are specified in a type declaration statement or a component definition statement, but its bounds, and hence
shape, are determined when it is associated with a target by pointer assignment (7.5.2) or by execution of an
ALLOCATE statement (6.3.1). The POINTER attribute may be specified for an array in a type declaration
statement or in a POINTER statement (5.2.7). An array with the POINTER attribute must be declared with a
deferred-shape-spec in a type declaration statement, a POINTER statement, or a DIMENSION statement (5.2.5). 

R517 deferred-shape-spec is : 

The rank is equal to the number of colons in the deferred-shape-spec-list. 

The size, bounds, and shape of an unallocated allocatable array are undefined. No part of such an array may be
defined, nor may any part of it be referenced except as an argument to an intrinsic inquiry function that is
inquiring about the allocation status or a property of the type or type parameters. The lower and upper bounds of
each dimension are those specified in the ALLOCATE statement when the array is allocated. 

The size, bounds, and shape of the target of a disassociated array pointer are undefined. No part of such an array
may be defined, nor may any part of it be referenced except as an argument to an intrinsic inquiry function that
is inquiring about argument presence, a property of the type or type parameters, or association status. The bounds
of each dimension of an array pointer may be specified in two ways: 

(1) They are specified in an ALLOCATE statement (6.3.1) when the target is allocated, or 

(2) They are specified in a pointer assignment statement. The lower bound of each dimension is the
result of the LBOUND function (13.13.52) applied to the corresponding dimension of the target.
The upper bound of each dimension is the result of the UBOUND function (13.13.111) applied to
the corresponding dimension of the target. 

The bounds of the array target or allocatable array are unaffected by any subsequent redefinition or undefinition
of variables involved in the bounds. 

A pointer dummy argument may be argument associated only with a pointer actual argument. An actual argument
that is a pointer may be argument associated with a nonpointer dummy argument. 

A function result may be declared to have the pointer attribute. 

5.1.2.4.4 Assumed-size array 

An assumed-size array is a dummy argument array whose size is assumed from that of an associated actual
argument. The rank and extents may differ for the actual and dummy arrays; only the size of the actual array is
assumed by the dummy array. 

R518 assumed-size-spec is [ explicit-shape-spec-list , ] [ lower-bound : ] ∗ 

Constraint: The function name of an array-valued function must not be declared as an assumed-size array. 

The size of an assumed-size array is determined as follows: 

(1) If the actual argument associated with the assumed-size dummy array is an array of any type other
than default character, the size is that of the actual array. 



ISO/IEC 1539 : 1991 (E)

46

(2) If the actual argument associated with the assumed-size dummy array is an array element of any
type other than default character with a subscript order value of  (6.2.2.2) in an array of size , the
size of the dummy array is . 

(3) If the actual argument is a default character array, default character array element, or a default
character array element substring (6.1.1), and if it begins at character storage unit  of an array with

 character storage units, the size of the dummy array is MAX (INT (( )/ ), 0), where  is
the length of an element in the dummy character array. 

The rank equals one plus the number of explicit-shape-specs. 

An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last dimension
and no shape. An assumed-size array name must not be written as a whole array reference except as an actual
argument in a procedure reference for which the shape is not required or in a reference to the intrinsic function
LBOUND. 

The bounds of the first  dimensions are those specified by the explicit-shape-spec-list, if present, in the
assumed-size-spec. The lower bound of the last dimension is lower-bound, if present, and 1 otherwise. An
assumed-size array may be subscripted or sectioned (6.2.2.3). The upper bound must not be omitted from a
subscript triplet in the last dimension. 

If an assumed-size array has bounds that are nonconstant specification expressions, the bounds are declared at
entry to the procedure. The bounds of such an array are unaffected by any redefinition or undefinition of the
specification expression variables during execution of the procedure. 

5.1.2.5 SAVE attribute 

The SAVE attribute specifies that the objects declared in a declaration containing this attribute retain their
association status, allocation status, definition status, and value after execution of a RETURN or END statement
in the scoping unit containing the declaration. Such an object is called a saved object. 

Objects in the scoping unit of a module may be declared with a SAVE attribute. Such objects retain their
association status, allocation status, definition status, and value when any procedure that accesses the module in
a USE statement executes a RETURN or END statement. 

Objects declared with the SAVE attribute in the scoping unit of a subprogram are shared by all instances
(12.5.2.4) of the subprogram. 

The SAVE attribute must not be specified for an object that is in a common block, a dummy argument, a
procedure, a function result, or an automatic data object. 

The SAVE attribute may appear in declarations in a main program and has no effect. 

5.1.2.6 OPTIONAL attribute 

The OPTIONAL attribute may be specified only in the scoping unit of a subprogram or an interface block, and
may be specified only for dummy arguments. The OPTIONAL attribute specifies that the dummy argument need
not be associated with an actual argument in a reference to the procedure (12.5.2.8). The PRESENT intrinsic
function (13.13.80) may be used to determine whether an actual argument has been associated with a dummy
argument having the OPTIONAL attribute. 

5.1.2.7 POINTER attribute 

The POINTER attribute specifies that the object must not be referenced or defined unless, as a result of
executing a pointer assignment (7.5.2) or an ALLOCATE statement (6.3.1), it becomes pointer associated with a
target object that may be referenced or defined. If the pointer is an array, it must be declared with a deferred-
shape-spec-list. An object with the POINTER attribute occupies an unspecified storage unit (14.6.3.1). Examples
of POINTER attribute specifications are: 

TYPE (NODE), POINTER :: CURRENT, TAIL 

r x
x r– 1+

t
c c t– 1+ e e

n 1–



ISO/IEC 1539 : 1991 (E)

47

REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP 

5.1.2.8 TARGET attribute 

The TARGET attribute specifies that the object may have a pointer associated with it (7.5.2). An object without
the TARGET or POINTER attribute must not have an accessible pointer associated with it. Examples of
TARGET attribute specifications are: 

TYPE (NODE), TARGET :: HEAD 
REAL, DIMENSION (1000, 1000), TARGET :: A, B 

5.1.2.9 ALLOCATABLE attribute 

The ALLOCATABLE attribute specifies that objects declared in the statement are allocatable arrays. Such
arrays must be deferred-shape arrays whose shape is determined when space is allocated for each array by the
execution of an ALLOCATE statement (6.3.1). 

5.1.2.10 EXTERNAL attribute 

The EXTERNAL attribute specifies that an object name in a declaration containing this attribute is an external
function or a dummy function and permits the name to be used as an actual argument. This attribute also may be
declared via the EXTERNAL statement (12.3.2.2). 

5.1.2.11 INTRINSIC attribute 

The INTRINSIC attribute specifies that an object name in a declaration containing this attribute must be the
specific or generic name of an intrinsic function and permits the name to be used as an actual argument if it is a
specific name of an intrinsic function (13.12). This attribute also may be declared via the INTRINSIC statement
(12.3.2.3). 

5.2 Attribute specification statements 
All attributes (other than type) may be specified for entities, independently of type, by single attribute
specification statements. The combination of attributes that may be specified for a particular entity is subject to
the same restrictions as for type declaration statements regardless of the method of specification. This also
applies to EXTERNAL and INTRINSIC statements. 

5.2.1 INTENT statement 

R519 intent-stmt is INTENT ( intent-spec ) [ :: ] dummy-arg-name-list 

Constraint: An intent-stmt may appear only in the specification-part of a subprogram or an interface body
(12.3.2.1). 

Constraint: dummy-arg-name must not be the name of a dummy procedure or a dummy pointer. 

This statement specifies the intended use of the specified dummy arguments (5.1.2.3). Each specified dummy
argument has the INTENT attribute. 

An example of an INTENT statement is: 

SUBROUTINE EX (A, B) 
INTENT (INOUT) :: A, B 

5.2.2 OPTIONAL statement 

R520 optional-stmt is OPTIONAL [ :: ] dummy-arg-name-list 

Constraint: An optional-stmt may occur only in the scoping unit of a subprogram or an interface body. 



ISO/IEC 1539 : 1991 (E)

48

This statement specifies that any of the specified dummy arguments need not be associated with an actual
argument on an invocation of the procedure (12.5.2.8). Each specified dummy argument has the OPTIONAL
attribute. 

An example of an OPTIONAL statement is: 

SUBROUTINE EX (A, B) 
OPTIONAL :: A 

5.2.3 Accessibility statements 

R521 access-stmt is access-spec [ [ :: ] access-id-list ] 

R522 access-id is use-name 
or generic-spec 

Constraint: An access-stmt may appear only in the scoping unit of a module. Only one accessibility statement
with an omitted access-id-list is permitted in the scoping unit of a module. 

Constraint: Each use-name must be the name of a named variable, procedure, derived type, named constant,
or namelist group. 

Constraint: A module procedure that has a dummy argument or function result of a type that has PRIVATE
accessibility must have PRIVATE accessibility and must not have a generic identifier that has
PUBLIC accessibility. 

This statement declares the accessibility, PUBLIC or PRIVATE, of the entities (5.1.2.2). A procedure that has a
generic identifier (12.3.2.1) that is public is accessible through the generic identifier even if its specific name is
private. 

If an access-stmt without an access-id-list appears in the scoping unit of a module, the statement sets the default
accessibility that applies to all potentially accessible entities in the scoping unit of the module. The statement 

PUBLIC 

sets the default to public accessibility. The statement 

PRIVATE 

sets the default to private accessibility. If no such statement appears in a module, the default is public
accessibility. 

Examples of accessibility statements are: 

MODULE EX 
PRIVATE 
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+) 

5.2.4 SAVE statement 

R523 save-stmt is SAVE [ [ :: ] saved-entity-list ] 

R524 saved-entity is object-name 
or / common-block-name / 

Constraint: An object-name must not be a dummy argument name, a procedure name, a function result name,
an automatic data object name, or the name of an entity in a common block. 

Constraint: If a SAVE statement with an omitted saved entity list occurs in a scoping unit, no other explicit
occurrence of the SAVE attribute or SAVE statement is permitted in the same scoping unit. 

All objects named explicitly or included within a common block named explicitly have the SAVE attribute
(5.1.2.5). If a particular common block name is specified in a SAVE statement in any scoping unit of an



ISO/IEC 1539 : 1991 (E)

49

executable program other than the main program, it must be specified in a SAVE statement in every scoping unit
in which that common block appears except in the scoping unit of the main program. For a common block
declared in a SAVE statement, the current values of the objects in a common block storage sequence (5.5.2.1) at
the time a RETURN or END statement is executed are made available to the next scoping unit in the execution
sequence of the executable program that specifies the common block name or accesses the common block. If a
named common block is specified in the scoping unit of the main program, the current values of the common
block storage sequence are made available to each scoping unit that specifies the named common block. The
definition status of each object in the named common block storage sequence depends on the association that has
been established for the common block storage sequence. 

A SAVE statement with an empty saved entity list is treated as though it contained the names of all allowed items
in the same scoping unit. 

A SAVE statement may appear in the specification part of a main program and has no effect. 

An example of a SAVE statement is: 

SAVE A, B, C, / BLOCKA /, D 

5.2.5 DIMENSION statement 

R525 dimension-stmt is DIMENSION [ :: ] array-name ( array-spec ) ■  
■  [ , array-name ( array-spec ) ] ... 

This statement specifies a list of object names to have the DIMENSION attribute (5.1.2.4) and specifies the array
properties that apply for each object named. 

An example of a DIMENSION statement is: 

DIMENSION A (10), B (10, 70), C (-3:12, *) 

5.2.6 ALLOCATABLE statement 

R526 allocatable-stmt is ALLOCATABLE [ :: ] array-name ■  
■  [ ( deferred-shape-spec-list ) ] ■  
■  [ , array-name [ ( deferred-shape-spec-list ) ] ] ... 

Constraint: The array-name must not be a dummy argument or function result. 

Constraint: If the DIMENSION attribute for an array-name is specified elsewhere in the scoping unit, the
array-spec must be a deferred-shape-spec-list. 

This statement specifies a list of array names that have the ALLOCATABLE attribute (5.1.2.9). The shape of an
allocatable array is determined when space is allocated for the array by the execution of an ALLOCATE
statement (6.3.1). 

An example of an ALLOCATABLE statement is: 

REAL A, B (:) 
ALLOCATABLE :: A (:, :), B 

5.2.7 POINTER statement 

R527 pointer-stmt is POINTER [ :: ] object-name ■  
■  [ ( deferred-shape-spec-list ) ] ■  
■  [ , object-name [ ( deferred-shape-spec-list ) ] ] ... 

Constraint: The INTENT attribute must not be specified for an object-name. 

Constraint: If the DIMENSION attribute for an object-name is specified elsewhere in the scoping unit, the
array-spec must be a deferred-shape-spec-list. 



ISO/IEC 1539 : 1991 (E)

50

Constraint: The PARAMETER attribute must not be specified for an object-name. 

This statement specifies a list of object names that have the POINTER attribute (5.1.2.7). An object that has the
POINTER attribute must not be referenced or defined unless, as a result of executing a pointer assignment (7.5.2)
or an ALLOCATE statement (6.3.1), it becomes pointer associated with a target object that may be referenced or
defined. 

An example of a POINTER statement is: 

TYPE (NODE) :: CURRENT 
POINTER :: CURRENT, A (:, :) 

5.2.8 TARGET statement 

R528 target-stmt is TARGET [ :: ] object-name [ ( array-spec ) ] ■  
■  [ , object-name [ ( array-spec ) ] ] ... 

Constraint: The PARAMETER attribute must not be specified for an object-name. 

This statement specifies a list of object names that have the TARGET attribute and thus may have pointers
associated with them. 

An example of a TARGET statement is: 

TARGET :: A (1000, 1000), B 

5.2.9 DATA statement 

A DATA statement is used to provide initial values for variables. 

R529 data-stmt is DATA data-stmt-set [ [ , ] data-stmt-set ] ... 

A variable, or part of a variable, must not be initialized more than once in an executable program. 

A variable that appears in a DATA statement and has not been typed previously may appear in a subsequent type
declaration only if that declaration confirms the implicit typing. An array name, array section, or array element
that appears in a DATA statement must have had its array properties established by a previous specification
statement. 

Except for variables in named common blocks, a named variable has the SAVE attribute if any part of it is
initialized in a DATA statement, and this may be confirmed by a SAVE statement or a type declaration statement
containing the SAVE attribute. 

R530 data-stmt-set is data-stmt-object-list / data-stmt-value-list / 

R531 data-stmt-object is variable 
or data-implied-do 

R532 data-stmt-value is [ data-stmt-repeat ∗ ] data-stmt-constant 

R533 data-stmt-constant is scalar-constant 
or signed-int-literal-constant 
or signed-real-literal-constant 
or structure-constructor 
or boz-literal-constant 

R534 data-stmt-repeat is scalar-int-constant 

R535 data-implied-do is ( data-i-do-object-list , data-i-do-variable = ■  
■  scalar-int-expr , scalar-int-expr [ , scalar-int-expr ] ) 

R536 data-i-do-object is array-element 
or scalar-structure-component 



ISO/IEC 1539 : 1991 (E)

51

or data-implied-do 

Constraint: The array-element must not have a constant parent. 

Constraint: The scalar-structure-component must not have a constant parent. 

R537 data-i-do-variable is scalar-int-variable 

Constraint: data-i-do-variable must be a named variable. 

Constraint: The DATA statement repeat factor must be positive or zero. If the DATA statement repeat factor
is a named constant, it must have been declared previously in the scoping unit or made accessible
by use association or host association. 

Constraint: If a data-stmt-constant is a structure-constructor, each component must be an initialization
expression. 

Constraint: In a variable that is a data-stmt-object, any subscript, section subscript, substring starting point,
and substring ending point must be an initialization expression. 

Constraint: A variable whose name or designator is included in a data-stmt-object-list or a data-i-do-object-
list must not be: a dummy argument, made accessible by use association or host association, in a
named common block unless the DATA statement is in a block data program unit, in a blank
common block, a function name, a function result name, an automatic object, a pointer, or an
allocatable array. 

Constraint: In an array-element or a scalar-structure-component that is a data-i-do-object, any subscript must
be an expression whose primaries are either constants or DO variables of the containing data-
implied-dos, and each operation must be intrinsic. 

Constraint: A scalar-int-expr of a data-implied-do must involve as primaries only constants or DO variables
of the containing data-implied-dos, and each operation must be intrinsic. 

The data-stmt-object-list is expanded to form a sequence of scalar variables. An array whose unqualified name
appears in a data-stmt-object-list is equivalent to a complete sequence of its array elements in array element
order (6.2.2.2). An array section is equivalent to the sequence of its array elements in array element order. A
data-implied-do is expanded to form a sequence of array elements and structure components, under the control of
the implied-DO variable, as in the DO construct (8.1.4.4). 

Note that zero-sized arrays and implied-DO lists with iteration counts of zero contribute no variables to the
expanded sequence of scalar variables, but that a zero-length character variable does contribute a variable to the
list. 

The data-stmt-value-list is expanded to form a sequence of scalar constant values. Each such value must be a
constant that is either previously defined or made accessible by a use association or host association. A data
statement repeat factor indicates the number of times the following constant is to be included in the sequence;
omission of a data statement repeat factor has the effect of a repeat factor of 1. Note that values with a repeat
factor of zero contribute no values to the expanded sequence of scalar constant values. 

The expanded sequences of scalar variables and constant values are in one-to-one correspondence. Each constant
specifies the initial value for the corresponding variable. The lengths of the two expanded sequences must be the
same. 

If an object is of type character or logical, the corresponding constant must be of the same type. When the object
is of type real or complex, the corresponding constant must be of type integer, real, or complex. When the object
is of type integer, the corresponding constant either must be of type integer, real, or complex, or must be a binary,
octal, or hexadecimal literal constant. If an object is of derived type, the corresponding constant must be of the
same type. 

The value of the constant must be compatible with its corresponding variable according to the rules of intrinsic
assignment (7.5.1.4), and the variable becomes initially defined with the value of the constant in accordance with
the rules of intrinsic assignment. 



ISO/IEC 1539 : 1991 (E)

52

Examples of DATA statements are: 

CHARACTER (LEN = 10) NAME 
INTEGER, DIMENSION (0:9) :: MILES 
REAL, DIMENSION (100, 100) :: SKEW 
TYPE (PERSON) MYNAME, YOURNAME 
DATA NAME / ’JOHN DOE’ /, MILES / 10 * 0 / 
DATA ((SKEW (K, J), J = 1, K), K = 1, 100) / 5050 * 0.0 / 
DATA ((SKEW (K, J), J = K + 1, 100), K = 1, 99) / 4950 * 1.0 / 
DATA MYNAME / PERSON (21, ’JOHN SMITH’) / 
DATA YOURNAME % AGE, YOURNAME % NAME / 35, ’FRED BROWN’ / 

The character variable NAME is initialized with the value JOHN DOE with padding on the right because the
length of the constant is less than the length of the variable. All ten elements of the integer array MILES are
initialized to zero. The two-dimensional array SKEW is initialized so that the lower triangle of SKEW is zero
and the strict upper triangle is one. The structures MYNAME and YOURNAME are declared using the derived
type PERSON from 4.4.1. MYNAME is initialized by a structure constructor. YOURNAME is initialized by
supplying a separate value for each component. 

5.2.10 PARAMETER statement 

The PARAMETER statement provides a means of defining a named constant. Named constants defined by a
PARAMETER statement have exactly the same properties and restrictions as those declared in a type statement
specifying a PARAMETER attribute (5.1.2.1). 

R538 parameter-stmt is PARAMETER ( named-constant-def-list ) 

R539 named-constant-def is named-constant = initialization-expr 

The named constant must have its type, shape, and any type parameters specified either by a previous occurrence
in a type declaration statement in the same scoping unit, or by the implicit typing rules currently in effect for the
scoping unit. If the named constant is typed by the implicit typing rules, its appearance in any subsequent type
declaration statement must confirm this implied type and the values of any implied type parameters. 

Each named constant becomes defined with the value determined from the initialization expression that appears
on the right of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4). 

A named constant that appears in the initialization expression must have been defined previously in the same
PARAMETER statement, defined in a prior PARAMETER statement or type declaration statement using the
PARAMETER attribute, or made accessible by use association or host association. 

A named constant must not appear as part of a format specification (10.1.1). 

Each named constant has the PARAMETER attribute. 

An example of a PARAMETER statement is: 

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100) 

5.3 IMPLICIT statement 
In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all implicitly
typed data entities whose names begin with one of the letters specified in the statement. Alternatively, it may
indicate that no implicit typing rules are to apply in a particular scoping unit. 

R540 implicit-stmt is IMPLICIT implicit-spec-list 
or IMPLICIT NONE 

R541 implicit-spec is type-spec ( letter-spec-list ) 

R542 letter-spec is letter [ – letter ] 



ISO/IEC 1539 : 1991 (E)

53

Constraint: If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER statements
that appear in the scoping unit and there must be no other IMPLICIT statements in the scoping
unit. 

Constraint: If the minus and second letter appear, the second letter must follow the first letter alphabetically. 

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the second letter. For example,
A–C is equivalent to A, B, C. The same letter must not appear as a single letter, or be included in a range of
letters, more than once in all of the IMPLICIT statements in a scoping unit. 

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a type
(and type parameters). An IMPLICIT statement specifies the mapping for the letters in its letter-spec-list.
IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specified for a letter, the
default for a program unit or an interface body is default integer if the letter is I, J, ..., or N and default real
otherwise, and the default for an internal or module procedure is the mapping in the host scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, and is
not made accessible by use association or host association is declared implicitly to be of the type (and type
parameters) mapped from the first letter of its name, provided the mapping is not null. Note that the mapping can
be to a derived type that is inaccessible in the local scope if the derived type is accessible to the host scope. The
data entity is treated as if it were declared in an explicit type declaration in the outermost scoping unit in which
it appears. An explicit type specification in a FUNCTION statement overrides an IMPLICIT statement for the
name of that function subprogram. 

The following are examples of the use of IMPLICIT statements: 

MODULE EXAMPLE_MODULE 
IMPLICIT NONE 
... 
INTERFACE 

FUNCTION FUN (I) ! Not all data entities need be
INTEGER FUN ! be declared explicitly 

END FUNCTION FUN 
END INTERFACE 

CONTAINS 
FUNCTION JFUN (J) ! All data entities must 

INTEGER JFUN, J ! declared explicitly. 
... 

END FUNCTION JFUN 
END MODULE EXAMPLE_MODULE 
 
SUBROUTINE SUB 

IMPLICIT COMPLEX (C) 
C = (3.0, 2.0) ! C is implicitly declared COMPLEX 
... 

CONTAINS 
SUBROUTINE SUB1 

IMPLICIT INTEGER (A, C) 
C = (0.0, 0.0) ! C is host associated and of 

! type complex 
Z = 1.0 ! Z is implicitly declared REAL 
A = 2 ! A is implicitly declared INTEGER 
CC = 1 ! CC is implicitly declared INTEGER 
... 

END SUBROUTINE SUB1 
 



ISO/IEC 1539 : 1991 (E)

54

SUBROUTINE SUB2 
Z = 2.0 ! Z is implicitly declared REAL and 

! is different from the variable of 
! the same name in SUB1 

... 
END SUBROUTINE SUB2 

 
SUBROUTINE SUB3 

USE EXAMPLE_MODULE ! Accesses integer function FUN 
! by use association 

Q = FUN (K) ! Q is implicitly declared REAL and 
... ! K is implicitly declared INTEGER 

END SUBROUTINE SUB3 
END SUBROUTINE SUB 

An IMPLICIT statement may specify a type-spec of derived type. For example, given an IMPLICIT statement
and a type defined as follows: 

IMPLICIT TYPE (POSN) (A-B, W-Z), INTEGER (C-V) 
TYPE POSN 

REAL X, Y 
INTEGER Z 

END TYPE POSN 

variables beginning with the letters A, B, W, X, Y, and Z are implicitly typed with the type POSN and the
remaining variables are implicitly typed with type INTEGER. 

5.4 NAMELIST statement 
A NAMELIST statement specifies a group of named data objects which can then be referred to by a single
name for the purpose of data transfer (9.4, 10.9). 

R543 namelist-stmt is NAMELIST / namelist-group-name / ■  
■  namelist-group-object-list ■  
■  [ [ , ] / namelist-group-name / ■  
■  namelist-group-object-list ] ... 

R544 namelist-group-object is variable-name 

Constraint: A namelist-group-object must not be an array dummy argument with a nonconstant bound, a
variable with nonconstant character length, an automatic object, a pointer, a variable of a type that
has an ultimate component that is a pointer, or an allocatable array. 

Constraint: If a namelist-group-name has the PUBLIC attribute, no item in the namelist-group-object-list may
have the PRIVATE attribute. 

The order in which the data objects (variables) are specified in the NAMELIST statement determines the order in
which the values appear on output. 

Any namelist-group-name may occur in more than one NAMELIST statement in a scoping unit. The namelist-
group-object-list following each successive appearance of the same namelist-group-name in a scoping unit is
treated as a continuation of the list for that namelist-group-name. 

A namelist group object may be a member of more than one namelist group. 

A namelist group object must either be accessed by use or host association or must have its type, type
parameters, and shape specified by previous specification statements in the same scoping unit or by the implicit
typing rules currently in effect for the scoping unit. If a namelist group object is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement must confirm this implied type. 



ISO/IEC 1539 : 1991 (E)

55

An example of a NAMELIST statement is: 

NAMELIST /NLIST/ A, B, C 

5.5 Storage association of data objects 
In general, the physical storage units or storage order for data objects is not specifiable. However, the
EQUIVALENCE statement, the COMMON statement, and the SEQUENCE statement provide for control of the
order and layout of storage units. The general mechanism of storage association is described in 14.6.3. 

5.5.1 EQUIVALENCE statement 

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a
scoping unit. This causes storage association of the objects that share the storage units. 

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not cause
type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced, the scalar does not
have array properties and the array does not have the properties of a scalar. 

R545 equivalence-stmt is EQUIVALENCE equivalence-set-list 

R546 equivalence-set is ( equivalence-object , equivalence-object-list ) 

R547 equivalence-object is variable-name 
or array-element 
or substring 

Constraint: An equivalence-object must not be a dummy argument, a pointer, an allocatable array, an object
of a nonsequence derived type or of a sequence derived type containing a pointer at any level of
component selection, an automatic object, a function name, an entry name, a result name, a
named constant, a structure component, or a subobject of any of the preceding objects. 

Constraint: Each subscript or substring range expression in an equivalence-object must be an integer
initialization expression (7.1.6.1). 

Constraint: If an equivalence-object is of type default integer, default real, double precision real, default
complex, default logical, or numeric sequence type, all of the objects in the equivalence set must
be of these types. 

Constraint: If an equivalence-object is of type default character or character sequence type, all of the objects
in the equivalence set must be of these types. 

Constraint: If an equivalence-object is of a derived type that is not a numeric sequence or character sequence
type, all of the objects in the equivalence set must be of the same type. 

Constraint: If an equivalence-object is of an intrinsic type other than default integer, default real, double
precision real, default complex, default logical, or default character, all of the objects in the
equivalence set must be of the same type with the same kind type parameter value. 

5.5.1.1 Equivalence association 

An EQUIVALENCE statement specifies that the storage sequences (14.6.3.1) of the data objects specified in an
equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the
same first storage unit, and all of the zero-sized sequences in the equivalence-set, if any, are storage associated
with one another and with the first storage unit of any nonzero-sized sequences. This causes the storage
association of the data objects in the equivalence-set and may cause storage association of other data objects. 



ISO/IEC 1539 : 1991 (E)

56

5.5.1.2 Equivalence of default character objects 

A data object of type default character may be equivalenced only with other objects of type default character.
The lengths of the equivalenced objects are not required to be the same. 

An EQUIVALENCE statement specifies that the storage sequences of all the default character data objects
specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set,
if any, have the same first character storage unit, and all of the zero-sized sequences in the equivalence-set, if
any, are storage associated with one another and with the first character storage unit of any nonzero-sized
sequences. This causes the storage association of the data objects in the equivalence-set and may cause storage
association of other data objects. For example, using the declarations: 

CHARACTER (LEN = 4) :: A, B 
CHARACTER (LEN = 3) :: C (2) 
EQUIVALENCE (A, C (1)), (B, C (2)) 

the association of A, B, and C can be illustrated graphically as: 

1 2 3 4 5 6 7 
|--- --- A --- ---| 

|--- --- B --- ---| 
|--- C(1) ---| |--- C(2) ---| 

5.5.1.3 Array names and array element designators 

For a nonzero-sized array, the use of the array name unqualified by a subscript list in an EQUIVALENCE
statement has the same effect as using an array element designator that identifies the first element of the array. 

5.5.1.4 Restrictions on EQUIVALENCE statements 

An EQUIVALENCE statement must not specify that the same storage unit is to occur more than once in a
storage sequence. For example, 

REAL, DIMENSION (2) :: A 
REAL :: B 
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard conforming 

is prohibited, because it would specify the same storage unit for A (1) and A (2). An EQUIVALENCE statement
must not specify that consecutive storage units are to be nonconsecutive. For example, the following is
prohibited: 

REAL A (2) 
DOUBLE PRECISION D (2) 
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard conforming 

5.5.2 COMMON statement 

The COMMON statement specifies blocks of physical storage, called common blocks, that may be accessed by
any of the scoping units in an executable program. Thus, the COMMON statement provides a global data facility
based on storage association (14.6.3). The common blocks specified by the COMMON statement may be named
and are called named common blocks, or may be unnamed and are called blank common. 

R548 common-stmt is COMMON [ / [ common-block-name ] / ] ■  
■  common-block-object-list ■  
■  [ [ , ] / [ common-block-name ] / ■  
■  common-block-object-list ] ... 

R549 common-block-object is variable-name [ ( explicit-shape-spec-list ) ] 



ISO/IEC 1539 : 1991 (E)

57

Constraint: Only one appearance of a given variable-name is permitted in all common-block-object-lists
within a scoping unit. 

Constraint: A common-block-object must not be a dummy argument, an allocatable array, an automatic object,
a function name, an entry name, or a result name. 

Constraint: Each bound in the explicit-shape-spec must be a constant specification expression (7.1.6.2). 

Constraint: If a common-block-object is of a derived type, it must be a sequence type (4.4.1). 

Constraint: If a variable-name appears with an explicit-shape-spec-list, it must not have the POINTER
attribute. 

In each COMMON statement, the data objects whose names appear in a common block object list following a
common block name are declared to be in that common block. If the first common block name is omitted, all
data objects whose names appear in the first common block object list are specified to be in blank common.
Alternatively, the appearance of two slashes with no common block name between them declares the data objects
whose names appear in the common block object list that follows to be in blank common. 

Any common block name or an omitted common block name for blank common may occur more than once in
one or more COMMON statements in a scoping unit. The common block list following each successive
appearance of the same common block name in a scoping unit is treated as a continuation of the list for that
common block name. Similarly, each blank common block object list in a scoping unit is treated as a
continuation of blank common. 

The form variable-name (explicit-shape-spec-list) declares variable-name to have the DIMENSION attribute and
specifies the array properties that apply. If derived-type objects of numeric sequence type (4.4.1) or character
sequence type (4.4.1) appear in common, it is as if the individual components were enumerated directly in the
common list. 

Examples of COMMON statements are: 

COMMON /BLOCKA/ A, B, D (10, 30) 
COMMON I, J, K 

5.5.2.1 Common block storage sequence 

For each common block, a common block storage sequence is formed as follows: 

(1) A storage sequence is formed consisting of the sequence of storage units contained in the storage
sequences (14.6.3.1) of all data objects in the common block object lists for the common block. The
order of the storage sequences is the same as the order of the appearance of the common block
object lists in the scoping unit. 

(2) The storage sequence formed in (1) is extended to include all storage units of any storage sequence
associated with it by equivalence association. The sequence may be extended only by adding
storage units beyond the last storage unit. Data objects associated with an entity in a common block
are considered to be in that common block. 

5.5.2.2 Size of a common block 

The size of a common block is the size of its common block storage sequence, including any extensions of the
sequence resulting from equivalence association. 

5.5.2.3 Common association 

Within an executable program, the common block storage sequences of all nonzero-sized common blocks with
the same name have the same first storage unit, and the common block storage sequences of all zero-sized
common blocks with the same name are storage associated with one another. Within an executable program, the
common block storage sequences of all nonzero-sized blank common blocks have the same first storage unit and
the storage sequences of all zero-sized blank common blocks are associated with one another and with the first



ISO/IEC 1539 : 1991 (E)

58

storage unit of any nonzero-sized blank common blocks. This results in the association of objects in different
scoping units. 

A nonpointer object of default integer type, default real type, double precision real type, default complex type,
default logical type, or numeric sequence type must become associated only with nonpointer objects of these
types. 

A nonpointer object of type default character or character sequence type must become associated only with
nonpointer objects of these types. 

A nonpointer object of a derived type that is not a numeric sequence or character sequence type must become
associated only with nonpointer objects of the same type. 

A nonpointer object of intrinsic type other than default integer, default real, double precision real, default
complex, default logical, or default character must become associated only with nonpointer objects of the same
type and type parameters. 

A pointer must become storage associated only with pointers of the same type, type parameters, and rank. 

5.5.2.4 Differences between named common and blank common 

A blank common block has the same properties as a named common block, except for the following: 

(1) Execution of a RETURN or END statement may cause data objects in a named common block to
become undefined unless the common block name has been declared in a SAVE statement, but
never causes data objects in blank common to become undefined (14.7.6).

(2) Named common blocks of the same name must be of the same size in all scoping units of an
executable program in which they appear, but blank common blocks may be of different sizes.

(3) A data object in a named common block may be initially defined by means of a DATA statement or
type declaration statement in a block data program unit, but objects in blank common must not be
initially defined (11.4).

5.5.2.5 Restrictions on common and equivalence 

An EQUIVALENCE statement must not cause the storage sequences of two different common blocks to be
associated. Equivalence association must not cause a common block storage sequence to be extended by adding
storage units preceding the first storage unit of the first object specified in a COMMON statement for the
common block. For example, the following is not permitted: 

COMMON /X/ A 
REAL B (2) 
EQUIVALENCE (A, B (2)) ! Not standard conforming

A common block may be declared in the scoping unit of a module (11.3). If it is, it must not be declared in
another scoping unit that accesses entities from the module by use association. 



ISO/IEC 1539 : 1991 (E)

59

Section 6 : Use of data objects 
The appearance of a data object name or subobject designator in a context that requires its value is termed a
reference. A reference is permitted only if the data object is defined. A reference to a pointer is permitted only if
the pointer is associated with a target object that is defined. A data object becomes defined with a value when the
data object name or subobject designator appears in certain contexts and when certain events occur (14.7). 

R601 variable is scalar-variable-name 
or array-variable-name 
or subobject 

Constraint: array-variable-name must be the name of a data object that is an array. 

Constraint: array-variable-name must not have the PARAMETER attribute. 

Constraint: scalar-variable-name must not have the PARAMETER attribute. 

Constraint: subobject must not be a subobject designator (for example, a substring) whose parent is a
constant. 

R602 subobject is array-element 
or array-section 
or structure-component 
or substring 

R603 logical-variable is variable 

Constraint: logical-variable must be of type logical. 

R604 default-logical-variable is variable 

Constraint: default-logical-variable must be of type default logical. 

R605 char-variable is variable 

Constraint: char-variable must be of type character. 

R606 default-char-variable is variable 

Constraint: default-char-variable must be of type default character. 

R607 int-variable is variable 

Constraint: int-variable must be of type integer. 

R608 default-int-variable is variable 

Constraint: default-int-variable must be of type default integer. 

Pointers and allocatable arrays must not be defined in circumstances explained in 5.1.2.4.3. Dummy arguments
or variables associated with dummy arguments must not be defined in circumstances explained in 12.5.2.1 and
12.5.2.8. 

A literal constant is a scalar denoted by a syntactic form which indicates its type, type parameters, and value. A
named constant is a constant that has been associated with a name with the PARAMETER attribute (5.1.2.1,
5.2.10). A reference to a constant is always permitted; redefinition of a constant is never permitted. 

For example, given the declarations: 

CHARACTER (10) A, B (10) 
TYPE (PERSON) P ! See 4.4.1 



ISO/IEC 1539 : 1991 (E)

60

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables. 

6.1 Scalars 
A scalar (2.4.4) is a data entity that can be represented by a single value of the data type and that is not an array
(6.2). Its value, if defined, is a single element from the set of values that characterize its data type. 

A scalar has rank zero. 

6.1.1 Substrings 

A substring is a contiguous portion of a character string (4.3.2.1). The following rules define the forms of a
substring: 

R609 substring is parent-string ( substring-range ) 

R610 parent-string is scalar-variable-name 
or array-element 
or scalar-structure-component 
or scalar-constant 

R611 substring-range is [ scalar-int-expr ] : [ scalar-int-expr ] 

Constraint: parent-string must be of type character. 

The first scalar-int-expr in substring-range is called the starting point and the second one is called the ending
point. The length of a substring is the number of characters in the substring and is MAX ( , 0), where 
and  are the starting and ending points, respectively. 

Let the characters in the parent string be numbered 1, 2, 3, ..., , where  is the length of the parent string. Then
the characters in the substring are those from the parent string from the starting point and proceeding in sequence
up to and including the ending point. Both the starting point and the ending point must be within the range 1, 2,
...,  unless the starting point exceeds the ending point, in which case the substring has length zero. If the
starting point is not specified, the default value is 1. If the ending point is not specified, the default value is . 

If the parent is a variable, the substring is also a variable. 

Examples of character substrings are: 

6.1.2 Structure components 

A structure component is one of the components of a structure or is an array whose elements are components
of the elements of an array of derived type. 

R612 data-ref is part-ref [ % part-ref ] ... 

R613 part-ref is part-name [ ( section-subscript-list ) ] 

Constraint: In a data-ref, each part-name except the rightmost must be of derived type. 

Constraint: In a data-ref, each part-name except the leftmost must be the name of a component of the derived
type definition of the type of the preceding part-name. 

Constraint: In a part-ref containing a section-subscript-list, the number of section-subscripts must equal the
rank of part-name. 

B (1) (1:5) array element as parent string 
P % NAME (1:1) structure component as parent string 
ID (4:9) scalar variable name as parent string 
’0123456789’ (N:N) character constant as parent string 

l f– 1+ f
l

n n

n
n



ISO/IEC 1539 : 1991 (E)

61

The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has a section
subscript list is the number of subscript triplets and vector subscripts in the list. 

Constraint: In a data-ref, there must not be more than one part-ref with nonzero rank. A part-name to the
right of a part-ref with nonzero rank must not have the POINTER attribute. 

The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero. The
parent object of a data-ref is the data object whose name is the leftmost part name. 

R614 structure-component is data-ref 

Constraint: In a structure-component, there must be more than one part-ref and the rightmost part-ref must be
of the form part-name. 

The type and type parameters, if any, of a structure component are those of the rightmost part name. A structure
component must not be referenced or defined before the declaration of the parent object. A structure component
has the INTENT, TARGET, or PARAMETER attribute if the parent object has the attribute. A structure
component is a pointer only if the rightmost part name is defined to have the POINTER attribute. 

Examples of structure components are: 

6.2 Arrays 
An array is a set of scalar data, all of the same type and type parameters, whose individual elements are
arranged in a rectangular pattern. The scalar data that make up an array are the array elements. 

No order of reference to the elements of an array is indicated by the appearance of the array name or designator,
except where array element ordering (6.2.2.2) is specified. 

6.2.1 Whole arrays 

A whole array is a named array. 

A whole array is either a named constant or variable. A whole array named constant is the name of a constant
expression (5.1.2.1 and 5.2.10) that is an array. A whole array variable is the name of a variable that is an array;
the name does not have a subscript list appended to it. 

The appearance of a whole array variable in an executable construct specifies all the elements of the array
(2.4.5). An assumed-size array is permitted to appear as a whole array in an executable construct only as an
actual argument in a procedure reference that does not require the shape. 

The appearance of a whole array name in a nonexecutable statement specifies the entire array. 

6.2.2 Array elements and array sections 

R615 array-element is data-ref 

Constraint: In an array-element, every part-ref must have rank zero and the last part-ref must contain a
subscript-list. 

R616 array-section is data-ref [ ( substring-range ) ] 

Constraint: In an array-section, exactly one part-ref must have nonzero rank, and either the final part-ref has
a section-subscript-list with nonzero rank or another part-ref has nonzero rank. 

Constraint: In an array-section with a substring-range, the rightmost part-name must be of type character. 

R617 subscript is scalar-int-expr 

SCALAR_PARENT % SCALAR_FIELD scalar component of scalar parent 
ARRAY_PARENT (J) % SCALAR_FIELD component of array elray eement parent 
ARRAY_PARENT (1:N) % SCALAR_FIELD component of array section parent 



ISO/IEC 1539 : 1991 (E)

62

R618 section-subscript is subscript 
or subscript-triplet 
or vector-subscript 

R619 subscript-triplet is [ subscript ] : [ subscript ] [ : stride ] 

R620 stride is scalar-int-expr 

R621 vector-subscript is int-expr 

Constraint: A vector-subscript must be an integer array expression of rank one. 

Constraint: The second subscript must not be omitted from a subscript-triplet in the last dimension of an
assumed-size array. 

An array element is a scalar. An array section is an array. If a substring-range is present in an array-section, each
element is the designated substring of the corresponding element of the array section. For example, with the
declarations: 

REAL A (10, 10) 
CHARACTER (LEN = 10) B (5, 5, 5) 

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an array of shape (5,
5, 5) whose elements are substrings of length 2 of the corresponding elements of B. 

An array element or an array section has the INTENT, TARGET, or PARAMETER attribute if its parent has the
attribute, but it never has the POINTER attribute. 

Examples of array elements and array sections are: 

6.2.2.1

6.2.2.2 Array elements 

The value of a subscript in an array element must be within the bounds for that dimension. 

6.2.2.3 Array element order 

The elements of an array form a sequence known as the array element order. The position of an array element
in this sequence is determined by the subscript order value of the subscript list designating the element. The
subscript order value is computed from the formulas in Table 6.1. 

6.2.2.4 Array sections 

An array section is an array subobject optionally followed by a substring range. 

In an array-section having a section-subscript-list, each subscript-triplet and vector-subscript in the section
subscript list indicates a sequence of subscripts which may be empty (6.2.2). Each subscript in such a sequence
must be within the bounds for its dimension unless the sequence is empty. The array section is the set of elements
from the array determined by all possible subscript lists obtainable from the single subscripts or sequences of
subscripts specified by each section subscript. 

In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape of the
part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets and vector
subscripts in the section subscript list. The shape is the rank-one array whose ith element is the number of integer
values in the sequence indicated by the ith subscript triplet or vector subscript. If any of these sequences is

ARRAY_A (1:N:2) % ARRAY_B (I, J) % STRING (K) (:) array section 
SCALAR_PARENT % ARRAY_FIELD (J) array element 
SCALAR_PARENT % ARRAY_FIELD (1:N) array section 
SCALAR_PARENT % ARRAY_FIELD (1:N) % SCALAR_FIELD array section 



ISO/IEC 1539 : 1991 (E)

63

empty, the array section has size zero. The subscript order of the elements of an array section is that of the array
data object that the array section represents. 

6.2.2.4.1 Subscript triplet 

A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values. The
third expression in the subscript triplet is the increment between the subscript values and is called the stride. The
subscripts and stride of a subscript triplet are optional. An omitted first subscript in a subscript triplet is
equivalent to a subscript whose value is the lower bound for the array and an omitted second subscript is
equivalent to the upper bound. An omitted stride is equivalent to a stride of 1. 

The second subscript must not be omitted in the last dimension of an assumed-size array. 

When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of integers
beginning with the first subscript and proceeding in increments of the stride to the largest such integer not greater
than the second subscript; the sequence is empty if the first subscript is greater than the second. 

The stride must not be zero. 

For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the array of shape (3, 2): 

A (3, 2, 1) A (3, 2, 2) 
A (4, 2, 1) A (4, 2, 2) 
A (5, 2, 1) A (5, 2, 2) 

When the stride is negative, the sequence begins with the first subscript and proceeds in increments of the stride
down to the smallest such integer equal to or greater than the second subscript; the sequence is empty if the

Table 6.1   Subscript order value

Rank
Subscript
Bounds

Subscript
list

Subscript
order
value

1 :  

2 : , :  
 

3 : : :
 

 
 

. . . .

. . . .

. . . .

7 : :

Notes for Table 6-1: 
1)  = max (  -  + 1, 0) is the size of the th dimension. 
2) If the size of the array is nonzero,  for all  = 1, 2, ..., 7. 

j1 k1 s1 1 s1 j1–( )+

j1 k1 j2 k2 s1 s2,
1 s1 j1 )–(+

s2 j2 ) d1×–(+

j1 k1 j2, k2 j3, k3 s1 s2 s3, ,
1 s1 j1 )–(+

s2 s2 ) d2×–(+
s3 s3 ) d2 d1××–(+

j1 k1 … j7, , k7 s1 … s7, ,

1 s1( j1 )–+
s2 j2 ) d1×–(+
s3 j3 ) d2×–( d1×+

…+
s7( j7 ) d6×–+
d5× … d1××

di ki ji i
ji si ki≤ ≤ i



ISO/IEC 1539 : 1991 (E)

64

second subscript is greater than the first. For example, if an array is declared B (10), the section B (9 : 1 : –2) is
the array of shape (5) whose elements are B (9), B (7), B (5), B (3), and B (1), in that order. 

Note that a subscript in a subscript triplet need not be within the declared bounds for that dimension if all values
used in selecting the array elements are within the declared bounds. For example, if an array is declared as
B (10), the array section B (3 : 11 : 7) is the array of shape (2) consisting of the elements B (3) and B (10), in that
order. 

6.2.2.4.2 Vector subscript 

A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the
expression. Each element of the expression must be defined. A many-one array section is an array section with
a vector subscript having two or more elements with the same value. A many-one array section must not appear
on the left of the equals in an assignment statement or as an input item in a READ statement. 

For example, suppose Z is a two-dimensional array of shape (5, 7) and U and V are one-dimensional arrays of
shape (3) and (4), respectively. Assume the values of U and V are: 

U = (/ 1, 3, 2 /) 
V = (/ 2, 1, 1, 3 /) 

Then Z (3, V) consists of elements from the third row of Z in the order: 

Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3) 

and Z (U, 2) consists of the column elements: 

Z (1, 2) Z (3, 2) Z(2, 2) 

and Z (U, V) consists of the elements: 

Z (1, 2) Z (1, 1) Z (1, 1) Z (1, 3) 
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3) 
Z (2, 2) Z (2, 1) Z (2, 1) Z (2, 3) 

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and Z (U, V) must not
be redefined as sections. 

An internal file must not be an array section with a vector subscript. An array section with a vector subscript
must not be argument associated with a dummy array that is defined or redefined. An array section with a vector
subscript must not be the target in a pointer assignment statement. 

6.3 Dynamic association 
Dynamic control over the creation, association, and deallocation of pointer targets is provided by the
ALLOCATE, NULLIFY, and DEALLOCATE statements and pointer assignment. ALLOCATE (6.3.1) creates
targets for pointers; pointer assignment (7.5.2) associates pointers with existing targets; NULLIFY (6.3.2)
disassociates pointers from targets, and DEALLOCATE (6.3.3) deallocates targets. Dynamic association applies
to scalars and arrays of any type. 

The ALLOCATE and DEALLOCATE statements also are used to create and deallocate arrays with the
ALLOCATABLE attribute. 

6.3.1 ALLOCATE statement 

The ALLOCATE statement dynamically creates pointer targets and allocatable arrays. 

R622 allocate-stmt is ALLOCATE ( allocation-list ■  
■  [ , STAT = stat-variable ] ) 

R623 stat-variable is scalar-int-variable 



ISO/IEC 1539 : 1991 (E)

65

R624 allocation is allocate-object [ ( allocate-shape-spec-list ) ] 

R625 allocate-object is variable-name 
or structure-component 

R626 allocate-shape-spec is [ allocate-lower-bound : ] allocate-upper-bound 

R627 allocate-lower-bound is scalar-int-expr 

R628 allocate-upper-bound is scalar-int-expr 

Constraint: Each allocate-object must be a pointer or an allocatable array. 

Constraint: The number of allocate-shape-specs in an allocate-shape-spec-list must be the same as the rank
of the pointer or allocatable array. 

A bound in an allocate-shape-spec must not be an expression involving as a primary an array inquiry function
(13.10.15) whose argument is any allocate-object in the same ALLOCATE statement. 

An example of an ALLOCATE statement is: 

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC) 

The stat-variable must not be allocated within the ALLOCATE statement in which it appears. 

At the time an ALLOCATE statement is executed for an array, the values of the lower bound and upper bound
expressions determine the bounds of the array. Subsequent redefinition or undefinition of any entities in the
bound expressions do not affect the array bounds. If the lower bound is omitted, the default value is 1. If the
upper bound is less than the lower bound, the extent in that dimension is zero and the array has zero size. Note
that allocate-object may be of type character with zero character length. 

If the STAT= specifier is present, successful execution of the ALLOCATE statement causes the stat-variable to
become defined with a value of zero. If an error condition occurs during the execution of the ALLOCATE
statement, the stat-variable becomes defined with a processor-dependent positive integer value. 

If an error condition occurs during execution of an ALLOCATE statement that does not contain the STAT=
specifier, execution of the executable program is terminated. 

6.3.1.1 Allocation of allocatable arrays 

An allocatable array that has been allocated by an ALLOCATE statement and has not been subsequently
deallocated (6.3.3) is currently allocated and is definable. Allocating a currently allocated allocatable array
causes an error condition in the ALLOCATE statement. At the beginning of execution of an executable program,
allocatable arrays have the allocation status of not currently allocated and are not definable. The ALLOCATED
intrinsic function (13.13.9) may be used to determine whether an allocatable array is currently allocated. 

6.3.1.2 Allocation of pointer targets 

Following successful execution of an ALLOCATE statement for a pointer, the pointer is associated with the
target and may be used to reference or define the target. Allocation of a pointer creates an object that implicitly
has the TARGET attribute. Additional pointers may become associated with the pointer target or a part of the
pointer target by pointer assignment. It is not an error to allocate a pointer that is currently associated with a
target. In this case, a new pointer target is created as required by the attributes of the pointer and any array
bounds specified in the ALLOCATE statement. The pointer is then associated with this new target. Any previous
association of the pointer with a target is broken. If the previous target had been created by allocation, it becomes
inaccessible unless it can still be referred to by other pointers that are currently associated with it. The
ASSOCIATED intrinsic function (13.13.13) may be used to determine whether a pointer is currently associated. 

At the beginning of execution of a function whose result is a pointer, the association status of the result pointer
is undefined. Before such a function returns, it must either associate a target with this pointer or cause the
association status of this pointer to become defined as disassociated. 



ISO/IEC 1539 : 1991 (E)

66

6.3.2 NULLIFY statement 

The NULLIFY statement causes pointers to be disassociated. 

R629 nullify-stmt is NULLIFY ( pointer-object-list ) 

R630 pointer-object is variable-name 
or structure-component 

Constraint: Each pointer-object must have the POINTER attribute. 

6.3.3 DEALLOCATE statement 

The DEALLOCATE statement causes allocatable arrays to be deallocated and it causes pointer targets to be
deallocated and the pointers to be disassociated. 

R631 deallocate-stmt is DEALLOCATE ( allocate-object-list ■  
■  [ , STAT = stat-variable ] ) 

Constraint: Each allocate-object must be a pointer or an allocatable array. 

The stat-variable must not be deallocated within the same DEALLOCATE statement. 

If the STAT= specifier is present, successful execution of the DEALLOCATE statement causes the stat-variable
to become defined with a value of zero. If an error condition occurs during the execution of the DEALLOCATE
statement, the stat-variable becomes defined with a processor-dependent positive integer value. 

If an error condition occurs during execution of a DEALLOCATE statement that does not contain the STAT=
specifier, execution of the executable program is terminated. 

An example of a DEALLOCATE statement is: 

DEALLOCATE (X, B) 

6.3.3.1 Deallocation of allocatable arrays 

Deallocating an allocatable array that is not currently allocated causes an error condition in the DEALLOCATE
statement. An allocatable array with the TARGET attribute must not be deallocated through an associated
pointer. Deallocating an allocatable array with the TARGET attribute causes the pointer association status of any
pointer associated with it to become undefined. 

When the execution of a procedure is terminated by execution of a RETURN or END statement, the following
allocatable arrays retain their allocation and definition status: 

(1) An allocatable array with the SAVE attribute, 

(2) An allocatable array in the scoping unit of a module if the module also is accessed by another
scoping unit that is currently in execution, or 

(3) An allocatable array accessible by host association. 

Any other allocatable array that is currently allocated becomes undefined and the allocation status becomes
undefined at the execution of a RETURN or END statement. 

If an allocatable array has an undefined allocation status, the allocatable array must not be subsequently
referenced, defined, allocated, or deallocated. 

6.3.3.2 Deallocation of pointer targets 

If a pointer appears in a DEALLOCATE statement, its association status must be defined. Deallocating a pointer
that is disassociated or whose target was not created by an ALLOCATE statement causes an error condition in
the DEALLOCATE statement. If a pointer is currently associated with an allocatable array, the pointer must not
be deallocated. 



ISO/IEC 1539 : 1991 (E)

67

A pointer that is not currently associated with the whole of an allocated target object must not be deallocated. If
a pointer is currently associated with a portion (2.4.3.1) of a target object that is independent of any other portion
of the target object, it must not be deallocated. Deallocating a pointer target causes the pointer association status
of any other pointer that is associated with the target or a portion of the target to become undefined. 

When the execution of a procedure is terminated by execution of a RETURN or END statement, the pointer
association status of a pointer declared or accessed in the procedure becomes undefined unless it is one of the
following: 

(1) A pointer with the SAVE attribute, 

(2) A pointer in blank common, 

(3) A pointer in a named common block that appears in at least one other scoping unit that is currently
in execution, 

(4) A pointer declared in the scoping unit of a module if the module also is accessed by another scoping
unit that is currently in execution, 

(5) A pointer accessed by host association, or 

(6) A pointer that is the return value of a function declared to have the POINTER attribute. 

When a pointer target becomes undefined by execution of a RETURN or END statement, the pointer association
status (14.6.2.1) becomes undefined. 



ISO/IEC 1539 : 1991 (E)

68

Section 7 : Expressions and assignment 
This section describes the formation, interpretation, and evaluation rules for expressions and the assignment
statement. 

7.1 Expressions 
An expression represents either a data reference or a computation, and its value is either a scalar or an array. An
expression is formed from operands, operators, and parentheses. Simple forms of an operand are constants and
variables, such as: 

3.0 
.FALSE. 
A 
B (I) 
C (I:J) 

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined (7.3). More complicated
expressions can be formed using operands which are themselves expressions. 

Examples of intrinsic operators are: 

+ 
* 
> 
.AND. 

7.1.1 Form of an expression 

Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a shape
(7.1.4). 

Examples of expressions are: 

A + B 
(A - B) * C 
A ** B 
C .AND. D 
F // G 

An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression, level-3
expression, level-4 expression, and level-5 expression. 

These categories are related to the different operator precedence levels and, in general, are defined in terms of
other categories. The simplest form of each expression category is a primary. The rules given below specify the
syntax of an expression. The semantics are specified in 7.2 and 7.3. 

7.1.1.1 Primary 

R701 primary is constant 
or constant-subobject 
or variable 
or array-constructor 
or structure-constructor 
or function-reference 



ISO/IEC 1539 : 1991 (E)

69

or ( expr ) 

R702 constant-subobject is subobject 

Constraint: subobject must be a subobject designator whose parent is a constant. 

Constraint: A variable that is a primary must not be an assumed-size array. 

Examples of a primary are:

7.1.1.2 Level-1 expressions 

Defined unary operators have the highest operator precedence (Table 7.7). Level-1 expressions are primaries
optionally operated on by defined unary operators: 

R703 level-1-expr is [ defined-unary-op ] primary 

R704 defined-unary-op is . letter [ letter ] ... .
Constraint: A defined-unary-op must not contain more than 31 letters and must not be the same as any

intrinsic-operator or logical-literal-constant. 

Simple examples of a level-1 expression are: 

A more complicated example of a level-1 expression is: 

.INVERSE. (A + B) 

7.1.1.3 Level-2 expressions 

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op, and
add-op. 

R705 mult-operand is level-1-expr [ power-op mult-operand ] 

R706 add-operand is [ add-operand mult-op ] mult-operand 

R707 level-2-expr is [ [ level-2-expr ] add-op ] add-operand

R708 power-op is **

R709 mult-op is *
or / 

R710 add-op is + 
or – 

Example Syntactic Class  
1.0 constant
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ (I:I) constant-subobject
A variable
(/ 1.0, 2.0 /) array-constructor
PERSON (12, ’Jones’) structure-constructor
F (X, Y) function-reference
(S + T) (expr) 

Example Syntactic Class 
A primary (R701)
.INVERSE. B level-1-expr (R703) 



ISO/IEC 1539 : 1991 (E)

70

Simple examples of a level-2 expression are: 

A more complicated example of a level-2 expression is: 

- A + D * E + B ** C

7.1.1.4 Level-3 expressions 

Level-3 expressions are level-2 expressions optionally involving the character operator concat-op. 

R711 level-3-expr is [ level-3-expr concat-op ] level-2-expr 

R712 concat-op is // 

Simple examples of a level-3 expression are: 

A more complicated example of a level-3 expression is: 

X // Y // ’ABCD’ 

7.1.1.5 Level-4 expressions 

Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op. 

R713 level-4-expr is [ level-3-expr rel-op ] level-3-expr 

R714 rel-op is .EQ. 
or .NE. 
or .LT. 
or .LE. 
or .GT. 
or .GE. 
or == 
or /= 
or < 
or <= 
or > 
or >= 

Example Syntactic Class Remarks 
A level-1-expr A is a primary. (R703)

B ** C mult-operand B is a level-1-expr, ∗∗ is a power-op,
and C is a mult-operand. (R705)

D * E add-operand D is an add-operand, ∗ is a mult-op,
and E is a mult-operand. (R706)

+1
+ is an add-op

and 1 is an add-operand. (R707)

F - I level-2-expr
F is a level-2-expr,

– is an add-op,
and I is an add-operand. (R707)

Example Syntactic Class 
A level-2-expr (R707) 
B // C level-3-expr (R711)



ISO/IEC 1539 : 1991 (E)

71

Simple examples of a level-4 expression are: 

A more complicated example of a level-4 expression is: 

(A + B) .NE. C 

7.1.1.6 Level-5 expressions 

Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op, or-op, and
equiv-op. 

R715 and-operand is [ not-op ] level-4-expr 

R716 or-operand is [ or-operand and-op ] and-operand 

R717 equiv-operand is [ equiv-operand or-op ] or-operand 

R718 level-5-expr is [ level-5-expr equiv-op ] equiv-operand 

R719 not-op is .NOT. 

R720 and-op is .AND. 

R721 or-op is .OR. 

R722 equiv-op is .EQV. 
or .NEQV. 

Simple examples of a level-5 expression are: 

A more complicated example of a level-5 expression is: 

A .AND. B .EQV. .NOT. C 

7.1.1.7 General form of an expression 

Expressions are level-5 expressions optionally involving defined binary operators. Defined binary operators have
the lowest operator precedence (Table 7.7). 

R723 expr

R724 defined-binary-op

is [ expr defined-binary-op ] level-5-expr 

is . letter [ letter ] ... .
Constraint: A defined-binary-op must not contain more than 31 letters and must not be the same as any

intrinsic-operator or logical-literal-constant. 

Example Syntactic Class 
A level-3-expr (R711)
B .EQ. C level-4-expr (R713)
D < E level-4-expr (R713) 

Example Syntactic Class 
A level-4-expr (R713)
.NOT. B and-operand (R715)
C .AND. D or-operand (R716)
E .OR. F equiv-operand (R717)
G .EQV. H level-5-expr (R718)
S .NEQV. T level-5-expr (R718) 



ISO/IEC 1539 : 1991 (E)

72

Simple examples of an expression are: 

More complicated examples of an expression are: 

(B .INTERSECT. C) .UNION. (X - Y) 
A + B .EQ. C * D 
.INVERSE. (A + B) 
A + B .AND. C * D 
E // G .EQ. H (1:10) 

7.1.2 Intrinsic operations 

An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An intrinsic unary
operation is an operation of the form intrinsic-operator  where  is of an intrinsic type (4.3) listed in Table
7.1 for the unary intrinsic operator. 

An intrinsic binary operation is an operation of the form  intrinsic-operator  where  and  are of the
intrinsic types (4.3) listed in Table 7.1 for the binary intrinsic operator and are in shape conformance (7.1.5). 

Example Syntactic Class 
A level-5-expr (R718)
B .UNION. C expr (R723) 

Table 7.1 Type of operands and result for the intrinsic operator [  op ] 

Intrinsic operator
op

Type of Type of Type of 
 [ ] op 

Unary +, – I, R, Z I, R, Z 

Binary +, –, ∗, /, ∗∗
I
R
Z

I, R, Z
I, R, Z
I, R, Z

I, R, Z 
R, R, Z 
Z, Z, Z 

// C C C

.EQ., .NE.==, /=

I
R
Z
C

I. R. Z
I, R, Z
I, R, Z

C

L, L, L
L, L, L 
L, L, L 

L 

.GT., .GE., .LT., .LE.
>, >=, <, <=

I
R
C

I. R
I, R
C

L,L
L, L 

L 

.NOT. L L

.AND., .OR., .EQV., .NEQV. L L L

Note: The symbols I, R, Z,C, and L stand for the types integer, real, complex, character, and
logical, respectively. Where more than one type for  is given, the type of the result of the
operation is given in the same relativeposition in the next column. For the intrinsic operators
requiring operands of type character, the kind type parameters of the operands must be the
same.

x2 x2

x1 x2 x1 x2

x1 x2

x1 x2 x1 x2

x2



ISO/IEC 1539 : 1991 (E)

73

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric operator (+,
–, ∗, /, or ∗∗). A numeric intrinsic operator is the operator in a numeric intrinsic operation. 

For numeric intrinsic binary operations, the two operands may be of different numeric types or different kind
type parameters. Except for a value raised to an integer power, if the operands have different types or kind type
parameters, the effect is as if each operand that differs in type or kind type parameter from those of the result is
converted to the type and kind type parameter of the result before the operation is performed. When a value of
type real or complex is raised to an integer power, the integer operand need not be converted. 

A character intrinsic operation, relational intrinsic operation, and logical intrinsic operation are similarly
defined in terms of a character intrinsic operator (//), relational intrinsic operator (.EQ., .NE., .GT., .GE.,
.LT., .LE., ==, /=, >, >=, <, and <=), and logical intrinsic operator (.AND., .OR., .NOT., .EQV., and .NEQV.),
respectively. For the intrinsic operator //, the kind type parameters must be the same. 

A numeric relational intrinsic operation is a relational intrinsic operation where the operands are of numeric
type. A character relational intrinsic operation is a relational intrinsic operation where the operands are of
type character and have the same kind type parameter value. 

7.1.3 Defined operations 

A defined operation is either a defined unary operation or a defined binary operation. A defined unary
operation is an operation that has the form defined-unary-op  and that is defined by a function and a generic
interface block (12.3.1) or that has the form intrinsic-operator  where the type of  is not that required for
the unary intrinsic operation (7.1.2), and that is defined by a function and a generic interface block. 

A defined binary operation is an operation that has the form  defined-binary-op  and that is defined by a
function and a generic interface block or that has the form  intrinsic-operator  where the types or ranks of
either  or  or both are not those required for the intrinsic binary operation (7.1.2), and that is defined by a
function and a generic interface block. 

Note that an intrinsic operator may be used as the operator in a defined operation. In such a case, the generic
properties of the operator are extended. 

An extension operation is a defined operation in which the operator is of the form defined-unary-op or defined-
binary-op. Such an operator is called an extension operator. The operator used in an extension operation may be
such that a generic interface for the operator may specify more than one function. 

7.1.4 Data type, type parameters, and shape of an expression 

The data type and shape of an expression depend on the operators and on the data types and shapes of the
primaries used in the expression, and are determined recursively from the syntactic form of the expression. The
data type of an expression is one of the intrinsic types (4.3) or a derived type (4.4). 

R725 logical-expr is expr 

Constraint: logical-expr must be type logical. 

R726 char-expr is expr 

Constraint: char-expr must be type character. 

R727 default-char-expr is expr 

Constraint: default-char-expr must be of type default character. 

R728 int-expr is expr 

Constraint: int-expr must be type integer. 

R729 numeric-expr is expr 

Constraint: numeric-expr must be of type integer, real or complex. 

x2
x2 x2

x1 x2
x1 x2

x1 x2



ISO/IEC 1539 : 1991 (E)

74

An expression whose type is intrinsic has a kind type parameter. In addition, an expression of type character has
a length type parameter. The type parameters for an expression are determined from the form of the expression. 

7.1.4.1 Data type, type parameters, and shape of a primary 

The data type, type parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, array constructor, structure constructor, function reference, or parenthesized expression. If a
primary is a constant, its type, type parameters, and shape are those of the constant. If it is a structure
constructor, it is scalar and its type is determined by the constructor name. If it is an array constructor, its type,
type parameters, and shape are as described in 4.5. If it is a variable or function reference, its type, type
parameters, and shape are those of the variable (5.1.1, 5.1.2) or the function reference (12.4.2), respectively. Note
that in the case of a function reference, the function may be generic (12.3.2.1, 13.10), in which case its type, type
parameters, and shape are determined by the types, type parameters, and ranks of its actual arguments. If a
primary is a parenthesized expression, its type, type parameters, and shape are those of the expression. 

If a pointer appears as a primary in an intrinsic operation or a defined operation in which it corresponds to a
nonpointer dummy argument, the associated target object is referenced. The type, type parameters, and shape of
the primary are those of the current target. If the pointer is not associated with a target, it may appear as a
primary only as an actual argument in a reference to a procedure whose corresponding dummy argument is
declared to be a pointer. 

7.1.4.2 Data type, type parameters, and shape of the result of an operation 

The type of the result of an intrinsic operation [ ]   is specified by Table 7.1. The type of the result of a
defined operation [ ]   is specified by the function defining the operation (7.3). 

The shape of the result of an intrinsic operation is the shape of  if  is unary or if  is scalar, and is the
shape of  otherwise. 

An expression of an intrinsic type has a kind type parameter. An expression of type character also has a length
type parameter. For an expression  //  where  and  are of type character, the length type parameter is
the sum of the lengths of the operands and the kind type parameter is the kind type parameter of , which must
be the same as the kind type parameter of . For an expression   where  is an intrinsic unary operator
and  is of type integer, real, complex, or logical, the kind type parameter of the expression is that of the
operand. For an expression    where  is a numeric intrinsic binary operator with one operand of type
integer and the other of type real or complex, the kind type parameter of the expression is that of the real or
complex operand. For an expression  op  where op is a numeric intrinsic binary operator with both
operands of the same type and kind type parameters, or with one real and one complex with the same kind type
parameters, the kind type parameter of the expression is identical to that of each operand. In the case where both
operands are integer with different kind type parameters, the kind type parameter of the expression is that of the
operand with the greater decimal exponent range or is processor dependent if the operands have the same
decimal exponent range. In the case where both operands are any of type real or complex with different kind type
parameters, the kind type parameter of the expression is that of the operand with the greater decimal precision or
is processor dependent if the operands have the same decimal precision. For an expression  op  where op is
a logical intrinsic binary operator with both operands of the same kind type parameter, the kind type parameter
of the expression is identical to that of each operand. In the case where both operands are of type logical with
different kind type parameters, the kind type parameter of the expression is processor dependent. For an
expression  op  where op is a relational intrinsic operator, the expression has the default logical kind type
parameter. 

7.1.5 Conformability rules for intrinsic operations 

Two entities are in shape conformance if both are arrays of the same shape, or one or both are scalars. 

For all intrinsic binary operations, the two operands must be in shape conformance. In case one is a scalar and
the other an array, the scalar is treated as if it were an array of the same shape as the array operand with every
element, if any, of the array equal to the value of the scalar. 

x1 op x2
x1 op x2

x2 op x1
x1

x1 x2 x1 x2
x1

x2 op x2 op
x2

x1 op x2 op

x1 x2

x1 x2

x1 x2



ISO/IEC 1539 : 1991 (E)

75

7.1.6 Scalar and array expressions 

An expression is either a scalar expression or an array expression. 

The following is an example of a scalar expression: 

Q + 2.3 * R 

where Q and R are scalars. 

The following is an example of an array expression: 

A (1:10) + B (2:11) 

where A and B are arrays. 

7.1.6.1 Constant expression 

A constant expression is an expression in which each operation is intrinsic and each primary is one of the
following: 

(1) A constant or subobject of a constant where each subscript, section subscript, substring starting
point, and substring ending point is a constant expression. 

(2) An array constructor where each element and the bounds and strides of each implied-DO are
expressions whose primaries are either constant expressions or implied-DO variables, 

(3) A structure constructor where each component is a constant expression, 

(4) An elemental intrinsic function reference where each argument is a constant expression, 

(5) A transformational intrinsic function reference where each argument is a constant expression, 

(6) A reference to an array inquiry function (13.10.15) other than ALLOCATED, the bit inquiry
function BIT_SIZE, the character inquiry function LEN, the kind inquiry function KIND, or a
numeric inquiry function (13.10.8), where each argument is either a constant expression or a
variable whose type parameters or bounds inquired about are not assumed, are not defined by an
expression that is not a constant expression, and are not defined by an ALLOCATE statement or a
pointer assignment, or 

(7) A constant expression enclosed in parentheses. 

A character constant expression is a constant expression whose type is character. An integer constant
expression is a constant expression whose type is integer. A logical constant expression is a constant expression
whose type is logical. A numeric constant expression is a constant expression whose type is integer, real, or
complex. 

An initialization expression is a constant expression in which the exponentiation operation is permitted only
with an integer power, and each primary is one of the following: 

(1) A constant or subobject of a constant where each subscript, section subscript, substring starting
point, and substring ending point is an initialization expression, 

(2) An array constructor where each element and the bounds and strides of each implied-DO are
expressions whose primaries are either initialization expressions or implied-DO variables, 

(3) A structure constructor where each component is an initialization expression, 

(4) An elemental intrinsic function reference of type integer or character where each argument is an
initialization expression of type integer or character, 

(5) A reference to one of the transformational functions, REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, or TRIM, where each argument
is an initialization expression, 



ISO/IEC 1539 : 1991 (E)

76

(6) A reference to an array inquiry function (13.10.15) other than ALLOCATED, the bit inquiry
function BIT_SIZE, the character inquiry function LEN, the kind inquiry function KIND, or a
numeric inquiry function (13.10.8), where each argument is either an initialization expression or a
variable whose type parameters or bounds inquired about are not assumed, are not defined by an
expression that is not a constant expression, and are not  defined by an ALLOCATE statement or a
pointer assignment, or 

(7) An initialization expression enclosed in parentheses. 

R730 initialization-expr is expr 

Constraint: An initialization-expr must be an initialization expression. 

R731 char-initialization-expr is char-expr 

Constraint: A char-initialization-expr must be an initialization expression. 

R732 int-initialization-expr is int-expr 

Constraint: An int-initialization-expr must be an initialization expression. 

R733 logical-initialization-expr is logical-expr 

Constraint: A logical-initialization-expr must be an initialization expression. 

If an initialization expression includes a reference to an inquiry function for a type parameter or an array bound
of an object specified in the same specification-part, the type parameter or array bound must be specified in a
prior specification of the specification-part. The prior specification may be to the left of the inquiry function in
the same statement. 

The following are examples of constant expressions: 

3 
-3 + 4 
’AB’ 
’AB’ // ’CD’ 
(’AB’ // ’CD’) // ’EF’ 
SIZE (A) 
DIGITS (X) + 4 

where A is an explicit-shaped array with constant bounds and X is of type default real. 

The following are examples of constant expressions that are not initialization expressions: 

ABS (9.0) ! Not an integer argument 
3.0 ** 2.0 ! Not an integer power 
DOT_PRODUCT ( (/ 2, 3 /), (/ 1, 7 /) ) ! Not an allowed function 

7.1.6.2 Specification expression 

A restricted expression is an expression in which each operation is intrinsic and each primary is: 

(1) A constant or subobject of a constant, 

(2) A variable that is a dummy argument that has neither the OPTIONAL nor the INTENT (OUT)
attribute, or a variable that is a subobject of such a dummy argument, 

(3) A variable that is in a common block or a variable that is a subobject of a variable in a common
block, 

(4) A variable that is made accessible by use association or host association or a variable that is a
subobject of such a variable, 



ISO/IEC 1539 : 1991 (E)

77

(5) An array constructor where each element and the bounds and strides of each implied-DO are
expressions whose primaries are either restricted expressions or implied-DO variables, 

(6) A structure constructor where each component is a restricted expression, 

(7) An elemental intrinsic function reference of type integer or character where each argument is a
restricted expression of type integer or character, 

(8) One of the transformational functions REPEAT, RESHAPE, SELECTED_INT_KIND,
SELECTED_REAL_KIND, TRANSFER, and TRIM, where each argument is a restricted
expression of type integer or character, 

(9) A reference to an array inquiry function (13.10.15) other than ALLOCATED, the bit inquiry
function BIT_SIZE, the character inquiry function LEN, the kind inquiry function KIND, or a
numeric inquiry function (13.10.8), where each argument is either a restricted expression or a
variable whose type parameters or bounds inquired about are not assumed or defined by an
ALLOCATE statement or a pointer assignment, or 

(10) A restricted expression enclosed in parentheses, 

and where any subscript, section subscript, substring starting point, or substring ending point is a restricted
expression. 

A specification expression (R509, R514, R515) is a restricted expression that is scalar and of type integer. 

R734 specification-expr is scalar-int-expr 

Constraint: The scalar-int-expr must be a restricted expression. 

A variable in a specification expression must have its type and type parameters, if any, specified by a previous
declaration in the same scoping unit, or by the implicit typing rules currently in effect for the scoping unit, or by
host or use association. If a variable in a specification expression is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm the implied type and type parameters. 

If a specification expression includes a reference to an inquiry function for a type parameter or an array bound of
an entity specified in the same specification-part, the type parameter or array bound must be specified in a prior
specification of the specification-part. If a specification expression includes a reference to the value of an
element of an array specified in the same specification-part, the array bounds must be specified in a prior
declaration. The prior specification may be to the left of the inquiry function in the same statement. 

The following are examples of specification expressions: 

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array 
M + LEN (C) ! M and C are dummy arguments 
2 * PRECISION (A) ! A is a real variable made accessible 

! by a USE statement 

7.1.7 Evaluation of operations 

This section applies to both intrinsic and defined operations. 

Any variable or function reference used as an operand in an expression must be defined at the time the reference
is executed. If the operand is a pointer, it must be associated with a target object that is defined. An integer
operand must be defined with an integer value rather than a statement label value. All of the characters in a character
data object reference must be defined. 

When a reference to an array or an array section is made, all of the selected elements must be defined. When a
structure is referenced, all of the components must be defined. 

Any numeric operation whose result is not mathematically defined is prohibited in the execution of an executable
program. Examples are dividing by zero and raising a zero-valued primary to a zero-valued or negative-valued
power. Raising a negative-valued primary of type real to a real power also is prohibited. 



ISO/IEC 1539 : 1991 (E)

78

The evaluation of a function reference must neither affect nor be affected by the evaluation of any other entity
within the statement. However, execution of a function reference in the logical expression of an IF statement
(8.1.2.4) or WHERE statement (7.5.3.1) is permitted to define variables in the statement that is executed when
the value of the expression is true. For example, in the statements: 

IF (F (X)) A = X 
WHERE (G (X)) B = X 

F or G may define X. If a function reference causes definition or undefinition of an actual argument of the
function, that argument or any associated entities must not appear elsewhere in the same statement. For example,
the statements 

A (I) = F (I) 
Y = G (X) + X 

are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines X. 

The type of an expression in which a function reference appears does not affect, and is not affected by, the
evaluation of the actual arguments of the function. 

Execution of an array element reference requires the evaluation of its subscripts. The type of an expression in
which the array element reference appears does not affect, and is not affected by, the evaluation of its subscripts.
Execution of an array section reference requires the evaluation of its section subscripts. The type of an
expression in which an array section appears does not affect, and is not affected by, the evaluation of the array
section subscripts. Execution of a substring reference requires the evaluation of its substring expressions. The
type of an expression in which a substring appears does not affect, and is not affected by, the evaluation of the
substring expressions. It is not necessary for a processor to evaluate any subscript expressions or substring
expressions for an array of zero size or a character entity of zero length. 

The appearance of an array constructor requires the evaluation of the bounds and stride of any array constructor
implied-DO it may contain. The type of an expression in which an array constructor appears does not affect, and
is not affected by, evaluation of such bounds and stride expressions. 

When an intrinsic binary operation is applied to a scalar and an array or to two arrays of the same shape, the
operation is performed element-by-element on corresponding array elements of the array operands. For example,
the array expression 

A + B 

produces an array the same shape as A and B. The individual array elements of the result have the values of the
first element of A added to the first element of B, the second element of A added to the second element of B, etc.
The processor may perform the element-by-element operations in any order. 

When an intrinsic unary operator operates on an array operand, the operation is performed element-by-element,
in any order, and the result is the same shape as the operand. 

7.1.7.1 Evaluation of operands 

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each
operand, if the value of the expression can be determined otherwise. This principle is most often applicable to
logical expressions, zero-sized arrays, and zero-length strings, but it applies to all expressions. For example, in
evaluating the expression 

X .GT. Y .OR. L (Z) 

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be evaluated
if X is greater than Y. Similarly, in the array expression 

W (Z) + X 

where X is of size zero and W is a function, the function reference W (Z) need not be evaluated. If a statement
contains a function reference in a part of an expression that need not be evaluated, all entities that would have



ISO/IEC 1539 : 1991 (E)

79

become defined in the execution of that reference become undefined at the completion of evaluation of the
expression containing the function reference. In the preceding examples, evaluation of these expressions causes
Z to become undefined if L or W defines its argument. 

7.1.7.2 Integrity of parentheses 

The sections that follow state certain conditions under which a processor may evaluate an expression that is
different from the one specified by applying the rules given in 7.1.1, 7.2, and 7.3. However, any expression
contained in parentheses must be treated as a data entity. For example, in evaluating the expression A + (B – C)
where A, B, and C are of numeric types, the difference of B and C must be evaluated before the addition
operation is performed; the processor must not evaluate the mathematically equivalent expression (A + B) – C. 

7.1.7.3 Evaluation of numeric intrinsic operations 

The rules given in 7.2.1 specify the interpretation of a numeric intrinsic operation. Once the interpretation has
been established in accordance with those rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated. 

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries,
their mathematical values are equal. However, mathematically equivalent expressions of numeric type may
produce different computational results. For example, any difference between the values of the expressions
(1./3.)∗3. and 1. is a computational difference, not a mathematical difference. 

The mathematical definition of integer division is given in 7.2.1.1. The difference between the values of the
expressions 5/2 and 5./2. is a mathematical difference, not a computational difference. 

The following are examples of expressions with allowable alternative forms that may be used by the processor in
the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J represent
arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

The following are examples of expressions with forbidden alternative forms that must not be used by a processor
in the evaluation of those expressions.

In addition to the parentheses required to establish the desired interpretation, parentheses may be included to
restrict the alternative forms that may be used by the processor in the actual evaluation of the expression. This is
useful for controlling the magnitude and accuracy of intermediate values developed during the evaluation of an
expression. For example, in the expression 

Expression Allowable Alternative Form 
X + Y Y + X
X * Y Y * X
-X + Y Y - X
X + Y + Z X + (Y + Z)
X - Y + Z X - (Y - Z)
X * A / Z X * (A / Z)
X * Y - X * Z X * (Y - Z)
A / B / C A / (B * C)
A / 5.0 0.2 * A 

Expression Nonallowable Alternative Form 
I / 2 0.5 * I
X * I / J X * (I / J)
I / J / A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X * Y - X * Z 



ISO/IEC 1539 : 1991 (E)

80

A + (B - C) 

the parenthesized expression (B – C) must be evaluated and then added to A. 

Note that the inclusion of parentheses may change the mathematical value of an expression. For example, the two
expressions: 

A ∗ I / J 
A ∗ (I / J) 

may have different mathematical values if I and J are of type integer. 

Each operand in a numeric intrinsic operation has a data type that may depend on the order of evaluation used by
the processor. For example, in the evaluation of the expression 

Z + R + I 

where Z, R, and I represent data objects of complex, real, and integer data type, respectively, the data type of the
operand that is added to I may be either complex or real, depending on which pair of operands (Z and R, R and
I, or Z and I) is added first. 

7.1.7.4 Evaluation of the character intrinsic operation 

The rules given in 7.2.2 specify the interpretation of the character intrinsic operation. A processor needs to
evaluate only as much of the character intrinsic operation as is required by the context in which the expression
appears. For example, the statements 

CHARACTER (LEN = 2) C1, C2, C3, CF 
C1 = C2 // CF (C3) 

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the value of
C1 because C1 has a length of 2. 

7.1.7.5 Evaluation of relational intrinsic operations 

The rules given in 7.2.3 specify the interpretation of relational intrinsic operations. Once the interpretation of an
expression has been established in accordance with those rules, the processor may evaluate any other expression
that is relationally equivalent, provided that the integrity of parentheses in any expression is not violated. For
example, the processor may choose to evaluate the expression 

I .GT. J 

where I and J are integer variables, as 

J - I .LT. 0 

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible
values of their primaries. 

7.1.7.6 Evaluation of logical intrinsic operations 

The rules given in 7.2.4 specify the interpretation of logical intrinsic operations. Once the interpretation of an
expression has been established in accordance with those rules, the processor may evaluate any other expression
that is logically equivalent, provided that the integrity of parentheses in any expression is not violated. For
example, for the variables L1, L2, and L3 of type logical, the processor may choose to evaluate the expression 

L1 .AND. L2 .AND. L3 

as 

L1 .AND. (L2 .AND. L3) 

Two expressions of type logical are logically equivalent if their values are equal for all possible values of their
primaries. 



ISO/IEC 1539 : 1991 (E)

81

7.1.7.7 Evaluation of a defined operation 

The rules given in 7.3 specify the interpretation of a defined operation. Once the interpretation of an expression
has been established in accordance with those rules, the processor may evaluate any other expression that is
equivalent, provided that the integrity of parentheses is not violated. 

Two expressions of derived type are equivalent if their values are equal for all possible values of their primaries. 

7.2 Interpretation of intrinsic operations 
The intrinsic operations are those defined in 7.1.2. These operations are divided into the following categories:
numeric, character, relational, and logical. The interpretations defined in the following sections apply to both
scalars and arrays; the interpretation for arrays is obtained by applying the interpretation for scalars element by
element. 

The type, type parameters, and interpretation of an expression that consists of an intrinsic unary or binary
operation are independent of the context in which the expression appears. In particular, the type, type parameters,
and interpretation of such an expression are independent of the type and type parameters of any other larger
expression in which it appears. For example, if X is of type real, J is of type integer, and INT is the real-to-
integer intrinsic conversion function, the expression INT (X + J) is an integer expression and X + J is a real
expression. 

7.2.1 Numeric intrinsic operations 

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation produces a
numeric value. The permitted data types for operands of the numeric intrinsic operations are specified in 7.1.2. 

The numeric operators and their interpretation in an expression are given in Table 7.2, where  denotes the
operand to the left of the operator and  denotes the operand to the right of the operator. 

The interpretation of a division depends on the data types of the operands (7.2.1.1). 

If  and  are of type integer and  has a negative value, the interpretation of  ∗∗  is the same as the
interpretation of 1/(  ∗∗ ABS ( )), which is subject to the rules of integer division (7.2.1.1). For example, 2
∗∗ (–3) has the value of 1/(2 ∗∗ 3), which is zero. 

7.2.1.1 Integer division 

One operand of type integer may be divided by another operand of type integer. Although the mathematical
quotient of two integers is not necessarily an integer, Table 7.1 specifies that an expression involving the division
operator with two operands of type integer is interpreted as an expression of type integer. The result of such an

Table 7.2 Interpretation of the numeric intrinsic operators

Operator Representing Use of
Operator Interpretation

∗∗ Exponentiation  ∗∗ Raise  to the power 
/ Division  / Divide   by 
∗ Multiplication  ∗ Multiply  by 
− Subtraction  − Subtract  from 
− Negation − Negate 
+ Addition  + Add  and 
+ Identity + Same as 

x1
x2

x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x2 x1

x2 x2
x1 x2 x1 x2

x2 x2

x1 x2 x2 x1 x2
x1 x2



ISO/IEC 1539 : 1991 (E)

82

operation is the integer closest to the mathematical quotient and between zero and the mathematical quotient
inclusively. For example, the expression (–8) / 3 has the value (–2). 

7.2.1.2 Complex exponentiation 

In the case of a complex value raised to a complex power, the value of the operation  ∗∗  is the principal

value of .

7.2.2 Character intrinsic operation 

The character intrinsic operator // is used to concatenate two operands of type character with the same kind type
parameter. Evaluation of the character intrinsic operation produces a result of type character. 

The interpretation of the character intrinsic operator // when used to form an expression is given in Table 7.3,
where  denotes the operand to the left of the operator and  denotes the operand to the right of the operator.  

The result of a character intrinsic operation is a character string whose value is the value of  concatenated on
the right with the value of  and whose length is the sum of the lengths of  and . Parentheses used to
specify the order of evaluation have no effect on the value of a character expression. For example, the value of
(’AB’ // ’CDE’) // ’F’ is the string ’ABCDEF’. Also, the value of ’AB’ // (’CDE’ // ’F’) is the string ’ABCDEF’. 

7.2.3 Relational intrinsic operations 

A relational intrinsic operator is used to compare values of two operands using the relational intrinsic operators
.LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted data types for operands of the relational
intrinsic operators are specified in 7.1.2. Note, as shown in Table 7.1, that a relational intrinsic operator must not
be used to compare the value of an expression of a numeric type with one of type character or logical. Also, two
operands of type logical must not be compared, a complex operand may be compared with another numeric
operand only when the operator is .EQ. .NE., ==, or /=, and two character operands must not be compared unless
they have the same kind type parameter value. 

Evaluation of a relational intrinsic operation produces a result of type default logical. 

The interpretation of the relational intrinsic operators is given in Table 7.4, where  denotes the operand to the
left of the operator and  denotes the operand to the right of the operator. The operators <, <=, >, >=, ==, and
/= always have the same interpretations as the operators .LT., .LE., .GT., .GE., .EQ., and .NE., respectively.  

Table 7.3 Interpretation of the character intrinsic operator // 

Operator Representing Use of
Operator Interpretation

// Concatenation  // Concatenate  with 

Table 7.4 Interpretation of the relational intrinsic operators

Operator Representing Use of
Operator Interpretation

.LT. Less Than  .LT.   less than 
< Less Than  <   less than 
.LE. Less Than Or Equal To  .LE.  less than or equal to 
<= Less Than Or Equal To  <=  less than or equal to 
.GT. Greater Than  .GT.  greater than 
> Greater Than  >  greater than 

x1 x2

x1
x2

x1 x2

x1 x2 x1 x2

x1
x2 x1 x2

x1
x2

x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x2 x1
x1 x2 x1 x2
x1 x2 x1 x2



ISO/IEC 1539 : 1991 (E)

83

A numeric relational intrinsic operation is interpreted as having the logical value true if the values of the
operands satisfy the relation specified by the operator. A numeric relational intrinsic operation is interpreted as
having the logical value false if the values of the operands do not satisfy the relation specified by the operator. 

In the numeric relational operation 

 rel-op  

if the types or kind type parameters of  and  differ, their values are converted to the type and kind type
parameter of the expression  +  before evaluation. 

A character relational intrinsic operation is interpreted as having the logical value true if the values of the
operands satisfy the relation specified by the operator. A character relational intrinsic operation is interpreted as
having the logical value false if the values of the operands do not satisfy the relation specified by the operator. 

For a character relational intrinsic operation, the operands are compared one character at a time in order,
beginning with the first character of each character operand. If the operands are of unequal length, the shorter
operand is treated as if it were extended on the right with blanks to the length of the longer operand. If both 
and  are of zero length,  is equal to ; if every character of  is the same as the character in the
corresponding position in ,  is equal to . Otherwise, at the first position where the character operands
differ, the character operand  is considered to be less than  if the character value of  at this position
precedes the value of  in the collating sequence (4.3.2.1.1);  is greater than  if the character value of 
at this position follows the value of  in the collating sequence. Note that the collating sequence depends
partially on the processor; however, the result of the use of the operators .EQ., .NE., ==, and /= does not depend
on the collating sequence. 

Note that for nondefault character types, the blank padding character is processor dependent. 

7.2.4 Logical intrinsic operations 

A logical operation is used to express a logical computation. Evaluation of a logical operation produces a result
of type logical. The permitted data types for operands of the logical intrinsic operations are specified in 7.1.2. 

The logical operators and their interpretation when used to form an expression are given in Table 7.5, where 
denotes the operand to the left of the operator and  denotes the operand to the right of the operator. 

.GE. Greater Than Or Equal To  .GE.  greater than or equal to 
>= Greater Than Or Equal To  >=  greater than or equal to 
.EQ. Equal To  .EQ.  equal to 
== Equal To  ==  equal to 
.NE. Not Equal To  .NE.  not equal to 
/= Not Equal To  /=  not equal to 

Table 7.5 Interpretation of the logical intrinsic operators

Operator Representing Use of
Operator Interpretation

.NOT. Logical Negation .NOT. True if  is false

.AND. Logical Conjunction  .AND. True if  and  are both true

Table 7.4 Interpretation of the relational intrinsic operators

Operator Representing Use of
Operator Interpretation

x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2
x1 x2 x1 x2

x1 x2

x1 x2
x1 x2

x1
x2 x1 x2 x1

x2 x1 x2
x1 x2 x1

x2 x1 x2 x1
x2

x1
x2

x2 x2
x1 x2 x1 x2



ISO/IEC 1539 : 1991 (E)

84

The values of the logical intrinsic operations are shown in Table 7.6. 

7.3 Interpretation of defined operations 
The interpretation of a defined operation is provided by the function that defines the operation. The type, type
parameters, and interpretation of an expression that consists of a defined operation are independent of the type
and type parameters of any larger expression in which it appears. The operators <, <=, >, >=, ==, and /= always
have the same interpretations as the operators .LT., .LE., .GT., .GE., .EQ., and .NE., respectively. 

7.3.1 Unary defined operation 

A function defines the unary operation   if: 

(1) The function is specified with a FUNCTION (12.5.2.2) or ENTRY (12.5.2.5) statement that
specifies one dummy argument , 

(2) An interface block (12.3.2.1) provides the function with a generic-spec of OPERATOR (op), 

(3) The type of  is the same as the type of dummy argument , 

(4) The type parameters, if any, of  match those of , and 

(5) The rank of , and its shape if it is an array, match those of . 

7.3.2 Binary defined operation 

A function defines the binary operation    if: 

(1) The function is specified with a FUNCTION (12.5.2.2) or ENTRY (12.5.2.5) statement that
specifies two dummy arguments,  and , 

(2) An interface block (12.3.2.1) provides the function with a generic-spec of OPERATOR (op), 

(3) The types of  and  are the same as those of the dummy arguments  and , respectively, 

(4) The type parameters, if any, of  and  match those of  and , respectively, and 

(5) The ranks of  and , and their shapes if either or both are arrays, match those of  and ,
respectively. 

.OR. Logical Inclusive Disjunction  .OR. True if  and  are both true

.NEQV. Logical Non-equivalence  .NEQV. True if either  or  are true, 
but not both

.EQV. Logical Equivalence  .EQV. True if both  and  are true  
or both are false

Table 7.6 The values of operations involving logical intrinsic operators

.NOT.  .AND.  .OR.  .EQV.  .NEQV.  
true true false true true true false
true false true false true false true
false true false false true false true 
false false true false false true false 

Table 7.5 Interpretation of the logical intrinsic operators

Operator Representing Use of
Operator Interpretation

x1 x2 x1 x2

x1 x2
x1 x2

x1 x2
x1 x2

x1 x2 x2 x1 x2 x1 x2 x1 x2 x1 x2

op x2

d2

x2 d2

x2 d2

x2 d2

x1 op x2

d1 d2

x1 x2 d1 d2

x1 x2 d1 d2

x1 x2 d1 d2



ISO/IEC 1539 : 1991 (E)

85

7.4 Precedence of operators 
There is a precedence among the intrinsic and extension operations implied by the general form in 7.1.1, which
determines the order in which the operands are combined, unless the order is changed by the use of parentheses.
This precedence order is summarized in Table 7.7. 

The precedence of a defined operation is that of its operator. 

For example, in the expression 

-A ** 2

the exponentiation operator (∗∗) has precedence over the negation operator (–); therefore, the operands of the
exponentiation operator are combined to form an expression that is used as the operand of the negation operator.
The interpretation of the above expression is the same as the interpretation of the expression 

- (A ** 2)

The general form of an expression (7.1.1) also establishes a precedence among operators in the same syntactic
class. This precedence determines the order in which the operands are to be combined in determining the
interpretation of the expression unless the order is changed by the use of parentheses. For example, in
interpreting a level-2-expr containing two or more binary operators + or –, each operand (add-operand) is
combined from left to right. Similarly, the same left-to-right interpretation for a mult-operand in add-operand, as
well as for other kinds of expressions, is a consequence of the general form. However, for interpreting a mult-
operand expression when two or more exponentiation operators ∗∗ combine level-1-expr operands, each level-1-
expr is combined from right to left. For example, the expressions 

2.1 + 3.4 + 4.9 
2.1 * 3.4 * 4.9 
2.1 / 3.4 / 4.9 
2 ** 3 ** 4 
’AB’ // ’CD’ // ’EF’ 

have the same interpretations as the expressions 

(2.1 + 3.4) + 4.9 
(2.1 * 3.4) * 4.9 
(2.1 / 3.4) / 4.9 
2 ** (3 ** 4) 
(’AB’ // ’CD’) // ’EF’ 

Table 7.7 Categories of operations and relative precedences

Category of 
Operation Operators Precedence

Extension defined-unary-op Highest
Numeric ∗∗ .
Numeric ∗ or / .
Numeric unary + or – .
Numeric binary + or – .
Character // .

Relational .EQ., .NE., .LT., .LE., .GT., .GE.
==,/=, <, <=, >, >= .

Logical .NOT. .
Logical .AND. .
Logical .OR. .
Logical .EQV. or .NEQV. .

Extension defined-binary-op Lowest



ISO/IEC 1539 : 1991 (E)

86

As a consequence of the general form (7.1.1), only the first add-operand of a level-2-expr may be preceded by
the identity (+) or negation (–) operator. These formation rules do not permit expressions containing two
consecutive numeric operators, such as A ∗∗ –B or A + –B. However, expressions such as A ∗∗ (–B) and A + (–
B) are permitted. The rules do allow a binary operator or an intrinsic unary operator to be followed by a defined
unary operator, such as: 

A * .INVERSE. B 
- .INVERSE. (B) 

As another example, in the expression 

A .OR. B .AND. C 

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore, the
interpretation of the above expression is the same as the interpretation of the expression 

A .OR. (B .AND. C) 

An expression may contain more than one category of operator. For example, the logical expression 

L .OR. A + B .GE. C 

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational operator,
and a logical operator. This expression would be interpreted the same as the expression 

L .OR. ((A + B) .GE. C) 

For example, if: 

(1) The operator ∗∗ is extended to type logical, 

(2) The operator .STARSTAR. is defined to duplicate the function of ∗∗ on type real, 

(3) .MINUS. is defined to duplicate the unary operator –, and 

(4) L1 and L2 are type logical and X and Y are type real, 

then in precedence: L1 ∗∗ L2 is higher than X ∗ Y; X ∗ Y is higher than X .STARSTAR. Y; and .MINUS. X is
higher than –X. 

7.5 Assignment 
Execution of an assignment statement causes a variable to become defined or redefined. Execution of a pointer
assignment statement causes a pointer to become associated with a target or causes its pointer association status
to become disassociated or undefined. Execution of a WHERE statement or WHERE construct masks the
evaluation of expressions and assignment of values in array assignment statements according to the value of a
logical array expression. 

7.5.1 Assignment statement 

A variable may be defined or redefined by execution of an assignment statement. 

7.5.1.1 General form 

R735 assignment-stmt is variable = expr 

where variable is defined in R601 and expr is defined in R723. 

Constraint: A variable in an assignment-stmt must not be an assumed-size array. 

Examples of an assignment statement are: 

A = 3.5 + X ∗ Y 
I = INT (A) 



ISO/IEC 1539 : 1991 (E)

87

An assignment statement is either intrinsic or defined. 

7.5.1.2 Intrinsic assignment statement 

An intrinsic assignment statement is an assignment statement where the shapes of variable and expr conform
and where: 

(1) The types of variable and expr are intrinsic, as specified in Table 7.8 for assignment, or 

(2) The types of variable and expr are of the same derived type and no defined assignment exists for
objects of this type. 

A numeric intrinsic assignment statement is an intrinsic assignment statement for which variable and expr are
of numeric type. A character intrinsic assignment statement is an intrinsic assignment statement for which
variable and expr are of type character and have the same kind type parameter. A logical intrinsic assignment
statement is an intrinsic assignment statement for which variable and expr are of type logical. A derived-type
intrinsic assignment statement is an intrinsic assignment statement for which variable and expr are of the same
derived type, and there is no accessible interface block with an ASSIGNMENT (=) specifier for objects of this
derived type.

An array intrinsic assignment statement is an intrinsic assignment statement for which variable is an array.
The variable must not be a many-one array section (6.2.2.3.2).

7.5.1.3 Defined assignment statement 

A defined assignment statement is an assignment statement that is not an intrinsic assignment statement, and is
defined by a subroutine and an interface block (12.3.2.1) that specifies ASSIGNMENT (=). 

7.5.1.4 Intrinsic assignment conformance rules 

For an intrinsic assignment statement, variable and expr must conform in shape, and if expr is an array, variable
must also be an array. The types of variable and expr must conform with the rules of Table 7.8. 

If variable is a pointer, it must be associated with a definable target such that the type, type parameters, and
shape of the target and expr conform. 

For a numeric intrinsic assignment statement, variable and expr may have different numeric types or different
kind type parameters, in which case the value of expr is converted to the type and kind type parameter of
variable according to the rules of Table 7.9.

Table 7.8 Type conformance for the intrinsic assignment statement variable = expr 

Type of variable Type of expr 
integer integer, real, complex

real integer, real, complex
complex integer, real, complex
character character of the same kind type parameter as variable
logical logical

derived type same derived type as variable 

Table 7.9 Numeric conversion and assignment statement variable = expr 

Type of variable Value Assigned 
integer INT (expr, KIND = KIND (variable)) 



ISO/IEC 1539 : 1991 (E)

88

For a logical intrinsic assignment statement, variable and expr may have different kind type parameters, in which
case the value of expr is converted to the kind type parameter of variable. 

For a character intrinsic assignment statement, variable and expr must have the same kind type parameter value,
but may have different length type parameters in which case the conversion of expr to the length of variable is: 

(1) If the length of variable is less than that of expr, the value of expr is truncated from the right until
it is the same length as variable; 

(2) If the length of variable is greater than that of expr, the value of expr is extended on the right with
blanks until it is the same length as variable. 

Note that for nondefault character types, the blank padding character is processor dependent. 

7.5.1.5 Interpretation of intrinsic assignments 

Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expressions
within variable (7.1.7), the possible conversion of expr to the type and type parameters of variable (Table 7.9),
and the definition of variable with the resulting value. The execution of the assignment must have the same
effect as if the evaluation of all operations in expr and variable occurred before any portion of variable is defined
by the assignment. The evaluation of expressions within variable must neither affect nor be affected by the
evaluation of expr. No value is assigned to variable if variable is of type character and zero length, or is an array
of size zero. 

If variable is a pointer, the value of expr is assigned to the target of variable. 

Both variable and expr may contain references to any portion of variable. For example, in the character intrinsic
assignment statement: 

STRING (2:5) = STRING (1:4) 

the assignment of the first character of STRING to the second character does not affect the evaluation of
STRING (1:4). For example, if the value of STRING prior to the assignment was ‘ABCDEF’, the value
following the assignment is ‘AABCDF’. 

If expr in an intrinsic assignment is a scalar and variable is an array, the expr is treated as if it were an array of
the same shape as variable with every element of the array equal to the scalar value of expr. 

When variable in an intrinsic assignment is an array, the assignment is performed element-by-element on
corresponding array elements of variable and expr. For example, if A and B are arrays of the same shape, the
array intrinsic assignment 

A = B 

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to the first
element of A, the second element of B is assigned to the second element of A, etc. The processor may perform
the element-by-element assignment in any order. 

For example, the following program segment results in the values of the elements of array X being reversed: 

REAL X (10) 
... 

X (1:10) = X (10:1:-1) 

real REAL (expr, KIND = KIND (variable)) 
complex CMPLX (expr, KIND = KIND (variable)) _ 
Note: The functions INT, REAL, CMPLX, and KIND are the 
generic functions defined in 13.13.

Table 7.9 Numeric conversion and assignment statement variable = expr 

Type of variable Value Assigned 



ISO/IEC 1539 : 1991 (E)

89

A derived-type intrinsic assignment is performed as if each component of expr were assigned to the
corresponding component of variable using pointer assignment (7.5.2) for pointer components, and intrinsic
assignment for nonpointer components. The processor may perform the component-by-component assignment in
any order or by any means that has the same effect. 

For an example of a derived-type intrinsic assignment statement, if C and D are of the same derived type with a
pointer component P and nonpointer components S, T, U, and V of type integer, logical, character, and another
derived type, respectively, the intrinsic assignment 

C = D 

pointer assigns D % P to C % P and assigns D % S to C % S using the numeric intrinsic assignment statement,
D % T to C % T using the logical intrinsic assignment statement, D % U to C % U using the character intrinsic
assignment statement, and D % V to C % V using the derived-type intrinsic assignment statement. 

When variable is a subobject, the assignment does not affect the definition status or value of other parts of the
object. For example, if variable is an array section, the assignment does not affect the definition status or value
of the elements of the parent array not specified by the array section. 

7.5.1.6 Interpretation of defined assignment statements 

The interpretation of a defined assignment is provided by the subroutine that defines the operation. 

A subroutine defines the defined assignment  =  if: 

(1) The subroutine is specified with a SUBROUTINE (12.5.2.3) or ENTRY (12.5.2.5) statement that
specifies two dummy arguments,  and , 

(2) An interface block (12.3.2.1) provides the subroutine with a generic-spec of ASSIGNMENT (=), 

(3) The types of  and  are the same as those of the dummy arguments  and , respectively, 

(4) The type parameters, if any, of  and  match those of  and , respectively, and 

(5) The ranks of  and , and their shapes if either or both are arrays, match those of  and ,
respectively. 

Note that  and  must not both be numeric, both be of type logical, or both be of type character with the
same kind type parameter value. 

7.5.2 Pointer assignment 

Pointer assignment causes a pointer to become associated with a target or causes its pointer association status to
become disassociated or undefined. 

R736 pointer-assignment-stmt is pointer-object => target 

R737 target is variable 
or expr 

Constraint: The pointer-object must have the POINTER attribute. 

Constraint: The variable must have the TARGET attribute or be a subobject of an object with the TARGET
attribute, or it must have the POINTER attribute. 

Constraint: The target must be of the same type, type parameters, and rank as the pointer. 

Constraint: The target must not be an array section with a vector subscript. 

Constraint: The expr must deliver a pointer result. 

If the target is not a pointer, the pointer assignment statement associates the pointer-object with the target. If the
target is a pointer that is associated, the pointer-object is associated with the same object as the target. If the

x1 x2

d1 d2

x1 x2 d1 d2

x1 x2 d1 d2

x1 x2 d1 d2

x1 x2



ISO/IEC 1539 : 1991 (E)

90

target is a pointer that is disassociated, the pointer-object also becomes disassociated. If the target is a pointer
with undefined association status, the pointer-object also acquires an undefined association status. 

Any previous association between the pointer-object and a target is broken. 

Pointer assignment for a pointer component of a structure also may take place by execution of a derived-type
intrinsic assignment statement (7.5.1.5) or a defined assignment statement (7.5.1.6). 

In addition to pointer assignment, a pointer becomes associated with a target by allocation of the pointer. 

A pointer must not be referenced or defined unless it is associated with a target that may be referenced or
defined. 

The following are examples of pointer assignment statements. 

NEW_NODE % LEFT => CURRENT_NODE 
SIMPLE_NAME => STRUCTURE % SUBSTRUCT % COMPONENT 
ROW => MAT2D (N, :) 
WINDOW => MAT2D (I-1:I+1, J-1:J+1) 
POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2) 
EVERY_OTHER => VECTOR (1:N:2) 

7.5.3 Masked array assignment—WHERE 

The masked array assignment is used to mask the evaluation of expressions and assignment of values in array
assignment statements, according to the value of a logical array expression. 

7.5.3.1 General form of the masked array assignment 

A masked array assignment is either a WHERE statement or WHERE construct. 

R738 where-stmt is WHERE ( mask-expr ) assignment-stmt 

R739 where-construct is where-construct-stmt 
[ assignment-stmt ] ... 
[ elsewhere-stmt 
[ assignment-stmt ] ... ] 
end-where-stmt 

R740 where-construct-stmt is WHERE ( mask-expr ) 

R741 mask-expr is logical-expr 

R742 elsewhere-stmt is ELSEWHERE 

R743 end-where-stmt is END WHERE 

Constraint: The assignment-stmt must not be a defined assignment. 

Examples of a masked array assignment are: 

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP 
 
WHERE (PRESSURE <= 1.0) 

PRESSURE = PRESSURE + INC_PRESSURE 
TEMP = TEMP - 5.0 

ELSEWHERE 
RAINING = .TRUE. 

END WHERE 



ISO/IEC 1539 : 1991 (E)

91

7.5.3.2 Interpretation of masked array assignments 

In each assignment-stmt, the mask-expr and the variable being defined must be arrays of the same shape. 

When the assignment-stmt in a where-stmt is executed, the expr of the assignment-stmt is evaluated for all the
elements where mask-expr is true and the result is assigned to the corresponding elements of variable according
to the rules of intrinsic assignment (7.5.1). When a where-construct is executed, the mask-expr is evaluated and
the result kept by the processor. Each assignment-stmt in the WHERE block is evaluated, in sequence, as if it
were WHERE (mask-expr) assignment-stmt and then each assignment-stmt in the ELSEWHERE block is
evaluated, in sequence, as if it were WHERE (.NOT. mask-expr) assignment-stmt. 

If a nonelemental function reference occurs in the expr or variable of an assignment-stmt, the function is
evaluated without any masked control by the mask-expr; that is, all of its argument expressions are fully
evaluated and the function is fully evaluated. If the result is an array and the reference is not within the argument
list of a nonelemental function, elements corresponding to true values in mask-expr (false in the mask-expr after
ELSEWHERE) are selected for use in evaluating each expr or variable. 

If an elemental intrinsic operation or function reference occurs in the expr of an assignment-stmt and is not
within the argument list of a nonelemental function reference, the operation is performed or the function is
evaluated only for the elements corresponding to true values in mask-expr (false values after ELSEWHERE). 

In a masked array assignment, only a WHERE statement or a WHERE construct statement may be a branch
target statement. The value of mask-expr evaluated at the beginning of the masked array assignment governs the
masking in the execution of the masked array assignment; subsequent changes to entities in mask-expr have no
effect on the masking. The execution of a function reference in the mask expression of a WHERE statement is
permitted to affect entities in the assignment statement. Execution of an END WHERE has no effect. 

Examples of function references in masked array assignments are: 

WHERE (A > 0.0) 
A = LOG (A) ! LOG is invoked only for positive elements. 
A = A / SUM (LOG (A)) ! LOG is invoked for all elements. 

END WHERE 



ISO/IEC 1539 : 1991 (E)

92

Section 8 : Execution control 
The execution sequence may be controlled by constructs containing blocks and by certain executable statements
that are used to alter the execution sequence. 

8.1 Executable constructs containing blocks 
The following are executable constructs that contain blocks and may be used to control the execution sequence: 

(1) IF Construct 

(2) CASE Construct 

(3) DO Construct 

There is also a nonblock form of the DO construct.

A block is a sequence of executable constructs that is treated as a unit. 

R801 block is [ execution-part-construct ] ... 

Executable constructs may be used to control which blocks of a program are executed or how many times a block
is executed. Blocks are always bounded by statements that are particular to the construct in which they are
embedded; however, in some forms of the DO construct, a sequence of executable constructs without a terminating boundary statement
must obey all other rules governing blocks (8.1.1). Note that a block need not contain any executable constructs. Execution
of such a block has no effect. 

Any of these three constructs may be named. If a construct is named, the name must be the first lexical token of
the first statement of the construct and the last lexical token of the construct. In fixed source form, the name
preceding the construct must be placed after column 6. 

A statement belongs to the innermost construct in which it appears unless it contains a construct name, in which
case it belongs to the named construct. 

An example of a construct containing a block is: 

IF (A > 0.0) THEN 
B = SQRT (A) ! These two statements 
C = LOG (A) ! form a block. 

END IF 

8.1.1 Rules governing blocks 

8.1.1.1 Executable constructs in blocks 

If a block contains an executable construct, the executable construct must be contained entirely within the block. 

8.1.1.2 Control flow in blocks 

Transfer of control to the interior of a block from outside the block is prohibited. Transfers within a block and
transfers from the interior of a block to outside the block may occur. For example, if a statement inside the block
has a statement label, a GO TO statement using that label may appear in the same block. Subroutine and function
references may appear in a block (12.4.2, 12.4.3, 12.4.4, 12.4.5). 



ISO/IEC 1539 : 1991 (E)

93

8.1.1.3 Execution of a block 

Execution of a block begins with the execution of the first executable construct in the block. Unless there is a
transfer of control out of the block, the execution of the block is completed when the last executable construct in
the sequence is executed. The action that takes place at the terminal boundary depends on the particular construct
and on the block within that construct. It is usually a transfer of control. 

8.1.2 IF construct 

The IF construct selects for execution no more than one of its constituent blocks. The IF statement controls the
execution of a single statement (8.1.2.4). 

8.1.2.1 Form of the IF construct 

R802 if-construct is if-then-stmt 
block 
[ else-if-stmt 

block ] ... 
[ else-stmt 

block ] 
end-if-stmt 

R803 if-then-stmt is [ if-construct-name : ] IF ( scalar-logical-expr ) THEN 

R804 else-if-stmt is ELSE IF ( scalar-logical-expr ) THEN [ if-construct-name ] 

R805 else-stmt is ELSE [ if-construct-name ] 

R806 end-if-stmt is END IF [ if-construct-name ] 

Constraint: If the if-then-stmt of an if-construct is identified by an if-construct-name, the corresponding end-
if-stmt must specify the same if-construct-name. If the if-then-stmt of an if-construct is not
identified by an if-construct-name, the corresponding end-if-stmt must not specify an if-construct-
name. If an else-if-stmt or else-stmt is identified by an if-construct-name, the corresponding if-
then-stmt must specify the same if-construct-name. 

8.1.2.2 Execution of an IF construct 

At most one of the blocks contained within the IF construct is executed. If there is an ELSE statement in the
construct, exactly one of the blocks contained within the construct will be executed. The scalar logical
expressions are evaluated in the order of their appearance in the construct until a true value is found or an ELSE
statement or END IF statement is encountered. If a true value or an ELSE statement is found, the block
immediately following is executed and this completes the execution of the construct. The scalar logical
expressions in any remaining ELSE IF statements of the IF construct are not evaluated. If none of the evaluated
expressions is true and there is no ELSE statement, the execution of the construct is completed without the
execution of any block within the construct. 

An ELSE IF statement or an ELSE statement must not be a branch target statement. It is permissible to branch to
an END IF statement from within the IF construct, and also from outside the construct.  Execution of an END IF
statement has no effect. 

8.1.2.3 Examples of IF constructs 

IF (CVAR .EQ. ’RESET’) THEN 
I = 0; J = 0; K = 0 

END IF 
 
PROOF_DONE: IF (PROP) THEN 

WRITE (3, ’("QED")’) 



ISO/IEC 1539 : 1991 (E)

94

STOP 
ELSE 

PROP = NEXTPROP 
END IF PROOF_DONE 
 
IF (A .GT. 0) THEN 

B = C/A 
IF (B .GT. 0) THEN 

D = 1.0 
END IF 

ELSE IF (C .GT. 0) THEN 
B = A/C 
D = -1.0 

ELSE 
B = ABS (MAX (A, C)) 
D = 0 

END IF 

8.1.2.4 IF statement 

The IF statement controls a single action statement (R216). 

R807 if-stmt is IF ( scalar-logical-expr ) action-stmt 

Constraint: The action-stmt in the if-stmt must not be an if-stmt, end-program-stmt, end-function-stmt, or end-
subroutine-stmt. 

Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the expression is
true, the action statement is executed. If the value is false, the action statement is not executed and execution
continues as though a CONTINUE statement (8.3) were executed. 

The execution of a function reference in the scalar logical expression is permitted to affect entities in the action
statement. 

An example of an IF statement is: 

IF (A > 0.0) A = LOG (A) 

8.1.3 CASE construct 

The CASE construct selects for execution at most one of its constituent blocks. 

8.1.3.1 Form of the CASE construct 

R808 case-construct is select-case-stmt 
[ case-stmt 

block ] ... 
end-select-stmt 

R809 select-case-stmt is [ case-construct-name : ] SELECT CASE ( case-expr ) 

R810 case-stmt is CASE case-selector [case-construct-name] 

R811 end-select-stmt is END SELECT [ case-construct-name ] 

Constraint: If the select-case-stmt of a case-construct is identified by a case-construct-name, the
corresponding end-select-stmt must specify the same case-construct-name. If the select-case-stmt
of a case-construct is not identified by a case-construct-name, the corresponding end-select-stmt
must not specify a case-construct-name. If a case-stmt is identified by a case-construct-name, the
corresponding select-case-stmt must specify the same case-construct-name. 



ISO/IEC 1539 : 1991 (E)

95

R812 case-expr is scalar-int-expr 
or scalar-char-expr 
or scalar-logical-expr 

R813 case-selector is ( case-value-range-list ) 
or DEFAULT 

Constraint: No more than one of the selectors of one of the CASE statements may be DEFAULT. 

R814 case-value-range is case-value 
or case-value : 
or : case-value 
or case-value : case-value 

R815 case-value is scalar-int-initialization-expr 
or scalar-char-initialization-expr 
or scalar-logical-initialization-expr 

Constraint: For a given case-construct, each case-value must be of the same type as case-expr. For character
type, length differences are allowed, but the kind type parameters must be the same. 

Constraint: A case-value-range using a colon must not be used if case-expr is of type logical. 

Constraint: For a given case-construct, the case-value-ranges must not overlap; that is, there must be no
possible value of the case-expr that matches more than one case-value-range. 

8.1.3.2 Execution of a CASE construct 

The execution of the SELECT CASE statement causes the case expression to be evaluated. The resulting value is
called the case index. For a case value range list, a match occurs if the case index matches any of the case value
ranges in the list. For a case index with a value of c, a match is determined as follows: 

(1) If the case value range contains a single value v without a colon, a match occurs for data type
logical if the expression c .EQV. v is true, and a match occurs for data type integer or character if
the expression c .EQ. v is true. 

(2) If the case value range is of the form low : high, a match occurs if the expression low .LE. c .AND.
c .LE. high is true. 

(3) If the case value range is of the form low :, a match occurs if the expression low .LE. c is true. 

(4) If the case value range is of the form : high, a match occurs if the expression c .LE. high is true. 

(5) If no other selector matches and a DEFAULT selector is present, it matches the case index. 

(6) If no other selector matches and the DEFAULT selector is absent, there is no match. 

The block following the CASE statement containing the matching selector, if any, is executed. This completes
execution of the construct. 

At most one of the blocks of a CASE construct is executed. 

A CASE statement must not be a branch target statement. It is permissible to branch to an END SELECT
statement only from within the CASE construct. 

8.1.3.3 Examples of CASE constructs 

An integer signum function: 

INTEGER FUNCTION SIGNUM (N) 
SELECT CASE (N) 
CASE (:-1) 

SIGNUM = -1 



ISO/IEC 1539 : 1991 (E)

96

CASE (0) 
SIGNUM = 0 

CASE (1:) 
SIGNUM = 1 

END SELECT 
END 

A code fragment to check for balanced parentheses: 

CHARACTER (80) :: LINE 
... 

LEVEL=0 
DO I = 1, 80 

CHECK_PARENS: SELECT CASE (LINE (I:I)) 
CASE (’(’) 

LEVEL = LEVEL + 1 
CASE (’)’) 

LEVEL = LEVEL - 1 
IF (LEVEL .LT. 0) THEN 

PRINT *, ’UNEXPECTED RIGHT PARENTHESIS’ 
EXIT 

END IF 
CASE DEFAULT 

! Ignore all other characters 
END SELECT CHECK_PARENS 

END DO 
IF (LEVEL .GT. 0) THEN 

PRINT *, ’MISSING RIGHT PARENTHESIS’ 
END IF 

The following three fragments are equivalent: 

IF (SILLY .EQ. 1) THEN 
CALL THIS 

ELSE 
CALL THAT 

END IF 
 
SELECT CASE (SILLY .EQ. 1) 
CASE (.TRUE.) 

CALL THIS 
CASE (.FALSE.) 

CALL THAT 
END SELECT 
 
SELECT CASE (SILLY) 
CASE DEFAULT 

CALL THAT 
CASE (1) 

CALL THIS 
END SELECT 

A code fragment showing several selections of one block: 

SELECT CASE (N) 
CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8 

CALL SUB 



ISO/IEC 1539 : 1991 (E)

97

CASE DEFAULT 
CALL OTHER 

END SELECT 

8.1.4 DO construct 

The DO construct specifies the repeated execution of a sequence of executable constructs. Such a repeated
sequence is called a loop. The EXIT and CYCLE statements may be used to modify the execution of a loop. 

The number of iterations of a loop may be determined at the beginning of execution of the DO construct, or may
be left indefinite (“DO forever” or DO WHILE). In either case, an EXIT statement (8.1.4.4.4) anywhere in the
DO construct may be executed to terminate the loop immediately. A particular iteration of the loop may be
curtailed by executing a CYCLE statement (8.1.4.4.3). 

8.1.4.1 Forms of the DO construct 

The DO construct may be written in either a block form or a nonblock form. 

R816 do-construct is block-do-construct 
or nonblock-do-construct 

8.1.4.1.1 Form of the block DO construct 

R817 block-do-construct is do-stmt 
do-block 
end-do 

R818 do-stmt is label-do-stmt 
or nonlabel-do-stmt 

R819 label-do-stmt is [ do-construct-name : ] DO label [ loop-control ] 

R820 nonlabel-do-stmt is [ do-construct-name : ] DO [ loop-control ] 

R821 loop-control is [ , ] do-variable = scalar-numeric-expr , ■  
■  scalar-numeric-expr [ , scalar-numeric-expr ] 

or [ , ] WHILE ( scalar-logical-expr ) 

R822 do-variable is scalar-variable 

Constraint: The do-variable must be a named scalar variable of type integer, default real, or double precision real.

Constraint: Each scalar-numeric-expr in loop-control must be of type integer, default real, or double precision real.

R823 do-block is block 

R824 end-do is end-do-stmt 
or continue-stmt 

R825 end-do-stmt is END DO [ do-construct-name ] 

Constraint: If the do-stmt of a block-do-construct is identified by a do-construct-name, the corresponding
end-do must be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a block-
do-construct is not identified by a do-construct-name, the corresponding end-do must not specify
a do-construct-name. 

Constraint: If the do-stmt is a nonlabel-do-stmt, the corresponding end-do must be an end-do-stmt. 

Constraint: If the do-stmt is a label-do-stmt, the corresponding end-do must be identified with the same label. 

8.1.4.1.2 Form of the nonblock DO construct

R826 nonblock-do-construct is action-term-do-construct 



ISO/IEC 1539 : 1991 (E)

98

or outer-shared-do-construct 

R827 action-term-do-construct is label-do-stmt 
do-body 
do-term-action-stmt 

R828 do-body is [ execution-part-construct ] ... 

R829 do-term-action-stmt is action-stmt 

Constraint: A do-term-action-stmt must not be a continue-stmt, a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a cycle-stmt, an
end-function-stmt, an end-subroutine-stmt, an end-program-stmt, an arithmetic-if-stmt, or an assigned-goto-stmt. 

Constraint: The do-term-action-stmt must be identified with a label and the corresponding label-do-stmt must refer to the same label. 

R830 outer-shared-do-construct is label-do-stmt 
do-body 
shared-term-do-construct 

R831 shared-term-do-construct is outer-shared-do-construct 
or inner-shared-do-construct 

R832 inner-shared-do-construct is label-do-stmt 
do-body 
do-term-shared-stmt 

R833 do-term-shared-stmt is action-stmt 

Constraint: A do-term-shared-stmt must not be a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a cycle-stmt, an end-function-stmt,
an end-subroutine-stmt, an end-program-stmt, an arithmetic-if-stmt, or an assigned-goto-stmt. 

Constraint: The do-term-shared-stmt must be identified with a label and all of the label-do-stmts of the shared-term-do-construct must
refer to the same label. 

The do-term-action-stmt, do-term-shared-stmt, or shared-term-do-construct following the do-body of a nonblock DO construct is called the
DO termination of that construct. 

Within a scoping unit, all DO constructs whose DO statements refer to the same label are nonblock DO constructs, and are said to share the
statement identified by that label.

8.1.4.2 Range of the DO construct 

The range of a block DO construct is the do-block which must satisfy the rules for blocks (8.1.1). In particular,
transfer of control to the interior of such a block from outside the block is prohibited. It is permissible to branch
to the end-do of a block DO construct only from within the range of that DO construct.

The range of a nonblock DO construct consists of the do-body and the following DO termination. The end of such a range is not bounded by
a particular statement as for the other executable constructs (e.g., END IF); nevertheless, the range satisfies the rules for blocks (8.1.1).
Transfer of control into the do-body or to the DO termination from outside the range is prohibited; in particular, it is permissible to branch to
a do-term-shared-stmt only from within the range of the corresponding inner-shared-do-construct. 

8.1.4.3 Active and inactive DO constructs 

A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its DO
statement is executed. 

Once active, the DO construct becomes inactive only when the construct it specifies is terminated (8.1.4.4.4).
When an active DO construct becomes inactive, the do-variable, if any, retains its last defined value. 

8.1.4.4 Execution of a DO construct 

A DO construct specifies a loop, that is, a sequence of executable constructs that is executed repeatedly. There
are three phases in the execution of a DO construct: initiation of the loop, execution of the loop range, and
termination of the loop. 

8.1.4.4.1 Loop initiation 

When the DO statement is executed, the DO construct becomes active. If loop-control is 



ISO/IEC 1539 : 1991 (E)

99

[ , ] do-variable = scalar-numeric-expr1 , scalar-numeric-expr2 [ , scalar-numeric-expr3 ] 

the following steps are performed in sequence: 

(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter m3 are
established by evaluating scalar-numeric-expr1, scalar-numeric-expr2, and scalar-numeric-expr3,
respectively, including, if necessary, conversion to the type and kind type parameter of the do-
variable according to the rules for numeric conversion (Table 7.9). If scalar-numeric-expr3 does not
appear, m3 is of type default integer and its value is 1. The value m3 must not be zero. 

(2) The DO variable becomes defined with the value of the initial parameter m1. 

(3) The iteration count is established and is the value of the expression 

MAX (INT ((m2 – m1 + m3) / m3), 0) 

Note that the iteration count is zero whenever: 

m1 > m2 and m3 > 0, or 
m1 < m2 and m3 < 0. 

If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,
impossible to decrement to zero, were established. If loop-control is [ , ] WHILE (scalar-logical-expr), the effect
is as if loop-control were omitted and the following statement inserted as the first statement of the do-block: 

IF (.NOT. (scalar-logical-expr)) EXIT 

At the completion of the execution of the DO statement, the execution cycle begins. 

8.1.4.4.2 The execution cycle 

The execution cycle of a DO construct consists of the following steps performed in sequence repeatedly until
termination: 

(1) The iteration count, if any, is tested. If the iteration count is zero, the loop terminates and the DO
construct becomes inactive. If loop-control is [ , ] WHILE (scalar-logical-expr), the scalar-logical-
expr is evaluated; if the value of this expression is false, the loop terminates and the DO construct
becomes inactive. If, as a result, all of the DO constructs sharing the do-term-shared-stmt are inactive, the execution of
all of these constructs is complete. However, if some of the DO constructs sharing the do-term-shared-stmt are active,
execution continues with step (3) of the execution cycle of the active DO construct whose DO statement was most recently
executed.

(2) If the iteration count is nonzero, the range of the loop is executed. 

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by the
value of the incrementation parameter . 

Except for the incrementation of the DO variable that occurs in step (3), the DO variable must neither be
redefined nor become undefined while the DO construct is active. 

8.1.4.4.3 CYCLE statement 

Step (2) in the above execution cycle may be curtailed by executing a CYCLE statement from within the range
of the loop. 

R834 cycle-stmt is CYCLE [ do-construct-name ] 

Constraint: If a cycle-stmt refers to a do-construct-name, it must be within the range of that do-construct;
otherwise, it must be within the range of at least one do-construct 

A CYCLE statement belongs to a particular DO construct. If the CYCLE statement refers to a DO construct
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears. 

m3



ISO/IEC 1539 : 1991 (E)

100

Execution of a CYCLE statement causes immediate progression to step (3) of the current execution cycle of the
DO construct to which it belongs. If this construct is a nonblock DO construct, the do-term-action-stmt or do-term-shared-stmt is not
executed.

In a block DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE
statement belonging to that construct. In a nonblock DO construct, transfer of control to the do-term-action-stmt or do-term-shared-
stmt causes that statement or construct itself to be executed. Unless a further transfer of control results, step (3) of the current execution cycle
of the DO construct is then executed. 

8.1.4.4.4 Loop termination 

The EXIT statement provides one way of terminating a loop. 

R835 exit-stmt is EXIT [ do-construct-name ] 

Constraint: If an exit-stmt refers to a do-construct-name, it must be within the range of that do-construct;
otherwise, it must be within the range of at least one do-construct. 

An EXIT statement belongs to a particular DO construct. If the EXIT statement refers to a DO construct name,
it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears. 

The loop terminates, and the DO construct becomes inactive, when any of the following occurs: 

(1) Determination that the iteration count is zero or the scalar-logical-expr is false, when tested during
step (1) of the above execution cycle 

(2) Execution of an EXIT statement belonging to the DO construct 

(3) Execution of an EXIT statement or a CYCLE statement that is within the range of the DO construct,
but that belongs to an outer DO construct 

(4) Transfer of control from a statement within the range of a DO construct to a statement that is neither
the end-do nor within the range of the same DO construct 

(5) Execution of a RETURN statement within the range of the DO construct 

(6) Execution of a STOP statement anywhere in the program; or termination of the program for any
other reason. 

When a DO construct becomes inactive, the DO-variable, if any, of the DO construct retains its last defined
value. 

8.1.4.5 Examples of DO constructs 

The following are all valid examples of block DO constructs. 

Example 1: 

DO I = 1, M 
DO J = 1, N 

C (I, J) = SUM (A (I, J, :) * B (:, I, J)) 
END DO 

END DO 

The above program fragment computes a tensor product of two arrays. 

Example 2: 

READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X 
DO WHILE (IOS .EQ. 0) 

IF (X .GE. 0.) THEN 
CALL SUBA (X) 
CALL SUBB (X) 



ISO/IEC 1539 : 1991 (E)

101

... 
CALL SUBZ (X) 

ENDIF 
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X 

END DO 

The above program fragment contains a DO construct that uses the WHILE form of loop-control. The loop will
continue to execute until an end-of-file or input/output error is encountered, at which point the DO statement
terminates the loop. When a negative value of X is read, the program skips immediately to the next READ
statement, bypassing most of the range of the loop. 

Example 3: 

DO ! A "DO WHILE + 1/2" loop 
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X 
IF (IOS .NE. 0) EXIT 
IF (X < 0.) CYCLE 
CALL SUBA (X) 
CALL SUBB (X) 

... 
CALL SUBZ (X) 

END DO 

Example 3 behaves exactly the same as example 2. However, the READ statement has been moved to the interior
of the range, so that only one READ statement is required. Also, a CYCLE statement has been used to avoid an
extra level of IF nesting. 

Example 4: 

SUM = 0.0 
READ (IUN) N 
OUTER: DO L = 1, N ! A DO with a construct name 

READ (IUN) IQUAL, M, ARRAY (1:M) 
IF (IQUAL < IQUAL_MIN) CYCLE OUTER ! Skip inner loop 
INNER: DO 40 I = 1, M ! A DO with a label and a name 

CALL CALCULATE (ARRAY (I), RESULT) 
IF (RESULT < 0.0) CYCLE 
SUM = SUM + RESULT 
IF (SUM > SUM_MAX) EXIT OUTER 

40 END DO INNER 
END DO OUTER  

The outer loop has an iteration count of MAX (N, 0), and will execute that number of times or until SUM
exceeds SUM_MAX, in which case the EXIT OUTER statement terminates both loops. The inner loop is skipped
by the first CYCLE statement if the quality flag, IQUAL, is too low. If CALCULATE returns a negative
RESULT, the second CYCLE statement prevents it from being summed. Note that both loops have construct
names and the inner loop also has a label. A construct name is required on the EXIT statement in order to
terminate both loops, but is optional on the CYCLE statements because each belongs to its innermost loop. 

Example 5: 

N = 0 
DO 50, I = 1, 10 

J = I 
DO K = 1, 5 

L = K 
N = N + 1 ! This statement executes 50 times 

END DO ! Nonlabeled DO inside a labeled DO 



ISO/IEC 1539 : 1991 (E)

102

50 CONTINUE 

After execution of the above program fragment, I = 11, J = 10, K = 6, L = 5, and N = 50. 

Example 6: 

N = 0 
DO I = 1, 10 

J = I 
DO 60, K = 5, 1 ! This inner loop is never executed 

L = K 
N = N + 1 

60 CONTINUE ! Labeled DO inside a nonlabeled DO 
END DO 

After execution of the above program fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by these
statements.

The following are all valid examples of nonblock DO constructs: 

Example 7: 

DO 70 

READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X 

IF (IOS .NE. 0) EXIT 

IF (X < 0.) GOTO 70 

CALL SUBA (X) 

CALL SUBB (X) 

... 

CALL SUBY (X) 

CYCLE 

70 CALL SUBNEG (X) ! SUBNEG called only when X < 0. 

This is not a block DO construct because it ends with a statement other than END DO or CONTINUE. The loop will continue to execute until
an end-of-file condition or input/output error occurs. 

Example 8: 

SUM = 0.0 

READ (IUN) N 

DO 80, L = 1, N 

READ (IUN) IQUAL, M, ARRAY (1:M) 

IF (IQUAL < IQUAL_MIN) M = 0 ! Skip inner loop 

DO 80 I = 1, M 

CALL CALCULATE (ARRAY (I), RESULT) 

IF (RESULT < 0.) CYCLE 

SUM = SUM + RESULT 

IF (SUM > SUM_MAX) GOTO 81 

80 CONTINUE ! This CONTINUE is shared by both loops 

81 CONTINUE 

This example is similar to Example 4 above, except that the two loops are not block DO constructs because they share the CONTINUE
statement with the label 80. The terminal construct of the outer DO is the entire inner DO construct. The inner loop is skipped by forcing M
to zero. If SUM grows too large, both loops are terminated by branching to the CONTINUE statement labeled 81. The CYCLE statement in
the inner loop is used to skip negative values of RESULT. 

Example 9: 

N = 0 

DO 100 I = 1, 10 

J = I 

DO 100 K = 1, 5 

L = K 

100 N = N + 1 ! This statement executes 50 times 

In this example, the two loops share an assignment statement. After execution of this program fragment, I = 11, J = 10, K = 6, L = 5, and N
= 50. 



ISO/IEC 1539 : 1991 (E)

103

Example 10: 

N = 0 

DO 200 I = 1, 10 

J = I 

DO 200 K = 5, 1 ! This inner loop is never executed 

L = K 

200 N = N + 1 

This example is very similar to the previous one, except that the inner loop is never executed. After execution of this program fragment, I =
11, J = 10, K = 5, N = 0, and L is not defined by these statements.

8.2 Branching
Branching is used to alter the normal execution sequence. A branch causes a transfer of control from one
statement in a scoping unit to a labeled branch target statement in the same scoping unit. A branch target
statement is an action-stmt, an if-then-stmt, an end-if-stmt, a select-case-stmt, an end-select-stmt, a do-stmt, an
end-do-stmt, a do-term-action-stmt, a do-term-shared-stmt, or a where-construct-stmt. 

It is permissible to branch to an END SELECT statement only from within its CASE construct. 

It is permissible to branch to an END IF statement from within its IF construct, and also from outside the construct. 

It is permissible to branch to an end-do-stmt or a do-term-action-stmt only from within its DO construct. It is permissible
to branch to a do-term-shared-stmt only from within its inner-shared-do-construct. 

8.2.1 Statement labels 

A statement label provides a means of referring to an individual statement. Only branch target statements,
FORMAT statements, and DO terminations may be referred to by the use of statement labels (3.2.5). 

8.2.2 GO TO statement 

R836 goto-stmt is GO TO label 

Constraint: The label must be the statement label of a branch target statement that appears in the same
scoping unit as the goto-stmt. 

Execution of a GO TO statement causes a transfer of control so that the branch target statement identified by the
label is executed next. 

8.2.3 Computed GO TO statement 

R837 computed-goto-stmt is GO TO ( label-list ) [ , ] scalar-int-expr 

Constraint: Each label in label-list must be the statement label of a branch target statement that appears in the
same scoping unit as the computed-goto-stmt. 

The same statement label may appear more than once in a label list. 

Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i
such that  where  is the number of labels in label-list, a transfer of control occurs so that the next
statement executed is the one identified by the ith label in the list of labels. If  is less than 1 or greater than n,
the execution sequence continues as though a CONTINUE statement were executed.

8.2.4 ASSIGN and assigned GO TO statement
R838 assign-stmt is ASSIGN label TO scalar-int-variable 

Constraint: The label must be the statement label of a branch target statement or format-stmt that appears in the same scoping unit as
the assign-stmt. 

Constraint: scalar-int-variable must be named and of type default integer. 

1 i n≤ ≤ n
i



ISO/IEC 1539 : 1991 (E)

104

R839 assigned-goto-stmt is GO TO scalar-int-variable [ [ , ] ( label-list ) ] 

Constraint: Each label in label-list must be the statement label of a branch target statement that appears in the same scoping unit as
the assigned-goto-stmt. 

Constraint: scalar-int-variable must be named and of type default integer. 

Execution of an ASSIGN statement causes a statement label to be assigned to an integer variable. While defined with a statement label value,
the integer variable may be referenced only in the context of an assigned GO TO statement or as a format specifier in an input/output
statement. An integer variable defined with a statement label value may be redefined with a statement label value or an integer value. 

When an input/output statement containing the integer variable as a format specifier (9.4.1.1) is executed, the integer variable must be
defined with the label of a FORMAT statement. 

At the time of execution of an assigned GO TO statement, the integer variable must be defined with the value of a statement label of a branch
target statement that appears in the same scoping unit. Note that the variable may be defined with a statement label value only by an ASSIGN
statement in the same scoping unit as the assigned GO TO statement. 

The execution of the assigned GO TO statement causes a transfer of control so that the branch target statement identified by the statement
label currently assigned to the integer variable is executed next. 

If the parenthesized list is present, the statement label assigned to the integer variable must be one of the statement labels in the list. A label
may appear more than once in the label list of an assigned GOTO statement. 

8.2.5 Arithmetic IF statement 
R840 arithmetic-if-stmt is IF ( scalar-numeric-expr ) label , label , label 

Constraint: Each label must be the label of a branch target statement that appears in the same scoping unit as the arithmetic-if-stmt. 

Constraint: The scalar-numeric-expr must not be of type complex. 

The same label may appear more than once in one arithmetic IF statement. 

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control. The branch target
statement identified by the first label, the second label, or the third label is executed next as the value of the numeric expression is less than
zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE statement 
Execution of a CONTINUE statement has no effect. 

R841 continue-stmt is CONTINUE 

8.4 STOP statement 
R842 stop-stmt is STOP [ stop-code ] 

R843 stop-code is scalar-char-constant 
or digit [ digit [ digit [ digit [ digit ] ] ] ] 

Constraint: scalar-char-constant must be of type default character. 

Execution of a STOP statement causes termination of execution of the executable program. At the time of
termination, the stop code, if any, is available in a processor-dependent manner. Leading zero digits in the stop
code are not significant.

8.5 PAUSE statement 
R844 pause-stmt is PAUSE [ stop-code ]

Execution of a PAUSE statement causes a suspension of execution of the executable program. Execution must be resumable. At the time of
suspension of execution, the stop code, if any, is available in a processor-dependent manner. Leading zero digits in the stop code are not
significant. Resumption of execution is not under control of the program. If execution is resumed, the execution sequence continues as though
a CONTINUE statement were executed.



ISO/IEC 1539 : 1991 (E)

105

Section 9 : Input/output statements
Input statements provide the means of transferring data from external media to internal storage or from an
internal file to internal storage. This process is called reading. Output statements provide the means of
transferring data from internal storage to external media or from internal storage to an internal file. This process
is called writing. Some input/output statements specify that editing of the data is to be performed. 

In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the
external medium, or to describe or inquire about the properties of the connection to the external medium. 

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE, ENDFILE,
REWIND, and INQUIRE statements. 

The READ statement is a data transfer input statement. The WRITE statement and the PRINT statement are
data transfer output statements. The OPEN statement and the CLOSE statement are file connection
statements. The INQUIRE statement is a file inquiry statement. The BACKSPACE, ENDFILE, and REWIND
statements are file positioning statements. 

9.1 Records 
A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually
considered to be a record. However, a record does not necessarily correspond to a physical entity. There are three
kinds of records: 

(1) Formatted 

(2) Unformatted 

(3) Endfile 

9.1.1 Formatted record 

A formatted record consists of a sequence of characters that are capable of representation in the processor;
however, a processor may prohibit some control characters (3.1) from appearing in a formatted record. The
length of a formatted record is measured in characters and depends primarily on the number of characters put
into the record when it is written. However, it may depend on the processor and the external medium. The length
may be zero. Formatted records may be read or written only by formatted input/output statements. 

Formatted records may be prepared by means other than Fortran; for example, by some manual input device. 

9.1.2 Unformatted record 

An unformatted record consists of a sequence of values in a processor-dependent form and may contain data of
any type or may contain no data. The length of an unformatted record is measured in processor-dependent units
and depends on the output list (9.4.2) used when it is written, as well as on the processor and the external
medium. The length may be zero. Unformatted records may be read or written only by unformatted input/output
statements. 

9.1.3 Endfile record 

An endfile record is written explicitly by the ENDFILE statement; the file must be connected for sequential
access. An endfile record is written implicitly to a file connected for sequential access when the most recent data
transfer statement referring to the file is a data transfer output statement, no intervening file positioning statement
referring to the file has been executed, and: 



ISO/IEC 1539 : 1991 (E)

106

(1) A REWIND or BACKSPACE statement references the unit to which the file is connected, or 

(2) The unit (file) is closed, either explicitly by a CLOSE statement, implicitly by a program
termination not caused by an error condition, or implicitly by another OPEN statement for the same
unit. 

An endfile record may occur only as the last record of a file. An endfile record does not have a length property. 

9.2 Files 
A file is a sequence of records. 

There are two kinds of files: 

(1) External 

(2) Internal 

9.2.1 External files 

An external file is any file that exists in a medium external to the executable program. 

At any given time, there is a processor-dependent set of allowed access methods, a processor-dependent set of
allowed forms, a processor-dependent set of allowed actions, and a processor-dependent set of allowed record
lengths for a file. 

A file may have a name; a file that has a name is called a named file. The name of a named file is a character
string. The set of allowable names for a file is processor dependent. 

An external file that is connected to a unit has a position property (9.2.1.3). 

9.2.1.1 File existence 

At any given time, there is a processor-dependent set of external files that are said to exist for an executable
program. A file may be known to the processor, yet not exist for an executable program at a particular time. For
example, there may be security reasons that prevent a file from existing for an executable program. A file may
exist and contain no records; an example is a newly created file not yet written. 

To create a file means to cause a file to exist that did not exist previously. To delete a file means to terminate
the existence of the file. 

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE, WRITE, PRINT,
REWIND, or ENDFILE statement also may refer to a file that does not exist. Execution of a WRITE or PRINT
statement referring to a preconnected file that does not exist creates the file. 

9.2.1.2 File access 

There are two methods of accessing the records of an external file, sequential and direct. Some files may have
more than one allowed access method; other files may be restricted to one access method. For example, a
processor may allow only sequential access to a file on magnetic tape. Thus, the set of allowed access methods
depends on the file and the processor. 

The method of accessing the file is determined when the file is connected to a unit (9.3.2) or when the file is
created if the file is preconnected (9.3.3). 

9.2.1.2.1 Sequential access 

When connected for sequential access, an external file has the following properties: 

(1) The order of the records is the order in which they were written if the direct access method is not a
member of the set of allowed access methods for the file. If the direct access method is also a



ISO/IEC 1539 : 1991 (E)

107

member of the set of allowed access methods for the file, the order of the records is the same as that
specified for direct access. In this case, the first record accessible by sequential access is the record
whose record number is 1 for direct access. The second record accessible by sequential access is the
record whose record number is 2 for direct access, etc. A record that has not been written since the
file was created must not be read. 

(2) The records of the file are either all formatted or all unformatted, except that the last record of the
file may be an endfile record. Unless the previous reference to the file was a data transfer output
statement or a file positioning statement, the last record, if any, of the file must be an endfile record. 

(3) The records of the file must not be read or written by direct access input/output statements. 

9.2.1.2.2 Direct access 

When connected for direct access, an external file has the following properties: 

(1) Each record of the file is uniquely identified by a positive integer called the record number. The
record number of a record is specified when the record is written. Once established, the record
number of a record can never be changed. Note that a record may not be deleted; however, a record
may be rewritten. The order of the records is the order of their record numbers. 

(2) The records of the file are either all formatted or all unformatted. If the sequential access method is
also a member of the set of allowed access methods for the file, its endfile record, if any, is not
considered to be part of the file while it is connected for direct access. If the sequential access
method is not a member of the set of allowed access methods for the file, the file must not contain
an endfile record. 

(3) Reading and writing records is accomplished only by direct access input/output statements. 

(4) All records of the file have the same length. 

(5) Records need not be read or written in the order of their record numbers. Any record may be written
into the file while it is connected to a unit. For example, it is permissible to write record 3, even
though records 1 and 2 have not been written. Any record may be read from the file while it is
connected to a unit, provided that the record has been written since the file was created. 

(6) The records of the file must not be read or written using list-directed formatting (10.8), namelist
formatting (10.9), or a nonadvancing input/output statement. 

9.2.1.3 File position 

Execution of certain input/output statements affects the position of an external file. Certain circumstances can
cause the position of a file to become indeterminate.

The initial point of a file is the position just before the first record. The terminal point is the position just after
the last record. If there are no records in the file, the initial point and the terminal point are the same position. 

If a file is positioned within a record, that record is the current record ; otherwise, there is no current record. 

Let n be the number of records in the file. If  and a file is positioned within the ith record or between
the ( )th record and the ith record, the ( )th record is the preceding record. If  and the file is
positioned at its terminal point, the preceding record is the nth and last record. If n = 0 or if a file is positioned
at its initial point or within the first record, there is no preceding record. 

If  and a file is positioned within the ith record or between the ith and (i + 1)th record, the (i + 1)th
record is the next record. If  and the file is positioned at its initial point, the first record is the next record.
If n = 0 or if a file is positioned at its terminal point or within the nth (last) record, there is no next record. 

1 i n≤<
i 1– i 1– n 1≥

1 i n<≤
n 1≥



ISO/IEC 1539 : 1991 (E)

108

9.2.1.3.1 Advancing and nonadvancing input/output 

An advancing input/output statement always positions the file after the last record read or written, unless there
is an error condition. 

A nonadvancing input/output statement may position the file at a character position within the current record.
Using nonadvancing input/output, it is possible to read or write a record of the file by a sequence of input/output
statements, each accessing a portion of the record. It is also possible to read variable-length records and be
notified of their lengths. 

9.2.1.3.2 File position prior to data transfer 

The positioning of the file prior to data transfer depends on the method of access: sequential or direct. 

For sequential access on input, if there is a current record, the file position is not changed. Otherwise, the file is
positioned at the beginning of the next record and this record becomes the current record. Input must not occur if
there is no next record or if there is a current record and the last data transfer statement accessing the file
performed output. 

If the file contains an endfile record, the file must not be positioned after the endfile record prior to data transfer.
However, a REWIND or BACKSPACE statement may be used to reposition the file. 

For sequential access on output, if there is a current record, the file position is not changed and the current record
becomes the last record of the file. Otherwise, a new record is created as the next record of the file; this new
record becomes the last and current record of the file and the file is positioned at the beginning of this record. 

For direct access, the file is positioned at the beginning of the record specified by the record specifier. This
record becomes the current record. 

9.2.1.3.3 File position after data transfer 

If an error condition (9.4.3) occurred, the position of the file is indeterminate. If no error condition occurred, but
an end-of-file condition (9.4.3) occurred as a result of reading an endfile record, the file is positioned after the
endfile record. 

For nonadvancing input, if no error condition or end-of-file condition occurred, but an end-of-record condition
(9.4.3) occurred, the file is positioned after the record just read. If no error condition, end-of-file condition, or
end-of-record condition occurred in a nonadvancing input statement, the file position is not changed. If no error
condition occurred in a nonadvancing output statement, the file position is not changed. In all other cases, the file
is positioned after the record just read or written and that record becomes the preceding record. 

9.2.2 Internal files 

Internal files provide a means of transferring and converting data from internal storage to internal storage. 

9.2.2.1 Internal file properties 

An internal file has the following properties: 

(1) The file is a variable of default character type that is not an array section with a vector subscript. 

(2) A record of an internal file is a scalar character variable. 

(3) If the file is a scalar character variable, it consists of a single record whose length is the same as the
length of the scalar character variable. If the file is a character array, it is treated as a sequence of
character array elements. Each array element, if any, is a record of the file. The ordering of the
records of the file is the same as the ordering of the array elements in the array (6.2.2.2) or the array
section (6.2.2.3). Every record of the file has the same length, which is the length of an array
element in the array. 



ISO/IEC 1539 : 1991 (E)

109

(4) A record of the internal file becomes defined by writing the record. If the number of characters
written in a record is less than the length of the record, the remaining portion of the record is filled
with blanks. The number of characters to be written must not exceed the length of the record. 

(5) A record may be read only if the record is defined. 

(6) A record of an internal file may become defined (or undefined) by means other than an output
statement. For example, the character variable may become defined by a character assignment
statement. 

(7) An internal file is always positioned at the beginning of the first record prior to data transfer. This
record becomes the current record. 

(8) On input, blanks are treated in the same way as for an external file opened with a BLANK=
specifier having the value NULL and records are padded with blanks if necessary (9.4.4.4.2). 

(9) On list-directed output, character constants are not delimited (10.8.2). 

9.2.2.2 Internal file restrictions 

An internal file has the following restrictions: 

(1) Reading and writing records must be accomplished only by sequential access formatted input/output
statements that do not specify namelist formatting. 

(2) An internal file must not be specified in a file connection statement, a file positioning statement, or
a file inquiry statement. 

9.3 File connection 
A unit, specified by an io-unit, provides a means for referring to a file. 

R901 io-unit is external-file-unit 
or ∗
or internal-file-unit 

R902 external-file-unit is scalar-int-expr 

R903 internal-file-unit is default-char-variable 

Constraint: The default-char-variable must not be an array section with a vector subscript. 

A unit is either an external unit or an internal unit. An external unit is used to refer to an external file and is
specified by an external-file-unit or an asterisk. An internal unit is used to refer to an internal file and is
specified by an internal-file-unit. 

If a character variable that identifies an internal file unit is a pointer, it must be associated. If the character
variable is an allocatable array or a subobject of such an array, the array must be currently allocated. 

A scalar integer expression that identifies an external file unit must be zero or positive. 

The io-unit in a file positioning statement, a file connection statement, or a file inquiry statement must be an
external-file-unit. 

The external unit identified by the value of the scalar-int-expr is the same external unit in all program units of
the executable program. In the example: 

SUBROUTINE A 
READ (6) X 

. . .
SUBROUTINE B 

N = 6 
REWIND N 



ISO/IEC 1539 : 1991 (E)

110

the value 6 used in both program units identifies the same external unit. 

An asterisk identifies particular processor-dependent external units that are preconnected for formatted sequential
access (9.4.4.2). 

9.3.1 Unit existence 

At any given time, there is a processor-dependent set of external units that are said to exist for an executable
program. 

All input/output statements may refer to units that exist. The INQUIRE statement and the CLOSE statement also
may refer to units that do not exist. 

9.3.2 Connection of a file to a unit 

An external unit has a property of being connected or not connected. If connected, it refers to an external file.
An external unit may become connected by preconnection or by the execution of an OPEN statement. The
property of connection is symmetric; if a unit is connected to a file, the file is connected to the unit. 

All input/output statements except an OPEN, a CLOSE, or an INQUIRE statement must refer to a unit that is
connected to a file and thereby make use of or affect that file. 

A file may be connected and not exist. An example is a preconnected external file that has not yet been written
(9.2.1.1). 

A unit must not be connected to more than one file at the same time, and a file must not be connected to more
than one unit at the same time. However, means are provided to change the status of an external unit and to
connect a unit to a different file. 

After an external unit has been disconnected by the execution of a CLOSE statement, it may be connected again
within the same executable program to the same file or to a different file. After an external file has been
disconnected by the execution of a CLOSE statement, it may be connected again within the same executable
program to the same unit or to a different unit. Note, however, that the only means of referencing a file that has
been disconnected is by the appearance of its name in an OPEN or INQUIRE statement. There may be no means
of reconnecting an unnamed file once it is disconnected. 

An internal unit is always connected to the internal file designated by the variable of default character type that
identifies the unit. 

9.3.3 Preconnection

Preconnection means that the unit is connected to a file at the beginning of execution of the executable program
and therefore it may be specified in input/output statements without the prior execution of an OPEN statement. 

9.3.4 The OPEN statement 

An OPEN statement initiates or modifies the connection between an external file and a specified unit. The
OPEN statement may be used to connect an existing file to a unit, create a file that is preconnected, create a file
and connect it to a unit, or change certain specifiers of a connection between a file and a unit. 

An external unit may be connected by an OPEN statement in any program unit of an executable program and,
once connected, a reference to it may appear in any program unit of the executable program. 

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted. If the FILE=
specifier is not included in such an OPEN statement, the file to be connected to the unit is the same as the file to
which the unit is already connected. 

If the file to be connected to the unit does not exist but is the same as the file to which the unit is preconnected,
the properties specified by an OPEN statement become a part of the connection. 



ISO/IEC 1539 : 1991 (E)

111

If the file to be connected to the unit is not the same as the file to which the unit is connected, the effect is as if
a CLOSE statement without a STATUS= specifier had been executed for the unit immediately prior to the
execution of an OPEN statement. 

If the file to be connected to the unit is the same as the file to which the unit is connected, only the BLANK=,
DELIM=, PAD=, ERR=, and IOSTAT= specifiers may have values different from those currently in effect.
Execution of such an OPEN statement causes any new value of the BLANK=, DELIM=, or PAD= specifiers to
be in effect, but does not cause any change in any of the unspecified specifiers and the position of the file is
unaffected. The ERR= and IOSTAT= specifiers from any previously executed OPEN statement have no effect on
any currently executed OPEN statement. 

If a file is already connected to a unit, execution of an OPEN statement on that file and a different unit is not
permitted. 

R904 open-stmt is OPEN ( connect-spec-list ) 

R905 connect-spec is [ UNIT = ] external-file-unit 
or IOSTAT = scalar-default-int-variable 
or ERR = label 
or FILE = file-name-expr 
or STATUS = scalar-default-char-expr 
or ACCESS = scalar-default-char-expr 
or FORM = scalar-default-char-expr 
or RECL = scalar-int-expr 
or BLANK = scalar-default-char-expr 
or POSITION = scalar-default-char-expr 
or ACTION = scalar-default-char-expr 
or DELIM = scalar-default-char-expr 
or PAD = scalar-default-char-expr 

R906 file-name-expr is scalar-default-char-expr 

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the
first item in the connect-spec-list. 

Constraint: Each specifier must not appear more than once in a given open-stmt; an external-file-unit must be
specified. 

Constraint: The label used in the ERR= specifier must be the statement label of a branch target statement that
appears in the same scoping unit as the OPEN statement. 

If the STATUS= specifier has the value OLD, NEW, or REPLACE, the FILE= specifier must be present. If the
STATUS= specifier has the value SCRATCH, the FILE= specifier must be absent. 

A specifier that requires a scalar-default-char-expr may have a limited list of character values. These values are
listed for each such specifier. Any trailing blanks are ignored. If a processor is capable of representing letters in
both upper and lower case, the value specified is without regard to case. Some specifiers have a default value if
the specifier is omitted. 

The IOSTAT= specifier and ERR= specifier are described in 9.4.1.4 and 9.4.1.5, respectively. 

An example of an OPEN statement is: 

OPEN (10, FILE = ’employee.names’, ACTION = ’READ’, PAD = ’YES’) 

9.3.4.1 FILE= specifier in the OPEN statement 

The value of the FILE= specifier is the name of the file to be connected to the specified unit. Any trailing blanks
are ignored. The file-name-expr must be a name that is allowed by the processor. If this specifier is omitted and
the unit is not connected to a file, the STATUS= specifier must be specified with a value of SCRATCH; in this



ISO/IEC 1539 : 1991 (E)

112

case, the connection is made to a processor-dependent file. If a processor is capable of representing letters in both
upper and lower case, the interpretation of case is processor dependent. 

9.3.4.2 STATUS= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to OLD, NEW, SCRATCH, REPLACE, or UNKNOWN. If OLD is
specified, the file must exist. If NEW is specified, the file must not exist. 

Successful execution of an OPEN statement with NEW specified creates the file and changes the status to OLD.
If REPLACE is specified and the file does not already exist, the file is created and the status is changed to OLD.
If REPLACE is specified and the file does exist, the file is deleted, a new file is created with the same name, and
the status is changed to OLD. If SCRATCH is specified, the file is created and connected to the specified unit for
use by the executable program but is deleted at the execution of a CLOSE statement referring to the same unit or
at the termination of the executable program. Note that SCRATCH must not be specified with a named file. If
UNKNOWN is specified, the status is processor dependent. If this specifier is omitted, the default value is
UNKNOWN. 

9.3.4.3 ACCESS= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to SEQUENTIAL or DIRECT. The ACCESS= specifier specifies the
access method for the connection of the file as being sequential or direct. If this specifier is omitted, the default
value is SEQUENTIAL. For an existing file, the specified access method must be included in the set of allowed
access methods for the file. For a new file, the processor creates the file with a set of allowed access methods
that includes the specified method. 

9.3.4.4 FORM= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to FORMATTED or UNFORMATTED. The FORM= specifier
determines whether the file is being connected for formatted or unformatted input/output. If this specifier is
omitted, the default value is UNFORMATTED if the file is being connected for direct access, and the default
value is FORMATTED if the file is being connected for sequential access. For an existing file, the specified form
must be included in the set of allowed forms for the file. For a new file, the processor creates the file with a set
of allowed forms that includes the specified form. 

9.3.4.5 RECL= specifier in the OPEN statement 

The value of the RECL= specifier must be positive. It specifies the length of each record in a file being
connected for direct access, or specifies the maximum length of a record in a file being connected for sequential
access. This specifier must be present when a file is being connected for direct access. If this specifier is omitted
when a file is being connected for sequential access, the default value is processor dependent. If the file is being
connected for formatted input/output, the length is the number of characters for all records that contain only
characters of type default character. If the file is being connected for unformatted input/output, the length is
measured in processor-dependent units. For an existing file, the value of the RECL= specifier must be included
in the set of allowed record lengths for the file. For a new file, the processor creates the file with a set of allowed
record lengths that includes the specified value. 

9.3.4.6 BLANK= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to NULL or ZERO. The BLANK= specifier is permitted only for a
file being connected for formatted input/output. If NULL is specified, all blank characters in numeric formatted
input fields on the specified unit are ignored, except that a field of all blanks has a value of zero. If ZERO is
specified, all blanks other than leading blanks are treated as zeros. If this specifier is omitted, the default value is
NULL. 



ISO/IEC 1539 : 1991 (E)

113

9.3.4.7 POSITION= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to ASIS, REWIND, or APPEND. The connection must be for
sequential access. A file that did not exist previously (a new file, either specified explicitly or by default) is
positioned at its initial point. REWIND positions an existing file at its initial point. APPEND positions an
existing file such that the endfile record is the next record, if it has one. If an existing file does not have an
endfile record, APPEND positions the file at its terminal point. ASIS leaves the position unchanged if the file
exists and already is connected. ASIS leaves the position unspecified if the file exists but is not connected. If this
specifier is omitted, the default value is ASIS. 

9.3.4.8 ACTION= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to READ, WRITE, or READWRITE. READ specifies that the
WRITE and ENDFILE statements must not refer to this connection. WRITE specifies that READ statements
must not refer to this connection. READWRITE permits any I/O statements to refer to this connection. If this
specifier is omitted, the default value is processor dependent. If READWRITE is included in the set of allowable
actions for a file, both READ and WRITE also must be included in the set of allowed actions for that file. For an
existing file, the specified action must be included in the set of allowed actions for the file. For a new file, the
processor creates the file with a set of allowed actions that includes the specified action. 

9.3.4.9 DELIM= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to APOSTROPHE, QUOTE, or NONE. If APOSTROPHE is
specified, the apostrophe will be used to delimit character constants written with list-directed or namelist
formatting and all internal apostrophes will be doubled. If QUOTE is specified, the quotation mark will be used
to delimit character constants written with list-directed or namelist formatting and all internal quotation marks
will be doubled. If APOSTROPHE or QUOTE is specified, a kind-param and underscore will be used to precede
the leading delimiter of a nondefault character constant. If the value of this specifier is NONE, a character
constant when written will not be delimited by apostrophes or quotation marks, nor will any internal apostrophes
or quotation marks be doubled. If this specifier is omitted, the default value is NONE. This specifier is permitted
only for a file being connected for formatted input/output. This specifier is ignored during input of a formatted
record. 

9.3.4.10 PAD= specifier in the OPEN statement 

The scalar-default-char-expr must evaluate to YES or NO. If YES is specified, a formatted input record is
padded with blanks (9.4.4.4.2) when an input list is specified and the format specification requires more data
from a record than the record contains. If NO is specified, the input list and the format specification must not
require more characters from a record than the record contains. If this specifier is omitted, the default value is
YES. This specifier is permitted only for a file being connected for formatted input/output. This specifier is
ignored during output of a formatted record. 

Note that for nondefault character types, the blank padding character is processor dependent. 

9.3.5 The CLOSE statement 

The CLOSE statement is used to terminate the connection of a specified unit to an external file. 

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an executable program
and need not occur in the same program unit as the execution of an OPEN statement referring to that unit. 

Execution of a CLOSE statement specifying a unit that does not exist or has no file connected to it is permitted
and affects no file. 

After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the
same executable program, either to the same file or to a different file. After a named file has been disconnected
by execution of a CLOSE statement, it may be connected again within the same executable program, either to the
same unit or to a different unit, provided that the file still exists. 



ISO/IEC 1539 : 1991 (E)

114

At termination of execution of an executable program for reasons other than an error condition, all units that are
connected are closed. Each unit is closed with status KEEP unless the file status prior to termination of execution
was SCRATCH, in which case the unit is closed with status DELETE. Note that the effect is as though a CLOSE
statement without a STATUS= specifier were executed on each connected unit. 

R907 close-stmt is CLOSE ( close-spec-list ) 

R908 close-spec is [ UNIT = ] external-file-unit 
or IOSTAT = scalar-default-int-variable 
or ERR = label 
or STATUS = scalar-default-char-expr 

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the
first item in the close-spec-list. 

Constraint: Each specifier must not appear more than once in a given close-stmt; an external-file-unit must be
specified. 

Constraint: The label used in the ERR= specifier must be the statement label of a branch target statement that
appears in the same scoping unit as the CLOSE statement. 

The scalar-default-char-expr has a limited list of character values. Any trailing blanks are ignored. If a processor
is capable of representing letters in both upper and lower case, the value specified is without regard to case. 

The IOSTAT= specifier and ERR= specifier are described in 9.4.1.4 and 9.4.1.5, respectively. 

An example of a CLOSE statement is: 

CLOSE (10, STATUS = ’KEEP’) 

9.3.5.1 STATUS= specifier in the CLOSE statement 

The scalar-default-char-expr must evaluate to KEEP or DELETE. The STATUS= specifier determines the
disposition of the file that is connected to the specified unit. KEEP must not be specified for a file whose status
prior to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file
continues to exist after the execution of a CLOSE statement. If KEEP is specified for a file that does not exist,
the file will not exist after the execution of a CLOSE statement. If DELETE is specified, the file will not exist
after the execution of a CLOSE statement. If this specifier is omitted, the default value is KEEP, unless the file
status prior to execution of the CLOSE statement is SCRATCH, in which case the default value is DELETE. 

9.4 Data transfer statements 
The READ statement is the data transfer input statement. The WRITE statement and the PRINT statement
are the data transfer output statements. 

R909 read-stmt is READ ( io-control-spec-list ) [ input-item-list ] 
or READ format [ , input-item-list ] 

R910 write-stmt is WRITE ( io-control-spec-list ) [ output-item-list ] 

R911 print-stmt is PRINT format [ , output-item-list ] 

Examples of data transfer statements are: 

READ (6, *) SIZE 
READ 10, A, B 
WRITE (6, 10) A, S, J 
PRINT 10, A, S, J 

10 FORMAT (2E16.3, I5) 



ISO/IEC 1539 : 1991 (E)

115

9.4.1 Control information list 

The io-control-spec-list is a control information list that includes: 

(1) A reference to the source or destination of the data to be transferred 

(2) Optional specification of editing processes 

(3) Optional specification to identify a record 

(4) Optional specification of exception handling 

(5) Optional return of status 

(6) Optional record advancing specification 

(7) Optional return of number of characters read 

The control information list governs the data transfer. 

R912 io-control-spec is [ UNIT = ] io-unit 
or [ FMT = ] format 
or [ NML = ] namelist-group-name 
or REC = scalar-int-expr 
or IOSTAT = scalar-default-int-variable 
or ERR = label 
or END = label 
or ADVANCE = scalar-default-char-expr 
or SIZE = scalar-default-int-variable 
or EOR = label 

Constraint: An io-control-spec-list must contain exactly one io-unit and may contain at most one of each of
the other specifiers. 

Constraint: An END=, EOR=, or SIZE= specifier must not appear in a write-stmt. 

Constraint: The label in the ERR=, EOR=, or END= specifier must be the statement label of a branch target
statement that appears in the same scoping unit as the data transfer statement. 

Constraint: A namelist-group-name must not be present if an input-item-list or an output-item-list is present
in the data transfer statement. 

Constraint: An io-control-spec-list must not contain both a format and a namelist-group-name. 

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the
first item in the control information list. 

Constraint: If the optional characters FMT= are omitted from the format specifier, the format specifier must
be the second item in the control information list and the first item must be the unit specifier
without the optional characters UNIT=. 

Constraint: If the optional characters NML= are omitted from the namelist specifier, the namelist specifier
must be the second item in the control information list and the first item must be the unit specifier
without the optional characters UNIT=. 

Constraint: If the unit specifier specifies an internal file, the io-control-spec-list must not contain a REC=
specifier or a namelist-group-name. 

Constraint: If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name must
not appear, and the format, if any, must not be an asterisk specifying list-directed input/output. 

Constraint: An ADVANCE= specifier may be present only in a formatted sequential input/output statement
with explicit format specification (10.1) whose control information list does not contain an
internal file unit specifier. 



ISO/IEC 1539 : 1991 (E)

116

Constraint: If an EOR= specifier is present, an ADVANCE= specifier also must appear.

Constraint: If a SIZE= specifier is present, an ADVANCE= specifier also must appear.

A SIZE= specifier may be present only in an input statement that contains an ADVANCE= specifier with the
value NO. 

An EOR= specifier may be present only in an input statement that contains an ADVANCE= specifier with the
value NO. 

If the data transfer statement contains a format or namelist-group-name, the statement is a formatted
input/output statement ; otherwise, it is an unformatted input/output statement. 

In a data transfer statement, the variable specified in an IOSTAT= or a SIZE= specifier, if any, must not be
associated with any entity in the data transfer input/output list (9.4.2) or namelist-group-object-list, nor with a
do-variable of an io-implied-do in the data transfer input/output list. 

In a data transfer statement, if a variable specified in an IOSTAT= or a SIZE= specifier is an array element
reference, its subscript values must not be affected by the data transfer, the io-implied-do processing, or the
definition or evaluation of any other specifier in the io-control-spec-list. 

For the ADVANCE= specifier, the scalar-default-char-expr has a limited list of character values. Any trailing
blanks are ignored. If a processor is capable of representing letters in both upper and lower case, the value
specified is without regard to case. 

An example of a READ statement is: 

READ (IOSTAT = IOS, UNIT = 6, FMT = ’(10F8.2)’) A, B 

9.4.1.1 Format specifier 

R913 format is default-char-expr 
or label 
or ∗
or scalar-default-int-variable 

Constraint: The label must be the label of a FORMAT statement that appears in the same scoping unit as the
statement containing the format specifier.

The scalar-default-int-variable must have been assigned (8.2.4) the statement label of a FORMAT statement that appears in the same scoping
unit as the format.

The default-char-expr must evaluate to a valid format specification (10.1.1 and 10.1.2). Note that default-char-
expr includes a character constant. 

If default-char-expr is an array, it is treated as if all of the elements of the array were specified in array element
order and were concatenated. 

If format is ∗, the statement is a list-directed input/output statement. 

An example in which the format is a character expression is: 

READ (6, FMT = "(" // CHAR_FMT // ")" ) X, Y, Z 

where CHAR_FMT is a default character variable. 

9.4.1.2 Namelist specifier 

The NML= specifier supplies the namelist-group-name (5.4). This name identifies a specific collection of data
objects on which transfer is to be performed. 

If a namelist-group-name is present, the statement is a namelist input/output statement. 



ISO/IEC 1539 : 1991 (E)

117

9.4.1.3 Record number 

The REC= specifier specifies the number of the record that is to be read or written. This specifier may be present
only in an input/output statement that specifies a unit connected for direct access. If the control information list
contains a REC= specifier, the statement is a direct access input/output statement ; otherwise, it is a sequential
access input/output statement. 

9.4.1.4 Input/output status 

Execution of an input/output statement containing the IOSTAT= specifier causes the variable specified in the
IOSTAT= specifier to become defined: 

(1) With a zero value if neither an error condition, an end-of-file condition, nor an end-of-record
condition occurs, 

(2) With a processor-dependent positive integer value if an error condition occurs, 

(3) With a processor-dependent negative integer value if an end-of-file condition occurs and no error
condition occurs, or 

(4) With a processor-dependent negative integer value different from the end-of-file value if an end-of-
record condition occurs and no error condition or end-of-file condition occurs. 

Note that an end-of-file condition may occur only during execution of a sequential input statement and an end-
of-record condition may occur only during execution of a nonadvancing input statement. 

Consider the example: 

READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = IOSS) X 
! 

IF (IOSS < 0) THEN 
! 
! Perform end-of-file processing on the file 
! connected to unit 3. 
CALL END_PROCESSING 
! 

ELSE IF (IOSS > 0) THEN 
! 
! Perform error processing 
CALL ERROR_PROCESSING 
! 

END IF 

9.4.1.5 Error branch 

If an input/output statement contains an ERR= specifier and an error condition (9.4.3) occurs during execution of
the statement: 

(1) Execution of the input/output statement terminates, 

(2) The position of the file specified in the input/output statement becomes indeterminate, 

(3) If the input/output statement also contains an IOSTAT= specifier, the variable specified becomes
defined with a processor-dependent positive integer value, 

(4) If the statement is a READ statement and it contains a SIZE= specifier, the variable becomes
defined with an integer value (9.4.1.9), and 

(5) Execution continues with the statement specified in the ERR= specifier. 



ISO/IEC 1539 : 1991 (E)

118

9.4.1.6 End-of-file branch 

If an input statement contains an END= specifier and an end-of-file condition (9.4.3) occurs and no error
condition (9.4.3) occurs during execution of the statement: 

(1) Execution of the input statement terminates, 

(2) If the file specified in the input statement is an external file, it is positioned after the endfile record, 

(3) If the input statement also contains an IOSTAT= specifier, the variable specified becomes defined
with a processor-dependent negative integer value, and 

(4) Execution continues with the statement specified in the END= specifier. 

In a WRITE statement, the control information list must not contain an END= specifier. 

9.4.1.7 End-of-record branch 

If an input statement contains an EOR= specifier and an end-of-record condition (9.4.3) occurs and no error
condition (9.4.3) occurs during execution of the statement: 

(1) If the PAD= specifier has the value YES, the record is padded with blanks to satisfy the input list
item (9.4.4.4.2) and corresponding data edit descriptor that requires more characters than the record
contains, 

(2) Execution of the input statement terminates, 

(3) The file specified in the input statement is positioned after the current record, 

(4) If the input statement also contains an IOSTAT= specifier, the variable specified becomes defined
with a processor-dependent negative integer value, 

(5) If the input statement contains a SIZE= specifier, the variable becomes defined with an integer
value (9.4.1.9), and 

(6) Execution continues with the statement specified in the EOR= specifier. 

In a WRITE statement, the control information list must not contain an EOR= specifier. 

9.4.1.8 Advance specifier 

The scalar-default-char-expr must evaluate to YES or NO. The ADVANCE= specifier determines whether
nonadvancing input/output occurs for this input/output statement. If NO is specified, nonadvancing input/output
occurs. If YES is specified, advancing formatted sequential input/output occurs. If this specifier is omitted, the
default value is YES. 

9.4.1.9 Character count 

When a nonadvancing input statement terminates, the variable specified in the SIZE= specifier becomes defined
with the count of the characters transferred by data edit descriptors during execution of the current input
statement. Blanks inserted as padding (9.4.4.4.2) are not counted. 

9.4.2 Data transfer input/output list 

An input/output list specifies the entities whose values are transferred by a data transfer input/output statement. 

R914 input-item is variable 
or io-implied-do 

R915 output-item is expr 
or io-implied-do 

R916 io-implied-do is ( io-implied-do-object-list , io-implied-do-control ) 



ISO/IEC 1539 : 1991 (E)

119

R917 io-implied-do-object is input-item 
or output-item 

R918 io-implied-do-control is do-variable = scalar-numeric-expr , ■  
■  scalar-numeric-expr [ , scalar-numeric-expr ] 

Constraint: A variable that is an input-item must not be an assumed-size array. 

Constraint: The do-variable must be a named scalar variable of type integer, default real, or double precision real.

Constraint: Each scalar-numeric-expr in an io-implied-do-control must be of type integer, default real, or double
precision real. 

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-item-list, an io-
implied-do-object must be an output-item. 

An input-item must not appear as, nor be associated with, the do-variable of any io-implied-do that contains the
input-item. 

If an input item is a pointer, it must be currently associated with a definable target and data are transferred from
the file to the associated target. If an output item is a pointer, it must be currently associated with a target and
data are transferred from the target to the file. 

If an input item or an output item is an allocatable array, it must be currently allocated. 

The do-variable of an io-implied-do that is contained within another io-implied-do must not appear as, nor be
associated with, the do-variable of the containing io-implied-do. 

If an array appears as an input/output list item, it is treated as if the elements, if any, were specified in array
element order (6.2.2.2). However, no element of that array may affect the value of any expression in the input-
item, nor may any element appear more than once in an input-item. For example: 

INTEGER A (100), J (100) 
... 

READ *, A (A) ! Not allowed 
READ *, A (LBOUND (A, 1) : UBOUND (A, 1)) ! Allowed 
READ *, A (J) ! Allowed, provided no two elements 

! of J have the same value 
READ *, A (A (1) : A (10)) ! Not allowed 

A derived-type object must not appear as an input/output list item if any component ultimately contained within
the object is not accessible within the scoping unit containing the input/output statement. An example is a
structure accessed from a module within which its type is PUBLIC but its components are PRIVATE. 

If a derived type ultimately contains a pointer component, an object of this type must not appear as an input item
nor as the result of the evaluation of an output list item. 

If a derived-type object appears as an input/output list item in a formatted input/output statement, it is treated as
if all of the components of the object were specified in the same order as in the definition of the derived type. 

An input/output list item of derived type in an unformatted input/output statement is treated as a single value in
a processor-dependent form. Note that, in this case, the appearance of a derived-type object as an input/output list
item is not equivalent to the list of its components. 

For an implied-DO, the loop initialization and execution is the same as for a DO construct (8.1.4.4). 

An input/output list must not contain an item of nondefault character type if the input/output statement specifies
an internal file. 

Note that a constant, an expression involving operators or function references, or an expression enclosed in
parentheses may appear as an output list item but must not appear as an input list item. 

An example of an output list with an implied-DO is: 



ISO/IEC 1539 : 1991 (E)

120

WRITE (LP, FMT = ’(10F8.2)’) (LOG (A (I)), I = 1, N + 9, K), G 

9.4.3 Error, end-of-record, and end-of-file conditions 

The set of input/output error conditions is processor dependent. 

An end-of-record condition occurs when a nonadvancing input statement attempts to transfer data from a
position beyond the end of the current record. 

An end-of-file condition occurs in either of the following cases: 

(1) When an endfile record is encountered during the reading of a file connected for sequential access. 

(2) When an attempt is made to read a record beyond the end of an internal file. 

An end-of-file condition may occur at the beginning of execution of an input statement. An end-of-file condition
also may occur during execution of a formatted input statement when more than one record is required by the
interaction of the input list and the format. 

If an error condition or an end-of-file condition occurs during execution of an input/output statement, execution
of the input/output statement terminates and any implied-DO variables become undefined. If an error condition
occurs during execution of an input/output statement, the position of the file becomes indeterminate. 

If an error or end-of-file condition occurs on input, all input list items become undefined. 

If an end-of-record condition occurs during execution of a nonadvancing input statement, the following occurs: if
the PAD= specifier has the value YES, the record is padded with blanks (9.4.4.4.2) to satisfy the input list item
and corresponding data edit descriptor that require more characters than the record contains; execution of the
input statement terminates and any implied-DO variables become undefined; and the file specified in the input
statement is positioned after the current record. 

Execution of the executable program is terminated if an error condition occurs during execution of an
input/output statement that contains neither an IOSTAT= nor an ERR= specifier, or if an end-of-file condition
occurs during execution of a READ statement that contains neither an IOSTAT= specifier nor an END= specifier,
or if an end-of-record condition occurs during execution of a nonadvancing READ statement that contains
neither an IOSTAT= specifier nor an EOR= specifier. 

9.4.4 Execution of a data transfer input/output statement 

The effect of executing a data transfer input/output statement must be as if the following operations were
performed in the order specified: 

(1) Determine the direction of data transfer 

(2) Identify the unit 

(3) Establish the format if one is specified 

(4) Position the file prior to data transfer (9.2.1.3.2) 

(5) Transfer data between the file and the entities specified by the input/output list (if any) or namelist 

(6) Determine whether an error condition, an end-of-file condition, or an end-of-record condition has
occurred 

(7) Position the file after data transfer (9.2.1.3.3) 

(8) Cause any variables specified in the IOSTAT= and SIZE= specifiers to become defined. 

9.4.4.1 Direction of data transfer 

Execution of a READ statement causes values to be transferred from a file to the entities specified by the input
list, if any, or specified within the file itself for namelist input. Execution of a WRITE or PRINT statement



ISO/IEC 1539 : 1991 (E)

121

causes values to be transferred to a file from the entities specified by the output list and format specification, if
any, or by the namelist-group-name for namelist output. Execution of a WRITE or PRINT statement for a file
that does not exist creates the file unless an error condition occurs. 

9.4.4.2 Identifying a unit 

A data transfer input/output statement that contains an input/output control list includes a unit specifier that
identifies an external unit or an internal file. A READ statement that does not contain an input/output control list
specifies a particular processor-dependent unit, which is the same as the unit identified by ∗ in a READ statement
that contains an input/output control list. The PRINT statement specifies some other processor-dependent unit,
which is the same as the unit identified by ∗ in a WRITE statement. Thus, each data transfer input/output
statement identifies an external unit or an internal file. 

The unit identified by a data transfer input/output statement must be connected to a file when execution of the
statement begins. Note that the file may be preconnected. 

9.4.4.3 Establishing a format 

If the input/output control list contains ∗ as a format, list-directed formatting is established. If namelist-group-
name is present, namelist formatting is established. If no format or namelist-group-name is specified,
unformatted data transfer is established. Otherwise, the format specification identified by the format specifier is
established. If the format is an array, the effect is as if all elements of the array were concatenated in array
element order. 

On output, if an internal file has been specified, a format specification that is in the file or is associated with the
file must not be specified. 

9.4.4.4 Data transfer 

Data are transferred between records and entities specified by the input/output list or namelist. The list items are
processed in the order of the input/output list for all data transfer input/output statements except namelist
formatted data transfer statements. The next item to be processed in the list is called the next effective item.
Zero-sized arrays and implied-DO lists with iteration counts of zero are ignored in determining the next effective
item. A character item of zero character length is treated as an effective item. The list items for a namelist input
statement are processed in the order of the entities specified within the input records. The list items for a namelist
output statement are processed in the order in which the data objects (variables) are specified in the namelist-
group-object-list. 

All values needed to determine which entities are specified by an input/output list item are determined at the
beginning of the processing of that item. 

All values are transmitted to or from the entities specified by a list item prior to the processing of any succeeding
list item for all data transfer input/output statements. In the example, 

READ (N) N, X (N) 

the old value of N identifies the unit, but the new value of N is the subscript of X. 

All values following the name= part of the namelist entity (10.9) within the input records are transmitted to the
matching entity specified in the namelist-group-object-list prior to processing any succeeding entity within the
input record for namelist input statements. If an entity is specified more than once within the input record during
a namelist formatted data transfer input statement, the last occurrence of the entity specifies the value or values
to be used for that entity. 

An input list item, or an entity associated with it, must not contain any portion of an established format
specification. 

If the input/output item is a pointer, data are transferred between the file and the associated target. 



ISO/IEC 1539 : 1991 (E)

122

If an internal file has been specified, an input/output list item must not be in the file or associated with the file.
Note that the file is a data object. 

A DO variable becomes defined and its iteration count established at the beginning of processing of the items
that constitute the range of an io-implied-do. 

On output, every entity whose value is to be transferred must be defined. 

9.4.4.4.1 Unformatted data transfer 

During unformatted data transfer, data are transferred without editing between the current record and the entities
specified by the input/output list. Exactly one record is read or written. 

Objects of intrinsic or derived types may be transferred by means of an unformatted data transfer statement. 

On input, the file must be positioned so that the record read is an unformatted record or an endfile record. The
number of values required by the input list must be less than or equal to the number of values in the record. Each
value in the record must be of the same type as the corresponding entity in the input list, except that one complex
value may correspond to two real list entities or two real values may correspond to one complex list entity. The
type parameters of the corresponding entities must be the same. Note that if an entity in the input list is of type
character, the character entity must have the same length and the same kind type parameter as the character
value. Also note that if two real values correspond to one complex entity or one complex value corresponds to
two real entities, all three must have the same kind type parameter value. 

On output to a file connected for direct access, the output list must not specify more values than can fit into the
record. If the file is connected for direct access and the values specified by the output list do not fill the record,
the remainder of the record is undefined. 

If the file is connected for sequential access, the record is created with a length sufficient to hold the values from
the output list. This length must be one of the set of allowed record lengths for the file and must not exceed the
value specified in the RECL= specifier, if any, of the OPEN statement that established the connection. 

If the file is connected for formatted input/output, unformatted data transfer is prohibited. 

The unit specified must be an external unit. 

9.4.4.4.2 Formatted data transfer 

During formatted data transfer, data are transferred with editing between the file and the entities specified by the
input/output list or by the namelist-group-name, if any. Format control is initiated and editing is performed as
described in Section 10. The current record and possibly additional records are read or written. 

Values may be transferred by means of a formatted data transfer statement to or from objects of intrinsic or
derived types. In the latter case, the transfer is in the form of values of intrinsic types to or from the components
of intrinsic types that ultimately comprise these structured objects. 

On input, the file must be positioned so that the record read is a formatted record or an endfile record. 

If the file is connected for unformatted input/output, formatted data transfer is prohibited. 

During advancing input from a file whose PAD= specifier has the value NO, the input list and format
specification must not require more characters from the record than the record contains. 

During advancing input from a file whose PAD= specifier has the value YES, or during input from an internal
file, blank characters are supplied by the processor if the input list and format specification require more
characters from the record than the record contains. 

During nonadvancing input from a file whose PAD= specifier has the value NO, an end-of-record condition
(9.4.3) occurs if the input list and format specification require more characters from the record than the record
contains. 



ISO/IEC 1539 : 1991 (E)

123

During nonadvancing input from a file whose PAD= specifier has the value YES, an end-of-record condition
occurs and blank characters are supplied by the processor if an input item and its corresponding data edit
descriptor require more characters from the record than the record contains. 

If the file is connected for direct access, the record number is increased by one as each succeeding record is read
or written. 

On output, if the file is connected for direct access or is an internal file and the characters specified by the output
list and format do not fill a record, blank characters are added to fill the record. 

On output, the output list and format specification must not specify more characters for a record than have been
specified by a RECL= specifier in the OPEN statement or the record length of an internal file. 

9.4.4.5 List-directed formatting 

If list-directed formatting has been established, editing is performed as described in 10.8. 

9.4.4.6 Namelist formatting 

If namelist formatting has been established, editing is performed as described in 10.9. 

9.4.5 Printing of formatted records 

The transfer of information in a formatted record to certain devices determined by the processor is called
printing. If a formatted record is printed, the first character of the record is not printed. The remaining characters
of the record, if any, are printed in one line beginning at the left margin. 

The first character of such a record must be of default character type and determines vertical spacing as follows:

If there are no characters in the record, the vertical spacing is one line and no characters other than blank are
printed in that line. 

The PRINT statement does not imply that printing will occur, and the WRITE statement does not imply that
printing will not occur. 

9.4.6 Termination of data transfer statements 

Termination of an input/output data transfer statement occurs when any of the following conditions are met: 

(1) Format processing encounters a data edit descriptor and there are no remaining elements in the
input-item-list or output-item-list. 

(2) Unformatted or list-directed data transfer exhausts the input-item-list or output-item-list. 

(3) Namelist output exhausts the namelist-group-object-list or namelist input reaches the end of a
record after having processed a name-value subsequence for every item in the namelist-group-
object-list. 

(4) An error condition occurs. 

(5) An end-of-file condition occurs. 

(6) A slash (/) is encountered as a value separator (10.8, 10.9) in the record being read during list-
directed or namelist input. 

Character Vertical Spacing Before Printing 

Blank One Line
0 Two Lines
1 To First Line of Next Page
+ No Advance 



ISO/IEC 1539 : 1991 (E)

124

(7) An end-of-record condition occurs during execution of a nonadvancing input statement. 

9.5 File positioning statements 
R919 backspace-stmt is BACKSPACE external-file-unit 

or BACKSPACE ( position-spec-list ) 

R920 endfile-stmt is ENDFILE external-file-unit 
or ENDFILE ( position-spec-list ) 

R921 rewind-stmt is REWIND external-file-unit 
or REWIND ( position-spec-list ) 

A file that is not connected for sequential access must not be referred to by a BACKSPACE, an ENDFILE, or a
REWIND statement. A file that is connected with an ACTION= specifier having the value READ must not be
referred to by an ENDFILE statement. 

R922 position-spec is [ UNIT = ] external-file-unit 
or IOSTAT = scalar-default-int-variable 
or ERR = label 

Constraint: The label in the ERR= specifier must be the statement label of a branch target statement that
appears in the same scoping unit as the file positioning statement. 

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must be the
first item in the position-spec-list. 

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at most one of
each of the other specifiers. 

The IOSTAT= and ERR= specifiers are described in 9.4.1.4 and 9.4.1.5, respectively. 

9.5.1 BACKSPACE statement 

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned before the
current record if there is a current record, or before the preceding record if there is no current record. If there is
no current record and no preceding record, the position of the file is not changed. Note that if the preceding
record is an endfile record, the file is positioned before the endfile record. If a BACKSPACE statement causes
the implicit writing of an endfile record, the file is positioned before the record that precedes the endfile record. 

Backspacing a file that is connected but does not exist is prohibited. 

Backspacing over records written using list-directed or namelist formatting is prohibited. 

An example of a BACKSPACE statement is: 

BACKSPACE (10, ERR = 20) 

9.5.2 ENDFILE statement 

Execution of an ENDFILE statement writes an endfile record as the next record of the file. The file is then
positioned after the endfile record which becomes the last record of the file. If the file also may be connected for
direct access, only those records before the endfile record are considered to have been written. Thus, only those
records may be read during subsequent direct access connections to the file. 

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be used to reposition
the file prior to execution of any data transfer input/output statement or ENDFILE statement. 

Execution of an ENDFILE statement for a file that is connected but does not exist creates the file prior to writing
the endfile record. 

An example of an ENDFILE statement is: 



ISO/IEC 1539 : 1991 (E)

125

ENDFILE K 

9.5.3 REWIND statement 

Execution of a REWIND statement causes the specified file to be positioned at its initial point. Note that if the
file is already positioned at its initial point, execution of this statement has no effect on the position of the file. 

Execution of a REWIND statement for a file that is connected but does not exist is permitted and has no effect. 

An example of a REWIND statement is: 

REWIND 10 

9.6 File inquiry 
The INQUIRE statement may be used to inquire about properties of a particular named file or of the connection
to a particular unit. There are three forms of the INQUIRE statement: inquire by file, which uses the FILE=
specifier, inquire by unit, which uses the UNIT= specifier, and inquire by output list, which uses only the
IOLENGTH= specifier. All specifier value assignments are performed according to the rules for assignment
statements. 

An INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values assigned
by an INQUIRE statement are those that are current at the time the statement is executed. 

R923 inquire-stmt is INQUIRE ( inquire-spec-list ) 
or INQUIRE ( IOLENGTH = scalar-default-int-variable ) ■  

■  output-item-list 

Examples of INQUIRE statements are: 

INQUIRE (IOLENGTH = IOL) A (1:N) 
INQUIRE (UNIT = JOAN, OPENED = LOG_01, NAMED = LOG_02, & 

FORM = CHAR_VAR, IOSTAT = IOS) 

9.6.1 Inquiry specifiers 

Unless constrained, the following inquiry specifiers may be used in either of the inquire by file or inquire by unit
forms of the INQUIRE statement: 

R924 inquire-spec is [ UNIT = ] external-file-unit 
or FILE = file-name-expr 
or IOSTAT = scalar-default-int-variable 
or ERR = label 
or EXIST = scalar-default-logical-variable 
or OPENED = scalar-default-logical-variable 
or NUMBER = scalar-default-int-variable 
or NAMED = scalar-default-logical-variable 
or NAME = scalar-default-char-variable 
or ACCESS = scalar-default-char-variable 
or SEQUENTIAL = scalar-default-char-variable 
or DIRECT = scalar-default-char-variable 
or FORM = scalar-default-char-variable 
or FORMATTED = scalar-default-char-variable 
or UNFORMATTED = scalar-default-char-variable 
or RECL = scalar-default-int-variable 
or NEXTREC = scalar-default-int-variable 
or BLANK = scalar-default-char-variable 
or POSITION = scalar-default-char-variable 



ISO/IEC 1539 : 1991 (E)

126

or ACTION = scalar-default-char-variable 
or READ = scalar-default-char-variable 
or WRITE = scalar-default-char-variable 
or READWRITE = scalar-default-char-variable 
or DELIM = scalar-default-char-variable 
or PAD = scalar-default-char-variable 

Constraint: An inquire-spec-list must contain one FILE= specifier or one UNIT= specifier, but not both, and
at most one of each of the other specifiers. 

Constraint: In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are
omitted from the unit specifier, the unit specifier must be the first item in the inquire-spec-list. 

When a returned value of a specifier other than the NAME= specifier is of type character and the processor is
capable of representing letters in both upper and lower case, the value returned is in upper case. 

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry specifier variables
become undefined, except for the variable in the IOSTAT= specifier (if any). 

The IOSTAT= and ERR= specifiers are described in 9.4.1.4 and 9.4.1.5, respectively. 

9.6.1.1 FILE= specifier in the INQUIRE statement 

The value of the file-name-expr in the FILE= specifier specifies the name of the file being inquired about. The
named file need not exist or be connected to a unit. The value of the file-name-expr must be of a form acceptable
to the processor as a file name. Any trailing blanks are ignored. If a processor is capable of representing letters
in both upper and lower case, the interpretation of case is processor dependent. 

9.6.1.2 EXIST= specifier in the INQUIRE statement 

Execution of an INQUIRE by file statement causes the scalar-default-logical-variable in the EXIST= specifier to
be assigned the value true if there exists a file with the specified name; otherwise, false is assigned. Execution of
an INQUIRE by unit statement causes true to be assigned if the specified unit exists; otherwise, false is assigned. 

9.6.1.3 OPENED= specifier in the INQUIRE statement 

Execution of an INQUIRE by file statement causes the scalar-default-logical-variable in the OPENED= specifier
to be assigned the value true if the file specified is connected to a unit; otherwise, false is assigned. Execution of
an INQUIRE by unit statement causes the scalar-default-logical-variable to be assigned the value true if the
specified unit is connected to a file; otherwise, false is assigned. 

9.6.1.4 NUMBER= specifier in the INQUIRE statement 

The scalar-default-int-variable in the NUMBER= specifier is assigned the value of the external unit identifier of
the unit that is currently connected to the file. If there is no unit connected to the file, the value –1 is assigned. 

9.6.1.5 NAMED= specifier in the INQUIRE statement 

The scalar-default-logical-variable in the NAMED= specifier is assigned the value true if the file has a name;
otherwise, it is assigned the value false. 

9.6.1.6 NAME= specifier in the INQUIRE statement 

The scalar-default-char-variable in the NAME= specifier is assigned the value of the name of the file if the file
has a name; otherwise, it becomes undefined. Note that if this specifier appears in an INQUIRE by file statement,
its value is not necessarily the same as the name given in the FILE= specifier. For example, the processor may
return a file name qualified by a user identification. However, the value returned must be suitable for use as the
value of the file-name-expr in the FILE= specifier in an OPEN statement. If a processor is capable of



ISO/IEC 1539 : 1991 (E)

127

representing letters in both upper and lower case, the case of the characters assigned to scalar-default-char-
variable is processor dependent. 

9.6.1.7 ACCESS= specifier in the INQUIRE statement 

The scalar-default-char-variable in the ACCESS= specifier is assigned the value SEQUENTIAL if the file is
connected for sequential access, and DIRECT if the file is connected for direct access. If there is no connection,
it is assigned the value UNDEFINED. 

9.6.1.8 SEQUENTIAL= specifier in the INQUIRE statement 

The scalar-default-char-variable in the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is
included in the set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of
allowed access methods for the file, and UNKNOWN if the processor is unable to determine whether or not
SEQUENTIAL is included in the set of allowed access methods for the file. 

9.6.1.9 DIRECT= specifier in the INQUIRE statement 

The scalar-default-char-variable in the DIRECT= specifier is assigned the value YES if DIRECT is included in
the set of allowed access methods for the file, NO if DIRECT is not included in the set of allowed access
methods for the file, and UNKNOWN if the processor is unable to determine whether or not DIRECT is included
in the set of allowed access methods for the file. 

9.6.1.10 FORM= specifier in the INQUIRE statement 

The scalar-default-char-variable in the FORM= specifier is assigned the value FORMATTED if the file is
connected for formatted input/output, and is assigned the value UNFORMATTED if the file is connected for
unformatted input/output. If there is no connection, it is assigned the value UNDEFINED. 

9.6.1.11 FORMATTED= specifier in the INQUIRE statement 

The scalar-default-char-variable in the FORMATTED= specifier is assigned the value YES if FORMATTED is
included in the set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed forms
for the file, and UNKNOWN if the processor is unable to determine whether or not FORMATTED is included in
the set of allowed forms for the file. 

9.6.1.12 UNFORMATTED= specifier in the INQUIRE statement 

The scalar-default-char-variable in the UNFORMATTED= specifier is assigned the value YES if
UNFORMATTED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in
the set of allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or not
UNFORMATTED is included in the set of allowed forms for the file. 

9.6.1.13 RECL= specifier in the INQUIRE statement 

The scalar-default-int-variable in the RECL= specifier is assigned the value of the record length of a file
connected for direct access, or the value of the maximum record length for a file connected for sequential access.
If the file is connected for formatted input/output, the length is the number of characters for all records that
contain only characters of type default character. If the file is connected for unformatted input/output, the length
is measured in processor-dependent units. If there is no connection, the scalar-default-int-variable becomes
undefined. 

9.6.1.14 NEXTREC= specifier in the INQUIRE statement 

The scalar-default-int-variable in the NEXTREC= specifier is assigned the value , where  is the record
number of the last record read or written on the file connected for direct access. If the file is connected but no
records have been read or written since the connection, the scalar-default-int-variable is assigned the value 1. If

n 1+ n



ISO/IEC 1539 : 1991 (E)

128

the file is not connected for direct access or if the position of the file is indeterminate because of a previous error
condition, the scalar-default-int-variable becomes undefined. 

9.6.1.15 BLANK= specifier in the INQUIRE statement 

The scalar-default-char-variable in the BLANK= specifier is assigned the value NULL if null blank control is in
effect for the file connected for formatted input/output, and is assigned the value ZERO if zero blank control is
in effect for the file connected for formatted input/output. If there is no connection, or if the connection is not for
formatted input/output, the scalar-default-char-variable is assigned the value UNDEFINED. 

9.6.1.16 POSITION= specifier in the INQUIRE statement 

The scalar-default-char-variable in the POSITION= specifier is assigned the value REWIND if the file is
connected by an OPEN statement for positioning at its initial point, APPEND if the file is connected for
positioning before its endfile record or at its terminal point, and ASIS if the file is connected without changing
its position. If there is no connection or if the file is connected for direct access, the scalar-default-char-variable
is assigned the value UNDEFINED. If the file has been repositioned since the connection, the scalar-default-
char-variable is assigned a processor-dependent value, which must not be REWIND unless the file is positioned
at its initial point and must not be APPEND unless the file is positioned so that its endfile record is the next
record or at its terminal point if it has no endfile record. 

9.6.1.17 ACTION= specifier in the INQUIRE statement 

The scalar-default-char-variable in the ACTION= specifier is assigned the value READ if the file is connected
for input only, WRITE if the file is connected for output only, and READWRITE if it is connected for both input
and output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED. 

9.6.1.18 READ= specifier in the INQUIRE statement 

The scalar-default-char-variable in the READ= specifier is assigned the value YES if READ is included in the
set of allowed actions for the file, NO if READ is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether or not READ is included in the set of allowed
actions for the file. 

9.6.1.19 WRITE= specifier in the INQUIRE statement 

The scalar-default-char-variable in the WRITE= specifier is assigned the value YES if WRITE is included in the
set of allowed actions for the file, NO if WRITE is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether or not WRITE is included in the set of allowed
actions for the file. 

9.6.1.20 READWRITE= specifier in the INQUIRE statement 

The scalar-default-char-variable in the READWRITE= specifier is assigned the value YES if READWRITE is
included in the set of allowed actions for the file, NO if READWRITE is not included in the set of allowed
actions for the file, and UNKNOWN if the processor is unable to determine whether or not READWRITE is
included in the set of allowed actions for the file. 

9.6.1.21 DELIM= specifier in the INQUIRE statement 

The scalar-default-char-variable in the DELIM= specifier is assigned the value APOSTROPHE if the apostrophe
is to be used to delimit character data written by list-directed or namelist formatting. If the quotation mark is
used to delimit such data, the value QUOTE is assigned. If neither the apostrophe nor the quote is used to delimit
the character data, the value NONE is assigned. If there is no connection or if the connection is not for formatted
input/output, the scalar-default-char-variable is assigned the value UNDEFINED. 



ISO/IEC 1539 : 1991 (E)

129

9.6.1.22 PAD= specifier in the INQUIRE statement 

The scalar-default-char-variable in the PAD= specifier is assigned the value NO if the connection of the file to
the unit included the PAD= specifier and its value was NO. Otherwise, the scalar-default-char-variable is
assigned the value YES. 

9.6.2 Restrictions on inquiry specifiers 

A variable that may become defined or undefined as a result of its use in a specifier in an INQUIRE statement,
or any associated entity, must not appear in another specifier in the same INQUIRE statement. 

The inquire-spec-list in an INQUIRE by file statement must contain exactly one FILE= specifier and must not
contain a UNIT= specifier. The inquire-spec-list in an INQUIRE by unit statement must contain exactly one
UNIT= specifier and must not contain a FILE= specifier. The unit specified need not exist or be connected to a
file. If it is connected to a file, the inquiry is being made about the connection and about the file connected. 

9.6.3 Inquire by output list 

The inquire by output list form of the INQUIRE statement does not include a FILE= or UNIT= specifier, and
includes only an IOLENGTH= specifier and an output list. 

The scalar-default-int-variable in the IOLENGTH= specifier is assigned the processor-dependent value that
would result from the use of the output list in an unformatted output statement. The value must be suitable as a
RECL= specifier in an OPEN statement that connects a file for unformatted direct access when there are
input/output statements with the same input/output list. 

9.7 Restrictions on function references and list items 
A function reference must not appear in an expression anywhere in an input/output statement if such a reference
causes another input/output statement to be executed. Note that restrictions in the evaluation of expressions
(7.1.7) prohibit certain side effects. 

9.8 Restriction on input/output statements 
If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain
input/output statements, those statements must not refer to the unit.



ISO/IEC 1539 : 1991 (E)

130

Section 10 : Input/output editing 
A format used in conjunction with an input/output statement provides information that directs the editing
between the internal representation of data and the characters of a sequence of formatted records. 

A format specifier (9.4.1.1) in an input/output statement may refer to a FORMAT statement or to a character
expression that contains a format specification. A format specification provides explicit editing information. The
format specifier also may be an asterisk (∗) which indicates list-directed formatting (10.8). Instead of a format
specifier, a namelist-group-name may be specified which indicates namelist formatting (10.9). 

10.1 Explicit format specification methods 
Explicit format specification may be given: 

(1) In a FORMAT statement, or 

(2) In a character expression. 

10.1.1 FORMAT statement 

R1001 format-stmt is FORMAT format-specification 

R1002 format-specification is ( [ format-item-list ] ) 

Constraint: The format-stmt must be labeled. 

Constraint: The comma used to separate format-items in a format-item-list may be omitted as follows: 

(1) Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit descriptor
(10.6.5) 

(2) Before a slash edit descriptor when the optional repeat specification is not present (10.6.2) 

(3) After a slash edit descriptor 

(4) Before or after a colon edit descriptor (10.6.3) 

Blank characters may precede the initial left parenthesis of the format specification. Additional blank characters
may appear at any point within the format specification, with no effect on the interpretation of the format
specification, except within a character string edit descriptor (10.7.1, 10.7.2). 

Examples of FORMAT statements are: 

5 FORMAT (1PE12.4, I10) 
9 FORMAT (I12, /, ’ Dates: ’, 2 (2I3, I5)) 

10.1.2 Character format specification 

A character expression used as a format specifier in a formatted input/output statement must evaluate to a
character string whose leading part is a valid format specification. Note that the format specification begins with
a left parenthesis and ends with a right parenthesis. 

All character positions up to and including the final right parenthesis of the format specification must be defined
at the time the input/output statement is executed, and must not become redefined or undefined during the
execution of the statement. Character positions, if any, following the right parenthesis that ends the format
specification need not be defined and may contain any character data with no effect on the interpretation of the
format specification. 



ISO/IEC 1539 : 1991 (E)

131

If the format specifier references a character array, it is treated as if all of the elements of the array were
specified in array element order and were concatenated. However, if a format specifier references a character
array element, the format specification must be contained entirely within that array element. 

10.2 Form of a format item list 
R1003 format-item is [ r ] data-edit-desc 

or control-edit-desc 
or char-string-edit-desc 
or [ r ] ( format-item-list ) 

R1004 r is int-literal-constant 

Constraint: r must be positive. 

Constraint: r must not have a kind parameter specified for it. 

The integer literal constant r is called a repeat specification.

10.2.1 Edit descriptors 

An edit descriptor is a data edit descriptor, a control edit descriptor, or a character string edit descriptor. 

R1005 data-edit-desc is I w [ . m ] 
or B w [ . m ] 
or O w [ . m ] 
or Z w [ . m ] 
or F w . d 
or E w . d [ E e ] 
or EN w . d [ E e ] 
or ES w . d [ E e ] 
or G w . d [ E e ] 
or L w 
or A [ w ] 
or D w . d 

R1006 w is int-literal-constant 

R1007 m is int-literal-constant 

R1008 d is int-literal-constant 

R1009 e is int-literal-constant 

Constraint: w and e must be positive. 

Constraint: w, m, d, and e must not have kind parameters specified for them. 

I, B, O, Z, F, E, EN, ES, G, L, A, and D indicate the manner of editing. 

R1010 control-edit-desc is position-edit-desc 
or [ r ] / 
or : 
or sign-edit-desc 
or k P 
or blank-interp-edit-desc 

R1011 k is signed-int-literal-constant 

Constraint: k must not have a kind parameter specified for it. 

R1012 position-edit-desc is T n 



ISO/IEC 1539 : 1991 (E)

132

or TL n 
or TR n 
or n X 

R1013 n is int-literal-constant 

Constraint: n must be positive. 

Constraint: n must not have a kind parameter specified for it. 

R1014 sign-edit-desc is S 
or SP 
or SS 

R1015 blank-interp-edit-desc is BN 
or BZ 

In kP, k is called the scale factor. 

T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and BZ indicate the manner of editing. 

R1016 char-string-edit-desc is char-literal-constant 
or c H rep-char [ rep-char ] ... 

R1017 c is int-literal-constant

Constraint: c must be positive. 

Constraint: c must not have a kind parameter specified for it.

Constraint: The rep-char in the cH form must be of default character type.

Constraint: The char-literal-constant must not have a kind parameter specified for it. 

Each rep-char in a character string edit descriptor must be one of the characters capable of representation by the
processor. 

The character string edit descriptors provide constant data to be output, and are not valid for input. 

Within a character literal constant, appearances of the delimiter character itself, apostrophe or quote, must be as
consecutive pairs without intervening blanks. Each such pair represents a single occurrence of the delimiter
character.

In the H edit descriptor, c specifies the number of characters following the H.

If a processor is capable of representing letters in both upper and lower case, the edit descriptors are without
regard to case except for the characters following the H in the H edit descriptor and the characters in the character constants. 

10.2.2 Fields 

A field is a part of a record that is read on input or written on output when format control encounters a data edit
descriptor or a character string edit descriptor. The field width is the size in characters of the field. 

10.3 Interaction between input/output list and format 
The beginning of formatted data transfer using a format specification initiates format control (9.4.4.4.2). Each
action of format control depends on information jointly provided by: 

(1) The next edit descriptor contained in the format specification, and 

(2) The next effective item in the input/output list, if one exists. 

If an input/output list specifies at least one effective list item, at least one data edit descriptor must exist in the
format specification. Note that an empty format specification of the form ( ) may be used only if the input/output
list is empty or each item is of zero size. 



ISO/IEC 1539 : 1991 (E)

133

Except for a format item preceded by a repeat specification r, a format specification is interpreted from left to
right. 

A format item preceded by a repeat specification is processed as a list of  items, each identical to the format
item but without the repeat specification and separated by commas. Note that an omitted repeat specification is
treated in the same way as a repeat specification whose value is one. 

To each data edit descriptor interpreted in a format specification, there corresponds one effective item specified
by the input/output list (9.4.2), except that an input/output list item of type complex requires the interpretation of
two F, E, EN, ES, D, or G edit descriptors. For each control edit descriptor or character edit descriptor, there is
no corresponding item specified by the input/output list, and format control communicates information directly
with the record. 

Whenever format control encounters a data edit descriptor in a format specification, it determines whether there
is a corresponding effective item specified by the input/output list. If there is such an item, it transmits
appropriately edited information between the item and the record, and then format control proceeds. If there is no
such item, format control terminates. 

If format control encounters a colon edit descriptor in a format specification and another effective input/output
list item is not specified, format control terminates. 

If format control encounters the rightmost parenthesis of a complete format specification and another effective
input/output list item is not specified, format control terminates. However, if another effective input/output list
item is specified, the file is positioned in a manner identical to the way it is positioned when a slash edit
descriptor is processed (10.6.2). Format control then reverts to the beginning of the format item terminated by the
last preceding right parenthesis. If there is no such preceding right parenthesis, format control reverts to the first
left parenthesis of the format specification. If any reversion occurs, the reused portion of the format specification
must contain at least one data edit descriptor. If format control reverts to a parenthesis that is preceded by a
repeat specification, the repeat specification is reused. Reversion of format control, of itself, has no effect on the
scale factor (10.6.5.1), the sign control edit descriptors (10.6.4), or the blank interpretation edit descriptors
(10.6.6). 

Example: The format specification: 

10 FORMAT (1X, 2(F10.3, I5)) 

with an output list of 

WRITE (10,10) 10.1, 3, 4.7, 1, 12.4, 5, 5.2, 6 

produces the same output as the format specification: 

10 FORMAT (1X, F10.3, I5, F10.3, I5/F10.3, I5, F10.3, I5) 

10.4 Positioning by format control 
After each data edit descriptor or character string edit descriptor is processed, the file is positioned after the last
character read or written in the current record. 

After each T, TL, TR, or X edit descriptor is processed, the file is positioned as described in 10.6.1. After each
slash edit descriptor is processed, the file is positioned as described in 10.6.2. 

If format control reverts as described in 10.3, the file is positioned in a manner identical to the way it is
positioned when a slash edit descriptor is processed (10.6.2). 

During a read operation, any unprocessed characters of the current record are skipped whenever the next record
is read. 

r



ISO/IEC 1539 : 1991 (E)

134

10.5 Data edit descriptors 
Data edit descriptors cause the conversion of data to or from its internal representation. Characters in the record
must be of default kind if they correspond to the value of a numeric, logical, or default character data entity, and
must be of nondefault kind if they correspond to the value of a data entity of nondefault character type.
Characters transmitted to a record as a result of processing a character string edit descriptor must be of default
kind. On input, the specified variable becomes defined unless an error condition, an end-of-file condition, or an
end-of-record condition occurs. On output, the specified expression is evaluated. 

10.5.1 Numeric editing 

The I, B, O, Z, F, E, EN, ES, D, and G edit descriptors may be used to specify the input/output of integer, real,
and complex data. The following general rules apply: 

(1) On input, leading blanks are not significant. The interpretation of blanks, other than leading blanks,
is determined by a combination of any BLANK= specifier (9.3.4.6), the default for a preconnected
or internal file, and any BN or BZ blank control that is currently in effect for the unit (10.6.6). Plus
signs may be omitted. A field containing only blanks is considered to be zero. 

(2) On input, with F, E, EN, ES, D, and G editing, a decimal point appearing in the input field overrides
the portion of an edit descriptor that specifies the decimal point location. The input field may have
more digits than the processor uses to approximate the value of the datum. 

(3) On output with I, F, E, EN, ES, D, and G editing, the representation of a positive or zero internal
value in the field may be prefixed with a plus, as controlled by the S, SP, and SS edit descriptors or
the processor. The representation of a negative internal value in the field must be prefixed with a
minus. However, the processor must not produce a negative signed zero in a formatted output
record. 

(4) On output, the representation is right-justified in the field. If the number of characters produced by
the editing is smaller than the field width, leading blanks are inserted in the field. 

(5) On output, if the number of characters produced exceeds the field width or if an exponent exceeds
its specified length using the Ew.dEe, ENw.dEe, ESw.dEe, or Gw.dEe edit descriptor, the processor
must fill the entire field of width w with asterisks. However, the processor must not produce
asterisks if the field width is not exceeded when optional characters are omitted. Note that when an
SP edit descriptor is in effect, a plus is not optional. 

10.5.1.1 Integer editing 

The Iw, Iw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate that the field to be edited occupies w
positions. The specified input/output list item must be of type integer. The G edit descriptor also may be used to
edit integer data (10.5.4.1.1). 

On input, m has no effect. 

In the input field for the I edit descriptor, the character string must be in the form of an optionally signed integer
constant, except for the interpretation of blanks. For the B, O, and Z edit descriptors, the character string must
consist of binary, octal, or hexadecimal digits (R408, R409, R410) in the respective input field. If a processor is
capable of representing letters in both upper and lower case, the lower-case hexadecimal digits a through f in a
hexadecimal input field are equivalent to the corresponding upper-case hexadecimal digits. 

The output field for the Iw edit descriptor consists of zero or more leading blanks followed by a minus if the
value of the internal datum is negative, or an optional plus otherwise, followed by the magnitude of the internal
value in the form of an unsigned integer constant without leading zeros. Note that an integer constant always
consists of at least one digit. 

The output field for the Bw, Ow, and Zw descriptors consists of zero or more leading blanks followed by the
internal value in a form identical to the digits of a binary, octal, or hexadecimal constant, respectively, with the



ISO/IEC 1539 : 1991 (E)

135

same value and without leading zeros. Note that a binary, octal, or hexadecimal constant always consists of at
least one digit. 

The output field for the Iw.m, Bw.m, Ow.m, and Zw.m edit descriptor is the same as for the Iw, Bw, Ow, and Zw
edit descriptor, respectively, except that the unsigned integer constant consists of at least m digits. If necessary,
sufficient leading zeros are included to achieve the minimum of m digits. The value of m must not exceed the
value of w. If m is zero and the value of the internal datum is zero, the output field consists of only blank
characters, regardless of the sign control in effect. 

10.5.1.2 Real and complex editing 

The F, E, EN, ES, and D edit descriptors specify the editing of real and complex data. An input/output list item
corresponding to an F, E, EN, ES, or D edit descriptor must be real or complex. The G edit descriptor also may
be used to edit real and complex data (10.5.4.1.2). 

If a processor is capable of representing letters in both upper and lower case, a lower-case letter is equivalent to
the corresponding upper-case letter in the exponent in a numeric input field. 

10.5.1.2.1 F editing 

The Fw.d edit descriptor indicates that the field occupies w positions, the fractional part of which consists of d
digits. 

The input field consists of an optional sign, followed by a string of one or more digits optionally containing a
decimal point, including any blanks interpreted as zeros. The d has no effect on input if the input field contains
a decimal point. If the decimal point is omitted, the rightmost d digits of the string, with leading zeros assumed
if necessary, are interpreted as the fractional part of the value represented. The string of digits may contain more
digits than a processor uses to approximate the value of the constant. The basic form may be followed by an
exponent of one of the following forms: 

(1) Explicitly signed integer constant 

(2) E followed by zero or more blanks, followed by an optionally signed integer constant 

(3) D followed by zero or more blanks, followed by an optionally signed integer constant 

An exponent containing a D is processed identically to an exponent containing an E. 

Note that if the input field does not contain an exponent, the effect is as if the basic form were followed by an
exponent with a value of , where  is the established scale factor (10.6.5.1). 

The output field consists of blanks, if necessary, followed by a minus if the internal value is negative, or an
optional plus otherwise, followed by a string of digits that contains a decimal point and represents the magnitude
of the internal value, as modified by the established scale factor and rounded to d fractional digits. Leading zeros
are not permitted except for an optional zero immediately to the left of the decimal point if the magnitude of the
value in the output field is less than one. The optional zero must appear if there would otherwise be no digits in
the output field. 

10.5.1.2.2 E and D editing 

The Ew.d, Dw.d, and Ew.dEe edit descriptors indicate that the external field occupies w positions, the fractional
part of which consists of d digits, unless a scale factor greater than one is in effect, and the exponent part consists
of e digits. The e has no effect on input and d has no effect on input if the input field contains a decimal point. 

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1). 

The form of the output field for a scale factor of zero is: 

[ ± ] [0] . 

where:

k– k

x1x2…xdexp



ISO/IEC 1539 : 1991 (E)

136

± signifies a plus or a minus.

 are the d most significant digits of the datum value after rounding.

exp is a decimal exponent having one of the following forms:

where each z is a digit. 

The sign in the exponent is produced. A plus sign is produced if the exponent value is zero. The forms Ew.d and
Dw.d must not be used if |exp| > 999. 

The scale factor k controls the decimal normalization (10.2.1, 10.6.5.1). If , the output field contains
exactly |k| leading zeros and d – |k| significant digits after the decimal point. If , the output field
contains exactly k significant digits to the left of the decimal point and  significant digits to the right of
the decimal point. Other values of k are not permitted. 

10.5.1.2.3 EN editing 

The EN edit descriptor produces an output field in the form of a real number in engineering notation such that
the decimal exponent is divisible by three and the absolute value of the significand (4.3.1.2) is greater than or
equal to 1 and less than 1000, except when the output value is zero. The scale factor has no effect on output. 

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits. 

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1). 

The form of the output field is: 

[ ± ] yyy.  

where:

± signifies a plus or a minus.

yyy are the 1 to 3 decimal digits representative of the most significant digits of the value of the datum after
rounding (yyy is an integer such that   or, if the output value is zero, ).

 are the d next most significant digits of the value of the datum after rounding.

Edit
Descriptor

Absolute Value
of Exponent

Form of
Exponent

Ew.d
E  or 

Ew.dEe E

Dw.d
D  or E

or 

x1x2…xd

exp 99≤ z1z2± 0z1z2±

99 exp 999≤< z1z2z3±

exp 10e 1–≤ z1z2…ze±

exp 99≤
z1z2± z1z2±

0z1z2±

99 exp 999≤< z1z2z3±

d– k 0≤<
0 k d 2+< <

d k– 1+

x1x2…xdexp

1 yyy≤ 1000< yyy 0=

x1x2…xd



ISO/IEC 1539 : 1991 (E)

137

exp is a decimal exponent, divisible by three, of one of the following forms: 

where each z is a digit. 

The sign in the exponent is produced. A plus sign is produced if the exponent value is zero. The form ENw.d
must not be used if |exp| > 999. 

Examples: 

10.5.1.2.4 ES editing 

The ES edit descriptor produces an output field in the form of a real number in scientific notation such that the
absolute value of the significand (4.3.1.2) is greater than or equal to 1 and less than 10, except when the output
value is zero. The scale factor has no effect on output. 

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits. 

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1). 

The form of the output field is: 

[ ± ] y.

where:

± signifies a plus or a minus.

y is a decimal digit representative of the most significant digit of the value of the datum after rounding.

 are the d next most significant digits of the value of the datum after rounding.

exp is a decimal exponent having one of the following forms:

where each z is a digit. 

Edit
Descriptor

Absolute Value
of Exponent

Form of
Exponent

ENw.d
E  or 

ENw.dEe E

Internal Value Output field Using SS, EN12.3 

6.421 6.421E+00
–.5 –500.000E–03

.00217 2.170E−03
4721.3 4.721E+03

Edit
Descriptor

Absolute Value
of Exponent

Form of
Exponent

ESw.d
E  or 

ESw.dEe E

exp 99≤ z1z2± 0z1z2±

99 exp 999≤< z1z2z3±

exp 10e 1–≤ z1z2…ze±

x1x2…xdexp

x1x2…xd

exp 99≤ z1z2± 0z1z2±

99 exp 999≤< z1z2z3±

exp 10e 1–≤ z1z2…ze±



ISO/IEC 1539 : 1991 (E)

138

The sign in the exponent is produced. A plus sign is produced if the exponent value is zero. The form ESw.d
must not be used if |exp| > 999. 

Examples:

10.5.1.2.5 Complex editing 

A complex datum consists of a pair of separate real data. The editing of a scalar datum of complex data type is
specified by two edit descriptors each of which specifies the editing of real data. The first of the edit descriptors
specifies the real part; the second specifies the imaginary part. The two edit descriptors may be different. Control
and character string edit descriptors may be processed between the edit descriptor for the real part and the edit
descriptor for the imaginary part. 

10.5.2 Logical editing 

The Lw edit descriptor indicates that the field occupies w positions. The specified input/output list item must be
of type logical. The G edit descriptor also may be used to edit logical data (10.5.4.2). 

The input field consists of optional blanks, optionally followed by a decimal point, followed by a T for true or F
for false. The T or F may be followed by additional characters in the field. Note that the logical constants
.TRUE. and .FALSE. are acceptable input forms. If a processor is capable of representing letters in both upper
and lower case, a lower-case letter is equivalent to the corresponding upper-case letter in a logical input field. 

The output field consists of w – 1 blanks followed by a T or F, depending on whether the value of the internal
datum is true or false, respectively. 

10.5.3 Character editing 

The A[w] edit descriptor is used with an input/output list item of type character. The G edit descriptor also may
be used to edit character data (10.5.4.3). All characters transferred and converted under control of one A or G
edit descriptor must have the same kind type parameter as the data item in the input/output list. 

If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w is
not specified with the A edit descriptor, the number of characters in the field is the length of the corresponding
list item, regardless of the value of the kind type parameter. 

Let len be the length of the input/output list item. If the specified field width w for A input is greater than or
equal to len, the rightmost len characters will be taken from the input field. If the specified field width w is less
than len, the w characters will appear left-justified with  trailing blanks in the internal representation. 

If the specified field width w for A output is greater than len, the output field will consist of  blanks
followed by the len characters from the internal representation. If the specified field width w is less than or equal
to len, the output field will consist of the leftmost w characters from the internal representation. 

Note that for nondefault character types, the blank padding character is processor dependent. 

10.5.4 Generalized editing 

The Gw.d and Gw.dEe edit descriptors are used with an input/output list item of any intrinsic type. These edit
descriptors indicate that the external field occupies w positions, the fractional part of which consists of a
maximum of d digits and the exponent part consists of e digits. When these edit descriptors are used to specify
the input/output of integer, logical, or character data, d and e have no effect. 

Internal Value Output field Using SS, ES12.3 

6.421 6.421E+00
–.5 –5.000E–01

.00217 2.170E−03
4721.3 4.721E+03

len w–

w len–



ISO/IEC 1539 : 1991 (E)

139

10.5.4.1 Generalized numeric editing 

When used to specify the input/output of integer, real, and complex data, the Gw.d and Gw.dEe edit descriptors
follow the general rules for numeric editing (10.5.1). Note that the Gw.dEe edit descriptor follows any additional
rules for the Ew.dEe edit descriptor. 

10.5.4.1.1 Generalized integer editing 

When used to specify the input/output of integer data, the Gw.d and Gw.dEe edit descriptors follow the rules for
the Iw edit descriptor (10.5.1.1). 

10.5.4.1.2 Generalized real and complex editing 

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1). 

The method of representation in the output field depends on the magnitude of the datum being edited. Let N be
the magnitude of the internal datum. If  or , or N is identically 0 and d
is 0, Gw.d output editing is the same as kPEw.d output editing and Gw.dEe output editing is the same as
kPEw.dEe output editing, where k is the scale factor (10.6.5.1) currently in effect. If

 or  is identically 0 and d is not zero, the scale factor has no effect, and the
value of N determines the editing as follows: 

where b is a blank. n is 4 for Gw.d and e + 2 for Gw.dEe. 

Note that the scale factor has no effect unless the magnitude of the datum to be edited is outside the range that
permits effective use of F editing. 

10.5.4.2 Generalized logical editing 

When used to specify the input/output of logical data, the Gw.d and Gw.dEe edit descriptors follow the rules for
the Lw edit descriptor (10.5.2). 

10.5.4.3 Generalized character editing 

When used to specify the input/output of character data, the Gw.d and Gw.dEe edit descriptors follow the rules
for the Aw edit descriptor (10.5.3). 

10.6 Control edit descriptors 
A control edit descriptor does not cause the transfer of data nor the conversion of data to or from internal
representation, but may affect the conversions performed by subsequent data edit descriptors. 

Magnitude of Datum Equivalent Conversion

F(w−n).(d−1), n(’b’)
F(w−n).d, n(’b’)
F(w−n).(d−1), n(’b’)
F(w−n).(d−2), n(’b’)

.

.

.
F(w−n).1, n(’b’)
F(w−n).1, n(’b’)

0 N 0.1 0.5 10 d– 1–×–< < N 10d 0.5–≥

0.1 0.5 10 d– 1–×– N 10d<≤ 0.5– N

N 0=
0.1 0.5 10 d– 1–×– N 1 0.5 10 d–×–<≤
1 0.5 10 d–×– N 10 0.5 10 d– 1+×–<≤
10 0.5 10 d– 1+×– N 100 0.5 10 d– 2+×–<≤

10d 2– 0.5 10 2–× N 10d 1– 0.5 10 1–×–<≤–
10d 1– 0.5 10 1–×– N 10d<≤ 0.5–



ISO/IEC 1539 : 1991 (E)

140

10.6.1 Position editing 

The T, TL, TR, and X edit descriptors specify the position at which the next character will be transmitted to or
from the record. If any character skipped by a T, TL, TR, or X edit descriptor is of type nondefault character, the
result of that position editing is processor dependent. 

The position specified by a T edit descriptor may be in either direction from the current position. On input, this
allows portions of a record to be processed more than once, possibly with different editing. 

The position specified by an X edit descriptor is forward from the current position. On input, a position beyond
the last character of the record may be specified if no characters are transmitted from such positions. Note that
an nX edit descriptor has the same effect as a TRn edit descriptor. 

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be transmitted and therefore
does not by itself affect the length of the record. If characters are transmitted to positions at or after the position
specified by a T, TL, TR, or X edit descriptor, positions skipped and not previously filled are filled with blanks.
The result is as if the entire record were initially filled with blanks. 

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit descriptor never directly
causes a character already placed in the record to be replaced. Such edit descriptors may result in positioning
such that subsequent editing causes a replacement. 

10.6.1.1 T, TL, and TR editing 

The left tab limit affects file positioning by the T and TL edit descriptors. Immediately prior to data transfer, the
left tab limit becomes defined as the character position of the current record. If, during data transfer, the file is
positioned to another record, the left tab limit becomes defined as character position one of that record. 

The Tn edit descriptor indicates that the transmission of the next character to or from a record is to occur at the
nth character position of the record, relative to the left tab limit. 

The TLn edit descriptor indicates that the transmission of the next character to or from the record is to occur at
the character position n characters backward from the current position. However, if n is greater than the
difference between the current position and the left tab limit, the TLn edit descriptor indicates that the
transmission of the next character to or from the record is to occur at the left tab limit. 

The TRn edit descriptor indicates that the transmission of the next character to or from the record is to occur at
the character position n characters forward from the current position. 

Note that n must be specified and must be greater than zero. 

10.6.1.2 X editing 

The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur at the
position n characters forward from the current position. Note that the n must be specified and must be greater
than zero. 

10.6.2 Slash editing 

The slash edit descriptor indicates the end of data transfer to or from the current record. 

On input from a file connected for sequential access, the remaining portion of the current record is skipped and
the file is positioned at the beginning of the next record. This record becomes the current record. On output to a
file connected for sequential access, a new empty record is created following the current record; this new record
then becomes the last and current record of the file and the file is positioned at the beginning of this new record. 

For a file connected for direct access, the record number is increased by one and the file is positioned at the
beginning of the record that has that record number, if there is such a record, and this record becomes the current
record. 



ISO/IEC 1539 : 1991 (E)

141

Note that a record that contains no characters may be written on output. If the file is an internal file or a file
connected for direct access, the record is filled with blank characters. Note also that an entire record may be
skipped on input. The repeat specification is optional on the slash edit descriptor. If it is not specified, the default
value is one. 

10.6.3 Colon editing 

The colon edit descriptor terminates format control if there are no more effective items in the input/output list
(9.4.2). The colon edit descriptor has no effect if there are more effective items in the input/output list. 

10.6.4 S, SP, and SS editing 

The S, SP, and SS edit descriptors may be used to control optional plus characters in numeric output fields. At
the beginning of execution of each formatted output statement, the processor has the option of producing a plus
in numeric output fields. If an SP edit descriptor is encountered in a format specification, the processor must
produce a plus in any subsequent position that normally contains an optional plus. If an SS edit descriptor is
encountered, the processor must not produce a plus in any subsequent position that normally contains an optional
plus. If an S edit descriptor is encountered, the option of producing the plus is restored to the processor. 

The S, SP, and SS edit descriptors affect only I, F, E, EN, ES, D, and G editing during the execution of an output
statement. The S, SP, and SS edit descriptors have no effect during the execution of an input statement. 

10.6.5 P editing 

The kP edit descriptor sets the value of the scale factor to k. The scale factor may affect the editing of numeric
quantities. 

10.6.5.1 Scale factor 

The value of the scale factor is zero at the beginning of execution of each input/output statement. It applies to all
subsequently interpreted F, E, EN, ES, D, and G edit descriptors until a P edit descriptor is encountered, and then
a new scale factor is established. Note that reversion of format control (10.3) does not affect the established scale
factor. 

The scale factor k affects the appropriate editing in the following manner: 

(1) On input, with F, E, EN, ES, D, and G editing (provided that no exponent exists in the field) and F
output editing, the scale factor effect is that the externally represented number equals the internally
represented number multiplied by . 

(2) On input, with F, E, EN, ES, D, and G editing, the scale factor has no effect if there is an exponent
in the field. 

(3) On output, with E and D editing, the significand (4.3.1.2) part of the quantity to be produced is
multiplied by  and the exponent is reduced by k. 

(4) On output, with G editing, the effect of the scale factor is suspended unless the magnitude of the
datum to be edited is outside the range that permits the use of F editing. If the use of E editing is
required, the scale factor has the same effect as with E output editing. 

(5) On output, with EN and ES editing, the scale factor has no effect. 

10.6.6 BN and BZ editing 

The BN and BZ edit descriptors may be used to specify the interpretation of blanks, other than leading blanks, in
numeric input fields. At the beginning of execution of each formatted input statement, nonleading blank
characters from a file connected by an OPEN statement are interpreted as zeros or are ignored, depending on the
value of the BLANK= specifier (9.3.4.6) currently in effect for the unit; an internal file is treated as if the file
had been opened with BLANK = ’NULL’. If a BN edit descriptor is encountered in a format specification, all

10k

10k



ISO/IEC 1539 : 1991 (E)

142

nonleading blank characters in succeeding numeric input fields are ignored. The effect of ignoring blanks is to
treat the input field as if blanks had been removed, the remaining portion of the field right-justified, and the
blanks replaced as leading blanks. However, a field containing only blanks has the value zero. If a BZ edit
descriptor is encountered in a format specification, all nonleading blank characters in succeeding numeric input
fields are treated as zeros. 

The BN and BZ edit descriptors affect only I, B, O, Z, F, E, EN, ES, D, and G editing during execution of an
input statement. They have no effect during execution of an output statement. 

10.7 Character string edit descriptors 
A character string edit descriptor must not be used on input. 

10.7.1 Character constant edit descriptor 

The character constant edit descriptor causes characters to be written from the enclosed characters of the edit
descriptor itself, including blanks. Note that a delimiter is either an apostrophe or quote. 

For a character constant edit descriptor, the width of the field is the number of characters contained in, but not
including, the delimiting characters. Within the field, two consecutive delimiting characters are counted as a
single character.

10.7.2 H editing 

The cH edit descriptor causes character information to be written from the next c characters (including blanks) following the H of the cH
edit descriptor in the format-item-list itself.

10.8 List-directed formatting 
The characters in one or more list-directed records constitute a sequence of values and value separators. The end
of a record has the same effect as a blank character, unless it is within a character constant. Any sequence of two
or more consecutive blanks is treated as a single blank, unless it is within a character constant. 

Each value is either a null value or one of the forms: 

c 
r∗c 
r∗ 

where c is a literal constant or a nondelimited character constant and r is an unsigned, nonzero, integer literal
constant with no kind type parameter specified. The r∗c form is equivalent to r successive appearances of the
constant c, and the r∗ form is equivalent to r successive appearances of the null value. Neither of these forms
may contain embedded blanks, except where permitted within the constant c. 

A value separator is one of the following: 

(1) A comma optionally preceded by one or more contiguous blanks and optionally followed by one or
more contiguous blanks, 

(2) A slash optionally preceded by one or more contiguous blanks and optionally followed by one or
more contiguous blanks, or 

(3) One or more contiguous blanks between two nonblank values or following the last nonblank value,
where a nonblank value is a constant, an r∗c form, or an r∗ form. 

10.8.1 List-directed input 

Input forms acceptable to edit descriptors for a given type are acceptable for list-directed formatting, except as
noted below. The form of the input value must be acceptable for the type of the next effective item in the list.



ISO/IEC 1539 : 1991 (E)

143

Blanks are never used as zeros, and embedded blanks are not permitted in constants, except within character
constants and complex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant. 

When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used. 

When the next effective item is of type real, the input form is that of a numeric input field. A numeric input field
is a field suitable for F editing (10.5.1.2.1) that is assumed to have no fractional digits unless a decimal point
appears within the field. 

When the next effective item is of type complex, the input form consists of a left parenthesis followed by an
ordered pair of numeric input fields separated by a comma, and followed by a right parenthesis. The first numeric
input field is the real part of the complex constant and the second is the imaginary part. Each of the numeric
input fields may be preceded or followed by blanks. The end of a record may occur between the real part and the
comma or between the comma and the imaginary part. 

When the next effective item is of type logical, the input form must not include slashes, blanks, or commas
among the optional characters permitted for L editing. 

When the next effective item is of type character, the input form consists of a character literal constant of the
same kind as the effective list item. Character constants may be continued from the end of one record to the
beginning of the next record, but the end of record must not occur between a doubled apostrophe in an
apostrophe-delimited constant, nor between a doubled quote in a quote-delimited constant. The end of the record
does not cause a blank or any other character to become part of the constant. The constant may be continued on
as many records as needed. The characters blank, comma, and slash may appear in default character constants. 

If the next effective item is of type default character and: 

(1) The character constant does not contain the value separators blank, comma, or slash, and 

(2) The character constant does not cross a record boundary, and 

(3) The first nonblank character is not a quotation mark or an apostrophe, and 

(4) The leading characters are not numeric followed by an asterisk, and

(5) The character constant contains at least one character,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted, the character
constant is terminated by the first blank, comma, slash, or end of record and apostrophes and quotation marks
within the datum are not to be doubled. 

Let len be the length of the next effective item, and let w be the length of the character constant. If len is less
than or equal to w, the leftmost len characters of the constant are transmitted to the next effective item. If len is
greater than w, the constant is transmitted to the leftmost w characters of the next effective item and the
remaining  characters of the next effective item are filled with blanks. Note that the effect is as though
the constant were assigned to the next effective item in a character assignment statement (7.5.1.4). 

10.8.1.1 Null values 

A null value is specified by: 

(1) The r∗ form, 

(2) No characters between consecutive value separators, or 

(3) No characters before the first value separator in the first record read by each execution of a list-
directed input statement. 

Note that the end of a record following any other value separator, with or without separating blanks, does not
specify a null value. A null value has no effect on the definition status of the next effective item. A null value

len w–



ISO/IEC 1539 : 1991 (E)

144

must not be used for either the real or imaginary part of a complex constant, but a single null value may represent
an entire complex constant. 

A slash encountered as a value separator during execution of a list-directed input statement causes termination of
execution of that input statement after the assignment of the previous value. Any characters remaining in the
current record are ignored. If there are additional items in the input list, the effect is as if null values had been
supplied for them. Any implied-DO variable in the input list is defined as though enough null values had been
supplied for any remaining input list items. 

Note that all blanks in a list-directed input record are considered to be part of some value separator except for the
following: 

(1) Blanks embedded in a character constant 

(2) Embedded blanks surrounding the real or imaginary part of a complex constant 

(3) Leading blanks in the first record read by each execution of a list-directed input statement, unless
immediately followed by a slash or comma 

10.8.1.2 List-directed input example 

INTEGER I; REAL X (8); CHARACTER (11) P; 
COMPLEX Z; LOGICAL G 
... 

READ *, I, X, P, Z, G 
... 

The input data records are: 

12345,12345,,2*1.5,4* 
ISN’T_BOB’S,(123,0),.TEXAS$ 

The results are: 

10.8.2 List-directed output 

The form of the values produced is the same as that required for input, except as noted otherwise. With the
exception of adjacent nondelimited character constants, the values are separated by one or more blanks or by a
comma optionally preceded by one or more blanks and optionally followed by one or more blanks. 

The processor may begin new records as necessary, but, except for complex constants and character constants,
the end of a record must not occur within a constant and blanks must not appear within a constant. 

Logical output constants are T for the value true and F for the value false. 

Integer output constants are produced with the effect of an Iw edit descriptor. 

Variable Value 

I 12345
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G true 



ISO/IEC 1539 : 1991 (E)

145

Real constants are produced with the effect of either an F edit descriptor or an E edit descriptor, depending on the

magnitude x of the value and a range , where  and  are processor-dependent integers. If the
magnitude x is within this range, the constant is produced using 0PFw.d; otherwise, 1PEw.dEe is used. 

For numeric output, reasonable processor-dependent values of w, d, and e are used for each of the numeric
constants output. 

Complex constants are enclosed in parentheses with a comma separating the real and imaginary parts, each
produced as defined above for real constants. The end of a record may occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire record. The only embedded
blanks permitted within a complex constant are between the comma and the end of a record and one blank at the
beginning of the next record. 

Character constants produced for an internal file, or for a file opened without a DELIM= specifier (9.3.4.9) or
with a DELIM= specifier with a value of NONE: 

(1) Are not delimited by apostrophes or quotation marks, 

(2) Are not separated from each other by value separators, 

(3) Have each internal apostrophe or quotation mark represented externally by one apostrophe or
quotation mark, and 

(4) Have a blank character inserted by the processor for carriage control at the beginning of any record
that begins with the continuation of a character constant from the preceding record. 

Character constants produced for a file opened with a DELIM= specifier with a value of QUOTE are delimited
by quotes, possibly are preceded by a kind-param and an underscore, are preceded and followed by a value
separator, and have each internal quote represented on the external medium by two contiguous quotes. 

Character constants produced for a file opened with a DELIM= specifier with a value of APOSTROPHE are
delimited by apostrophes, possibly are preceded by a kind-param and an underscore, are preceded and followed
by a value separator, and have each internal apostrophe represented on the external medium by two contiguous
apostrophes. 

If two or more successive values in an output record have identical values, the processor has the option of
producing a repeated constant of the form r∗c instead of the sequence of identical values. 

Slashes, as value separators, and null values are not produced as output by list-directed formatting. 

Except for continuation of delimited character constants, each output record begins with a blank character to
provide carriage control when the record is printed. 

10.9 Namelist formatting 
The characters in one or more namelist records constitute a sequence of name-value subsequences, each of
which consists of an object name or a subobject designator followed by an equals and followed by one or more
values and value separators. The equals may optionally be preceded or followed by one or more contiguous
blanks. The end of a record has the same effect as a blank character, unless it is within a character constant. Any
sequence of two or more consecutive blanks is treated as a single blank, unless it is within a character constant. 

The name may be any name in the namelist-group-object-list (5.4). 

Each value is either a null value (10.9.1.4) or one of the forms: 

c 
r∗c 
r∗ 

where c is a literal constant and r is an unsigned, nonzero, integer literal constant with no kind type parameter
specified. The r∗c form is equivalent to r successive appearances of the constant c, and the r∗ form is equivalent

10d1 x 10d2<≤ d1 d2



ISO/IEC 1539 : 1991 (E)

146

to r successive null values. Neither of these forms may contain embedded blanks, except where permitted within
the constant c. 

A value separator for namelist formatting is the same as for list-directed formatting (10.8). 

10.9.1 Namelist input 

Input for a namelist input statement consists of: 

(1) Optional blanks, 

(2) The character & followed immediately by the namelist-group-name specified in the namelist input
statement, 

(3) One or more blanks, 

(4) A sequence of zero or more name-value subsequences separated by value separators, and 

(5) A slash to terminate the namelist input statement. 

In each name-value subsequence, the name must be the name of a namelist group object list item with an
optional qualification and the name with the optional qualification must not be a zero-sized array, a zero-sized
array section, or a zero-length character string. 

If a processor is capable of representing letters in both upper and lower case, a group name or object name is
without regard to case. 

10.9.1.1 Namelist group object names 

Within the input data, each name must correspond to a specific namelist group object name. Subscripts, strides,
and substring range expressions used to qualify group object names must be optionally signed integer literal
constants with no kind type parameters specified. If a namelist group object is an array, the input record
corresponding to it may contain either the array name or the designator of a subobject of that array, using the
syntax of subobject designators (R602). If the namelist group object name is the name of a variable of derived
type, the name in the input record may be either the name of the variable or the designator of one of its
components, indicated by qualifying the variable name with the appropriate component name. Successive
qualifications may be applied as appropriate to the shape and type of the variable represented. 

The order of names in the input records need not match the order of the namelist group object items. The input
records need not contain all the names of the namelist group object items. The definition status of any names
from the namelist-group-object-list that do not occur in the input record remains unchanged. The name in the
input record may be preceded and followed by one or more optional blanks but must not contain embedded
blanks. 

10.9.1.2 Namelist input values 

The datum c is any input value acceptable to format specifications for a given type, except for a restriction on the
form of input values corresponding to list items of types logical and integer as specified in 10.9.1.3. The form of
the input value must be acceptable for the type of the namelist group object list item. The number and forms of
the input values that may follow the equals in a name-value subsequence depend on the shape and type of the
object represented by the name in the input record. When the name in the input record is that of a scalar variable
of an intrinsic type, the equals must not be followed by more than one value. Blanks are never used as zeros, and
embedded blanks are not permitted in constants except within character constants and complex constants as
specified in 10.9.1.3. 

The name-value subsequences are evaluated serially, in left-to-right order. A namelist group object name or
subobject designator may appear in more than one name-value sequence. 

When the name in the input record represents an array variable or a variable of derived type, the effect is as if the
variable represented were expanded into a sequence of scalar list items of intrinsic data types, in the same way



ISO/IEC 1539 : 1991 (E)

147

that formatted input/output list items are expanded (9.4.2). Each input value following the equals must then be
acceptable to format specifications for the intrinsic type of the list item in the corresponding position in the
expanded sequence, except as noted in 10.9.1.3. The number of values following the equals must not exceed the
number of list items in the expanded sequence, but may be less; in the latter case, the effect is as if sufficient null
values had been appended to match any remaining list items in the expanded sequence. For example, if the name
in the input record is the name of an integer array of size 100, at most 100 values, each of which is either a digit
string or a null value, may follow the equals; these values would then be assigned to the elements of the array in
array element order. 

A slash encountered as a value separator during the execution of a namelist input statement causes termination of
execution of that input statement after assignment of the previous value. If there are additional items in the
namelist group object being transferred, the effect is as if null values had been supplied for them. 

Successive namelist records are read by namelist input until a slash is encountered; the remainder of the record
is ignored. 

10.9.1.3 Namelist group object list items 

When the next effective namelist group object list item is of type real, the input form of the input value is that of
a numeric input field. A numeric input field is a field suitable for F editing (10.5.1.2.1) that is assumed to have
no fractional digits unless a decimal point appears within the field. 

When the next effective item is of type complex, the input form of the input value consists of a left parenthesis
followed by an ordered pair of numeric input fields separated by a comma and followed by a right parenthesis.
The first numeric input field is the real part of the complex constant and the second part is the imaginary part.
Each of the numeric input fields may be preceded or followed by blanks. The end of a record may occur between
the real part and the comma or between the comma and the imaginary part. 

When the next effective item is of type logical, the input form of the input value must not include slashes, blanks,
or commas among the optional characters permitted for L editing (10.5.2). 

When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used. 

When the next effective item is of type character, the input form consists of a character literal constant of the
same kind as the corresponding list item. Character constants may be continued from the end of one record to the
beginning of the next record, but the end of record must not occur between a doubled apostrophe in an
apostrophe-delimited constant, nor between a doubled quote in a quote-delimited constant. The end of the record
does not cause a blank or any other character to become part of the constant. The constant may be continued on
as many records as needed. The characters blank, comma, and slash may appear in character constants. 

Let len be the length of the next effective item, and let w be the length of the character constant. If len is less
than or equal to w, the leftmost len characters of the constant are transmitted to the next effective item. If len is
greater than w, the constant is transmitted to the leftmost w characters of the next effective item and the
remaining  characters of the next effective item are filled with blanks. Note that the effect is as though
the constant were assigned to the next effective item in a character assignment statement (7.5.1.4). 

10.9.1.4 Null values 

A null value is specified by: 

(1) The r∗ form, 

(2) Blanks between two consecutive value separators following an equals, 

(3) Zero or more blanks preceding the first value separator and following an equals, or 

(4) Two consecutive nonblank value separators. 

A null value has no effect on the definition status of the corresponding input list item. If the namelist group
object list item is defined, it retains its previous value; if it is undefined, it remains undefined. A null value must

len w–



ISO/IEC 1539 : 1991 (E)

148

not be used as either the real or imaginary part of a complex constant, but a single null value may represent an
entire complex constant. 

Note that the end of a record following a value separator, with or without intervening blanks, does not specify a
null value. 

10.9.1.5 Blanks 

All blanks in a namelist input record are considered to be part of some value separator except for: 

(1) Blanks embedded in a character constant, 

(2) Embedded blanks surrounding the real or imaginary part of a complex constant, 

(3) Leading blanks following the equals unless followed immediately by a slash or comma, and 

(4) Blanks between a name and the following equals. 

10.9.1.6 Namelist input example 

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z; 
LOGICAL G 
NAMELIST / TODAY / G, I, P, Z, X 
READ (*, NML = TODAY) 

The input data records are: 

&TODAY I = 12345, X(1) = 12345, X(3:4) = 2*1.5, I=6, 
P = "ISN’T_BOB’S", Z = (123,0)/ 

The results stored are:

10.9.2 Namelist output 

The form of the output produced is the same as that required for input, except for the forms of real, character,
and logical constants. If the processor is capable of representing letters in both upper and lower case, the name
in the output is in upper case. With the exception of adjacent nondelimited character constants, the values are
separated by one or more blanks or by a comma optionally preceded by one or more blanks and optionally
followed by one or more blanks. 

The processor may begin new records as necessary. However, except for complex constants and character
constants, the end of a record must not occur within a constant or a name, and blanks must not appear within a
constant or a name. 

10.9.2.1 Namelist output editing 

Logical output constants are T for the value true and F for the value false. 

Integer output constants are produced with the effect of an Iw edit descriptor. 

Variable Value 

I 6
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G unchanged



ISO/IEC 1539 : 1991 (E)

149

Real constants are produced with the effect of either an F edit descriptor or an E edit descriptor, depending on the

magnitude x  of the value and a range , where  and  are processor-dependent integers. If the
magnitude x is within this range, the constant is produced using 0PFw.d; otherwise, 1PEw.dEe is used. 

For numeric output, reasonable processor-dependent integer values of w, d, and e are used for each of the
numeric constants output. 

Complex constants are enclosed in parentheses with a comma separating the real and imaginary parts, each
produced as defined above for real constants. The end of a record may occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire record. The only embedded
blanks permitted within a complex constant are between the comma and the end of a record and one blank at the
beginning of the next record. 

Character constants produced for a file opened without a DELIM= specifier (9.3.4.9) or with a DELIM= specifier
with a value of NONE: 

(1) Are not delimited by apostrophes or quotation marks, 

(2) Are not separated from each other by value separators, 

(3) Have each internal apostrophe or quotation mark represented externally by one apostrophe or
quotation mark, and 

(4) Have a blank character inserted by the processor for carriage control at the beginning of any record
that begins with the continuation of a character constant from the preceding record. 

Character constants produced for a file opened with a DELIM= specifier with a value of QUOTE are delimited
by quotes, possibly are preceded by a kind-param and an underscore, are preceded and followed by a value
separator, and have each internal quote represented on the external medium by two contiguous quotes. 

Character constants produced for a file opened with a DELIM= specifier with a value of APOSTROPHE are
delimited by apostrophes, possibly are preceded by a kind-param and an underscore, are preceded and followed
by a value separator, and have each internal apostrophe represented on the external medium by two contiguous
apostrophes. 

10.9.2.2 Namelist output records 

If two or more successive values in an array in an output record produced have identical values, the processor has
the option of producing a repeated constant of the form r∗c instead of the sequence of identical values. 

The name of each namelist group object list item is placed in the output record followed by an equals and a list
of values of the namelist group object list item. 

An ampersand character followed immediately by a namelist-group-name will be produced by namelist
formatting at the start of the first output record to indicate which specific group of data objects is being output.
A slash is produced by namelist formatting to indicate the end of the namelist formatting. 

A null value is not produced by namelist formatting. 

Except for continuation of delimited character constants, each output record begins with a blank character to
provide carriage control when the record is printed. 

10d1 x 10d2<≤ d1 d2



ISO/IEC 1539 : 1991 (E)

150

Section 11 : Program units 
The terms and basic concepts of program units were introduced in 2.2. A program unit is a main program, an
external subprogram, a module, or a block data program unit. 

This section describes all of these program units except external subprograms, which are described in Section 12. 

11.1 Main program 
A main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE, or BLOCK
DATA statement as its first statement. 

R1101 main-program is [ program-stmt ] 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-program-stmt 

R1102 program-stmt is PROGRAM program-name 

R1103 end-program-stmt is END [ PROGRAM [ program-name ] ] 

Constraint: In a main-program, the execution-part must not contain a RETURN statement or an ENTRY
statement. 

Constraint: The program-name may be included in the end-program-stmt only if the optional program-stmt is
used and, if included, must be identical to the program-name specified in the program-stmt. 

Constraint: An automatic object must not appear in the specification-part (R204) of a main program. 

The program name is global to the executable program, and must not be the same as the name of any other
program unit, external procedure, or common block in the executable program, nor the same as any local name
in the main program. 

An example of a main program is: 

PROGRAM ANALYSE 
REAL A, B, C (10,10) ! Specification part 
CALL FIND ! Execution part 

CONTAINS 
SUBROUTINE FIND ! Internal procedure 

... 
END SUBROUTINE FIND 

END PROGRAM ANALYSE 

11.1.1 Main program specifications 

The specifications in the scoping unit of the main program must not include an OPTIONAL statement, an
INTENT statement, a PUBLIC statement, a PRIVATE statement, or their equivalent attributes (5.1.2). A SAVE
statement has no effect in a main program. 

11.1.2 Main program executable part 

The sequence of execution-part statements specifies the actions of the main program during program execution.
Execution of an executable program (R201) begins with the first executable construct of the main program. 



ISO/IEC 1539 : 1991 (E)

151

A main program must not be recursive; that is, a reference to it must not appear in any program unit in the
executable program, including itself. 

Execution of an executable program ends with execution of the end-program-stmt of the main program or with
execution of a STOP statement in any program unit of the executable program. 

11.1.3 Main program internal procedures 

Any definitions of internal procedures in the main program must follow the CONTAINS statement. Internal
procedures are described in 12.1.2.2. The main program is called the host of its internal procedures. 

11.2 External subprograms 
External subprograms are described in Section 12. 

11.3 Modules 
A module contains specifications and definitions that are to be accessible to other program units. 

R1104 module is module-stmt 
[ specification-part ] 
[ module-subprogram-part ] 
end-module-stmt 

R1105 module-stmt is MODULE module-name 

R1106 end-module-stmt is END [ MODULE [ module-name ] ] 

Constraint: If the module-name is specified in the end-module-stmt, it must be identical to the module-name
specified in the module-stmt. 

Constraint: A module specification-part must not contain a stmt-function-stmt, an entry-stmt, or a format-
stmt. 

Constraint: An automatic object must not appear in the specification-part (R204) of a module. 

The module name is global to the executable program, and must not be the same as the name of any other
program unit, external procedure, or common block in the executable program, nor be the same as any local
name in the module. 

Note that although statement function definitions, ENTRY statements, and FORMAT statements must not appear
in the specification part of a module, they may appear in the specification part of a module subprogram contained
in the module. 

Note that a module is host to any module procedures (12.1.2.2) it contains, and that entities in the module are
therefore accessible in the module procedures through host association. 

11.3.1 Module reference 

A USE statement specifying a module name is a module reference. At the time a module reference is processed,
the public portions of the specified module must be available. A module must not reference itself, either directly
or indirectly. 

The accessibility, public or private, of specifications and definitions in a module to a scoping unit making
reference to the module may be controlled in both the module and the scoping unit making the reference. In the
module, the PRIVATE statement, the PUBLIC statement (5.2.3), their equivalent attributes (5.1.2.2), and the
PRIVATE statement in a derived-type definition (4.4.1) are used to control the accessibility of module entities
outside the module. 



ISO/IEC 1539 : 1991 (E)

152

In a scoping unit making reference to a module, the ONLY option on the USE statement may be used to further
limit the accessibility, in that referencing scoping unit, of the public entities in the module. 

11.3.2 The USE statement and use association 

The USE statement provides the means by which a scoping unit accesses named data objects, derived types,
interface blocks, procedures, generic identifiers (12.3.2.1), and namelist groups in a module. The entities in the
scoping unit are said to be use associated with the entities in the module. The accessed entities have the
attributes specified in the module. 

R1107 use-stmt is USE module-name [ , rename-list ] 
or USE module-name , ONLY : [ only-list ] 

R1108 rename is local-name => use-name 

R1109 only is access-id 
or [ local-name => ] use-name 

Constraint: Each access-id must be a public entity in the module. 

Constraint: Each use-name must be the name of a public entity in the module. 

If a local-name appears in a rename-list or an only-list, it is the local name for the entity specified by use-name;
otherwise, the local name is the use-name. 

The USE statement without the ONLY option provides access to all public entities in the specified module. 

A USE statement with the ONLY option provides access only to those entities that appear as access-ids or use-
names in the only-list. 

More than one USE statement for a given module may appear in a scoping unit. If one of the USE statements is
without an ONLY qualifier, all public entities in the module are accessible and the rename-lists and only-lists are
interpreted as a single concatenated rename-list. If all the USE statements have ONLY qualifiers, only those
entities named in one or more of the only-lists are accessible, that is, all the only-lists are interpreted as a single
concatenated only-list. 

If two or more generic interfaces that are accessible in a scoping unit have the same name, the same operator, or
are both assignments, they are interpreted as a single generic interface. Two or more accessible entities, other
than generic interfaces, may have the same name only if the name is not used to refer to an entity in the scoping
unit. Except for these cases, the local name of any entity given accessibility by a USE statement must differ from
the local names of all other entities accessible to the scoping unit through USE statements and otherwise. Note
that an entity may be accessed by more than one local name. 

The local name of an entity made accessible by a USE statement may appear in no other specification statement
that would cause any attribute (5.1.2) of the entity to be respecified in the scoping unit that contains the USE
statement, except that it may appear in a PUBLIC or PRIVATE statement in the scoping unit of a module. Note
that this prohibits the local name from appearing in COMMON and EQUIVALENCE specifications, but permits
the appearance of local names in namelist group lists. The appearance of such a local name in a PUBLIC
statement in a module causes the entity accessible by the USE statement to be a public entity of that module. If
the name appears in a PRIVATE statement in a module, the entity is not a public entity of that module. If the
local name does not appear in either a PUBLIC or PRIVATE statement, it assumes the default accessibility
attribute (5.2.3) of that scoping unit. 

Examples: 

USE STATS_LIB 

provides access to all public entities in the module STATS_LIB. 

USE MATH_LIB; USE STATS_LIB, SPROD => PROD 



ISO/IEC 1539 : 1991 (E)

153

makes all public entities in both MATH_LIB and STATS_LIB accessible. If MATH_LIB contains an entity called
PROD, it is accessible by its own name while the entity PROD of STATS_LIB is accessible by the name
SPROD. 

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD 

makes public entities YPROD and PROD in STATS_LIB accessible. 

USE STATS_LIB, ONLY : YPROD; USE STATS_LIB 

makes all public entities in STATS_LIB accessible. 

11.3.3 Examples of the use of modules 

11.3.3.1 Identical common blocks 

A common block and all its associated specification statements may be placed in a module named, for example,
MY_COMMON and accessed by a USE statement of the form 

USE MY_COMMON 

that accesses the whole module without any renaming. This ensures that all instances of the common block are
identical. Module MY_COMMON could contain more than one common block. 

11.3.3.2 Global data 

A module may contain only data objects, for example: 

MODULE DATA_MODULE 
SAVE 
REAL A (10), B, C (20,20) 
INTEGER :: I=0 
INTEGER, PARAMETER :: J=10 
COMPLEX D (J,J) 

END MODULE 

Note that data objects made global in this manner may have any combination of data types. 

Access to some of these may be made by a USE statement with the ONLY option, such as: 

USE DATA_MODULE, ONLY: A, B, D 

and access to all of them may be made by the following USE statement: 

USE DATA_MODULE 

Access to all of them with some renaming to avoid name conflicts may be made by: 

USE DATA_MODULE, AMODULE => A, DMODULE => D 

11.3.3.3 Derived types 

A derived type may be defined in a module and accessed in a number of program units. For example: 

MODULE SPARSE 
TYPE NONZERO 

REAL A 
INTEGER I, J 

END TYPE 
END MODULE 

defines a type consisting of a real component and two integer components for holding the numerical value of a
nonzero matrix element and its row and column indices. 



ISO/IEC 1539 : 1991 (E)

154

11.3.3.4 Global allocatable arrays 

Many programs need large global allocatable arrays whose sizes are not known before program execution. A
simple form for such a program is: 

PROGRAM GLOBAL_WORK 
CALL CONFIGURE_ARRAYS ! Perform the appropriate allocations 
CALL COMPUTE ! Use the arrays in computations 

END PROGRAM GLOBAL_WORK 
 
MODULE WORK_ARRAYS ! An example set of work arrays 

INTEGER N 
REAL, ALLOCATABLE, SAVE :: A (:), B (:, :), C (:, :, :) 

END MODULE WORK_ARRAYS 
 
SUBROUTINE CONFIGURE_ARRAYS ! Process to set up work arrays 

USE WORK_ARRAYS 
READ (*, *) N 
ALLOCATE (A (N), B (N, N), C (N, N, 2 * N)) 

END SUBROUTINE CONFIGURE_ARRAYS 
 
SUBROUTINE COMPUTE 

USE WORK_ARRAYS 
... ! Computations involving arrays A, B, and C 

END SUBROUTINE COMPUTE 

Typically, many subprograms need access to the work arrays, and all such subprograms would contain the
statement 

USE WORK_ARRAYS 

11.3.3.5 Procedure libraries 

Interface blocks for external procedures in a library may be gathered into a module. This permits the use of
argument keywords and optional arguments, and allows static checking of the references. Different versions may
be constructed for different applications, using keywords in common use in each application. An example is the
following library module: 

MODULE LIBRARY_LLS 
INTERFACE 

SUBROUTINE LLS (X, A, F, FLAG) 
REAL X (:, :) 
! The SIZE in the next statement is an intrinsic function 
REAL, DIMENSION (SIZE (X, 2)) :: A, F 
INTEGER FLAG 

END SUBROUTINE LLS 
... 

END INTERFACE 
... 

END MODULE LIBRARY_LLS 

This module allows the subroutine LLS to be invoked: 

USE LIBRARY_LLS 
... 

CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG) 
... 



ISO/IEC 1539 : 1991 (E)

155

11.3.3.6 Operator extensions 

In order to extend an intrinsic operator symbol to have an additional meaning, an interface block specifying that
operator symbol in the OPERATOR option of the INTERFACE statement may be placed in a module. For
example, // may be extended to perform concatenation of two derived-type objects serving as varying length
character strings and + may be extended to specify matrix addition for type MATRIX or interval arithmetic
addition for type INTERVAL. 

A module might contain several such interface blocks. An operator may be defined by an external function
(either in Fortran or some other language) and its procedure interface placed in the module. 

11.3.3.7 Data abstraction 

A module may encapsulate a derived-type definition and all the procedures that represent operations on values of
this type. An example is given in C.11.5 for set operations. 

11.3.3.8 Public entities renamed 

At times it may be necessary to rename entities that are accessed with USE statements. Care must be taken if the
referenced modules also contain USE statements. 

The following example illustrates renaming features of the USE statement. 

MODULE J; REAL JX, JY, JZ; END MODULE 
MODULE K 

USE J, ONLY : KX => JX, KY => JY 
! KX and KY are local names to module K 
REAL KZ ! KZ is local name to module K 
REAL JZ ! JZ is local name to module K 

END MODULE 
 
PROGRAM RENAME 

USE J; USE K 
! Module J’s entity JX is accessible under names JX and KX 
! Module J’s entity JY is accessible under names JY and KY 
! Module K’s entity KZ is accessible under name KZ 
! Module J’s entity JZ and K’s entity JZ are different entities 
! and must not be referenced 
... 

END PROGRAM RENAME 

11.4 Block data program units 
A block data program unit is used to provide initial values for data objects in named common blocks. 

R1110 block-data is block-data-stmt 
[ specification-part ] 
end-block-data-stmt 

R1111 block-data-stmt is BLOCK DATA [ block-data-name ] 

R1112 end-block-data-stmt is END [ BLOCK DATA [ block-data-name ] ] 

Constraint: The block-data-name may be included in the end-block-data-stmt only if it was provided in the
block-data-stmt and, if included, must be identical to the block-data-name in the block-data-stmt. 

Constraint: A block-data specification-part may contain only USE statements, type declaration statements,
IMPLICIT statements, PARAMETER statements, derived-type definitions, and the following



ISO/IEC 1539 : 1991 (E)

156

specification statements: COMMON, DATA, DIMENSION, EQUIVALENCE, INTRINSIC,
POINTER, SAVE, and TARGET. 

Constraint: A type declaration statement in a block-data specification-part must not contain
ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE, or PUBLIC attribute
specifiers. 

If an object in a named common block is initially defined, all objects having storage units in the common block
storage sequence must be specified even if they are not all initially defined. More than one named common block
may have objects initially defined in a single block data program unit. 

Only a nonpointer object in a named common block may be initially defined in a block data program unit. Note
that objects associated with an object in a common block are considered to be in that common block. 

The same named common block must not be specified in more than one block data program unit in an executable
program. 

There must not be more than one unnamed block data program unit in an executable program. 

An example of a block data program unit is: 

BLOCK DATA WORK 
COMMON /WRKCOM/ A, B, C (10, 10) 
DATA A /1.0/, B /2.0/, C /100 * 0.0/ 

END BLOCK DATA WORK 



ISO/IEC 1539 : 1991 (E)

157

Section 12 : Procedures 
The concept of a procedure was introduced in 2.2.3. This section contains a complete description of procedures.
The actions specified by a procedure are performed when the procedure is invoked by execution of a reference to
it. The reference may identify, as actual arguments, entities that are associated during execution of the procedure
reference with corresponding dummy arguments in the procedure definition. 

12.1 Procedure classifications 
A procedure is classified according to the form of its reference and the way it is defined. 

12.1.1 Procedure classification by reference 

The definition of a procedure specifies it to be a function or a subroutine. A reference to a function either appears
explicitly as a primary within an expression, or is implied by a defined operation within an expression. A
reference to a subroutine is a CALL statement or a defined assignment statement (7.5.1.3). 

A procedure is classified as elemental if it is an intrinsic procedure that may be referenced elementally (12.4.3,
12.4.5). 

12.1.2 Procedure classification by means of definition 

A procedure is either an intrinsic procedure, an external procedure, a module procedure, an internal procedure, a
dummy procedure, or a statement function. 

12.1.2.1 Intrinsic procedures 

A procedure that is provided as an inherent part of the processor is an intrinsic procedure. 

12.1.2.2 External, internal, and module procedures 

An external procedure is a procedure that is defined by an external subprogram or by a means other than
Fortran. 

An internal procedure is a procedure that is defined by an internal subprogram. Internal procedures may appear
in the main program, in an external subprogram, or in a module subprogram. Internal procedures must not appear
in other internal procedures. Internal procedures are the same as external procedures except that the name of the
internal procedure is not a global entity, an internal procedure must not contain an ENTRY statement, the internal
procedure name must not be argument associated with a dummy procedure (12.4.1.2), and the internal procedure
has access to host entities by host association. 

A module procedure is a procedure that is defined by a module subprogram. 

If a subprogram contains one or more ENTRY statements, it defines a procedure for each ENTRY statement and
a procedure for the SUBROUTINE or FUNCTION statement. 

12.1.2.2.1 Host association 

An internal subprogram, a module subprogram, or a derived-type definition has access to the named entities from
its host via host association. The accessed entities are known by the same name and have the same attributes as
in the host and are variables, constants, procedures including interfaces, derived types, type parameters, derived-
type components, and namelist groups. 

If an entity that is accessed by use association has the same nongeneric name as a host entity, the host entity is
inaccessible. A name that appears in the scoping unit as an external-name in an external-stmt is a global name



ISO/IEC 1539 : 1991 (E)

158

and any entity of the host that has this as its nongeneric name is inaccessible. A name that appears in the scoping
unit as 

(1) A type-name in a derived-type-stmt; 

(2) A function-name in a function-stmt, in a stmt-function-stmt, or in an entity-decl in a type-
declaration-stmt; 

(3) A subroutine-name in a subroutine-stmt; 

(4) An entry-name in an entry-stmt; 

(5) An object-name in an entity-decl in a type-declaration-stmt, in a pointer-stmt, in a save-stmt, or in a
target-stmt; 

(6) A named-constant in a named-constant-def in a parameter-stmt; 

(7) An array-name in an allocatable-stmt or in a dimension-stmt; 

(8) A variable-name in a common-block-object in a common-stmt; 

(9) The name of a variable that is wholly or partially initialized in a data-stmt; 

(10) The name of an object that is wholly or partially equivalenced in an equivalence-stmt; 

(11) A dummy-arg-name in a function-stmt, in a subroutine-stmt, in an entry-stmt, or in a stmt-function-
stmt; 

(12) A result-name in a function-stmt or in an entry-stmt; 

(13) An intrinsic-procedure-name in an intrinsic-stmt; 

(14) A namelist-group-name in a namelist-stmt;

(15) A generic-name in a generic-spec in an interface-stmt; or

(16) The name of a named construct

is the name of a local entity and any entity of the host that has this as its nongeneric name is inaccessible.
Entities that are local (14.1.2) to a procedure are not accessible to its host. 

If a host entity is inaccessible only because a local entity with the same name is wholly or partially initialized in
a DATA statement, the local entity must not be referenced or defined prior to the DATA statement.

If a derived type name of a host is inaccessible, data entities of that type or subobjects of such data entities still
can be accessible.

Note that an interface body does not access the named entities by host association, but it may access entities by
use association (11.3.2). 

If a procedure gains access to a pointer by host association, the association of the pointer with a target that is
current at the time the procedure is invoked remains current within the procedure. This pointer association may
be changed within the procedure. When execution of the procedure completes, the pointer association that was
current remains current, except where the completion causes the target to become undefined (item (4) of 14.7.6).
In these cases, the completion of the procedure causes the pointer association status of the host associated pointer
to become undefined. 

12.1.2.2.2 Host association and use association 

A host procedure and an internal procedure may contain the same and differing use-associated entities, as
illustrated in the following example. 

MODULE B; REAL BX, Q; INTEGER IX, JX; END MODULE 
MODULE C; REAL CX; END MODULE 
MODULE D; REAL DX, DY, DZ; END MODULE 



ISO/IEC 1539 : 1991 (E)

159

MODULE E; REAL EX, EY, EZ; END MODULE 
MODULE F; REAL FX; END MODULE 
MODULE G; USE F; REAL GX; END MODULE 
 
PROGRAM A 
USE B; USE C; USE D 

... 
CONTAINS 

SUBROUTINE INNER_PROC (Q) 
USE C ! Not needed 
USE B, ONLY: BX ! Entities accessible are BX, IX, and JX 

! if no other IX or JX 
! is accessible to INNER_PROC 
! Q is local to INNER_PROC, 
! since Q is a dummy argument 

USE D, X => DX ! Entities accessible are DX, DY, and DZ 
! X is local name for DX in INNER_PROC 
! X and DX denote same entity if no other 
! entity DX is local to INNER_PROC 

USE E, ONLY: EX ! EX is accessible in INNER_PROC, not in program A 
! EY and EZ are not accessible in INNER_PROC 
! or in program A 

USE G ! FX and GX are accessible in INNER_PROC 
... 

END SUBROUTINE INNER_PROC 
END PROGRAM A 

Note: Because program A contains the statement 

USE B 

all of the entities in module B, except for Q, are accessible in INNER_PROC, even though INNER_PROC
contains the statement 

USE B, ONLY: BX 

The USE statement with the ONLY keyword means that this particular statement brings in only the entity named,
not that this is the only variable from the module accessible in this scoping unit. 

12.1.2.3 Dummy procedures 

A dummy argument that is specified as a procedure or appears in a procedure reference is a dummy procedure. 

12.1.2.4 Statement functions 

A function that is defined by a single statement is a statement function (12.5.4). 

12.2 Characteristics of procedures 
The characteristics of a procedure are the classification of the procedure as a function or subroutine, the
characteristics of its arguments, and the characteristics of its result value if it is a function. 

12.2.1 Characteristics of dummy arguments

Each dummy argument is either a dummy data object, a dummy procedure, or an asterisk (alternate return indicator). A
dummy argument other than an asterisk may be specified to have the OPTIONAL attribute. This attribute means that



ISO/IEC 1539 : 1991 (E)

160

the dummy argument need not be associated with an actual argument for any particular reference to the
procedure. 

12.2.1.1 Characteristics of dummy data objects 

The characteristics of a dummy data object are its type, its type parameters (if any), its shape, its intent (5.1.2.3,
5.2.1), whether it is optional (5.1.2.6, 5.2.2), and whether it is a pointer (5.1.2.7, 5.2.7) or a target (5.1.2.8, 5.2.8).
If a type parameter of an object or a bound of an array is an expression that depends on the value or attributes of
another object, the exact dependence on other entities is a characteristic. If a shape, size, or character length is
assumed, it is a characteristic. 

12.2.1.2 Characteristics of dummy procedures 

The characteristics of a dummy procedure are the explicitness of its interface (12.3.1), its characteristics as a
procedure if the interface is explicit, and whether it is optional (5.1.2.6, 5.2.2). 

12.2.1.3 Characteristics of asterisk dummy arguments 

An asterisk as a dummy argument has no characteristics.

12.2.2 Characteristics of function results 

The characteristics of a function result are its type, type parameters (if any), rank, and whether it is a pointer. If
a function result is an array that is not a pointer, its shape is a characteristic. Where a type parameter or bound of
an array is not a constant expression, the exact dependence on the entities in the expression is a characteristic. If
the length of a character data object is assumed, this is a characteristic. 

12.3 Procedure interface 
The interface of a procedure determines the forms of reference through which it may be invoked. The interface
consists of the characteristics of the procedure, the name of the procedure, the name and characteristics of each
dummy argument, and the procedure’s generic identifiers, if any. The characteristics of a procedure are fixed, but
the remainder of the interface may differ in different scoping units. 

12.3.1 Implicit and explicit interfaces 

If a procedure is accessible in a scoping unit, its interface is either explicit or implicit in that scoping unit. The
interface of an internal procedure, module procedure, or intrinsic procedure is always explicit in such a scoping
unit. The interface of a recursive subroutine or a recursive function with a separate result name is explicit within
the subprogram that defines it. The interface of a statement function is always implicit. The interface of an
external procedure or dummy procedure is explicit in a scoping unit other than its own if an interface block
(12.3.2.1) for the procedure is supplied or accessible, and implicit otherwise. For example, the subroutine LLS of
11.3.3.5 has an explicit interface. 

12.3.1.1 Explicit interface 

A procedure must have an explicit interface if any of the following is true: 

(1) A reference to the procedure appears: 

(a) With an argument keyword (12.4.1) 

(b) As a defined assignment (subroutines only) 

(c) In an expression as a defined operator (functions only) 

(d) As a reference by its generic name (12.3.2.1) 

(2) The procedure has: 



ISO/IEC 1539 : 1991 (E)

161

(a) An optional dummy argument 

(b) An array-valued result (functions only) 

(c) A dummy argument that is an assumed-shape array, a pointer, or a target 

(d) A result whose length type parameter value is neither assumed nor constant (character
functions only) 

(e) A result that is a pointer (functions only) 

12.3.2 Specification of the procedure interface 

The interface for an internal, external, module, or dummy procedure is specified by a FUNCTION,
SUBROUTINE, or ENTRY statement and by specification statements for the dummy arguments and the result of
a function. These statements may appear in the procedure definition, in an interface block, or in both except that
the ENTRY statement must not appear in an interface block. Note that internal procedures must not appear in an
interface block. 

12.3.2.1 Procedure interface block 

R1201 interface-block is interface-stmt 
[ interface-body ] ... 
[ module-procedure-stmt ] ... 
end-interface-stmt 

R1202 interface-stmt is INTERFACE [ generic-spec ] 

R1203 end-interface-stmt is END INTERFACE 

R1204 interface-body is function-stmt 
[ specification-part ] 
end-function-stmt 

or subroutine-stmt 
[ specification-part ] 
end-subroutine-stmt 

R1205 module-procedure-stmt is MODULE PROCEDURE procedure-name-list 

R1206 generic-spec is generic-name 
or OPERATOR ( defined-operator ) 
or ASSIGNMENT ( = ) 

Constraint: An interface-body must not contain an entry-stmt, data-stmt, format-stmt, or stmt-function-stmt. 

Constraint: The MODULE PROCEDURE specification is allowed only if the interface-block has a generic-
spec and has a host that is a module or accesses a module by use association; each procedure-
name must be the name of a module procedure that is accessible in the host. 

Constraint: An interface-block must not appear in a BLOCK DATA program unit. 

Constraint: An interface-block in a subprogram must not contain an interface-body for a procedure defined by
that subprogram. 

An external or module subprogram definition specifies a specific interface for the procedures defined in that
subprogram. Such a specific interface is explicit for module procedures and implicit for external procedures. An
interface body in an interface block specifies an explicit specific interface for an existing external procedure or
a dummy procedure. If the name on a procedure heading in an interface block is the same as the name of a
dummy argument in the subprogram containing the interface block, the interface block declares that dummy
argument to be a dummy procedure with the indicated interface; otherwise, the interface block declares the name
to be the name of an external procedure with the indicated procedure interface. 



ISO/IEC 1539 : 1991 (E)

162

An interface body specifies all of the procedure’s characteristics and these must be consistent with those
specified in the procedure definition. Note that the dummy argument names may be different. The specification
part of an interface body may specify attributes or define values for data entities that do not determine
characteristics of the procedure. Such specifications have no effect. An interface block must not contain an
ENTRY statement, but an ENTRY interface may be specified by using the entry name as the procedure name in
the interface body. A procedure must not have more than one explicit specific interface in a given scoping unit. 

An example of an interface block without a generic specification is: 

INTERFACE 
 

SUBROUTINE EXT1 (X, Y, Z) 
REAL, DIMENSION (100, 100) :: X, Y, Z 

END SUBROUTINE EXT1 
 

SUBROUTINE EXT2 (X, Z) 
REAL X 
COMPLEX (KIND = 4) Z (2000) 

END SUBROUTINE EXT2 
 

FUNCTION EXT3 (P, Q) 
LOGICAL EXT3 
INTEGER P (1000) 
LOGICAL Q (1000) 

END FUNCTION EXT3 
 
END INTERFACE 

This interface block specifies explicit interfaces for the three external procedures EXT1, EXT2, and EXT3. Any
of these procedures may use keyword calls; for example: 

EXT3 (Q = P_MASK (N+1 : N+1000), P = ACTUAL_P) 

An interface block with a generic specification specifies a generic interface for each of the procedures in the
interface block. If the host is a module or accesses a module by use association, the MODULE PROCEDURE
specification lists those module procedures, either defined in that module or accessible via a USE statement, that
have this generic interface. The characteristics of module procedures are not given in interface blocks, but are
assumed from the module subprogram definitions. A generic interface is always explicit. 

A procedure always may be referenced via its specific interface. It also may be referenced via its generic
interface, if it has one. The generic name, defined operator, or equals symbol in a generic specification is a
generic identifier for all the procedures in the interface block. The rules on how any two procedures with the
same generic identifier must differ are given in 14.1.2.3. They ensure that any generic invocation applies to at
most one specific procedure. 

A generic name specifies a single name to reference all of the procedure names in the interface block. A generic
name may be the same as any one of the procedure names in the interface block, or the same as any accessible
generic name. 

An example of a generic procedure interface is: 

INTERFACE SWITCH 
 

SUBROUTINE INT_SWITCH (X, Y) 
INTEGER, INTENT (INOUT) :: X, Y 

END SUBROUTINE INT_SWITCH 
 

SUBROUTINE REAL_SWITCH (X, Y) 



ISO/IEC 1539 : 1991 (E)

163

REAL, INTENT (INOUT) :: X, Y 
END SUBROUTINE REAL_SWITCH 

 
SUBROUTINE COMPLEX_SWITCH (X, Y) 

COMPLEX, INTENT (INOUT) :: X, Y 
END SUBROUTINE COMPLEX_SWITCH 

 
END INTERFACE 

Any of these three subroutines (INT_SWITCH, REAL_SWITCH, COMPLEX_SWITCH) may be referenced
with the generic name SWITCH, as well as by its specific name. For example, a reference to INT_SWITCH
could take the form: 

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER 

12.3.2.1.1 Defined operations 

If OPERATOR is specified in a generic specification, all of the procedures specified in the interface block must
be functions that may be referenced as defined operations (12.4). In the case of functions of two arguments, infix
binary operator notation is implied. In the case of functions of one argument, prefix operator notation is implied.
OPERATOR must not be specified for functions with no arguments or for functions with more than two
arguments. The dummy arguments must be nonoptional dummy data objects and must be specified with INTENT
(IN) and the function result must not have assumed character length. If the operator is an intrinsic-operator
(R310), the number of function arguments must be consistent with the intrinsic uses of that operator. 

A defined operation is treated as a reference to the function. For a unary defined operation, the operand
corresponds to the function’s dummy argument; for a binary operation, the left-hand operand corresponds to the
first dummy argument of the function and the right-hand operand corresponds to the second argument. 

An example of the use of the OPERATOR generic specification is: 

INTERFACE OPERATOR ( * ) 
 

FUNCTION BOOLEAN_AND (B1, B2) 
LOGICAL, INTENT (IN) :: B1 (:), B2 (SIZE (B1)) 
LOGICAL :: BOOLEAN_AND (SIZE (B1)) 

END FUNCTION BOOLEAN_AND 
 
END INTERFACE 

This allows, for example 

SENSOR (1:N) * ACTION (1:N) 

as an alternative to the function call 

BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are 
! of type LOGICAL 

A given defined operator may, as with generic names, apply to more than one function, in which case it is
generic in exact analogy to generic procedure names. For intrinsic operator symbols, the generic properties
include the intrinsic operations they represent. Because both forms of each relational operator have the same
interpretation (7.3), extending one form (such as <=) has the effect of defining both forms (<= and .LE.). 

12.3.2.1.2 Defined assignments 

If ASSIGNMENT is specified in an INTERFACE statement, all the procedures in the interface block must be
subroutines that may be referenced as defined assignments (7.5.1.3). Each of these subroutines must have exactly
two dummy arguments. Each argument must be nonoptional. The first argument must have INTENT (OUT) or
INTENT (INOUT) and the second argument must have INTENT (IN). A defined assignment is treated as a



ISO/IEC 1539 : 1991 (E)

164

reference to the subroutine, with the left-hand side as the first argument and the right-hand side enclosed in
parentheses as the second argument. The ASSIGNMENT generic specification specifies that the assignment
operation is extended or redefined if both sides of the equals sign are of the same derived type. 

An example of the use of the ASSIGNMENT generic specification is 

INTERFACE ASSIGNMENT ( = ) 
 

SUBROUTINE BIT_TO_NUMERIC (N, B) 
INTEGER, INTENT (OUT) :: N 
LOGICAL, INTENT (IN) :: B (:) 

END SUBROUTINE BIT_TO_NUMERIC 
 

SUBROUTINE CHAR_TO_STRING (S, C) 
USE STRING_MODULE ! Contains definition of type STRING 
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string 
CHARACTER (*), INTENT (IN) :: C 

END SUBROUTINE CHAR_TO_STRING 
 
END INTERFACE 

Example assignments are: 

KOUNT = SENSOR (J:K) ! CALL BIT_TO_NUMERIC (KOUNT, (SENSOR (J:K))) 
NOTE = ’89AB’ ! CALL CHAR_TO_STRING (NOTE, (’89AB’)) 

12.3.2.2 EXTERNAL statement 

An EXTERNAL statement specifies a list of names to have the EXTERNAL attribute. A name that has the
EXTERNAL attribute represents an external procedure, a dummy procedure, or a block data program unit.
Specifying an external procedure name or a dummy procedure name in an EXTERNAL statement permits such a
name to be used as an actual argument. 

R1207 external-stmt is EXTERNAL external-name-list 

Each external-name must be the name of an external procedure, a dummy argument, or a block data program
unit. 

The appearance of the name of a dummy argument in an EXTERNAL statement specifies that the dummy
argument is a dummy procedure. 

The appearance in an EXTERNAL statement of a name that is not the name of a dummy argument specifies that
the name is the name of an external procedure or block data program unit. If an external procedure name or a
dummy procedure name is used as an actual argument, it must appear in an EXTERNAL statement, be given the
external attribute in a type declaration statement, or be declared to be a procedure by an interface block in the
scoping unit. Appearance of an intrinsic procedure name in an EXTERNAL statement causes that name to
become the name of some external subprogram and an intrinsic procedure of the same name is not available in
the scoping unit. 

Only one appearance of a name in all of the EXTERNAL statements in a scoping unit is permitted. A name that
appears in an EXTERNAL statement must not also appear as a specific procedure name in an interface block in
the scoping unit.

An example of an EXTERNAL statement is: 

SUBROUTINE SUB (FOCUS) 
EXTERNAL FOCUS 



ISO/IEC 1539 : 1991 (E)

165

12.3.2.3 INTRINSIC statement 

An INTRINSIC statement specifies a list of names that have the INTRINSIC attribute. A name that has the
INTRINSIC attribute represents an intrinsic procedure (Section 13). The INTRINSIC attribute permits a name
that represents a specific intrinsic function to be used as an actual argument. 

R1208 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list 

Constraint: Each intrinsic-procedure-name must be the name of an intrinsic procedure. 

The appearance of a name in an INTRINSIC statement confirms that the name is the name of an intrinsic
procedure. The appearance of a generic intrinsic function name (13.10) in an INTRINSIC statement does not
cause that name to lose its generic property. 

If the specific name (13.12) of an intrinsic function is used as an actual argument, the name must either appear
in an INTRINSIC statement or be given the intrinsic attribute in a type declaration statement in the scoping unit. 

Only one appearance of a name in all of the INTRINSIC statements in a scoping unit is permitted. Note that a
name must not appear in both an EXTERNAL and an INTRINSIC statement in the same scoping unit. 

12.3.2.4 Implicit interface specification 

In a scoping unit where the interface of a function is implicit, the type and type parameters of the function result
are specified by implicit or explicit type specification of the function name. The type, type parameters, and shape
of dummy arguments of a procedure referenced from a scoping unit where the interface of the procedure is
implicit must be such that the actual arguments are consistent with the characteristics of the dummy arguments. 

12.4 Procedure reference 
The form of a procedure reference is dependent on the interface of the procedure, but is independent of the
means by which the procedure is defined. The forms of procedure references are: 

R1209 function-reference is function-name ( [ actual-arg-spec-list ] )

Constraint: The actual-arg-spec-list for a function reference must not contain an alt-return-spec.

R1210 call-stmt is CALL subroutine-name [ ( [ actual-arg-spec-list ] ) ] 

A function may be referenced also as a defined operation and a subroutine may be referenced also as a defined
assignment. 

12.4.1 Actual argument list 

R1211 actual-arg-spec is [ keyword = ] actual-arg 

R1212 keyword is dummy-arg-name 

R1213 actual-arg is expr 
or variable 
or procedure-name 
or alt-return-spec 

R1214 alt-return-spec is ∗ label 

Constraint: The keyword = must not appear if the interface of the procedure is implicit in the scoping unit. 

Constraint: The keyword = may be omitted from an actual-arg-spec only if the keyword = has been omitted
from each preceding actual-arg-spec in the argument list. 

Constraint: Each keyword must be the name of a dummy argument in the explicit interface of the procedure. 

Constraint: A procedure-name actual-arg must not be the name of an internal procedure or of a statement
function and must not be the generic name of a procedure (12.3.2.1, 13.1). 



ISO/IEC 1539 : 1991 (E)

166

Constraint: The label used in the alt-return-spec must be the statement label of a branch target statement that appears in the same
scoping unit as the call-stmt. 

In either a subroutine reference or a function reference, the actual argument list identifies the correspondence
between the actual arguments supplied and the dummy arguments of the procedure. In the absence of a keyword,
an actual argument is associated with the dummy argument occupying the corresponding position in the dummy
argument list; that is, the first actual argument is associated with the first dummy argument, the second actual
argument is associated with the second dummy argument, etc. If a keyword is present, the actual argument is
associated with the dummy argument whose name is the same as the keyword (using the dummy argument names
from the interface accessible in the scoping unit containing the procedure reference). Exactly one actual
argument must be associated with each nonoptional dummy argument. At most one actual argument may be
associated with each optional dummy argument. Each actual argument must be associated with a dummy
argument. For example, the procedure 

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT) 
INTERFACE 

FUNCTION FUNCT (X) 
REAL FUNCT, X 

END FUNCTION FUNCT 
END INTERFACE 
REAL SOLUTION 
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT 
... 

may be invoked with 

CALL SOLVE (FUN, SOL, PRINT = 6) 

providing its interface is explicit; when the interface is specified by an interface block, the name of the last
argument must be PRINT. 

12.4.1.1 Arguments associated with dummy data objects 

If a dummy argument is a dummy data object, the associated actual argument must be an expression of the same
type or a data object of the same type. The kind type parameter value of the actual argument must agree with that
of the dummy argument. The value of the length type parameter of an actual argument of type nondefault
character must agree with that of the dummy argument. If the dummy argument is an assumed-shape array of
type default character, the value of the length type parameter of the actual argument must agree with that of the
dummy argument. If the dummy argument is an assumed-shape array, the rank of the dummy argument must
agree with the rank of the actual argument.

If a scalar dummy argument is of type default character, the length len of the dummy argument must be less than
or equal to the length of the actual argument. The dummy argument becomes associated with the leftmost len
characters of the actual argument. If an array dummy argument is of type default character, the restriction on
length is for the entire array and not for each array element. The length of an array element in the dummy
argument array may be different from the length of an array element in the associated actual argument array,
array element, or array element substring, but the dummy argument array must not extend beyond the end of the
actual argument array. 

Except when a procedure reference is elemental (12.4.3, 12.4.5), each element of an array-valued actual
argument or of a sequence in a sequence association (12.4.1.4) is associated with the element of the dummy array
that has the same position in array element order (6.2.2.2). Note that for type default character sequence
associations, the interpretation of element is provided in 12.4.1.4. 

If the dummy argument is a pointer, the actual argument must be a pointer and the types, type parameters, and
ranks must agree. 

At the invocation of the procedure, the dummy argument pointer receives the pointer association status of the
actual argument. If the actual argument is currently associated, the dummy argument becomes associated with the



ISO/IEC 1539 : 1991 (E)

167

same target. The association status may change during the execution of the procedure. When execution of the
procedure completes, the pointer association status of the dummy argument becomes undefined if it is associated
with a dummy argument of the procedure that has the TARGET attribute or with a target that becomes undefined
(14.7.6); following this, the pointer association status of the actual argument becomes that of the dummy
argument. 

If the actual argument has the TARGET attribute, any pointers associated with it do not become associated with
the corresponding dummy argument on invocation of the procedure, but remain associated with the actual
argument. If the dummy argument has the TARGET attribute, any pointer associated with it becomes undefined
when execution of the procedure completes. 

If the actual argument is scalar, the corresponding dummy argument must be scalar unless the actual argument is
an element of an array that is not an assumed-shape or pointer array, or a substring of such an element. If the
procedure is referenced by a generic name or as a defined operator or defined assignment, the ranks of the actual
arguments and corresponding dummy arguments must agree. 

If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument must be definable. If a
dummy argument has INTENT (OUT), the corresponding actual argument becomes undefined at the time the
association is established. 

If the actual argument is an array section having a vector subscript, the dummy argument is not definable and
must not have INTENT (OUT) or INTENT (INOUT). 

If a dummy argument is an assumed-shape array, the actual argument must not be an assumed-size array or a
scalar (including an array element designator or an array element substring designator). 

A scalar dummy argument may be associated only with a scalar actual argument. 

12.4.1.2 Arguments associated with dummy procedures 

If a dummy argument is a dummy procedure, the associated actual argument must be the specific name of an
external, module, dummy, or intrinsic procedure. The only intrinsic procedures permitted are those listed in 13.12
and not marked with a bullet (•). If the specific name is also a generic name, only the specific procedure is
associated with the dummy argument. 

If the interface of the dummy procedure is explicit, the characteristics of the associated actual procedure must be
the same as the characteristics of the dummy procedure (12.2). 

If the interface of the dummy procedure is implicit and either the name of the dummy procedure is explicitly
typed or the procedure is referenced as a function, the dummy procedure must not be referenced as a subroutine
and the actual argument must be a function or dummy procedure. 

If the interface of the dummy procedure is implicit and a reference to the procedure appears as a subroutine
reference, the actual argument must be a subroutine or dummy procedure.

12.4.1.3 Arguments associated with alternate return indicators 

If a dummy argument is an asterisk (12.5.2.3), the associated actual argument must be an alternate return specifier. The label in the alternate
return specifier must identify an executable construct in the scoping unit containing the procedure reference.

12.4.1.4 Sequence association 

An actual argument represents an element sequence if it is an array expression, an array element designator, or
an array element substring designator. If the actual argument is an array expression, the element sequence
consists of the elements in array element order. If the actual argument is an array element designator, the element
sequence consists of that array element and each element that follows it in array element order. 

If the actual argument is of type default character and is an array expression, array element, or array element
substring designator, the element sequence consists of the character storage units beginning with the first storage
unit of the actual argument and continuing to the end of the array. The character storage units of an array element
substring designator are viewed as array elements consisting of consecutive groups of character storage units



ISO/IEC 1539 : 1991 (E)

168

having the character length of the dummy array. Note that some of the elements in the element sequence may
consist of storage units from different elements of the original array. 

An actual argument that represents an element sequence and corresponds to a dummy argument that is an array-
valued data object is sequence associated with the dummy argument if the dummy argument is an explicit-shape
or assumed-size array. The rank and shape of the actual argument need not agree with the rank and shape of the
dummy argument, but the number of elements in the dummy argument must not exceed the number of elements
in the element sequence of the actual argument. If the dummy argument is assumed size, the number of elements
in the dummy argument is exactly the number of elements in the element sequence. 

12.4.2 Function reference 

A function is invoked during expression evaluation by a function reference or by a defined operation (7.1.3).
When it is invoked, all actual argument expressions are evaluated, then the arguments are associated, and then
the function is executed. When execution of the function is complete, the value of the function result is available
for use in the expression that caused the function to be invoked. The characteristics of the function result (12.2.2)
are determined by the interface of the function. 

12.4.3 Elemental intrinsic function reference 

A reference to an elemental intrinsic function is an elemental reference if one or more actual arguments are
arrays and all array arguments have the same shape. The result has the same shape as the array arguments and the
value of each element in the result is obtained by evaluating the function using the scalar arguments and the
corresponding elements of the array arguments. For example, if X and Y are arrays of shape (m, n), 

MAX (X, 0.0, Y) 

is an array expression of shape (m, n) whose elements have values 

MAX (X (i, j), 0.0, Y (i, j)), i = 1, 2, ..., m, j = 1, 2, ..., n 

12.4.4 Subroutine reference 

A subroutine is invoked by execution of a CALL statement or defined assignment statement (7.5.1.3). When a
subroutine is invoked, all actual argument expressions are evaluated, then the arguments are associated, and then
the subroutine is executed. When the actions specified by the subroutine are completed, execution of the CALL
statement or defined assignment statement is also completed. If a CALL statement includes one or more alternate return
specifiers among its arguments, control may be transferred to one of the statements indicated, depending on the action specified by the
subroutine. 

12.4.5 Elemental intrinsic subroutine reference 

A reference to an elemental intrinsic subroutine is an elemental reference if all actual arguments corresponding
to INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays that have the same shape and the
remaining actual arguments are conformable with them. The values of the elements of the arrays that correspond
to INTENT (OUT) and INTENT (INOUT) dummy arguments are the same as would be obtained if the
subroutine were applied separately to corresponding elements of each argument. 

12.5 Procedure definition 

12.5.1 Intrinsic procedure definition 

Intrinsic procedures are defined as an inherent part of the processor. A standard-conforming processor must
include the intrinsic procedures described in Section 13, but may include others. However, a standard-
conforming program must not make use of intrinsic procedures other than those described in Section 13. 



ISO/IEC 1539 : 1991 (E)

169

12.5.2 Procedures defined by subprograms 

When a procedure defined by a subprogram is invoked, an instance (12.5.2.4) of the procedure is created and
executed. Execution begins with the first executable construct following the FUNCTION, SUBROUTINE, or
ENTRY statement specifying the name of the procedure invoked or with the END statement if there is no other
executable construct. 

12.5.2.1 Effects of INTENT attribute on subprograms 

The INTENT attribute of dummy data objects limits the way in which they may be used in a subprogram. A
dummy data object having INTENT (IN) must not be defined or redefined by the subprogram. A dummy data
object having INTENT (OUT) is initially undefined in the subprogram. A dummy data object with INTENT
(INOUT) may be referenced or be defined. A dummy data object whose intent is not specified is subject to the
limitations of the data entity that is the associated actual argument. That is, a reference to the dummy data object
may occur if the actual argument is defined and the dummy data object may be defined if the actual argument is
definable. 

12.5.2.2 Function subprogram 

A function subprogram is a subprogram that has a FUNCTION statement as its first statement. 

R1215 function-subprogram is function-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-function-stmt 

R1216 function-stmt is [ prefix ] FUNCTION function-name ■  
■  ( [ dummy-arg-name-list ] ) [ RESULT ( result-name ) ] 

Constraint: If RESULT is specified, the function-name must not appear in any specification statement in the
scoping unit of the function subprogram. 

R1217 prefix is type-spec [ RECURSIVE ] 
or RECURSIVE [ type-spec ] 

R1218 end-function-stmt is END [ FUNCTION [ function-name ] ] 

Constraint: If RESULT is specified, result-name must not be the same as function-name. 

Constraint: FUNCTION must be present on the end-function-stmt of an internal or module function. 

Constraint: An internal function must not contain an ENTRY statement. 

Constraint: An internal function must not contain an internal-subprogram-part. 

Constraint: If a function-name is present on the end-function-stmt, it must be identical to the function-name
specified in the function-stmt. 

The type and type parameters (if any) of the result of the function defined by a function subprogram may be
specified by a type specification in the FUNCTION statement or by the name of the result variable appearing in
a type statement in the declaration part of the function subprogram. It must not be specified both ways. If it is not
specified either way, it is determined by the implicit typing rules in force within the function subprogram. If the
function result is array-valued or a pointer, this must be specified by specifications of the name of the result
variable within the function body. The specifications of the function result attributes, the specification of dummy
argument attributes, and the information in the procedure heading collectively define the interface of the function
(12.3). 

The keyword RECURSIVE must be present if the function directly or indirectly invokes itself or a function
defined by an ENTRY statement in the same subprogram. Similarly, RECURSIVE must be present if a function



ISO/IEC 1539 : 1991 (E)

170

defined by an ENTRY statement in the subprogram directly or indirectly invokes itself, another function defined
by an ENTRY statement in that subprogram, or the function defined by the FUNCTION statement. 

The name of the function is function-name. 

If RESULT is specified, the name of the result variable of the function is result-name, its characteristics (12.2.2)
are those of the function result, and all occurrences of the function name in execution-part statements in the
scoping unit are recursive function references. If RESULT is not specified, the result variable is function-name
and all occurrences of the function name in execution-part statements in the scoping unit are references to the
result variable. The value of the result variable at the completion of execution of the function is the value
returned by the function. If the function result has been declared to be a pointer, the shape of the value returned
by the function is determined by the shape of the result variable when the execution of the function is completed.
If the result variable is not a pointer, its value must be defined by the function. If the function result has been
declared a pointer, the function must either associate a target with the result variable pointer or cause the
association status of this pointer to become defined as disassociated. 

If both RECURSIVE and RESULT are specified, the interface of the function being defined is explicit within the
function subprogram. 

An example of a recursive function is: 

RECURSIVE FUNCTION CUMM_SUM (ARRAY) RESULT (C_SUM) 
REAL ARRAY (:), C_SUM (SIZE (ARRAY)) 
! The characteristics of CUMM_SUM are those of C_SUM. 
INTENT (IN) ARRAY 
INTEGER N 
N = SIZE (ARRAY) 
IF (N .LE. 1) THEN 

C_SUM = ARRAY 
ELSE 

N = N / 2 
C_SUM (:N) = CUMM_SUM (ARRAY (:N)) 
C_SUM (N+1:) = C_SUM (N) + CUMM_SUM (ARRAY (N+1:)) 

END IF 
END FUNCTION CUMM_SUM 

12.5.2.3 Subroutine subprogram 

A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its first statement. 

R1219 subroutine-subprogram is subroutine-stmt 
[ specification-part ] 
[ execution-part ] 
[ internal-subprogram-part ] 
end-subroutine-stmt 

R1220 subroutine-stmt is [ RECURSIVE ] SUBROUTINE subroutine-name ■  
■  [ ( [ dummy-arg-list ] ) ] 

R1221 dummy-arg is dummy-arg-name 
or ∗

R1222 end-subroutine-stmt is END [ SUBROUTINE [ subroutine-name ] ] 

Constraint: SUBROUTINE must be present on the end-subroutine-stmt of an internal or module subroutine. 

Constraint: An internal subroutine must not contain an ENTRY statement. 

Constraint: An internal subroutine must not contain an internal-subprogram-part. 



ISO/IEC 1539 : 1991 (E)

171

Constraint: If a subroutine-name is present on the end-subroutine-stmt, it must be identical to the subroutine-
name specified in the subroutine-stmt. 

The keyword RECURSIVE must be present if the subroutine directly or indirectly invokes itself or a subroutine
defined by an ENTRY statement in the same subprogram. Similarly, RECURSIVE must be present if a
subroutine defined by an ENTRY statement in the subprogram directly or indirectly invokes itself, another
subroutine defined by an ENTRY statement in that subprogram, or the subroutine defined by the SUBROUTINE
statement. 

If RECURSIVE is specified, the interface of the subroutine being defined is explicit within the subroutine
subprogram. 

The name of the subroutine is subroutine-name. 

12.5.2.4 Instances of a subprogram 

When a function or subroutine defined by a subprogram is invoked, an instance of that subprogram is created.
When a statement function is invoked, an instance of that statement function is created.

Each instance has an independent sequence of execution and an independent set of dummy arguments and local
nonsaved data objects. If an internal procedure or statement function contained in the subprogram is invoked
directly from an instance of the subprogram or from an internal procedure or statement function that has access
to the entities of that instance, the created instance of that internal procedure or statement function also has
access to the entities of that instance of the host subprogram. 

All other entities are shared by all instances of the subprogram. For example, the value of a saved data object
appearing in one instance may have been defined in a previous instance or by initialization in a DATA statement
or type declaration statement. 

12.5.2.5 ENTRY statement 

An ENTRY statement permits a procedure reference to begin with a particular executable statement within the
function or subroutine subprogram in which the ENTRY statement appears. 

R1223 entry-stmt is ENTRY entry-name [ ( [ dummy-arg-list ] ) ■  
■  [ RESULT ( result-name ) ] ] 

Constraint: If RESULT is specified, the entry-name must not appear in any specification statement in the
scoping unit of the function program. 

Constraint: An entry-stmt may appear only in an external-subprogram or module-subprogram. An entry-stmt
must not appear within an executable-construct. 

Constraint: RESULT may be present only if the entry-stmt is contained in a function subprogram. 

Constraint: Within the subprogram containing the entry-stmt, the entry-name must not appear as a dummy
argument in the FUNCTION or SUBROUTINE statement or in another ENTRY statement and it
must not appear in an EXTERNAL or INTRINSIC statement.

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement is contained in a subroutine subprogram.

Constraint: If RESULT is specified, result-name must not be the same as entry-name. 

Optionally, a subprogram may have one or more ENTRY statements. 

If the ENTRY statement is contained in a function subprogram, an additional function is defined by that
subprogram. The name of the function is entry-name and its result variable is result-name or is entry-name if no
result-name is provided. The characteristics of the function result are specified by specifications of the result
variable. The dummy arguments of the function are those specified on the ENTRY statement. If the
characteristics of the result of the function named on the ENTRY statement are the same as the characteristics of
the result of the function named on the FUNCTION statement, their result variables identify the same variable,
although their names need not be the same. Otherwise, they are storage associated and must all be scalars without



ISO/IEC 1539 : 1991 (E)

172

the POINTER attribute and one of the types default integer, default real, double precision real, default complex,
or default logical. 

If RESULT is specified on the ENTRY statement and RECURSIVE is specified on the FUNCTION statement,
the interface of the function defined by the ENTRY statement is explicit within the function subprogram. 

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is defined by that
subprogram. The name of the subroutine is entry-name. The dummy arguments of the subroutine are those
specified on the ENTRY statement. 

If RECURSIVE is specified on the SUBROUTINE statement, the interface of the subroutine defined by the
ENTRY statement is explicit within the subroutine subprogram. 

The order, number, types, kind type parameters, and names of the dummy arguments in an ENTRY statement
may differ from the order, number, types, kind type parameters, and names of the dummy arguments in the
FUNCTION or SUBROUTINE statement in the containing program. 

Because an ENTRY statement defines an additional function or an additional subroutine, it is referenced in the
same manner as any other function or subroutine (12.4). 

In a subprogram, a name that appears as a dummy argument in an ENTRY statement must not appear in an
executable statement preceding that ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE,
or ENTRY statement that precedes the executable statement. 

In a subprogram, a name that appears as a dummy argument in an ENTRY statement must not appear in the
expression of a statement function unless the name is also a dummy argument of the statement function, appears
in a FUNCTION or SUBROUTINE statement, or appears in an ENTRY statement that precedes the statement
function statement. 

If a dummy argument appears in an executable statement, the execution of the executable statement is permitted
during the execution of a reference to the function or subroutine only if the dummy argument appears in the
dummy argument list of the procedure name referenced. 

If a dummy argument is used in a specification expression to specify an array bound or character length of an
object, the appearance of the object in a statement that is executed during a procedure reference is permitted only
if the dummy argument appears in the dummy argument list of the procedure name referenced and it is present
(12.5.2.8). 

A scoping unit containing a reference to a procedure defined by an ENTRY statement may have access to an
interface body for the procedure. The procedure header for the interface body must be a FUNCTION statement
for an entry in a function subprogram and must be a SUBROUTINE statement for an entry in a subroutine
subprogram. 

The keyword RECURSIVE is not used in an ENTRY statement. Instead, the presence or absence of
RECURSIVE on the initial SUBROUTINE or FUNCTION statement controls whether the procedure defined by
an ENTRY statement is permitted to reference itself. 

12.5.2.6 RETURN statement 

R1224 return-stmt is RETURN [ scalar-int-expr ] 

Constraint: The return-stmt must be contained in the scoping unit of a function or subroutine subprogram.

Constraint: The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

Execution of the RETURN statement completes execution of the instance of the subprogram in which it
appears. If the expression is present and has a value n between 1 and the number of asterisks in the dummy argument list, the CALL
statement that invoked the subroutine transfers control to the statement identified by the nth alternate return specifier in the actual argument
list. If the expression is omitted or has a value outside the required range, there is no transfer of control to an alternate return.

Execution of an end-function-stmt or end-subroutine-stmt is equivalent to executing a RETURN statement with no
expression. 



ISO/IEC 1539 : 1991 (E)

173

12.5.2.7 CONTAINS statement 

R1225 contains-stmt is CONTAINS 

The CONTAINS statement separates the body of a main program, module, or subprogram from any internal or
module subprograms it may contain. The CONTAINS statement is not executable. 

12.5.2.8 Restrictions on dummy arguments not present 

A dummy argument is present in an instance of a subprogram if it is associated with an actual argument and the
actual argument either is a dummy argument that is present in the invoking procedure or is not a dummy
argument of the invoking procedure. A dummy argument that is not optional must be present. An optional
dummy argument that is not present is subject to the following restrictions: 

(1) If it is a dummy data object, it must not be referenced or be defined. 

(2) If it is a dummy procedure, it must not be invoked. 

(3) It must not be supplied as an actual argument corresponding to a nonoptional dummy argument
other than as the argument of the PRESENT intrinsic function. 

(4) A subobject of it must not be supplied as an actual argument corresponding to an optional dummy
argument.

(5) If it is an array, it must not be supplied as an actual argument to an elemental procedure unless an
array of the same rank is supplied as an actual argument corresponding to a nonoptional dummy
argument of that elemental procedure.

Except as noted in (5) above, it may be supplied as an actual argument corresponding to an optional dummy
argument, which is then also considered not to be associated with an actual argument. 

12.5.2.9 Restrictions on entities associated with dummy arguments 

While an entity is associated with a dummy argument, the following restrictions hold: 

(1) No action may be taken that affects the value or availability of the entity or any part of it, except
through the dummy argument. For example, in 

SUBROUTINE OUTER 
REAL, POINTER :: A (:) 
... 
ALLOCATE (A (1:N)) 
... 
CALL INNER (A) 
... 

CONTAINS 
SUBROUTINE INNER (B) 

REAL :: B (:) 
... 

END SUBROUTINE INNER 
 

SUBROUTINE SET (C, D) 
REAL, INTENT (OUT) :: C 
REAL, INTENT (IN) :: D 
C = D 

END SUBROUTINE SET 
END SUBROUTINE OUTER 

an assignment statement such as 

A (1) = 1.0 



ISO/IEC 1539 : 1991 (E)

174

would not be permitted during the execution of INNER because this would be changing A without
using B, but statements such as 

B (1) = 1.0 

or 
CALL SET (B (1), 1.0) 

would be allowed. Similarly, 

DEALLOCATE (A) 

would not be allowed because this affects the availability of A without using B. In this case, 

DEALLOCATE (B) 

also would not be permitted, but would be permitted if B were declared with the POINTER
attribute.

Note that if there is a partial or complete overlap between the actual arguments associated with two
different dummy arguments of the same procedure, the overlapped portions must not be defined,
redefined, or become undefined during the execution of the procedure. For example, in 

CALL SUB (A (1:5), A (3:9)) 

A (3:5) must not be defined, redefined, or become undefined through the first dummy argument
because it is part of the argument associated with the second dummy argument and must not be
defined, redefined, or become undefined through the second dummy argument because it is part of
the argument associated with the first dummy argument. A (1:2) remains definable through the first
dummy argument and A (6:9) remains definable through the second dummy argument. 

This restriction applies equally to pointer targets. For example, in 

REAL, DIMENSION (10), TARGET :: A 
REAL, DIMENSION (:), POINTER :: B, C 
B => A (1:5) 
C => A (3:9) 
CALL SUB (B, C) 

B (3:5) cannot be defined because it is part of the argument associated with the second dummy
argument. C (1:3) cannot be defined because it is part of the argument associated with the first
dummy argument. A (1:2) [which is B (1:2)] remains definable through the first dummy argument
and A (6:9) [which is C (4:7)] remains definable through the second dummy argument.

Note that since a dummy argument declared with an intent of IN cannot be used to change the
associated actual argument, the associated actual argument remains constant throughout the
execution of the procedure. 

(2) If any part of the entity is defined through the dummy argument, then at any time during the
execution of the procedure, either before or after the definition, it may be referenced only through
that dummy argument. For example, in 

MODULE DATA 
REAL :: W, X, Y, Z 

END MODULE DATA 
 
PROGRAM MAIN 

USE DATA 
... 

CALL INIT (X) 
... 

END PROGRAM MAIN 



ISO/IEC 1539 : 1991 (E)

175

 
SUBROUTINE INIT (V) 

USE DATA 
... 

READ (*, *) V 
... 

END SUBROUTINE INIT 

variable X must not be directly referenced at any time during the execution of INIT because it is
being defined through the dummy argument V. X may be (indirectly) referenced through V. W, Y,
and Z may be directly referenced. X may, of course, be directly referenced once execution of INIT
is complete. 

12.5.3 Definition of procedures by means other than Fortran 

The means other than Fortran by which a procedure may be defined are processor dependent. A reference to such
a procedure is made as though it were defined by an external subprogram. The definition of a non-Fortran
procedure must not be contained in a Fortran program unit and a Fortran program unit must not be contained in
the definition of a non-Fortran procedure. The interface to a non-Fortran procedure may be specified in an
interface block. 

12.5.4 Statement function 

A statement function is a function defined by a single statement. 

R1226 stmt-function-stmt is function-name ( [ dummy-arg-name-list ] ) = scalar-expr 

Constraint: The scalar-expr may be composed only of constants (literal and named), references to  variables,
references to functions and function dummy procedures, and intrinsic operations. If scalar-expr
contains a reference to a function or a function dummy procedure, the reference must not require
an explicit interface, the function must not require an explicit interface or be a transformational
intrinsic, and the result must be scalar. If an argument to a function or a function dummy
procedure is array valued, it must be an array name. If a reference to a statement function appears
in scalar-expr, its definition must have been provided earlier in the scoping unit and must not be
the name of the statement function being defined. 

Constraint: Named constants in scalar-expr must have been declared earlier in the scoping unit or made
accessible by use or host association. If array elements appear in scalar-expr, the parent array
must have been declared as an array earlier in the scoping unit or made accessible by use or host
association.

Constraint: If a dummy-arg-name,  variable,  function reference, or dummy function reference is typed by the
implicit typing rules, its appearance in any subsequent type declaration statement must confirm
this implied type and the values of any implied type parameters. 

Constraint: The function-name and each dummy-arg-name must be specified, explicitly or implicitly, to be
scalar data objects. 

Constraint: A given dummy-arg-name may appear only once in any dummy-arg-name-list. 

Constraint: Each variable reference in scalar-expr may be either a reference to a dummy argument of the
statement function or a reference to a variable accessible in the same scoping unit as the statement
function statement. 

The definition of a statement function with the same name as an accessible entity from the host must be preceded
by the declaration of its type in a type declaration statement. 

The dummy arguments have a scope of the statement function statement. Each dummy argument has the same
type and type parameters as the entity of the same name in the scoping unit containing the statement function. 



ISO/IEC 1539 : 1991 (E)

176

A statement function must not be supplied as a procedure argument. 

The value of a statement function reference is obtained by evaluating the expression using the values of the
actual arguments for the values of the corresponding dummy arguments and, if necessary, converting the result to
the declared type and type attributes of the function. 

A function reference in the scalar expression must not cause a dummy argument of the statement function to
become redefined or undefined. 



ISO/IEC 1539 : 1991 (E)

177

Section 13 : Intrinsic procedures 
There are four classes of intrinsic procedures: inquiry functions, elemental functions, transformational functions,
and subroutines. One intrinsic subroutine is elemental. 

13.1 Intrinsic functions 
An intrinsic function is an inquiry function, an elemental function, or a transformational function. An inquiry
function is one whose result depends on the properties of its principal argument other than the value of this
argument; in fact, the argument value may be undefined. An elemental function is one that is specified for scalar
arguments, but may be applied to array arguments as described in 13.2. All other intrinsic functions are
transformational functions ; they almost all have one or more array-valued arguments or an array-valued result. 

Generic names of intrinsic functions are listed in 13.10. In most cases, generic functions accept arguments of
more than one type and the type of the result is the same as the type of the arguments. Specific names of
intrinsic functions with corresponding generic names are listed in 13.12. 

If an intrinsic function is used as an actual argument to a procedure, its specific name must be used and it may
be referenced in the called procedure only with scalar arguments. If an intrinsic function does not have a specific
name, it must not be used as an actual argument (12.4.1.2). 

13.2 Elemental intrinsic procedures 

13.2.1 Elemental intrinsic function arguments and results 

If a generic name or a specific name is used to reference an elemental intrinsic function, the shape of the result
is the same as the shape of the argument with the greatest rank. If the arguments are all scalar, the result is scalar.
For those elemental intrinsic functions that have more than one argument, all arguments must be conformable. In
the array-valued case, the values of the elements, if any, of the result are the same as would have been obtained
if the scalar-valued function had been applied separately, in any order, to corresponding elements of each
argument. An argument called KIND must be specified as a scalar integer initialization expression and must
specify a representation method for the function result that exists on the processor. 

13.2.2 Elemental intrinsic subroutine arguments 

An elemental subroutine is one that is specified for scalar arguments, but may be applied to array arguments. In
a reference to an elemental intrinsic subroutine, either all actual arguments must be scalar, or all INTENT (OUT)
and INTENT (INOUT) arguments must be arrays of the same shape and the remaining arguments must be
conformable with them. In the case that the INTENT (OUT) and INTENT (INOUT) arguments are arrays, the
values of the elements, if any, of the results are the same as would be obtained if the subroutine with scalar
arguments were applied separately, in any order, to corresponding elements of each argument. 

13.3 Positional arguments or argument keywords 
All intrinsic procedures may be invoked with either positional arguments or argument keywords. The
descriptions in 13.13 give the keyword names and positional sequence. A keyword is required for an argument
only if a preceding optional argument is omitted. 



ISO/IEC 1539 : 1991 (E)

178

13.4 Argument presence inquiry function 
The inquiry function PRESENT permits an inquiry to be made about the presence of an actual argument
associated with a dummy argument that has the OPTIONAL attribute. 

13.5 Numeric, mathematical, character, kind, logical, and bit procedures 

13.5.1 Numeric functions 

The elemental functions INT, REAL, DBLE, and CMPLX perform type conversions. The elemental functions
AIMAG, CONJG, AINT, ANINT, NINT, ABS, MOD, SIGN, DIM, DPROD, MODULO, FLOOR, CEILING,
MAX, and MIN perform simple numeric operations. 

13.5.2 Mathematical functions 

The elemental functions SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SINH,
COSH, and TANH evaluate elementary mathematical functions. 

13.5.3 Character functions 

The elemental functions ICHAR, CHAR, LGE, LGT, LLE, LLT, IACHAR, ACHAR, INDEX, VERIFY,
ADJUSTL, ADJUSTR, SCAN, and LEN_TRIM perform character operations. The transformational function
REPEAT returns repeated concatenations of a character string argument. The transformational function TRIM
returns the argument with trailing blanks removed. 

13.5.4 Character inquiry function 

The inquiry function LEN returns the length of a character entity. The value of the argument to this function need
not be defined. It is not necessary for a processor to evaluate the argument of this function if the value of the
function can be determined otherwise. 

13.5.5 Kind functions 

The inquiry function KIND returns the kind type parameter value of an integer, real, complex, logical, or
character entity. The value of the argument to this function need not be defined. The transformational function
SELECTED_REAL_KIND returns the real kind type parameter value that has at least the decimal precision and
exponent range specified by its arguments. The transformational function SELECTED_INT_KIND returns the
integer kind type parameter value that has at least the decimal exponent range specified by its argument. 

13.5.6 Logical function 

The elemental function LOGICAL converts between objects of type logical with different kind type parameter
values.

13.5.7 Bit manipulation and inquiry procedures

The bit manipulation procedures consist of a set of ten functions and one subroutine. Logical operations on bits
are provided by the functions IOR, IAND, NOT, and IEOR; shift operations are provided by the functions ISHFT
and ISHFTC; bit subfields may be referenced by the function IBITS and by the subroutine MVBITS; single-bit
processing is provided by the functions BTEST, IBSET, and IBCLR.

For the purposes of these procedures, a bit is defined to be a binary digit  located at position  of a
nonnegative integer scalar object based on a model nonnegative integer defined by

w k



ISO/IEC 1539 : 1991 (E)

179

 and for which  may have the value 0 or 1. An example of a model number compatible with the examples
used in 13.7.1 would have  = 32, thereby defining a 32-bit integer. 

An inquiry function BIT_SIZE is available to determine the parameter  of the model. The value of the argument
of this function need not be defined. It is not necessary for a processor to evaluate the argument of this function
if the value of the function can be determined otherwise. 

Effectively, this model defines an integer object to consist of  bits in sequence numbered from right to left from
0 to . This model is valid only in the context of the use of such an object as the argument or result of one
of the bit manipulation procedures. In all other contexts, the model defined for an integer in 13.7.1 applies. In
particular, whereas the models are identical for  = 0, they do not correspond for  = 1 and the
interpretation of bits in such objects is processor dependent. 

13.6 Transfer function 
The function TRANSFER specifies that the physical representation of the first argument is to be treated as if it
were one of the type and type parameters of the second argument with no conversion. 

13.7 Numeric manipulation and inquiry functions 
The numeric manipulation and inquiry functions are described in terms of a model for the representation and
behavior of numbers on a processor. The model has parameters which are determined so as to make the model
best fit the machine on which the executable program is executed. 

13.7.1 Models for integer and real data 

The model set for integer  is defined by: 

where  is an integer exceeding one,  is a positive integer, each  is a nonnegative integer less than , and 
is +1 or –1. The model set for real  is defined by:

 ,

where  and  are integers exceeding one; each  is a nonnegative integer less than , with   nonzero;  is
+1 or –1; and  is an integer that lies between some integer maximum  and some integer minimum 
inclusively. For , its exponent  and digits  are defined to be zero. The integer parameters  and 
determine the set of model integers and the integer parameters , , , and  determine the set of model
floating point numbers. The parameters of the integer and real models are available for each integer and real data
type implemented by the processor. The parameters characterize the set of available numbers in the definition of
the model. The numeric manipulation and inquiry functions provide values related to the parameters and other
constants related to them. Examples of these functions in this section use the models:

j wk 2k×

k 0=

s 1–

∑=

wk
s

s

s
s 1–

ws 1– ws 1–

i

i s wk rk 1–×

k 1=

q

∑×=

r q wk r s
x

x

0 or

s be fk b k–×

k 1=

p

∑××







=

b p fk b f1 s
e emax emin

x 0= e fk r q
b p emin emax



ISO/IEC 1539 : 1991 (E)

180

and

 or ,

13.7.2 Numeric inquiry functions 

The inquiry functions RADIX, DIGITS, MINEXPONENT, MAXEXPONENT, PRECISION, RANGE, HUGE,
TINY, and EPSILON return scalar values related to the parameters of the model associated with the types and
kind type parameters of the arguments. The value of the arguments to these functions need not be defined,
pointer arguments may be disassociated, and array arguments need not be allocated. 

13.7.3 Floating point manipulation functions 

The elemental functions EXPONENT, SCALE, NEAREST, FRACTION, SET_EXPONENT, SPACING, and
RRSPACING return values related to the components of the model values (13.7.1) associated with the actual
values of the arguments. 

13.8 Array intrinsic functions 
The array intrinsic functions perform the following operations on arrays: vector and matrix multiplication,
numeric or logical computation that reduces the rank, array structure inquiry, array construction, array
manipulation, and geometric location. 

13.8.1 The shape of array arguments 

The transformational array intrinsic functions operate on each array argument as a whole. The shape of the
corresponding actual argument must therefore be defined; that is, the actual argument must be an array section,
an assumed-shape array, an explicit-shape array, a pointer that is associated with a target, an allocatable array that
has been allocated, or an array-valued expression. It must not be an assumed-size array. 

Some of the inquiry intrinsic functions accept array arguments for which the shape need not be defined.
Assumed-size arrays may be used as arguments to these functions; they include the function LBOUND and
certain references to SIZE and UBOUND. 

13.8.2 Mask arguments 

Some array intrinsic functions have an optional MASK argument that is used by the function to select the
elements of one or more arguments to be operated on by the function. Any element not selected by the mask need
not be defined at the time the function is invoked. 

The MASK affects only the value of the function, and does not affect the evaluation, prior to invoking the
function, of arguments that are array expressions. 

A MASK argument must be of type logical. 

13.8.3 Vector and matrix multiplication functions 

The matrix multiplication function MATMUL operates on two matrices, or on one matrix and one vector, and
returns the corresponding matrix-matrix, matrix-vector, or vector-matrix product. The arguments to MATMUL

i s wk

k 1=

32

∑ 2k 1–××=

x 0= s 2e× 1
2
--- fk 2 k–×

k 2=

24

∑+
 
 
 
 

× 126– e 127≤ ≤



ISO/IEC 1539 : 1991 (E)

181

may be numeric (integer, real, or complex) or logical arrays. On logical matrices and vectors, MATMUL
performs Boolean matrix multiplication. 

The dot product function DOT_PRODUCT operates on two vectors and returns their scalar product. The vectors
are of the same type (numeric or logical) as for MATMUL. For logical vectors, DOT_PRODUCT returns the
Boolean scalar product. 

13.8.4 Array reduction functions 

The array reduction functions SUM, PRODUCT, MAXVAL, MINVAL, COUNT, ANY, and ALL perform
numerical, logical, and counting operations on arrays. They may be applied to the whole array to give a scalar
result or they may be applied over a given dimension to yield a result of rank reduced by one. By use of a logical
mask that is conformable with the given array, the computation may be confined to any subset of the array (for
example, the positive elements). 

13.8.5 Array inquiry functions 

The function ALLOCATED returns a value true if the array argument is currently allocated, and returns false
otherwise. The functions SIZE, SHAPE, LBOUND, and UBOUND return, respectively, the size of the array, the
shape, and the lower and upper bounds of the subscripts along each dimension. The size, shape, or bounds must
be defined. 

The values of the array arguments to these functions need not be defined. 

13.8.6 Array construction functions 

The functions MERGE, SPREAD, PACK, and UNPACK construct new arrays from the elements of existing
arrays. MERGE combines two conformable arrays into one array by an element-wise choice based on a logical
mask. SPREAD constructs an array from several copies of an actual argument (SPREAD does this by adding an
extra dimension, as in forming a book from copies of one page). PACK and UNPACK respectively gather and
scatter the elements of a one-dimensional array from and to positions in another array where the positions are
specified by a logical mask. 

13.8.7 Array reshape function 

RESHAPE produces an array with the same elements and a different shape. 

13.8.8 Array manipulation functions 

The functions TRANSPOSE, EOSHIFT, and CSHIFT manipulate arrays. TRANSPOSE performs the matrix
transpose operation on a two-dimensional array. The shift functions leave the shape of an array unaltered but
shift the positions of the elements parallel to a specified dimension of the array. These shifts are either circular
(CSHIFT), in which case elements shifted off one end reappear at the other end, or end-off (EOSHIFT), in which
case specified boundary elements are shifted into the vacated positions. 

13.8.9 Array location functions 

The functions MAXLOC and MINLOC return the location (subscripts) of an element of an array that has a
maximum and minimum value, respectively. By use of an optional logical mask that is conformable with the
given array, the reduction may be confined to any subset of the array. 

13.8.10 Pointer association status inquiry functions 

The function ASSOCIATED tests whether a pointer is currently associated with any target, with a particular
target, or with the same target as another pointer. 



ISO/IEC 1539 : 1991 (E)

182

13.9 Intrinsic subroutines 
Intrinsic subroutines are supplied by the processor and have the special definitions given in 13.11 and 13.13. An
intrinsic subroutine is referenced by a CALL statement that uses its name explicitly. The name of an intrinsic
subroutine must not be used as an actual argument. The effect of a subroutine reference is as specified in 13.13. 

13.9.1 Date and time subroutines 

The subroutines DATE_AND_TIME and SYSTEM_CLOCK return data from the date and real-time clock. The
time returned is local, but there are facilities for finding out the difference between local time and Coordinated
Universal Time. 

13.9.2 Pseudorandom numbers 

The subroutine RANDOM_NUMBER returns a pseudorandom number or an array of pseudorandom numbers.
The subroutine RANDOM_SEED initializes or restarts the pseudorandom number sequence. 

13.9.3 Bit copy subroutine 

The elemental subroutine MVBITS copies a bit field from a specified position in one integer object to a
specified position in another. 

13.10 Generic intrinsic functions
For all of the intrinsic procedures, the arguments shown are the names that must be used for keywords when
using the keyword form for actual arguments. For example, a reference to CMPLX may be written in the form
CMPLX (A, B, M) or in the form CMPLX (Y = B, KIND = M, X = A). 

Many of the argument keywords have names that are indicative of their usage. For example: 

KIND Describes the KIND of the result 
STRING, STRING_A An arbitrary character string 
BACK Indicates a string scan is 

to be from right to left (backward) 
MASK A mask that may be applied to the arguments 
DIM A selected dimension of an array argument 

13.10.1 Argument presence inquiry function

PRESENT (A) Argument presence 

13.10.2 Numeric functions 

ABS (A) Absolute value 
AIMAG (Z) Imaginary part of a complex number 
AINT (A, KIND) Truncation to whole number 

Optional KIND 
ANINT (A, KIND) Nearest whole number 

Optional KIND 
CEILING (A) Least integer greater than or equal to number 
CMPLX (X, Y, KIND) Conversion to complex type 

Optional Y, KIND 
CONJG (Z) Conjugate of a complex number 
DBLE (A) Conversion to double precision real type 
DIM (X, Y) Positive difference 
DPROD (X, Y) Double precision real product 



ISO/IEC 1539 : 1991 (E)

183

FLOOR (A) Greatest integer less than or equal to number 
INT (A, KIND) Conversion to integer type 

Optional KIND 
MAX (A1, A2, A3,...) Maximum value 

Optional A3,... 
MIN (A1, A2, A3,...) Minimum value 

Optional A3,... 
MOD (A, P) Remainder function 
MODULO (A, P) Modulo function 
NINT (A, KIND) Nearest integer 

Optional KIND 
REAL (A, KIND) Conversion to real type 

Optional KIND 
SIGN (A, B) Transfer of sign 

13.10.3 Mathematical functions 

ACOS (X) Arccosine 
ASIN (X) Arcsine 
ATAN (X) Arctangent 
ATAN2 (Y, X) Arctangent 
COS (X) Cosine 
COSH (X) Hyperbolic cosine 
EXP (X) Exponential 
LOG (X) Natural logarithm 
LOG10 (X) Common logarithm (base 10) 
SIN (X) Sine 
SINH (X) Hyperbolic sine 
SQRT (X) Square root 
TAN (X) Tangent 
TANH (X) Hyperbolic tangent 

13.10.4 Character functions 

ACHAR (I) Character in given position 
in ASCII collating sequence 

ADJUSTL (STRING) Adjust left 
ADJUSTR (STRING) Adjust right 
CHAR (I, KIND) Character in given position 

Optional KIND in processor collating sequence 
IACHAR (C) Position of a character 

in ASCII collating sequence 
ICHAR (C) Position of a character 

in processor collating sequence 
INDEX (STRING, SUBSTRING, BACK) Starting position of a substring 

Optional BACK 
LEN_TRIM (STRING) Length without trailing blank characters 
LGE (STRING_A, STRING_B) Lexically greater than or equal 
LGT (STRING_A, STRING_B) Lexically greater than 
LLE (STRING_A, STRING_B) Lexically less than or equal 
LLT (STRING_A, STRING_B) Lexically less than 
REPEAT (STRING, NCOPIES) Repeated concatenation 
SCAN (STRING, SET, BACK) Scan a string for a character in a set 

Optional BACK 



ISO/IEC 1539 : 1991 (E)

184

TRIM (STRING) Remove trailing blank characters 
VERIFY (STRING, SET, BACK) Verify the set of characters in a string 

Optional BACK 

13.10.5 Character inquiry function 

LEN (STRING) Length of a character entity 

13.10.6 Kind functions 

KIND (X) Kind type parameter value 
SELECTED_INT_KIND (R) Integer kind type parameter value, 

given range 
SELECTED_REAL_KIND (P, R) Real kind type parameter value, 

Optional P, R given precision and range 

13.10.7 Logical function 

LOGICAL (L, KIND) Convert between objects 
Optional KIND of type logical with 

different kind type parameters 

13.10.8 Numeric inquiry functions 

DIGITS (X) Number of significant digits in the model 
EPSILON (X) Number that is almost negligible compared to one 
HUGE (X) Largest number in the model 
MAXEXPONENT (X) Maximum exponent in the model 
MINEXPONENT (X) Minimum exponent in the model 
PRECISION (X) Decimal precision 
RADIX (X) Base of the model 
RANGE (X) Decimal exponent range 
TINY (X) Smallest positive number in the model 

13.10.9 Bit inquiry function 

BIT_SIZE (I) Number of bits in the model 

13.10.10 Bit manipulation functions

BTEST (I, POS) Bit testing 
IAND (I, J) Logical AND 
IBCLR (I, POS) Clear bit 
IBITS (I, POS, LEN) Bit extraction 
IBSET (I, POS) Set bit 
IEOR (I, J) Exclusive OR 
IOR (I, J) Inclusive OR 
ISHFT (I, SHIFT) Logical shift 
ISHFTC (I, SHIFT, SIZE) Circular shift 

Optional SIZE 
NOT (I) Logical complement 

13.10.11 Transfer function 

TRANSFER (SOURCE, MOLD, SIZE) Treat first argument as if 



ISO/IEC 1539 : 1991 (E)

185

Optional SIZE of type of second argument 

13.10.12 Floating-point manipulation functions 

EXPONENT (X) Exponent part of a model number 
FRACTION (X) Fractional part of a number 
NEAREST (X, S) Nearest different processor number in 

given direction 
RRSPACING (X) Reciprocal of the relative spacing 

of model numbers near given number 
SCALE (X, I) Multiply a real by its base to an integer power 
SET_EXPONENT (X, I) Set exponent part of a number 
SPACING (X) Absolute spacing of model numbers near given 

number 

13.10.13 Vector and matrix multiply functions 

DOT_PRODUCT (VECTOR_A, Dot product of two rank-one arrays 
VECTOR_B) 

MATMUL (MATRIX_A, Matrix multiplication 
MATRIX_B) 

13.10.14 Array reduction functions 

ALL (MASK, DIM) True if all values are true 
Optional DIM 

ANY (MASK, DIM) True if any value is true 
Optional DIM 

COUNT (MASK, DIM) Number of true elements in an array 
Optional DIM 

MAXVAL (ARRAY, DIM, MASK) Maximum value in an array 
Optional DIM, MASK 

MINVAL (ARRAY, DIM, MASK) Minimum value in an array 
Optional DIM, MASK 

PRODUCT (ARRAY, DIM, MASK) Product of array elements 
Optional DIM, MASK 

SUM (ARRAY, DIM, MASK) Sum of array elements 
Optional DIM, MASK 

13.10.15 Array inquiry functions 

ALLOCATED (ARRAY) Array allocation status 
LBOUND (ARRAY, DIM) Lower dimension bounds of an array 

Optional DIM 
SHAPE (SOURCE) Shape of an array or scalar 
SIZE (ARRAY, DIM) Total number of elements in an array 

Optional DIM 
UBOUND (ARRAY, DIM) Upper dimension bounds of an array 

Optional DIM 

13.10.16 Array construction functions 

MERGE (TSOURCE, Merge under mask 
FSOURCE, MASK) 

PACK (ARRAY, MASK, VECTOR) Pack an array into an array of rank one 



ISO/IEC 1539 : 1991 (E)

186

Optional VECTOR under a mask 
SPREAD (SOURCE, DIM, Replicates array by adding a dimension 

NCOPIES) 
UNPACK (VECTOR, MASK, Unpack an array of rank one into an array 

FIELD) under a mask 

13.10.17 Array reshape function 

RESHAPE (SOURCE, SHAPE, Reshape an array 
PAD, ORDER) 
Optional PAD, ORDER 

13.10.18 Array manipulation functions 

CSHIFT (ARRAY, SHIFT, DIM) Circular shift 
Optional DIM 

EOSHIFT (ARRAY, SHIFT, End-off shift 
BOUNDARY, DIM) 
Optional BOUNDARY, DIM 

TRANSPOSE (MATRIX) Transpose of an array of rank two 

13.10.19 Array location functions 

MAXLOC (ARRAY, MASK) Location of a maximum value in an array 
Optional MASK 

MINLOC (ARRAY, MASK) Location of a minimum value in an array 
Optional MASK 

13.10.20 Pointer association status inquiry function 

ASSOCIATED (POINTER, TARGET) Association status or comparison 
Optional TARGET 

13.11 Intrinsic subroutines 
DATE_AND_TIME (DATE, TIME, Obtain date and time 

ZONE, VALUES) 
Optional DATE, TIME, 
ZONE, VALUES 

MVBITS (FROM, FROMPOS, Copies bits from one integer to another 
LEN, TO, TOPOS) 

RANDOM_NUMBER (HARVEST) Returns pseudorandom number 
RANDOM_SEED (SIZE, PUT, GET) Initializes or restarts the 

Optional SIZE, PUT, GET pseudorandom number generator 
SYSTEM_CLOCK (COUNT, Obtain data from the system clock 

COUNT_RATE, COUNT_MAX) 
Optional COUNT, COUNT_RATE, 
COUNT_MAX 

13.12 Specific names for intrinsic functions 
Specific Name Generic Name Argument Type 

ABS (A) ABS (A) default real 
ACOS (X) ACOS (X) default real 



ISO/IEC 1539 : 1991 (E)

187

AIMAG (Z) AIMAG (Z) default complex 
AINT (A) AINT (A) default real 
ALOG (X) LOG (X) default real 
ALOG10 (X) LOG10 (X) default real 

• AMAX0 (A1,A2,A3,...) REAL (MAX (A1, default integer 
Optional A3,... A2,A3,...)) 

Optional A3,... 
• AMAX1 (A1,A2,A3,...) MAX (A1, default real 

Optional A3,... A2,A3,...) 
Optional A3,... 

• AMIN0 (A1,A2,A3,...) REAL (MIN (A1, default integer 
Optional A3,... A2,A3,...)) 

Optional A3,... 
• AMIN1 (A1,A2,A3,...) MIN (A1, default real 

Optional A3,... A2,A3,...) 
Optional A3,... 

AMOD (A,P) MOD (A,P) default real 
ANINT (A) ANINT (A) default real 
ASIN (X) ASIN (X) default real 
ATAN (X) ATAN (X) default real 
ATAN2 (Y,X) ATAN2 (Y,X) default real 
CABS (A) ABS (A) default complex 
CCOS (X) COS (X) default complex 
CEXP (X) EXP (X) default complex 

• CHAR (I) CHAR (I) default integer 
CLOG (X) LOG (X) default complex 
CONJG (Z) CONJG (Z) default complex 
COS (X) COS (X) default real 
COSH (X) COSH (X) default real 
CSIN (X) SIN (X) default complex 
CSQRT (X) SQRT (X) default complex 
DABS (A) ABS (A) double precision real 
DACOS (X) ACOS (X) double precision real 
DASIN (X) ASIN (X) double precision real 
DATAN (X) ATAN (X) double precision real 
DATAN2 (Y,X) ATAN2 (Y,X) double precision real 
DCOS (X) COS (X) double precision real 
DCOSH (X) COSH (X) double precision real 
DDIM (X,Y) DIM (X,Y) double precision real 
DEXP (X) EXP (X) double precision real 
DIM (X,Y) DIM (X,Y) default real 
DINT (A) AINT (A) double precision real 
DLOG (X) LOG (X) double precision real 
DLOG10 (X) LOG10 (X) double precision real 

• DMAX1 (A1,A2,A3,...) MAX (A1,A2,A3,...) double precision real 
Optional A3,... Optional A3,... 

• DMIN1 (A1,A2,A3,...) MIN (A1,A2,A3,...) double precision real 
Optional A3,... Optional A3,... 

DMOD (A,P) MOD (A,P) double precision real 
DNINT (A) ANINT (A) double precision real 
DPROD (X,Y) DPROD (X,Y) default real 
DSIGN (A,B) SIGN (A,B) double precision real 
DSIN (X) SIN (X) double precision real 
DSINH (X) SINH (X) double precision real 



ISO/IEC 1539 : 1991 (E)

188

DSQRT (X) SQRT (X) double precision real 
DTAN (X) TAN (X) double precision real 
DTANH (X) TANH (X) double precision real 
EXP (X) EXP (X) default real 

• FLOAT (A) REAL (A) default integer 
IABS (A) ABS (A) default integer 

• ICHAR (C) ICHAR (C) default character 
IDIM (X,Y) DIM (X,Y) default integer 

• IDINT (A) INT (A) double precision real 
IDNINT (A) NINT (A) double precision real 

• IFIX (A) INT (A) default real 
INDEX (STRING, INDEX (STRING, default character 

SUBSTRING) SUBSTRING) 
• INT (A) INT (A) default real 

ISIGN (A,B) SIGN (A,B) default integer 
LEN (STRING) LEN (STRING) default character 

• LGE (STRING_A, LGE (STRING_A, default character 
STRING_B) STRING_B) 

• LGT (STRING_A, LGT (STRING_A, default character 
STRING_B) STRING_B) 

• LLE (STRING_A, LLE (STRING_A, default character 
STRING_B) STRING_B) 

• LLT (STRING_A, LLT (STRING_A, default character 
STRING_B) STRING_B) 

• MAX0 (A1,A2,A3,...) MAX (A1,A2,A3,...) default integer 
Optional A3,... Optional A3,... 

• MAX1 (A1,A2,A3,...) INT (MAX (A1,A2,A3,...)) default real 
Optional A3,... Optional A3,... 

• MIN0 (A1,A2,A3,...) MIN (A1,A2,A3,...) default integer 
Optional A3,... Optional A3,... 

• MIN1 (A1,A2,A3,...) INT (MIN (A1,A2,A3,...)) default real 
Optional A3,... Optional A3,... 

MOD (A,P) MOD (A,P) default integer 
NINT (A) NINT (A) default real 

• REAL (A) REAL (A) default integer 
SIGN (A,B) SIGN (A,B) default real 
SIN (X) SIN (X) default real 
SINH (X) SINH (X) default real 

• SNGL (A) REAL (A) double precision real 
SQRT (X) SQRT (X) default real 
TAN (X) TAN (X) default real 
TANH (X) TANH (X) default real

• These specific intrinsic function names must not be used as an actual argument. 

13.13 Specifications of the intrinsic procedures 
This section contains detailed specifications of the generic intrinsic procedures in alphabetical order. 

13.13.1 ABS (A) 

Description. Absolute value. 

Class. Elemental function. 



ISO/IEC 1539 : 1991 (E)

189

Argument.  A must be of type integer, real, or complex. 

Result Type and Type Parameter. The same as A except that if A is complex, the result is real. 

Result Value. If A is of type integer or real, the value of the result is |A|; if A is complex with value

( ), the result is equal to a processor-dependent approximation to .

Example.  ABS ((3.0, 4.0)) has the value 5.0 (approximately). 

13.13.2 ACHAR (I) 

Description. Returns the character in a specified position of the ASCII collating sequence. It is the
inverse of the IACHAR function. 

Class. Elemental function. 

Argument.  I must be of type integer. 

Result Type and Type Parameter. Character of length one with kind type parameter value KIND (’A’). 

Result Value. If I has a value in the range , the result is the character in position I of the
ASCII collating sequence, provided the processor is capable of representing that character; otherwise, the
result is processor dependent. If the processor is not capable of representing both upper- and lower-case
letters and I corresponds to a letter in a case that the processor is not capable of representing, the result is
the letter in the case that the processor is capable of representing. ACHAR (IACHAR (C)) must have the
value C for any character C capable of representation in the processor. 

Example.  ACHAR (88) has the value ’X’. 

13.13.3 ACOS (X) 

Description. Arccosine (inverse cosine) function. 

Class. Elemental function. 

Argument.  X must be of type real with a value that satisfies the inequality . 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to arccos(X),
expressed in radians. It lies in the range .

Example.  ACOS (0.54030231) has the value 1.0 (approximately). 

13.13.4 ADJUSTL (STRING) 

Description. Adjust to the left, removing leading blanks and inserting trailing blanks. 

Class. Elemental function. 

Argument.  STRING must be of type character. 

Result Type. Character of the same length and kind type parameter as STRING. 

Result Value. The value of the result is the same as STRING except that any leading blanks have been
deleted and the same number of trailing blanks have been inserted. 

Example.  ADJUSTL (’ WORD’) has the value ’WORD ’. 

13.13.5 ADJUSTR (STRING) 

Description. Adjust to the right, removing trailing blanks and inserting leading blanks. 

x y, x2 y2+

0 I 127≤ ≤

X 1≤

0 ACOS X( ) π≤ ≤



ISO/IEC 1539 : 1991 (E)

190

Class. Elemental function. 

Argument.  STRING must be of type character. 

Result Type. Character of the same length and kind type parameter as STRING. 

Result Value. The value of the result is the same as STRING except that any trailing blanks have been
deleted and the same number of leading blanks have been inserted. 

Example.  ADJUSTR (’WORD ’) has the value ’ WORD’. 

13.13.6 AIMAG (Z) 

Description. Imaginary part of a complex number. 

Class. Elemental function. 

Argument.  Z must be of type complex. 

Result Type and Type Parameter. Real with the same kind type parameter as Z. 

Result Value. If Z has the value ( ), the result has value . 

Example.  AIMAG ((2.0, 3.0)) has the value 3.0. 

13.13.7 AINT (A, KIND) 

Optional Argument. KIND 

Description. Truncation to a whole number. 

Class. Elemental function. 

Arguments.  

A must be of type real. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. The result is of type real. If KIND is present, the kind type parameter
is that specified by KIND; otherwise, the kind type parameter is that of A. 

Result Value. If , AINT (A) has the value 0; if , AINT (A) has a value equal to the integer
whose magnitude is the largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A. 

Examples.  AINT (2.783) has the value 2.0. AINT (–2.783) has the value –2.0. 

13.13.8 ALL (MASK, DIM) 

Optional Argument. DIM 

Description. Determine whether all values are true in MASK along dimension DIM. 

Class. Transformational function. 

Arguments.  

MASK must be of type logical. It must not be scalar. 

DIM (optional) must be scalar and of type integer with value in the range , where 
is the rank of MASK. The corresponding actual argument must not be an optional
dummy argument. 

x y, y

A 1< A 1≥

1 DIM n≤ ≤ n



ISO/IEC 1539 : 1991 (E)

191

Result Type, Type Parameter, and Shape. The result is of type logical with the same kind type
parameter as MASK. It is scalar if DIM is absent or MASK has rank one; otherwise, the result is an array
of rank  and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape
of MASK. 

Result Value.

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK
has size zero, and the result has value false if any element of MASK is false. 

Case (ii): If MASK has rank one, ALL (MASK, DIM) has a value equal to that of ALL (MASK).
Otherwise, the value of element ( , , ..., , , ..., ) of ALL (MASK,
DIM) is equal to ALL (MASK ( , , ..., , :, , ..., )). 

Examples.  

Case (i): The value of ALL ((/ .TRUE., .FALSE., .TRUE. /)) is false. 

Case (ii): If B is the array  and C is the array  then ALL (B .NE. C, DIM = 1) is [true,

false, false] and ALL (B .NE. C, DIM = 2) is [false, false]. 

13.13.9 ALLOCATED (ARRAY) 

Description. Indicate whether or not an allocatable array is currently allocated. 

Class. Inquiry function. 

Argument.  ARRAY must be an allocatable array. 

Result Type, Type Parameter, and Shape. Default logical scalar. 

Result Value. The result has the value true if ARRAY is currently allocated and has the value false if
ARRAY is not currently allocated. The result is undefined if the allocation status (14.8) of the array is
undefined. 

13.13.10 ANINT (A, KIND) 

Optional Argument. KIND 

Description. Nearest whole number. 

Class. Elemental function. 

Arguments.  

A must be of type real. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. The result is of type real. If KIND is present, the kind type parameter
is that specified by KIND; otherwise, the kind type parameter is that of A. 

Result Value. If A > 0, ANINT (A) has the value AINT (A + 0.5); if , ANINT (A) has the value
AINT (A – 0.5). 

Examples.  ANINT (2.783) has the value 3.0. ANINT (–2.783) has the value –3.0. 

13.13.11 ANY (MASK, DIM) 

Optional Argument. DIM 

Description. Determine whether any value is true in MASK along dimension DIM. 

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn

1 3 5
2 4 6

0 3 5
7 4 8

A 0≤



ISO/IEC 1539 : 1991 (E)

192

Class. Transformational function. 

Arguments.  

MASK must be of type logical. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of MASK. The corresponding actual argument must not be an optional
dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type logical with the same kind type
parameter as MASK. It is scalar if DIM is absent or MASK has rank one; otherwise, the result is an array
of rank  and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape
of MASK. 

Result Value.

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the
value false if no elements are true or if MASK has size zero. 

Case (ii): If MASK has rank one, ANY (MASK, DIM) has a value equal to that of ANY (MASK).
Otherwise, the value of element ( , , ..., , , ..., ) of ANY (MASK,
DIM) is equal to ANY (MASK ( , , ..., , :, , ..., )). 

Examples.  

Case (i): The value of ANY ((/ .TRUE., .FALSE., .TRUE. /)) is true. 

Case (ii): If B is the array  and C is the array  ANY (B .NE. C, DIM = 1) is [true, false,

true] and ANY (B .NE. C, DIM = 2) is [true, true]. 

13.13.12 ASIN (X) 

Description. Arcsine (inverse sine) function. 

Class. Elemental function. 

Argument.  X must be of type real. Its value must satisfy the inequality . 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to arcsin(X),
expressed in radians. It lies in the range .

Example.  ASIN (0.84147098) has the value 1.0 (approximately). 

13.13.13 ASSOCIATED (POINTER, TARGET) 

Optional Argument. TARGET 

Description. Returns the association status of its pointer argument or indicates the pointer is associated
with the target. 

Class. Inquiry function. 

Arguments.  

POINTER must be a pointer and may be of any type. Its pointer association status must not
be undefined. 

TARGET (optional) must be a pointer or target. If it is a pointer, its pointer association status must not
be undefined. 

1 DIM n≤ ≤ n

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn

1 3 5
2 4 6

0 3 5
7 4 8

X 1≤

π– 2⁄ ASIN X( ) π 2⁄≤ ≤



ISO/IEC 1539 : 1991 (E)

193

Result Type. The result is of type default logical scalar. 

Result Value.

Case (i): If TARGET is absent, the result is true if POINTER is currently associated with a target and
false if it is not. 

Case (ii): If TARGET is present and is a target, the result is true if POINTER is currently associated
with TARGET and false if it is not. 

Case (iii): If TARGET is present and is a pointer, the result is true if both POINTER and TARGET are
currently associated with the same target, and is false otherwise. If either POINTER or
TARGET is disassociated, the result is false. 

Examples.  ASSOCIATED (CURRENT, HEAD) is true if CURRENT points to the target HEAD. After
the execution of 

A_PART => A (:N) 

ASSOCIATED (A_PART, A) is true if N is equal to UBOUND (A, DIM = 1). After the execution of 

NULLIFY (CUR); NULLIFY (TOP) 

ASSOCIATED (CUR, TOP) is false. 

13.13.14 ATAN (X) 

Description. Arctangent (inverse tangent) function. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to arctan(X),
expressed in radians, that lies in the range .

Example.  ATAN (1.5574077) has the value 1.0 (approximately). 

13.13.15 ATAN2 (Y, X) 

Description. Arctangent (inverse tangent) function. The result is the principal value of the argument of
the nonzero complex number (X, Y). 

Class. Elemental function. 

Arguments.  

Y must be of type real. 

X must be of the same type and kind type parameter as Y. If Y has the value zero, X
must not have the value zero. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to the principal value
of the argument of the complex number (X, Y), expressed in radians. It lies in the range

 and is equal to a processor-dependent approximation to a value of arctan(Y/X)
if . If , the result is positive. If , the result is zero if  and the result is  if .
If , the result is negative. If , the absolute value of the result is .

π– 2⁄ ATAN X( ) π 2⁄≤ ≤

π– ATAN2 Y X,( ) π≤<
X 0≠ Y 0> Y 0= X 0> π X 0<
Y 0< X 0= π 2⁄



ISO/IEC 1539 : 1991 (E)

194

Examples.  ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately). If Y has the value  and

X has the value , the value of ATAN2 (Y, X) is approximately .

13.13.16 BIT_SIZE (I) 

Description. Returns the number of bits  defined by the model of 13.5.7. 

Class. Inquiry function. 

Argument.  I must be of type integer. 

Result Type, Type Parameter, and Shape. Scalar integer with the same kind type parameter as I. 

Result Value. The result has the value of the number of bits  in the model integer defined for bit
manipulation contexts in 13.5.7. 

Example.  BIT_SIZE (1) has the value 32 if  in the model is 32. 

13.13.17 BTEST (I, POS) 

Description. Tests a bit of an integer value. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

POS must be of type integer. It must be nonnegative and be less than BIT_SIZE (I). 

Result Type. The result is of type default logical. 

Result Value. The result has the value true if bit POS of I has the value 1 and has the value false if bit
POS of I has the value 0. The model for the interpretation of an integer value as a sequence of bits is in
13.5.7. 

Examples.  BTEST (8, 3) has the value true. If A has the value , the value of BTEST (A, 2) is

 and the value of BTEST (2, A) is  .

13.13.18 CEILING (A) 

Description. Returns the least integer greater than or equal to its argument. 

Class. Elemental function. 

Argument.  A must be of type real. 

Result Type and Type Parameter. Default integer. 

Result Value. The result has a value equal to the least integer greater than or equal to A. The result is
undefined if the processor cannot represent this value in the default integer type. 

1 1
1– 1–

1– 1
1– 1

3π
4

------ π
4
---

3π–
4

--------- π
4
---–

s

s

s

1 2
3 4

false false
false true

true false
false false



ISO/IEC 1539 : 1991 (E)

195

Examples.  CEILING (3.7) has the value 4. CEILING (–3.7) has the value –3. 

13.13.19 CHAR (I, KIND) 

Optional Argument. KIND 

Description. Returns the character in a given position of the processor collating sequence associated with
the specified kind type parameter. It is the inverse of the function ICHAR. 

Class. Elemental function. 

Arguments.  

I must be of type integer with a value in the range , where  is the
number of characters in the collating sequence associated with the specified kind
type parameter. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameters. Character of length one. If KIND is present, the kind type parameter
is that specified by KIND; otherwise, the kind type parameter is that of default character type. 

Result Value. The result is the character in position I of the collating sequence associated with the
specified kind type parameter. ICHAR (CHAR (I, KIND (C))) must have the value I for  and
CHAR (ICHAR (C), KIND (C)) must have the value C for any character C capable of representation in the
processor. 

Example.  CHAR (88) has the value ’X’ on a processor using the ASCII collating sequence. 

13.13.20 CMPLX (X, Y, KIND) 

Optional Arguments. Y, KIND 

Description. Convert to complex type. 

Class. Elemental function. 

Arguments.  

X must be of type integer, real, or complex. 

Y (optional) must be of type integer or real. It must not be present if X is of type complex. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. The result is of type complex. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, the kind type parameter is that of default real type. 

Result Value. If Y is absent and X is not complex, it is as if Y were present with the value zero. If Y is
absent and X is complex, it is as if Y were present with the value AIMAG (X). CMPLX (X, Y, KIND) has
the complex value whose real part is REAL (X, KIND) and whose imaginary part is REAL (Y, KIND). 

Example.  CMPLX (–3) has the value (–3.0, 0.0). 

13.13.21 CONJG (Z) 

Description. Conjugate of a complex number. 

Class. Elemental function. 

Argument.  Z must be of type complex. 

Result Type and Type Parameter. Same as Z. 

0 I n 1–≤ ≤ n

0 I n 1–≤ ≤



ISO/IEC 1539 : 1991 (E)

196

Result Value. If Z has the value ( ), the result has the value ( ). 

Example.  CONJG ((2.0, 3.0)) has the value (2.0, –3.0). 

13.13.22 COS (X) 

Description. Cosine function. 

Class. Elemental function. 

Argument.  X must be of type real or complex. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to cos(X). If X is of
type real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in
radians. 

Example.  COS (1.0) has the value 0.54030231 (approximately). 

13.13.23 COSH (X) 

Description. Hyperbolic cosine function. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to cosh(X). 

Example.  COSH (1.0) has the value 1.5430806 (approximately). 

13.13.24 COUNT (MASK, DIM) 

Optional Argument. DIM 

Description. Count the number of true elements of MASK along dimension DIM. 

Class. Transformational function. 

Arguments.  

MASK must be of type logical. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of MASK. The corresponding actual argument must not be an optional
dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type default integer. It is scalar if DIM is
absent or MASK has rank one; otherwise, the result is an array of rank  and of shape ( , , ...,

, , ..., ) where ( , , ..., ) is the shape of MASK. 

Result Value.

Case (i): The result of COUNT (MASK) has a value equal to the number of true elements of MASK or
has the value zero if MASK has size zero. 

Case (ii): If MASK has rank one, COUNT (MASK, DIM) has a value equal to that of
COUNT (MASK). Otherwise, the value of element ( , , ..., , , ..., ) of
COUNT (MASK, DIM) is equal to COUNT (MASK ( , , ..., , :, , ...,

)). 

x y, x y–,

1 DIM n≤ ≤ n

n 1– d1 d2
dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+

sn



ISO/IEC 1539 : 1991 (E)

197

Examples.  

Case (i): The value of COUNT ((/ .TRUE., .FALSE., .TRUE. /)) is 2. 

Case (ii): If B is the array  and C is the array , COUNT (B .NE. C, DIM = 1) is

[2, 0, 1] and COUNT (B .NE. C, DIM = 2) is [1, 2]. 

13.13.25 CSHIFT (ARRAY, SHIFT, DIM) 

Optional Argument. DIM 

Description. Perform a circular shift on an array expression of rank one or perform circular shifts on all
the complete rank one sections along a given dimension of an array expression of rank two or greater.
Elements shifted out at one end of a section are shifted in at the other end. Different sections may be
shifted by different amounts and in different directions. 

Class. Transformational function. 

Arguments.  

ARRAY may be of any type. It must not be scalar. 

SHIFT must be of type integer and must be scalar if ARRAY has rank one; otherwise, it
must be scalar or of rank  and of shape ( , , ...,  , , ...,

) where ( , , ..., ) is the shape of ARRAY. 

DIM (optional) must be a scalar and of type integer with a value in the range , where
 is the rank of ARRAY. If DIM is omitted, it is as if it were present with the

value 1.

Result Type, Type Parameter, and Shape. The result is of the type and type parameters of ARRAY, and
has the shape of ARRAY.

Result Value.

Case (i): If ARRAY has rank one, element  of the result is ARRAY (1 + MODULO (  + SHIFT – 1,
SIZE (ARRAY))). 

Case (ii): If ARRAY has rank greater than one, section ( , , ..., , :, , ...., ) of the
result has a value equal to CSHIFT (ARRAY ( , , ..., , :, , ...., ), ,
1), where  is SHIFT or SHIFT ( , , ..., , , ..., ). 

Examples.  

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left by two positions
is achieved by CSHIFT (V, SHIFT = 2) which has the value [3, 4, 5, 6, 1, 2]; CSHIFT (V,
SHIFT = –2) achieves a circular shift to the right by two positions and has the value
[5, 6, 1, 2, 3, 4]. 

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different

amounts. If M is the array , the value of CSHIFT (M, SHIFT = –1, DIM = 2) is

, and the value of CSHIFT (M, SHIFT = (/ –1, 1, 0 /), DIM = 2) is .

1 3 5
2 4 6

0 3 5
7 4 8

n 1– d1 d2 dDIM 1– dDIM 1+
dn d1 d2 dn

1 DIM n≤ ≤
n

i i

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn sh

sh s1 s2 sDIM 1– sDIM 1+ sn

1 2 3
4 5 6
7 8 9

3 1 2
6 4 5
9 7 8

3 1 2
5 6 4
7 8 9



ISO/IEC 1539 : 1991 (E)

198

13.13.26 DATE_AND_TIME (DATE, TIME, ZONE, VALUES) 

Optional Arguments. DATE, TIME, ZONE, VALUES 

Description. Returns data on the real-time clock and date in a form compatible with the representations
defined in ISO 8601:1988. 

Class. Subroutine. 

Arguments.  

DATE (optional) must be scalar and of type default character, and must be of length at least 8 in
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost
8 characters are set to a value of the form CCYYMMDD, where CC is the century,
YY the year within the century, MM the month within the year, and DD the day
within the month. If there is no date available, they are set to blank. 

TIME (optional) must be scalar and of type default character, and must be of length at least 10 in
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost
10 characters are set to a value of the form hhmmss.sss, where hh is the hour of the
day, mm is the minutes of the hour, and ss.sss is the seconds and milliseconds of
the minute. If there is no clock available, they are set to blank. 

ZONE (optional) must be scalar and of type default character, and must be of length at least 5 in
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost
5 characters are set to a value of the form ±hhmm, where hh and mm are the time
difference with respect to Coordinated Universal Time (UTC) in hours and parts of
an hour expressed in minutes, respectively. If there is no clock available, they are
set to blank. 

VALUES (optional) must be of type default integer and of rank one. It is an INTENT (OUT) argument.
Its size must be at least 8. The values returned in VALUES are as follows: 

VALUES (1) the year (for example, 1990), or –HUGE (0) if there is no date available; 

VALUES (2) the month of the year, or –HUGE (0) if there is no date available; 

VALUES (3) the day of the month, or –HUGE (0) if there is no date available; 

VALUES (4) the time difference with respect to Coordinated Universal Time (UTC) in minutes,
or –HUGE (0) if this information is not available; 

VALUES (5) the hour of the day, in the range of 0 to 23, or –HUGE (0) if there is no clock; 

VALUES (6) the minutes of the hour, in the range 0 to 59, or –HUGE (0) if there is no clock; 

VALUES (7) the seconds of the minute, in the range 0 to 60, or –HUGE (0) if there is no clock; 

VALUES (8) the milliseconds of the second, in the range 0 to 999, or –HUGE (0) if there is no
clock. 

Example.  

INTEGER DATE_TIME (8) 
CHARACTER (LEN = 10) BIG_BEN (3) 
CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), & 

BIG_BEN (3), DATE_TIME) 

if called in Geneva, Switzerland on 1985 April 12 at 15:27:35.5 would have assigned the value 19850412
to BIG_BEN (1), the value 152735.500 to BIG_BEN (2), and the value +0100 to BIG_BEN (3), and the
following values to DATE_TIME: 1985, 4, 12, 60, 15, 27, 35, 500. 

Note that UTC is defined by CCIR Recommendation 460-2 (and is also known as Greenwich Mean Time). 



ISO/IEC 1539 : 1991 (E)

199

13.13.27 DBLE (A) 

Description. Convert to double precision real type. 

Class. Elemental function. 

Argument.  A must be of type integer, real, or complex. 

Result Type and Type Parameter. Double precision real. 

Result Value.

Case (i): If A is of type double precision real, DBLE (A) = A. 

Case (ii): If A is of type integer or real, the result is as much precision of the significant part of A as a
double precision real datum can contain. 

Case (iii): If A is of type complex, the result is as much precision of the significant part of the real part
of A as a double precision real datum can contain. 

Example.  DBLE (–3) has the value –3.0D0. 

13.13.28 DIGITS (X) 

Description. Returns the number of significant digits in the model representing numbers of the same type
and kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type integer or real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has the value  if X is of type integer and  if X is of type real, where  and
 are as defined in 13.7.1 for the model representing numbers of the same type and kind type parameter

as X. 

Example.  DIGITS (X) has the value 24 for real X whose model is as at the end of 13.7.1. 

13.13.29 DIM (X, Y) 

Description. The difference X–Y if it is positive; otherwise zero. 

Class. Elemental function. 

Arguments.  

X must be of type integer or real. 

Y must be of the same type and kind type parameter as X. 

Result Type and Type Parameter. Same as X. 

Result Value. The value of the result is X–Y if X>Y and zero otherwise. 

Example.  DIM (–3.0, 2.0) has the value 0.0. 

13.13.30 DOT_PRODUCT (VECTOR_A, VECTOR_B) 

Description. Performs dot-product multiplication of numeric or logical vectors. 

Class. Transformational function. 

Arguments.  

q p q
p



ISO/IEC 1539 : 1991 (E)

200

VECTOR_A must be of numeric type (integer, real, or complex) or of logical type. It must be
array valued and of rank one. 

VECTOR_B must be of numeric type if VECTOR_A is of numeric type or of type logical if
VECTOR_A is of type logical. It must be array valued and of rank one. It must be
of the same size as VECTOR_A. 

Result Type, Type Parameter, and Shape. If the arguments are of numeric type, the type and kind type
parameter of the result are those of the expression VECTOR_A ∗ VECTOR_B determined by the types of
the arguments according to 7.1.4. If the arguments are of type logical, the result is of type logical with the
kind type parameter of the expression VECTOR_A .AND. VECTOR_B according to 7.1.4. The result is
scalar. 

Result Value.

Case (i): If VECTOR_A is of type integer or real, the result has the value SUM
(VECTOR_A∗VECTOR_B). If the vectors have size zero, the result has the value zero. 

Case (ii): If VECTOR_A is of type complex, the result has the value SUM (CONJG
(VECTOR_A)∗VECTOR_B). If the vectors have size zero, the result has the value zero. 

Case (iii): If VECTOR_A is of type logical, the result has the value ANY (VECTOR_A .AND.
VECTOR_B). If the vectors have size zero, the result has the value false. 

Example.  DOT_PRODUCT ((/ 1, 2, 3 /), (/ 2, 3, 4 /)) has the value 20. 

13.13.31 DPROD (X, Y) 

Description. Double precision real product. 

Class. Elemental function. 

Arguments.  

X must be of type default real. 

Y must be of type default real. 

Result Type and Type Parameters. Double precision real. 

Result Value. The result has a value equal to a processor-dependent approximation to the product of X
and Y. 

Example.  DPROD (–3.0, 2.0) has the value –6.0D0. 

13.13.32 EOSHIFT (ARRAY, SHIFT, BOUNDARY, DIM) 

Optional Arguments. BOUNDARY, DIM 

Description. Perform an end-off shift on an array expression of rank one or perform end-off shifts on all
the complete rank-one sections along a given dimension of an array expression of rank two or greater.
Elements are shifted off at one end of a section and copies of a boundary value are shifted in at the other
end. Different sections may have different boundary values and may be shifted by different amounts and
in different directions. 

Class. Transformational function. 

Arguments.  

ARRAY may be of any type. It must not be scalar. 



ISO/IEC 1539 : 1991 (E)

201

SHIFT must be of type integer and must be scalar if ARRAY has rank one; otherwise, it
must be scalar or of rank  and of shape ( , , ..., , , ...,

) where ( , , ..., ) is the shape of ARRAY. 

BOUNDARY (optional)must be of the same type and type parameters as ARRAY and must be scalar if
ARRAY has rank one; otherwise, it must be either scalar or of rank  and of
shape ( , , ..., , , ..., ). BOUNDARY may be omitted for
the data types in the following table and, in this case, it is as if it were present with
the scalar value shown. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. If DIM is omitted, it is as if it were present with the value
1. 

Result Type, Type Parameter, and Shape. The result has the type, type parameters, and shape of
ARRAY. 

Result Value. Element ( , , ..., ) of the result has the value ARRAY ( , , ..., ,
, , ..., ) where  is SHIFT or SHIFT ( , , ..., , , ..., )

provided the inequality LBOUND (ARRAY, DIM) ≤  ≤ UBOUND (ARRAY, DIM) holds and is
otherwise BOUNDARY or BOUNDARY ( , , ..., , , ..., ). 

Examples.  

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left by 3 positions is
achieved by EOSHIFT (V, SHIFT = 3) which has the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V,
SHIFT = –2, BOUNDARY = 99) achieves an end-off shift to the right by 2 positions with the
boundary value of 99 and has the value [99, 99, 1, 2, 3, 4]. 

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different

amounts and the boundary elements can be the same or different. If M is the array ,

then the value of EOSHIFT (M, SHIFT = –1, BOUNDARY = ’∗’, DIM = 2) is ,

and the value of EOSHIFT (M, SHIFT = (/ –1, 1, 0 /), BOUNDARY = (/ ’∗’, ’/’, ’?’ /),

DIM = 2) is .

Type of ARRAY Value of BOUNDARY 

Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical false

Character (len) len blanks 

n 1– d1 d2 dDIM 1– dDIM 1+
dn d1 d2 dn

n 1–
d1 d2 dDIM 1– dDIM 1+ dn

1 DIM n≤ ≤ n

s1 s2 sn s1 s2 sDIM 1–
sDIM sh+ sDIM 1+ sn sh s1 s2 sDIM 1– sDIM 1+ sn

sDIM sh+
s1 s2 sDIM 1– sDIM 1+ sn

A B C
D E F
G H I

∗ A B
∗ D E
∗ G H

∗ A B
E F /
G H I



ISO/IEC 1539 : 1991 (E)

202

13.13.33 EPSILON (X) 

Description. Returns a positive model number that is almost negligible compared to unity in the model
representing numbers of the same type and kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Scalar of the same type and kind type parameter as X. 

Result Value. The result has the value  where  and  are as defined in 13.7.1 for the model
representing numbers of the same type and kind type parameter as X. 

Example.  EPSILON (X) has the value  for real X whose model is as at the end of 13.7.1. 

13.13.34 EXP (X) 

Description. Exponential. 

Class. Elemental function. 

Argument.  X must be of type real or complex. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to . If X is of type
complex, its imaginary part is regarded as a value in radians. 

Example.  EXP (1.0) has the value 2.7182818 (approximately). 

13.13.35 EXPONENT (X) 

Description. Returns the exponent part of the argument when represented as a model number. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type. Default integer. 

Result Value. The result has a value equal to the exponent  of the model representation (13.7.1) for the
value of X, provided X is nonzero and  is within the range for default integers. The result is undefined if
the processor cannot represent  in the default integer type. EXPONENT (X) has the value zero if X is
zero. 

Examples.  EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the value 3 for reals whose
model is as at the end of 13.7.1. 

13.13.36 FLOOR (A) 

Description. Returns the greatest integer less than or equal to its argument. 

Class. Elemental function. 

Argument.  A must be of type real. 

Result Type and Type Parameter. Default integer. 

Result Value. The result has value equal to the greatest integer less than or equal to A. The result is
undefined if the processor cannot represent this value in the default integer type. 

Examples.  FLOOR (3.7) has the value 3. FLOOR (–3.7) has the value –4. 

b1 p– b p

2 23–

eX

e
e

e



ISO/IEC 1539 : 1991 (E)

203

13.13.37 FRACTION (X) 

Description. Returns the fractional part of the model representation of the argument value. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has the value , where  and  are as defined in 13.7.1 for the model
representation of X. If X has the value zero, the result has the value zero. 

Example.  FRACTION (3.0) has the value 0.75 for reals whose model is as at the end of 13.7.1. 

13.13.38 HUGE (X) 

Description. Returns the largest number in the model representing numbers of the same type and kind
type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type integer or real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Scalar of the same type and kind type parameter as X. 

Result Value. The result has the value  if X is of type integer and  if X is of type
real, where , , , , and  are as defined in 13.7.1 for the model representing numbers of the same
type and kind type parameter as X. 

Example.  HUGE (X) has the value  for real X whose model is as at the end of 13.7.1. 

13.13.39 IACHAR (C) 

Description. Returns the position of a character in the ASCII collating sequence. 

Class. Elemental function. 

Argument.  C must be of type default character and of length one. 

Result Type and Type Parameter. Default integer. 

Result Value. If C is in the collating sequence defined by the codes specified in ISO 646:1983
(International Reference Version), the result is the position of C in that sequence and satisfies the
inequality ( ). A processor-dependent value is returned if C is not in the ASCII
collating sequence. The results are consistent with the LGE, LGT, LLE, and LLT lexical comparison
functions. For example, if LLE (C, D) is true, IACHAR (C) .LE. IACHAR (D) is true where C and D are
any two characters representable by the processor. 

Example.  IACHAR (’X’) has the value 88. 

13.13.40 IAND (I, J) 

Description. Performs a logical AND. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

J must be of type integer with the same kind type parameter as I. 

Result Type and Type Parameter. Same as I. 

X b e–× b e

rq 1– 1 b p––( )bemax

r q b p emax

1 2 24––( ) 2127×

0 IACHAR C( ) 127≤ ≤



ISO/IEC 1539 : 1991 (E)

204

Result Value. The result has the value obtained by combining I and J bit-by-bit according to the
following truth table: 

The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Example.  IAND (1, 3) has the value 1. 

13.13.41 IBCLR (I, POS) 

Description. Clears one bit to zero. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

POS must be of type integer. It must be nonnegative and less than BIT_SIZE (I). 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value of the sequence of bits of I, except that bit POS of I is set to zero.
The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Examples.  IBCLR (14, 1) has the result 12. If V has the value [1, 2, 3, 4], the value of IBCLR (POS = V,
I = 31) is [29, 27, 23, 15]. 

13.13.42 IBITS (I, POS, LEN) 

Description. Extracts a sequence of bits. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

POS must be of type integer. It must be nonnegative and POS + LEN must be less than
or equal to BIT_SIZE (I). 

LEN must be of type integer and nonnegative. 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value of the sequence of LEN bits in I beginning at bit POS right-
adjusted and with all other bits zero. The model for the interpretation of an integer value as a sequence of
bits is in 13.5.7. 

Example.  IBITS (14, 1, 3) has the value 7. 

13.13.43 IBSET (I, POS) 

Description. Sets one bit to one. 

I J IAND (I, J) 

1 1 1

1 0 0

0 1 0

0 0 0 



ISO/IEC 1539 : 1991 (E)

205

Class. Elemental function. 

Arguments.  

I must be of type integer. 

POS must be of type integer. It must be nonnegative and less than BIT_SIZE (I). 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value of the sequence of bits of I, except that bit POS of I is set to one.
The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Examples.  IBSET (12, 1) has the value 14. If V has the value [1, 2, 3, 4], the value of IBSET (POS = V,
I = 0) is [2, 4, 8, 16]. 

13.13.44 ICHAR (C) 

Description. Returns the position of a character in the processor collating sequence associated with the
kind type parameter of the character. 

Class. Elemental function. 

Argument.  C must be of type character and of length one. Its value must be that of a character capable
of representation in the processor. 

Result Type and Type Parameter. Default integer. 

Result Value. The result is the position of C in the processor collating sequence associated with the kind
type parameter of C and is in the range , where  is the number of characters in
the collating sequence. For any characters C and D capable of representation in the processor, C .LE. D is
true if and only if ICHAR (C) .LE. ICHAR (D) is true and C .EQ. D is true if and only if ICHAR (C). EQ.
ICHAR (D) is true. 

Example.  ICHAR (’X’) has the value 88 on a processor using the ASCII collating sequence for the
default character type. 

13.13.45 IEOR (I, J) 

Description. Performs an exclusive OR. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

J must be of type integer with the same kind type parameter as I. 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value obtained by combining I and J bit-by-bit according to the
following truth table:  

I J IEOR (I, J) 

1 1 0

1 0 1

0 1 1

0 0 0 

0 ICHAR C( ) n 1–≤ ≤ n



ISO/IEC 1539 : 1991 (E)

206

The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Example.  IEOR (1, 3) has the value 2. 

13.13.46 INDEX (STRING, SUBSTRING, BACK) 

Optional Argument. BACK 

Description. Returns the starting position of a substring within a string. 

Class. Elemental function. 

Arguments.  

STRING must be of type character. 

SUBSTRING must be of type character with the same kind type parameter as STRING. 

BACK (optional) must be of type logical. 

Result Type and Type Parameter. Default integer. 

Result Value.

Case (i): If BACK is absent or present with the value false, the result is the minimum positive value of
I such that STRING (I : I + LEN (SUBSTRING) – 1) = SUBSTRING or zero if there is no
such value. Zero is returned if LEN (STRING) < LEN (SUBSTRING) and one is returned if
LEN (SUBSTRING) = 0. 

Case (ii): If BACK is present with the value true, the result is the maximum value of I less than or
equal to LEN (STRING) – LEN (SUBSTRING) + 1 such that STRING (I : I + LEN
(SUBSTRING) – 1) = SUBSTRING or zero if there is no such value. Zero is returned if LEN
(STRING) < LEN (SUBSTRING) and LEN (STRING) + 1 is returned if LEN (SUBSTRING)
= 0. 

Examples.  INDEX (’FORTRAN’, ’R’) has the value 3. INDEX (’FORTRAN’, ’R’, BACK = .TRUE.)
has the value 5. 

13.13.47 INT (A, KIND) 

Optional Argument. KIND 

Description. Convert to integer type. 

Class. Elemental function. 

Arguments.  

A must be of type integer, real, or complex. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. Integer. If KIND is present, the kind type parameter is that specified
by KIND; otherwise, the kind type parameter is that of default integer type. 

Result Value.

Case (i): If A is of type integer, INT (A) = A. 

Case (ii): If A is of type real, there are two cases: if , INT (A) has the value 0; if , INT
(A) is the integer whose magnitude is the largest integer that does not exceed the magnitude
of A and whose sign is the same as the sign of A. 

Case (iii): If A is of type complex, INT (A) is the value obtained by applying the case (ii) rule to the
real part of A. 

A 1< A 1≥



ISO/IEC 1539 : 1991 (E)

207

The result is undefined if the processor cannot represent the result in the specified integer type. 

Example.  INT (–3.7) has the value –3. 

13.13.48 IOR (I, J) 

Description. Performs an inclusive OR. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

J must be of type integer with the same kind type parameter as I. 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value obtained by combining I and J bit-by-bit according to the
following truth table:  

The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Example.  IOR (1, 3) has the value 3. 

13.13.49 ISHFT (I, SHIFT) 

Description. Performs a logical shift. 

Class. Elemental function. 

Arguments.  

I must be of type integer. 

SHIFT must be of type integer. The absolute value of SHIFT must be less than or equal to
BIT_SIZE (I). 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value obtained by shifting the bits of I by SHIFT positions. If SHIFT is
positive, the shift is to the left; if SHIFT is negative, the shift is to the right; and if SHIFT is zero, no shift
is performed. Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in
from the opposite end. The model for the interpretation of an integer value as a sequence of bits is in
13.5.7. 

Example.  ISHFT (3, 1) has the result 6. 

13.13.50 ISHFTC (I, SHIFT, SIZE) 

Optional Argument. SIZE 

Description. Performs a circular shift of the rightmost bits. 

I J IOR (I, J) 

1 1 1

1 0 1

0 1 1

0 0 0 



ISO/IEC 1539 : 1991 (E)

208

Class. Elemental function. 

Arguments.  

I must be of type integer. 

SHIFT must be of type integer. The absolute value of SHIFT must be less than or equal to
SIZE. 

SIZE (optional) must be of type integer. The value of SIZE must be positive and must not exceed
BIT_SIZE (I). If SIZE is absent, it is as if it were present with the value of
BIT_SIZE (I). 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value obtained by shifting the SIZE rightmost bits of I circularly by
SHIFT positions. If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift is to the right;
and if SHIFT is zero, no shift is performed. No bits are lost. The unshifted bits are unaltered. The model
for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Example.  ISHFTC (3, 2, 3) has the value 5. 

13.13.51 KIND (X) 

Description. Returns the value of the kind type parameter of X. 

Class. Inquiry function. 

Argument.  X may be of any intrinsic type. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has a value equal to the kind type parameter value of X. 

Example.  KIND (0.0) has the kind type parameter value of default real. 

13.13.52 LBOUND (ARRAY, DIM) 

Optional Argument. DIM 

Description. Returns all the lower bounds or a specified lower bound of an array. 

Class. Inquiry function. 

Arguments.  

ARRAY may be of any type. It must not be scalar. It must not be a pointer that is
disassociated or an allocatable array that is not allocated. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type default integer. It is scalar if DIM is
present; otherwise, the result is an array of rank one and size , where  is the rank of ARRAY. 

Result Value.

Case (i): For an array section or for an array expression, other than a whole array or array structure
component, LBOUND (ARRAY, DIM) has the value 1; otherwise, it has a value equal to the
lower bound for subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. 

1 DIM n≤ ≤ n

n n



ISO/IEC 1539 : 1991 (E)

209

Case (ii): LBOUND (ARRAY) has a value whose ith component is equal to LBOUND (ARRAY, ), for
 = 1, 2, ..., n, where  is the rank of ARRAY. 

Examples.  If A is declared by the statement 

REAL A (2:3, 7:10) 

then LBOUND (A) is [2, 7] and LBOUND (A, DIM=2) is 7. 

13.13.53 LEN (STRING) 

Description. Returns the length of a character entity. 

Class. Inquiry function. 

Argument.  STRING must be of type character. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has a value equal to the number of characters in STRING if it is scalar or in an
element of STRING if it is array valued. 

Example.  If C is declared by the statement 

CHARACTER (11) C (100) 

LEN (C) has the value 11. 

13.13.54 LEN_TRIM (STRING) 

Description. Returns the length of the character argument without counting trailing blank characters. 

Class. Elemental function. 

Argument.  STRING must be of type character. 

Result Type and Type Parameter. Default integer. 

Result Value. The result has a value equal to the number of characters remaining after any trailing blanks
in STRING are removed. If the argument contains no nonblank characters, the result is zero. 

Examples.  LEN_TRIM (’ A B ’) has the value 4 and LEN_TRIM (’ ’) has the value 0. 

13.13.55 LGE (STRING_A, STRING_B) 

Description. Test whether a string is lexically greater than or equal to another string, based on the ASCII
collating sequence. 

Class. Elemental function. 

Arguments.  

STRING_A must be of type default character. 

STRING_B must be of type default character. 

Result Type and Type Parameters. Default logical. 

Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were
extended on the right with blanks to the length of the longer string. If either string contains a character not
in the ASCII character set, the result is processor dependent. The result is true if the strings are equal or if
STRING_A follows STRING_B in the ASCII collating sequence; otherwise, the result is false. Note that
the result is true if both STRING_A and STRING_B are of zero length. 

Example.  LGE (’ONE’, ’TWO’) has the value false. 

i
i n



ISO/IEC 1539 : 1991 (E)

210

13.13.56 LGT (STRING_A, STRING_B) 

Description. Test whether a string is lexically greater than another string, based on the ASCII collating
sequence. 

Class. Elemental function. 

Arguments.  

STRING_A must be of type default character. 

STRING_B must be of type default character. 

Result Type and Type Parameters. Default logical. 

Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were
extended on the right with blanks to the length of the longer string. If either string contains a character not
in the ASCII character set, the result is processor dependent. The result is true if STRING_A follows
STRING_B in the ASCII collating sequence; otherwise, the result is false. Note that the result is false if
both STRING_A and STRING_B are of zero length. 

Example.  LGT (’ONE’, ’TWO’) has the value false. 

13.13.57 LLE (STRING_A, STRING_B) 

Description. Test whether a string is lexically less than or equal to another string, based on the ASCII
collating sequence. 

Class. Elemental function. 

Arguments.  

STRING_A must be of type default character. 

STRING_B must be of type default character. 

Result Type and Type Parameters. Default logical. 

Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were
extended on the right with blanks to the length of the longer string. If either string contains a character not
in the ASCII character set, the result is processor dependent. The result is true if the strings are equal or if
STRING_A precedes STRING_B in the ASCII collating sequence; otherwise, the result is false. Note that
the result is true if both STRING_A and STRING_B are of zero length. 

Example.  LLE (’ONE’, ’TWO’) has the value true. 

13.13.58 LLT (STRING_A, STRING_B) 

Description. Test whether a string is lexically less than another string, based on the ASCII collating
sequence. 

Class. Elemental function. 

Arguments.  

STRING_A must be of type default character. 

STRING_B must be of type default character. 

Result Type and Type Parameters. Default logical. 

Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were
extended on the right with blanks to the length of the longer string. If either string contains a character not
in the ASCII character set, the result is processor dependent. The result is true if STRING_A precedes



ISO/IEC 1539 : 1991 (E)

211

STRING_B in the ASCII collating sequence; otherwise, the result is false. Note that the result is false if
both STRING_A and STRING_B are of zero length. 

Example.  LLT (’ONE’, ’TWO’) has the value true. 

13.13.59 LOG (X) 

Description. Natural logarithm. 

Class. Elemental function. 

Argument.  X must be of type real or complex. If X is real, its value must be greater than zero. If X is
complex, its value must not be zero. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to . A result of
type complex is the principal value with imaginary part  in the range . The imaginary part of
the result is  only when the real part of the argument is less than zero and the imaginary part of the
argument is zero. 

Example.  LOG (10.0) has the value 2.3025851 (approximately). 

13.13.60 LOG10 (X) 

Description. Common logarithm. 

Class. Elemental function. 

Argument.  X must be of type real. The value of X must be greater than zero. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to .

Example.  LOG10 (10.0) has the value 1.0 (approximately). 

13.13.61 LOGICAL (L, KIND) 

Optional Argument. KIND 

Description. Converts between kinds of logical. 

Class. Elemental function. 

Arguments.  

L must be of type logical. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. Logical. If KIND is present, the kind type parameter is that specified
by KIND; otherwise, the kind type parameter is that of default logical. 

Result Value. The value is that of L. 

Example.  LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical, regardless of the
kind type parameter of the logical variable L. 

13.13.62 MATMUL (MATRIX_A, MATRIX_B) 

Description. Performs matrix multiplication of numeric or logical matrices. 

Class. Transformational function. 

logeX
ω π– ω π≤<

π

log10X



ISO/IEC 1539 : 1991 (E)

212

Arguments.  

MATRIX_A must be of numeric type (integer, real, or complex) or of logical type. It must be
array valued and of rank one or two. 

MATRIX_B must be of numeric type if MATRIX_A is of numeric type and of logical type if
MATRIX_A is of logical type. It must be array valued and of rank one or two. If
MATRIX_A has rank one, MATRIX_B must have rank two. If MATRIX_B has
rank one, MATRIX_A must have rank two. The size of the first (or only)
dimension of MATRIX_B must equal the size of the last (or only) dimension of
MATRIX_A. 

Result Type, Type Parameter, and Shape. If the arguments are of numeric type, the type and kind type
parameter of the result are determined by the types of the arguments according to 7.1.4.2. If the arguments
are of type logical, the result is of type logical with the kind type parameter of the arguments according to
7.1.4.2. The shape of the result depends on the shapes of the arguments as follows: 

Case (i): If MATRIX_A has shape ( ) and MATRIX_B has shape ( ), the result has shape
( ). 

Case (ii): If MATRIX_A has shape ( ) and MATRIX_B has shape ( ), the result has shape ( ). 

Case (iii): If MATRIX_A has shape ( ) and MATRIX_B has shape ( ), the result has shape ( ). 

Result Value.

Case (i): Element ( ) of the result has the value SUM (MATRIX_A ( , :) ∗ MATRIX_B (:, )) if the
arguments are of numeric type and has the value ANY (MATRIX_A ( , :) .AND.
MATRIX_B (:, )) if the arguments are of logical type. 

Case (ii): Element ( ) of the result has the value SUM (MATRIX_A (:) ∗ MATRIX_B (:, )) if the
arguments are of numeric type and has the value ANY (MATRIX_A (:) .AND. MATRIX_B
(:, )) if the arguments are of logical type. 

Case (iii): Element ( ) of the result has the value SUM (MATRIX_A ( , :) ∗ MATRIX_B (:)) if the
arguments are of numeric type and has the value ANY (MATRIX_A ( , :) .AND.
MATRIX_B (:)) if the arguments are of logical type. 

Examples.  Let A and B be the matrices  and ; let X and Y be the vectors [1, 2] and

[1, 2, 3]. 

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with the value .

Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA with the value [5, 8, 11]. 

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with the value [14, 20]. 

13.13.63 MAX (A1, A2, A3, ...) 

Optional Arguments. A3, ... 

Description. Maximum value. 

Class. Elemental function. 

Arguments.  The arguments must all have the same type which must be integer or real and they must all
have the same kind type parameter. 

n m, m k,
n k,

m m k, k

n m, m n

i j, i j
i

j

j j

j

i i
i

1 2 3
2 3 4

1 2
2 3
3 4

14 20
20 29



ISO/IEC 1539 : 1991 (E)

213

Result Type and Type Parameter. Same as the arguments. 

Result Value. The value of the result is that of the largest argument. 

Example.  MAX (–9.0, 7.0, 2.0) has the value 7.0. 

13.13.64 MAXEXPONENT (X) 

Description. Returns the maximum exponent in the model representing numbers of the same type and
kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has the value , as defined in 13.7.1 for the model representing numbers of
the same type and kind type parameter as X. 

Example.  MAXEXPONENT (X) has the value 127 for real X whose model is as at the end of 13.7.1. 

13.13.65 MAXLOC (ARRAY, MASK) 

Optional Argument. MASK 

Description. Determine the location of the first element of ARRAY having the maximum value of the
elements identified by MASK. 

Class. Transformational function. 

Arguments.  

ARRAY must be of type integer or real. It must not be scalar. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of type default integer; it is an array of rank one
and of size equal to the rank of ARRAY. 

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY whose value equals the maximum value of all of the
elements of ARRAY. The ith subscript returned lies in the range 1 to , where  is the
extent of the ith dimension of ARRAY. If more than one element has the maximum value, the
element whose subscripts are returned is the first such element, taken in array element order.
If ARRAY has size zero, the value of the result is processor dependent. 

Case (ii): If MASK is present, the result is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY, corresponding to a true element of MASK, whose value
equals the maximum value of all such elements of ARRAY. The ith subscript returned lies in
the range 1 to , where  is the extent of the ith dimension of ARRAY. If more than one
such element has the maximum value, the element whose subscripts are returned is the first
such element taken in array element order. If there are no such elements (that is, if ARRAY
has size zero or every element of MASK has the value false), the value of the result is
processor dependent. 

An element of the result is undefined if the processor cannot represent the value as a default integer. 

Examples.  

Case (i): The value of MAXLOC ((/ 2, 6, 4, 6 /)) is [2]. 

emax

ei ei

ei ei



ISO/IEC 1539 : 1991 (E)

214

Case (ii): If A has the value , MAXLOC (A, MASK = A .LT. 6) has the value [3, 2].

Note that this is true even if A has a declared lower bound other than 1. 

13.13.66 MAXVAL (ARRAY, DIM, MASK) 

Optional Arguments. DIM, MASK 

Description. Maximum value of the elements of ARRAY along dimension DIM corresponding to the true
elements of MASK. 

Class. Transformational function. 

Arguments.  

ARRAY must be of type integer or real. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of the same type and kind type parameter as
ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an array of rank

 and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape of
ARRAY. 

Result Value.

Case (i): The result of MAXVAL (ARRAY) has a value equal to the maximum value of all the
elements of ARRAY or has the value of the negative number of the largest magnitude
supported by the processor for numbers of the type and kind type parameter of ARRAY if
ARRAY has size zero. 

Case (ii): The result of MAXVAL (ARRAY, MASK = MASK) has a value equal to the maximum value
of the elements of ARRAY corresponding to true elements of MASK or has the value of the
negative number of the largest magnitude supported by the processor for numbers of the type
and kind type parameter of ARRAY if there are no true elements. 

Case (iii): If ARRAY has rank one, MAXVAL (ARRAY, DIM [,MASK]) has a value equal to that of
MAXVAL (ARRAY [,MASK = MASK]). Otherwise, the value of element ( , , ...,

, , ..., ) of MAXVAL (ARRAY, DIM [,MASK]) is equal to MAXVAL

(ARRAY ( , , ..., , :, , ..., ) [, MASK = MASK ( , , ..., ,

:, , ..., ) ] ). 

Examples.  

Case (i): The value of MAXVAL ((/ 1, 2, 3 /)) is 3. 

Case (ii): MAXVAL (C, MASK = C .LT. 0.0) finds the maximum of the negative elements of C. 

Case (iii): If B is the array , MAXVAL (B, DIM = 1) is [2, 4, 6] and MAXVAL (B, DIM = 2) is

[5, 6]. 

0 5– 8 3–
3 4 1– 2
1 5 6 4–

1 DIM n≤ ≤ n

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2

sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–

sDIM 1+ sn

1 3 5
2 4 6



ISO/IEC 1539 : 1991 (E)

215

13.13.67 MERGE (TSOURCE, FSOURCE, MASK) 

Description. Choose alternative value according to the value of a mask. 

Class. Elemental function. 

Arguments.  

TSOURCE may be of any type. 

FSOURCE must be of the same type and type parameters as TSOURCE. 

MASK must be of type logical. 

Result Type and Type Parameters. Same as TSOURCE. 

Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise. 

Examples.  If TSOURCE is the array , FSOURCE is the array  and MASK is the array

, where “T” represents true and “.” represents false, then MERGE (TSOURCE, FSOURCE,

MASK) is . The value of MERGE (1.0, 0.0, K > 0) is 1.0 for K = 5 and 0.0 for K = –2. 

13.13.68 MIN (A1, A2, A3, ...) 

Optional Arguments. A3, ... 

Description. Minimum value. 

Class. Elemental function. 

Arguments.  The arguments must all be of the same type which must be integer or real and they must all
have the same kind type parameter. 

Result Type and Type Parameter. Same as the arguments. 

Result Value. The value of the result is that of the smallest argument. 

Example.  MIN (–9.0, 7.0, 2.0) has the value –9.0. 

13.13.69 MINEXPONENT (X) 

Description. Returns the minimum (most negative) exponent in the model representing numbers of the
same type and kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has the value , as defined in 13.7.1 for the model representing numbers of
the same type and kind type parameter as X. 

Example.  MINEXPONENT (X) has the value –126 for real X whose model is as at the end of 13.7.1. 

13.13.70 MINLOC (ARRAY, MASK) 

Optional Argument. MASK 

1 6 5
2 4 6

0 3 2
7 4 8

T . T
. . T

1 3 5
7 4 6

emin



ISO/IEC 1539 : 1991 (E)

216

Description. Determine the location of the first element of ARRAY having the minimum value of the
elements identified by MASK. 

Class. Transformational function. 

Arguments.  

ARRAY must be of type integer or real. It must not be scalar. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of type default integer; it is an array of rank one
and of size equal to the rank of ARRAY. 

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY whose value equals the minimum value of all the
elements of ARRAY. The ith subscript returned lies in the range 1 to , where  is the
extent of the ith dimension of ARRAY. If more than one element has the minimum value, the
element whose subscripts are returned is the first such element, taken in array element order.
If ARRAY has size zero, the value of the result is processor dependent. 

Case (ii): If MASK is present, the result is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY, corresponding to a true element of MASK, whose value
equals the minimum value of all such elements of ARRAY. The ith subscript returned lies in
the range 1 to , where  is the extent of the ith dimension of ARRAY. If more than one
such element has the minimum value, the element whose subscripts are returned is the first
such element taken in array element order. If ARRAY has size zero or every element of
MASK has the value false, the value of the result is processor dependent. 

An element of the result is undefined if the processor cannot represent the value as a default integer. 

Examples.  

Case (i): The value of MINLOC ((/ 4, 3, 6, 3 /)) is [2]. 

Case (ii): If A has the value , MINLOC (A, MASK = A .GT. –4) has the value [1, 4].

Note that this is true even if A has a declared lower bound other than 1. 

13.13.71 MINVAL (ARRAY, DIM, MASK) 

Optional Arguments. DIM, MASK 

Description. Minimum value of all the elements of ARRAY along dimension DIM corresponding to true
elements of MASK. 

Class. Transformational function. 

Arguments.  

ARRAY must be of type integer or real. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

ei ei

ei ei

0 5– 8 3–
3 4 1– 2
1 5 6 4–

1 DIM n≤ ≤ n



ISO/IEC 1539 : 1991 (E)

217

Result Type, Type Parameter, and Shape. The result is of the same type and kind type parameter as
ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an array of rank

 and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape of
ARRAY.

Result Value.

Case (i): The result of MINVAL (ARRAY) has a value equal to the minimum value of all the elements
of ARRAY or has the value of the positive number of the largest magnitude supported by the
processor for numbers of the type and kind type parameter of ARRAY if ARRAY has size
zero. 

Case (ii): The result of MINVAL (ARRAY, MASK = MASK) has a value equal to the minimum value
of the elements of ARRAY corresponding to true elements of MASK or has the value of the
positive number of the largest magnitude supported by the processor for numbers of the type
and kind type parameter of ARRAY if there are no true elements. 

Case (iii): If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has a value equal to that of
MINVAL (ARRAY [,MASK = MASK]). Otherwise, the value of element ( , , ...,

, , ..., ) of MINVAL (ARRAY, DIM [,MASK]) is equal to MINVAL
(ARRAY ( , , ..., , :, , ..., ) [, MASK= MASK ( , , ..., ,
:, , ..., ) ] ). 

Examples.  

Case (i): The value of MINVAL ((/ 1, 2, 3 /)) is 1. 

Case (ii): MINVAL (C, MASK = C .GT. 0.0) forms the minimum of the positive elements of C. 

Case (iii): If B is the array , MINVAL (B, DIM = 1) is [1, 3, 5] and MINVAL (B, DIM = 2) is

[1, 2]. 

13.13.72 MOD (A, P) 

Description. Remainder function. 

Class. Elemental function. 

Arguments.  

A must be of type integer or real. 

P must be of the same type and kind type parameter as A. 

Result Type and Type Parameter. Same as A. 

Result Value. If P ≠ 0, the value of the result is A–INT (A/P) ∗ P. If P = 0, the result is processor
dependent. 

Examples.  MOD (3.0, 2.0) has the value 1.0 (approximately). MOD (8, 5) has the value 3. MOD (–8, 5)
has the value –3. MOD (8, –5) has the value 3. MOD (–8, –5) has the value –3. 

13.13.73 MODULO (A, P) 

Description. Modulo function. 

Class. Elemental function. 

Arguments.  

A must be of type integer or real. 

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2
sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

1 3 5
2 4 6



ISO/IEC 1539 : 1991 (E)

218

P must be of the same type and kind type parameter as A. 

Result Type and Type Parameter. Same as A. 

Result Value.

Case (i): A is of type integer. If , MODULO (A, P) has the value R such that A = Q × P + R,
where Q is an integer, the inequalities  hold if P > 0, and   hold if P < 0.
If P = 0, the result is processor dependent. 

Case (ii): A is of type real. If , the value of the result is A – FLOOR (A / P) ∗ P. If P = 0, the
result is processor dependent. 

Examples.  MODULO (8, 5) has the value 3. MODULO (–8, 5) has the value 2. MODULO (8, –5) has
the value –2. MODULO (–8, –5) has the value –3. 

13.13.74 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) 

Description. Copies a sequence of bits from one data object to another. 

Class. Elemental subroutine. 

Arguments.  

FROM must be of type integer. It is an INTENT (IN) argument. 

FROMPOS must be of type integer and nonnegative. It is an INTENT (IN) argument.
FROMPOS + LEN must be less than or equal to BIT_SIZE (FROM). The model
for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

LEN must be of type integer and nonnegative. It is an INTENT (IN) argument. 

TO must be a variable of type integer with the same kind type parameter value as
FROM and may be the same variable as FROM. It is an INTENT (INOUT)
argument. TO is set by copying the sequence of bits of length LEN, starting at
position FROMPOS of FROM to position TOPOS of TO. No other bits of TO are
altered. On return, the LEN bits of TO starting at TOPOS are equal to the value
that the LEN bits of FROM starting at FROMPOS had on entry. The model for the
interpretation of an integer value as a sequence of bits is in 13.5.7. 

TOPOS must be of type integer and nonnegative. It is an INTENT (IN) argument. TOPOS
+ LEN must be less than or equal to BIT_SIZE (TO). 

Example.  If TO has the initial value 6, the value of TO after the statement CALL MVBITS (7, 2, 2, TO,
0) is 5. 

13.13.75 NEAREST (X, S) 

Description. Returns the nearest different machine representable number in a given direction. 

Class. Elemental function. 

Arguments.  

X must be of type real. 

S must be of type real and not equal to zero. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to the machine representable number distinct from X and
nearest to it in the direction of the infinity with the same sign as S. 

P 0≠
0 R P<≤ P R 0≤<

P 0≠



ISO/IEC 1539 : 1991 (E)

219

Example.  NEAREST (3.0, 2.0) has the value  on a machine whose representation is that of the
model at the end of 13.7.1. 

13.13.76 NINT (A, KIND) 

Optional Argument. KIND 

Description. Nearest integer. 

Class. Elemental function. 

Arguments.  

A must be of type real. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. Integer. If KIND is present, the kind type parameter is that specified
by KIND; otherwise, the kind type parameter is that of default integer type. 

Result Value. If A > 0, NINT (A) has the value INT (A+0.5); if A ≤ 0, NINT (A) has the value INT (A–
0.5). The result is undefined if the processor cannot represent the result in the specified integer type. 

Example.  NINT (2.783) has the value 3. 

13.13.77 NOT (I) 

Description. Performs a logical complement. 

Class. Elemental function. 

Argument.  I must be of type integer. 

Result Type and Type Parameter. Same as I. 

Result Value. The result has the value obtained by complementing I bit-by-bit according to the following
truth table:

Result Value.  

The model for the interpretation of an integer value as a sequence of bits is in 13.5.7. 

Example.  If I is represented by the string of bits 01010101, NOT (I) has the binary value 10101010. 

13.13.78 PACK (ARRAY, MASK, VECTOR) 

Optional Argument. VECTOR 

Description. Pack an array into an array of rank one under the control of a mask. 

Class. Transformational function. 

Arguments.  

ARRAY may be of any type. It must not be scalar. 

MASK must be of type logical and must be conformable with ARRAY. 

I NOT (I) 

1 0

0 1

3 2 22–+



ISO/IEC 1539 : 1991 (E)

220

VECTOR (optional) must be of the same type and type parameters as ARRAY and must have rank one.
VECTOR must have at least as many elements as there are true elements in
MASK. If MASK is scalar with the value true, VECTOR must have at least as
many elements as there are in ARRAY. 

Result Type, Type Parameter, and Shape. The result is an array of rank one with the same type and type
parameters as ARRAY. If VECTOR is present, the result size is that of VECTOR; otherwise, the result size
is the number  of true elements in MASK unless MASK is scalar with the value true, in which case the
result size is the size of ARRAY. 

Result Value. Element  of the result is the element of ARRAY that corresponds to the ith true element
of MASK, taking elements in array element order, for  = 1, 2, ..., . If VECTOR is present and has size

, element  of the result has the value VECTOR ( ), for  = + 1, ..., . 

Examples.  The nonzero elements of an array M with the value  may be “gathered” by the

function PACK. The result of PACK (M, MASK = M .NE. 0) is [9, 7] and the result of PACK (M, M .NE.
0, VECTOR = (/ 2, 4, 6, 8, 10, 12 /)) is [9, 7, 6, 8, 10, 12]. 

13.13.79 PRECISION (X) 

Description. Returns the decimal precision in the model representing real numbers with the same kind
type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type real or complex. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has the value INT (( ) ∗ LOG10 ( )) + , where  and  are as defined in
13.7.1 for the model representing real numbers with the same value for the kind type parameter as X, and
where  is 1 if  is an integral power of 10 and 0 otherwise. 

Example.  PRECISION (X) has the value INT (23 ∗ LOG10 (2.)) = INT (6.92...) = 6 for real X whose
model is as at the end of 13.7.1. 

13.13.80 PRESENT (A) 

Description. Determine whether an optional argument is present. 

Class. Inquiry function. 

Argument.  A must be the name of an optional dummy argument that is accessible in the procedure in
which the PRESENT function reference appears. 

Result Type and Type Parameters. Default logical scalar. 

Result Value. The result has the value true if A is present (12.5.2.8) and otherwise has the value false. 

13.13.81 PRODUCT (ARRAY, DIM, MASK) 

Optional Arguments. DIM, MASK 

Description. Product of all the elements of ARRAY along dimension DIM corresponding to the true
elements of MASK. 

Class. Transformational function. 

t

i
i t

n t> i i i t n

0 0 0
9 0 0
0 0 7

p 1– b k b p

k b



ISO/IEC 1539 : 1991 (E)

221

Arguments.  

ARRAY must be of type integer, real, or complex. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of the same type and kind type parameter as
ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an array of rank

 and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape of
ARRAY. 

Result Value.

Case (i): The result of PRODUCT (ARRAY) has a value equal to a processor-dependent
approximation to the product of all the elements of ARRAY or has the value one if ARRAY
has size zero. 

Case (ii): The result of PRODUCT (ARRAY, MASK = MASK) has a value equal to a processor-
dependent approximation to the product of the elements of ARRAY corresponding to the true
elements of MASK or has the value one if there are no true elements. 

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM [,MASK]) has a value equal to that of
PRODUCT (ARRAY [,MASK = MASK ]). Otherwise, the value of element ( , , ...,

, , ..., ) of PRODUCT (ARRAY, DIM [,MASK]) is equal to PRODUCT
(ARRAY ( , , ..., , :, , ..., ) [, MASK = MASK ( , , ..., ,
:, , ..., ) ] ). 

Examples.  

Case (i): The value of PRODUCT ((/ 1, 2, 3 /)) is 6. 

Case (ii): PRODUCT (C, MASK = C .GT. 0.0) forms the product of the positive elements of C. 

Case (iii): If B is the array , PRODUCT (B, DIM = 1) is [2, 12, 30] and PRODUCT (B,

DIM = 2) is [15, 48].

13.13.82 RADIX (X) 

Description. Returns the base of the model representing numbers of the same type and kind type
parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type integer or real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has the value  if X is of type integer and the value  if X is of type real, where
 and  are as defined in 13.7.1 for the model representing numbers of the same type and kind type

parameter as X. 

Example.  RADIX (X) has the value 2 for real X whose model is as at the end of 13.7.1. 

1 DIM n≤ ≤ n

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2
sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

1 3 5
2 4 6

r b
r b



ISO/IEC 1539 : 1991 (E)

222

13.13.83 RANDOM_NUMBER (HARVEST) 

Description. Returns one pseudorandom number or an array of pseudorandom numbers from the uniform
distribution over the range .

Class. Subroutine. 

Argument.  HARVEST must be of type real. It is an INTENT (OUT) argument. It may be a scalar or an
array variable. It is set to contain pseudorandom numbers from the uniform distribution in the interval

.

Examples.  

REAL X, Y (10, 10) 
! Initialize X with a pseudorandom number 
CALL RANDOM_NUMBER (HARVEST = X) 
CALL RANDOM_NUMBER (Y) 
! X and Y contain uniformly distributed random numbers 

13.13.84 RANDOM_SEED (SIZE, PUT, GET) 

Optional Arguments. SIZE, PUT, GET 

Description. Restarts or queries the pseudorandom number generator used by RANDOM_NUMBER. 

Class. Subroutine. 

Arguments.  There must either be exactly one or no arguments present. 

SIZE (optional) must be scalar and of type default integer. It is an INTENT (OUT) argument. It is
set to the number  of integers that the processor uses to hold the value of the
seed. 

PUT (optional) must be a default integer array of rank one and size ≥ . It is an INTENT (IN)
argument. It is used by the processor to set the seed value. 

GET (optional) must be a default integer array of rank one and size ≥  It is an INTENT (OUT)
argument. It is set by the processor to the current value of the seed. 

If no argument is present, the processor sets the seed to a processor-dependent value. 

Examples.  

CALL RANDOM_SEED ! Processor initialization 
CALL RANDOM_SEED (SIZE = K) ! Sets K = N 
CALL RANDOM_SEED (PUT = SEED (1 : K)) ! Set user seed 
CALL RANDOM_SEED (GET = OLD (1 : K)) ! Read current seed 

13.13.85 RANGE (X) 

Description. Returns the decimal exponent range in the model representing integer or real numbers with
the same kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type integer, real, or complex. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value.

0 x 1<≤

0 x 1<≤

N

N

N



ISO/IEC 1539 : 1991 (E)

223

Case (i): For an integer argument, the result has the value INT (LOG10 (huge)), where huge is the
largest positive integer in the model representing integer numbers with same kind type
parameter as X (13.7.1). 

Case (ii): For a real or complex argument, the result has the value INT (MIN (LOG10 (huge), –LOG10
(tiny))), where huge and tiny are the largest and smallest positive numbers in the model
representing real numbers with the same value for the kind type parameter as X (13.7.1). 

Example.  RANGE (X) has the value 38 for real X whose model is as at the end of 13.7.1, since in this
case huge =  and tiny = .

13.13.86 REAL (A, KIND) 

Optional Argument. KIND 

Description. Convert to real type. 

Class. Elemental function. 

Arguments.  

A must be of type integer, real, or complex. 

KIND (optional) must be a scalar integer initialization expression. 

Result Type and Type Parameter. Real. 

Case (i): If A is of type integer or real and KIND is present, the kind type parameter is that specified
by KIND. If A is of type integer or real and KIND is not present, the kind type parameter is
the processor-dependent kind type parameter for the default real type. 

Case (ii): If A is of type complex and KIND is present, the kind type parameter is that specified by
KIND. If A is of type complex and KIND is not present, the kind type parameter is the kind
type parameter of A. 

Result Value.

Case (i): If A is of type integer or real, the result is equal to a processor-dependent approximation to
A. 

Case (ii): If A is of type complex, the result is equal to a processor-dependent approximation to the real
part of A. 

Examples.  REAL (–3) has the value –3.0. REAL (Z) has the same kind type parameter and the same
value as the real part of the complex variable Z. 

13.13.87 REPEAT (STRING, NCOPIES) 

Description. Concatenate several copies of a string. 

Class. Transformational function. 

Arguments.  

STRING must be scalar and of type character. 

NCOPIES must be scalar and of type integer. Its value must not be negative. 

Result Type, Type Parameter, and Shape. Character scalar of length NCOPIES times that of STRING,
with the same kind type parameter as STRING. 

Result Value. The value of the result is the concatenation of NCOPIES copies of STRING. 

1 2 24––( ) 2127× 2 127–



ISO/IEC 1539 : 1991 (E)

224

Examples.  REPEAT (’H’, 2) has the value HH. REPEAT (’XYZ’, 0) has the value of a zero-length
string. 

13.13.88 RESHAPE (SOURCE, SHAPE, PAD, ORDER) 

Optional Arguments. PAD, ORDER 

Description. Constructs an array of a specified shape from the elements of a given array. 

Class. Transformational function. 

Arguments.  

SOURCE may be of any type. It must be array valued. If PAD is absent or of size zero, the
size of SOURCE must be greater than or equal to PRODUCT (SHAPE). The size
of the result is the product of the values of the elements of SHAPE. 

SHAPE must be of type integer, rank one, and constant size. Its size must be positive and
less than 8. It must not have an element whose value is negative. 

PAD (optional) must be of the same type and type parameters as SOURCE. PAD must be array
valued. 

ORDER (optional) must be of type integer, must have the same shape as SHAPE, and its value must
be a permutation of (1, 2, ..., ), where  is the size of SHAPE. If absent, it is as
if it were present with value (1, 2, ..., ). 

Result Type, Type Parameter, and Shape. The result is an array of shape SHAPE (that is,
SHAPE (RESHAPE (SOURCE, SHAPE, PAD, ORDER)) is equal to SHAPE) with the same type and type
parameters as SOURCE. 

Result Value. The elements of the result, taken in permuted subscript order ORDER (1), ..., ORDER ( ),
are those of SOURCE in normal array element order followed if necessary by those of PAD in array
element order, followed if necessary by additional copies of PAD in array element order. 

Examples.  RESHAPE ((/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /)) has the value .

RESHAPE ((/ 1, 2, 3, 4, 5, 6 /), (/ 2, 4 /), (/ 0, 0 /), (/ 2, 1 /)) has the value .

13.13.89 RRSPACING (X) 

Description. Returns the reciprocal of the relative spacing of model numbers near the argument value. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has the value , where , , and  are as defined in 13.7.1 for the
model representation of X. 

Example.  RRSPACING (–3.0) has the value  for reals whose model is as at the end of 13.7.1. 

13.13.90 SCALE (X, I) 

Description. Returns  where  is the base in the model representation of X. 

Class. Elemental function. 

n n
n

n

1 3 5
2 4 6

1 2 3 4
5 6 0 0

X b e–× bp× b e p

0.75 224×

X bI× b



ISO/IEC 1539 : 1991 (E)

225

Arguments.  

X must be of type real. 

I must be of type integer. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has the value , where  is defined in 13.7.1 for model numbers
representing values of X, provided this result is within range; if not, the result is processor dependent. 

Example.  SCALE (3.0, 2) has the value 12.0 for reals whose model is as at the end of 13.7.1. 

13.13.91 SCAN (STRING, SET, BACK) 

Optional Argument. BACK 

Description. Scan a string for any one of the characters in a set of characters. 

Class. Elemental function. 

Arguments.  

STRING must be of type character. 

SET must be of type character with the same kind type parameter as STRING. 

BACK (optional) must be of type logical. 

Result Type and Type Parameter. Default integer. 

Result Value.

Case (i): If BACK is absent or is present with the value false and if STRING contains at least one
character that is in SET, the value of the result is the position of the leftmost character of
STRING that is in SET. 

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is
in SET, the value of the result is the position of the rightmost character of STRING that is in
SET. 

Case (iii): The value of the result is zero if no character of STRING is in SET or if the length of
STRING or SET is zero. 

Examples.  

Case (i): SCAN (’FORTRAN’, ’TR’) has the value 3. 

Case (ii): SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) has the value 5. 

Case (iii): SCAN (’FORTRAN’, ’BCD’) has the value 0. 

13.13.92 SELECTED_INT_KIND (R) 

Description. Returns a value of the kind type parameter of an integer data type that represents all integer
values  with .

Class. Transformational function. 

Argument.  R must be scalar and of type integer. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has a value equal to the value of the kind type parameter of an integer data type
that represents all values  in the range of values  with , or if no such kind type
parameter is available on the processor, the result is –1. If more than one kind type parameter meets the

X bI× b

n 10– R n 10R< <

n n 10– R n 10R< <



ISO/IEC 1539 : 1991 (E)

226

criteria, the value returned is the one with the smallest decimal exponent range, unless there are several
such values, in which case the smallest of these kind values is returned. 

Example.  SELECTED_INT_KIND (6) has the value KIND (0) on a machine that supports a default
integer representation method with  = 2 and  = 31. 

13.13.93 SELECTED_REAL_KIND (P, R) 

Optional Arguments. P, R 

Description. Returns a value of the kind type parameter of a real data type with decimal precision of at
least P digits and a decimal exponent range of at least R. 

Class. Transformational function. 

Arguments.  At least one argument must be present. 

P (optional) must be scalar and of type integer. 

R (optional) must be scalar and of type integer. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has a value equal to a value of the kind type parameter of a real data type with
decimal precision, as returned by the function PRECISION, of at least P digits and a decimal exponent
range, as returned by the function RANGE, of at least R, or if no such kind type parameter is available on
the processor, the result is –1 if the precision is not available, –2 if the exponent range is not available, and
–3 if neither is available. If more than one kind type parameter value meets the criteria, the value returned
is the one with the smallest decimal precision, unless there are several such values, in which case the
smallest of these kind values is returned. 

Example.  SELECTED_REAL_KIND (6, 70) has the value KIND (0.0) on a machine that supports a
default real approximation method with  = 16,  = 6,  = –64, and  = 63. 

13.13.94 SET_EXPONENT (X, I) 

Description. Returns the model number whose fractional part is the fractional part of the model
representation of X and whose exponent part is I. 

Class. Elemental function. 

Arguments.  

X must be of type real. 

I must be of type integer. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has the value , where  and  are as defined in 13.7.1 for the model
representation of X, provided this result is within range; if not, the result is processor dependent. If X has
value zero, the result has value zero. 

Example.  SET_EXPONENT (3.0, 1) has the value 1.5 for reals whose model is as at the end of 13.7.1. 

13.13.95 SHAPE (SOURCE) 

Description. Returns the shape of an array or a scalar. 

Class. Inquiry function. 

Argument.  SOURCE may be of any type. It may be array valued or scalar. It must not be a pointer that
is disassociated or an allocatable array that is not allocated. It must not be an assumed-size array. 

r q

b p emin emax

X bI e–× b e



ISO/IEC 1539 : 1991 (E)

227

Result Type, Type Parameter, and Shape. The result is a default integer array of rank one whose size is
equal to the rank of SOURCE. 

Result Value. The value of the result is the shape of SOURCE. 

Examples.  The value of SHAPE (A (2:5, –1:1) ) is [4, 3]. The value of SHAPE (3) is the rank-one array
of size zero. 

13.13.96 SIGN (A, B) 

Description. Absolute value of A times the sign of B. 

Class. Elemental function. 

Arguments.  

A must be of type integer or real. 

B must be of the same type and kind type parameter as A. 

Result Type and Type Parameter. Same as A. 

Result Value. The value of the result is |A| if B ≥ 0 and –|A| if B < 0.

Example.  SIGN (–3.0, 2.0) has the value 3.0. 

13.13.97 SIN (X) 

Description. Sine function. 

Class. Elemental function. 

Argument.  X must be of type real or complex. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to sin(X). If X is of
type real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in
radians. 

Example.  SIN (1.0) has the value 0.84147098 (approximately). 

13.13.98 SINH (X) 

Description. Hyperbolic sine function. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to sinh(X). 

Example.  SINH (1.0) has the value 1.1752012 (approximately). 

13.13.99 SIZE (ARRAY, DIM) 

Optional Argument. DIM 

Description. Returns the extent of an array along a specified dimension or the total number of elements
in the array. 

Class. Inquiry function. 



ISO/IEC 1539 : 1991 (E)

228

Arguments.  

ARRAY may be of any type. It must not be scalar. It must not be a pointer that is
disassociated or an allocatable array that is not allocated. If ARRAY is an
assumed-size array, DIM must be present with a value less than the rank of
ARRAY. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. 

Result Type, Type Parameter, and Shape. Default integer scalar. 

Result Value. The result has a value equal to the extent of dimension DIM of ARRAY or, if DIM is
absent, the total number of elements of ARRAY. 

Examples.  The value of SIZE (A (2:5, –1:1), DIM=2) is 3. The value of SIZE (A (2:5, –1:1) ) is 12. 

13.13.100 SPACING (X) 

Description. Returns the absolute spacing of model numbers near the argument value. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. If X is not zero, the result has the value , where , , and  are as defined in 13.7.1
for the model representation of X, provided this result is within range. Otherwise, the result is the same as
that of TINY (X). 

Example.  SPACING (3.0) has the value  for reals whose model is as at the end of 13.7.1. 

13.13.101 SPREAD (SOURCE, DIM, NCOPIES) 

Description. Replicates an array by adding a dimension. Broadcasts several copies of SOURCE along a
specified dimension (as in forming a book from copies of a single page) and thus forms an array of rank
one greater. 

Class. Transformational function. 

Arguments.  

SOURCE may be of any type. It may be scalar or array valued. The rank of SOURCE must
be less than 7. 

DIM must be scalar and of type integer with value in the range , where
 is the rank of SOURCE. 

NCOPIES must be scalar and of type integer. 

Result Type, Type Parameter, and Shape. The result is an array of the same type and type parameters as
SOURCE and of rank , where  is the rank of SOURCE. 

Case (i): If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0)). 

Case (ii): If SOURCE is array valued with shape ( , , ..., ), the shape of the result is ( , ,
..., , MAX (NCOPIES, 0), , ..., ). 

Result Value.

Case (i): If SOURCE is scalar, each element of the result has a value equal to SOURCE. 

1 DIM n≤ ≤ n

be p– b e p

2 22–

1 DIM n≤ ≤ 1+
n

n 1+ n

d1 d2 dn d1 d2
dDIM 1– dDIM dn



ISO/IEC 1539 : 1991 (E)

229

Case (ii): If SOURCE is array valued, the element of the result with subscripts ( , , ..., ) has
the value SOURCE ( , , ..., , , ..., ). 

Example.  If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES=NC) is the array  if NC

has the value 3 and is a zero-sized array if NC has the value 0. 

13.13.102 SQRT (X) 

Description. Square root. 

Class. Elemental function. 

Argument.  X must be of type real or complex. Unless X is complex, its value must be greater than or
equal to zero. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to the square root of
X. A result of type complex is the principal value with the real part greater than or equal to zero. When the
real part of the result is zero, the imaginary part is greater than or equal to zero. 

Example.  SQRT (4.0) has the value 2.0 (approximately). 

13.13.103 SUM (ARRAY, DIM, MASK) 

Optional Arguments. DIM, MASK 

Description. Sum all the elements of ARRAY along dimension DIM corresponding to the true elements
of MASK. 

Class. Transformational function. 

Arguments.  

ARRAY must be of type integer, real, or complex. It must not be scalar. 

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

MASK (optional) must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of the same type and kind type parameter as
ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an array of rank

 and of shape ( , , ..., , , ..., ) where ( , , ..., ) is the shape of
ARRAY. 

Result Value.

Case (i): The result of SUM (ARRAY) has a value equal to a processor-dependent approximation to
the sum of all the elements of ARRAY or has the value zero if ARRAY has size zero. 

Case (ii): The result of SUM (ARRAY, MASK = MASK) has a value equal to a processor-dependent
approximation to the sum of the elements of ARRAY corresponding to the true elements of
MASK or has the value zero if there are no true elements. 

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM [,MASK]) has a value equal to that of SUM
(ARRAY [,MASK = MASK ]). Otherwise, the value of element ( , , ..., ,

r1 r2 rn 1+
r1 r2 rDIM 1– rDIM 1+ rn 1+

2 3 4
2 3 4
2 3 4

1 DIM n≤ ≤ n

n 1– d1 d2 dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1–



ISO/IEC 1539 : 1991 (E)

230

, ..., ) of SUM (ARRAY, DIM [,MASK]) is equal to SUM (ARRAY ( , , ...,
, :, , ..., ) [, MASK= MASK ( , , ..., , :, , ..., ) ] ). 

Examples.  

Case (i): The value of SUM ((/ 1, 2, 3 /)) is 6. 

Case (ii): SUM (C, MASK= C .GT. 0.0) forms the arithmetic sum of the positive elements of C. 

Case (iii): If B is the array , SUM (B, DIM = 1) is [3, 7, 11] and SUM (B, DIM = 2) is [9, 12]. 

13.13.104 SYSTEM_CLOCK (COUNT, COUNT_RATE, COUNT_MAX) 

Optional Arguments. COUNT, COUNT_RATE, COUNT_MAX 

Description. Returns integer data from a real-time clock. 

Class. Subroutine. 

Arguments.  

COUNT (optional) must be scalar and of type default integer. It is an INTENT (OUT) argument. It is
set to a processor-dependent value based on the current value of the processor
clock or to –HUGE (0) if there is no clock. The processor-dependent value is
incremented by one for each clock count until the value COUNT_MAX is reached
and is reset to zero at the next count. It lies in the range 0 to COUNT_MAX if
there is a clock. 

COUNT_RATE (optional)
must be scalar and of type default integer. It is an INTENT (OUT) argument. It is
set to the number of processor clock counts per second, or to zero if there is no
clock. 

COUNT_MAX (optional)
must be scalar and of type default integer. It is an INTENT (OUT) argument. It is
set to the maximum value that COUNT can have, or to zero if there is no clock. 

Example.  If the processor clock is a 24-hour clock that registers time in 1-second intervals, at 11:30 A.M.

the reference 

CALL SYSTEM_CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M) 

sets C = 11 × 3600 + 30 × 60 = 41400, R = 1, and M = 24 × 3600 – 1 = 86399. 

13.13.105 TAN (X) 

Description. Tangent function. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to tan(X), with X
regarded as a value in radians. 

Example.  TAN (1.0) has the value 1.5574077 (approximately). 

sDIM 1+ sn s1 s2
sDIM 1– sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

1 3 5
2 4 6



ISO/IEC 1539 : 1991 (E)

231

13.13.106 TANH (X) 

Description. Hyperbolic tangent function. 

Class. Elemental function. 

Argument.  X must be of type real. 

Result Type and Type Parameter. Same as X. 

Result Value. The result has a value equal to a processor-dependent approximation to tanh(X). 

Example.  TANH (1.0) has the value 0.76159416 (approximately). 

13.13.107 TINY (X) 

Description. Returns the smallest positive number in the model representing numbers of the same type
and kind type parameter as the argument. 

Class. Inquiry function. 

Argument.  X must be of type real. It may be scalar or array valued. 

Result Type, Type Parameter, and Shape. Scalar with the same type and kind type parameter as X. 

Result Value. The result has the value  where  and  are as defined in 13.7.1 for the model
representing numbers of the same type and kind type parameter as X. 

Example.  TINY (X) has the value  for real X whose model is as at the end of 13.7.1. 

13.13.108 TRANSFER (SOURCE, MOLD, SIZE) 

Optional Argument. SIZE 

Description. Returns a result with a physical representation identical to that of SOURCE but interpreted
with the type and type parameters of MOLD. 

Class. Transformational function. 

Arguments.  

SOURCE may be of any type and may be scalar or array valued. 

MOLD may be of any type and may be scalar or array valued. 

SIZE (optional) must be scalar and of type integer. The corresponding actual argument must not be
an optional dummy argument. 

Result Type, Type Parameter, and Shape. The result is of the same type and type parameters as MOLD. 

Case (i): If MOLD is a scalar and SIZE is absent, the result is a scalar. 

Case (ii): If MOLD is array valued and SIZE is absent, the result is array valued and of rank one. Its
size is as small as possible such that its physical representation is not shorter than that of
SOURCE. 

Case (iii): If SIZE is present, the result is array valued of rank one and size SIZE. 

Result Value. If the physical representation of the result has the same length as that of SOURCE, the
physical representation of the result is that of SOURCE. If the physical representation of the result is
longer than that of SOURCE, the physical representation of the leading part is that of SOURCE and the
remainder is undefined. If the physical representation of the result is shorter than that of SOURCE, the
physical representation of the result is the leading part of SOURCE. If D and E are scalar variables such
that the physical representation of D is as long as or longer than that of E, the value of TRANSFER

bemin 1– b emin

2 127–



ISO/IEC 1539 : 1991 (E)

232

(TRANSFER (E, D), E) must be the value of E. IF D is an array and E is an array of rank one, the value
of TRANSFER (TRANSFER (E, D), E, SIZE (E)) must be the value of E. 

Examples.  

Case (i): TRANSFER (1082130432, 0.0) has the value 4.0 on a processor that represents the values 4.0
and 1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000. 

Case (ii): TRANSFER ((/ 1.1, 2.2, 3.3 /), (/ (0.0, 0.0) /)) is a complex rank-one array of length two
whose first element has the value (1.1, 2.2) and whose second element has a real part with the
value 3.3. The imaginary part of the second element is undefined. 

Case (iii): TRANSFER ((/ 1.1, 2.2, 3.3 /), (/ (0.0, 0.0) /), 1) has the value [1.1 + 2.2i]. 

13.13.109 TRANSPOSE (MATRIX) 

Description. Transpose an array of rank two. 

Class. Transformational function. 

Argument.  MATRIX may be of any type and must have rank two. 

Result Type, Type Parameters, and Shape. The result is an array of the same type and type parameters
as MATRIX and with rank two and shape ( ) where ( ) is the shape of MATRIX. 

Result Value. Element ( ) of the result has the value MATRIX ( ),  = 1, 2, ..., n;  = 1, 2, ..., .

Example.  If A is the array , then TRANSPOSE (A) has the value .

13.13.110 TRIM (STRING) 

Description. Returns the argument with trailing blank characters removed. 

Class. Transformational function. 

Argument.  STRING must be of type character and must be a scalar. 

Result Type and Type Parameters. Character with the same kind type parameter value as STRING and
with a length that is the length of STRING less the number of trailing blanks in STRING. 

Result Value. The value of the result is the same as STRING except any trailing blanks are removed. If
STRING contains no nonblank characters, the result has zero length. 

Example.  TRIM (’ A B ’) has the value ’ A B’. 

13.13.111 UBOUND (ARRAY, DIM) 

Optional Argument. DIM 

Description. Returns all the upper bounds of an array or a specified upper bound. 

Class. Inquiry function. 

Arguments.  

ARRAY may be of any type. It must not be scalar. It must not be a pointer that is
disassociated or an allocatable array that is not allocated. If ARRAY is an
assumed-size array, DIM must be present with a value less than the rank of
ARRAY. 

n m, m n,

i j, j i, i j m

1 2 3
4 5 6
7 8 9

1 4 7
2 5 8
3 6 9



ISO/IEC 1539 : 1991 (E)

233

DIM (optional) must be scalar and of type integer with a value in the range , where 
is the rank of ARRAY. The corresponding actual argument must not be an optional
dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type default integer. It is scalar if DIM is
present; otherwise, the result is an array of rank one and size , where  is the rank of ARRAY. 

Result Value.

Case (i): For an array section or for an array expression, other than a whole array or array structure
component, UBOUND (ARRAY, DIM) has a value equal to the number of elements in the
given dimension; otherwise, it has a value equal to the upper bound for subscript DIM of
ARRAY if dimension DIM of ARRAY does not have size zero and has the value zero if
dimension DIM has size zero. 

Case (ii): UBOUND (ARRAY) has a value whose ith component is equal to UBOUND (ARRAY, ),
for  = 1, 2, ..., n, where  is the rank of ARRAY. 

Examples.  If A is declared by the statement 

REAL A (2:3, 7:10) 

then UBOUND (A) is [3, 10] and UBOUND (A, DIM = 2) is 10. 

13.13.112 UNPACK (VECTOR, MASK, FIELD) 

Description. Unpack an array of rank one into an array under the control of a mask. 

Class. Transformational function. 

Arguments.  

VECTOR may be of any type. It must have rank one. Its size must be at least  where  is
the number of true elements in MASK. 

MASK must be array valued and of type logical. 

FIELD must be of the same type and type parameters as VECTOR and must be
conformable with MASK. 

Result Type, Type Parameter, and Shape. The result is an array of the same type and type parameters as
VECTOR and the same shape as MASK. 

Result Value. The element of the result that corresponds to the ith true element of MASK, in array
element order, has the value VECTOR ( ) for  = 1, 2, ..., , where  is the number of true values in
MASK. Each other element has a value equal to FIELD if FIELD is scalar or to the corresponding element
of FIELD if it is an array. 

Examples.  Specific values may be “scattered” to specific positions in an array by using UNPACK. If M

is the array , V is the array [1, 2, 3], and Q is the logical mask , where “T” represents

true and “.” represents false, then the result of UNPACK (V, MASK = Q, FIELD = M) has the value

 and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value .

1 DIM n≤ ≤ n

n n

i
i n

t t

i i t t

1 0 0
0 1 0
0 0 1

. T .
T . .
. . T

1 2 0
1 1 0
0 0 3

0 2 0
1 0 0
0 0 3



ISO/IEC 1539 : 1991 (E)

234

13.13.113 VERIFY (STRING, SET, BACK) 

Optional Argument. BACK 

Description. Verify that a set of characters contains all the characters in a string by identifying the
position of the first character in a string of characters that does not appear in a given set of characters. 

Class. Elemental function. 

Arguments.  

STRING must be of type character. 

SET must be of type character with the same kind type parameter as STRING. 

BACK (optional) must be of type logical. 

Result Type and Type Parameter. Default integer. 

Result Value.

Case (i): If BACK is absent or present with the value false and if STRING contains at least one
character that is not in SET, the value of the result is the position of the leftmost character of
STRING that is not in SET. 

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is
not in SET, the value of the result is the position of the rightmost character of STRING that
is not in SET. 

Case (iii): The value of the result is zero if each character in STRING is in SET or if STRING has zero
length. 

Examples.  

Case (i): VERIFY (’ABBA’, ’A’) has the value 2. 

Case (ii): VERIFY (’ABBA’, ’A’, BACK = .TRUE.) has the value 3. 

Case (iii): VERIFY (’ABBA’, ’AB’) has the value 0. 



ISO/IEC 1539 : 1991 (E)

235

Section 14 : Scope, association, and definition 
Entities are identified by lexical tokens within a scope that is an executable program, a scoping unit, a single
statement, or part of a statement. If the scope is an executable program, the entity is called a global entity. If the
scope is a scoping unit (2.2), the entity is called a local entity. If the scope is a statement or part of a statement,
the entity is called a statement entity. 

An entity may be identified by 

(1) A name (14.1), 

(2) A label (14.2), 

(3) An external input/output unit number (14.3), 

(4) An operator symbol (14.4), or 

(5) An assignment symbol (14.5). 

By means of association, an entity may be referred to by the same identifier or a different identifier in a different
scoping unit, or by a different identifier in the same scoping unit. 

14.1 Scope of names 
Named entities are global, local, or statement entities. 

14.1.1 Global entities 

Program units, common blocks, and external procedures are global entities of an executable program. A name
that identifies a global entity must not be used to identify any other global entity in the same executable program. 

14.1.2 Local entities 

Within a scoping unit, entities in the following classes: 

(1) Named variables that are not statement entities (14.1.3), named constants, named constructs,
statement functions, internal procedures, module procedures, dummy procedures, intrinsic
procedures, generic identifiers, derived types, and namelist group names, 

(2) Type components, in a separate class for each type, and 

(3) Argument keywords, in a separate class for each procedure with an explicit interface 

are local entities of that scoping unit. 

Except for a common block name (14.1.2.1) or an external function name (14.1.2.2), a name that identifies a
global entity in a scoping unit must not be used to identify a local entity of class (1) in that scoping unit. 

Within a scoping unit, a name that identifies a local entity of one class must not be used to identify another local
entity of the same class, except in the case of generic names (12.3.2.1). A name that identifies a local entity of
one class may be used to identify a local entity of another class. 

Note that an intrinsic procedure is inaccessible in a scoping unit containing another local entity of the same class
and having the same name. For example, in the program fragment 

SUBROUTINE SUB 
... 
A = SIN (K) 
... 



ISO/IEC 1539 : 1991 (E)

236

CONTAINS 
FUNCTION SIN (X) 

... 
END FUNCTION SIN 

END SUBROUTINE SUB 

any reference to function SIN in subroutine SUB refers to the internal function SIN, not to the intrinsic function
of the same name. 

The name of a local entity identifies that entity in a scoping unit and may be used to identify any local or global
entity in another scoping unit. 

14.1.2.1 Common blocks 

A common block name in a scoping unit also may be the name of any local entity other than a named constant,
intrinsic procedure, or a local variable that is also an external function in a function subprogram. If a name is
used for both a common block and a local entity, the appearance of that name in any context other than as a
common block name in a COMMON or SAVE statement identifies only the local entity. Note that an intrinsic
procedure name may be a common block name in a scoping unit that does not reference the intrinsic procedure. 

14.1.2.2 Function results 

For each FUNCTION statement or ENTRY statement in a function subprogram, there is a result variable. If there
is no RESULT clause, the result variable has the same name as the function being defined; otherwise, the result
variable has the name specified in the RESULT clause. 

14.1.2.3 Unambiguous generic procedure references 

This subsection contains the rules that must be satisfied by every pair of specific procedures that have the same
generic name, have the same generic operator, or both define assignment. They ensure that a generic reference is
unambiguous. When an intrinsic procedure, operator, or assignment is extended, the rules apply as if the intrinsic
consisted of a collection of specific procedures, one for each allowed combination of type, kind type parameter,
and rank for each argument or operand. When a generic procedure is accessed from a module, the rules apply to
all the specific versions even if some of them are inaccessible by their specific names. 

Within a scoping unit, if two procedures have the same generic operator and the same number of arguments or
both define assignment, one must have a dummy argument that corresponds by position in the argument list to a
dummy argument of the other that has a different type, different kind type parameter, or different rank. 

Within a scoping unit, two procedures that have the same generic name must both be subroutines or both be
functions, and at least one of them must have a nonoptional dummy argument that 

(1) Corresponds by position in the argument list to a dummy argument not present in the other, present
with a different type, present with a different kind type parameter, or present with a different rank;
and 

(2) Corresponds by argument keyword to a dummy argument not present in the other, present with a
different type, present with a different kind type parameter, or present with a different rank. 

For example, the procedures with interface bodies given by the interface block 

INTERFACE A 
SUBROUTINE AR (X) 

REAL X 
END SUBROUTINE AR 

 
SUBROUTINE AI (J) 

INTEGER J 
END SUBROUTINE AI 



ISO/IEC 1539 : 1991 (E)

237

END INTERFACE 

satisfy rules (1) and (2). However, if J were declared REAL, rule (1) would not be satisfied while rule (2)
remains satisfied; in this case, the reference to A in the statement 

CALL A (0.0) 

would be ambiguous. 

14.1.2.4 Resolving procedure references 

The rules for interpreting a procedure reference depend on whether the procedure name in the reference is
established by the available declarations and specifications to be generic in the scoping unit containing the
reference, is established to be only specific in the scoping unit containing the reference, or is not established. 

(1) A procedure name is established to be generic in a scoping unit: 

(a) if that scoping unit contains an interface block with that name; 

(b) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the
name of a generic intrinsic procedure; 

(c) if that scoping unit contains a USE statement that makes that procedure name accessible and
the corresponding name in the module is established to be generic; or 

(d) if that scoping unit contains no declarations of that name, that scoping unit is contained in a
host scoping unit, and that name is established to be generic in the host scoping unit. 

(2) A procedure name is established to be only specific in a scoping unit if it is established to be
specific and not established to be generic. It is established to be specific: 

(a) if that scoping unit contains an interface body with that name; 

(b) if that scoping unit contains a module procedure, internal procedure, or statement function
with that name; 

(c) if that scoping unit contains an INTRINSIC attribute specification for that name and if it is
the name of a specific intrinsic procedure; 

(d) if that scoping unit contains an EXTERNAL attribute specification for that name; 

(e) if that scoping unit contains a USE statement that makes that procedure name accessible and
the corresponding name in the module is established to be specific; or 

(f) if that scoping unit contains no declarations of that name, that scoping unit is contained in a
host scoping unit, and that name is established to be specific in the host scoping unit. 

(3) A procedure is not established in a scoping unit if it is neither established to be generic nor
established to be specific. 

14.1.2.4.1 Resolving procedure references to names established to be generic 

(1) If the reference is consistent with one of the specific interfaces of an interface block that has that
name and either is contained in the scoping unit in which the reference appears or is made
accessible by a USE statement contained in the scoping unit, the reference is to the specific
procedure in that interface block that provides that interface. Note that the rules in 14.1.2.3 ensure
that there can be at most one such specific procedure. 

(2) If (1) does not apply, if the scoping unit contains either an INTRINSIC attribute specification for
that name or a USE statement that makes that name accessible from a module in which the
corresponding name is specified to have the INTRINSIC attribute, and if the reference is consistent
with the interface of that intrinsic procedure, the reference is to that intrinsic procedure. Note that,



ISO/IEC 1539 : 1991 (E)

238

in the USE statement case, it is possible, because of the renaming facility, for the name in the
reference to be different from the name of the intrinsic procedure. 

(3) If (1) and (2) do not apply, if the scoping unit is contained in a host scoping unit, if the name is
established to be generic in that host scoping unit, and if there is agreement between the scoping
unit and the host scoping unit as to whether the name is a function name or a subroutine name, the
name is resolved by applying the rules in this section to the host scoping unit. 

(4) If (1), (2), and (3) do not apply, the procedure name must be the name of a generic intrinsic
procedure, the reference must be consistent with the interface of that intrinsic procedure, and the
reference is to that intrinsic procedure. 

14.1.2.4.2 Resolving procedure references to names established to be only specific 

(1) If the scoping unit contains an interface body or EXTERNAL attribute specification for the name, if
the scoping unit is a subprogram, and if the name is the name of a dummy argument of that
subprogram, the dummy is a dummy procedure and the reference is to that dummy procedure. That
is, the procedure invoked by executing that reference is the procedure supplied as the actual
argument corresponding to that dummy procedure. 

(2) If the scoping unit contains an interface body or EXTERNAL attribute specification for the name
and if (1) does not apply, the reference is to an external procedure with that name. 

(3) If the scoping unit contains a module subprogram, internal subprogram, or statement function with
the name, the reference is to the procedure so defined. 

(4) If the scoping unit contains an INTRINSIC attribute specification for the name, the reference is to
the intrinsic with that name. 

(5) If the scoping unit contains a USE statement that makes a procedure accessible by the name, the
reference is to that procedure. Note that because of the renaming facility of the USE statement, the
name in the reference may be different from the original name of the procedure. 

(6) If none of the above apply, the scoping unit must be contained in a host scoping unit, and the
reference is resolved by applying the rules in this section to the host scoping unit. 

14.1.2.4.3 Resolving procedure references to names not established 

(1) If the scoping unit is a subprogram and if the name is the name of a dummy argument of that
subprogram, the dummy argument is a dummy procedure and the reference is to that dummy
procedure. That is, the procedure invoked by executing that reference is the procedure supplied as
the actual argument corresponding to that dummy procedure. 

(2) If (1) does not apply, if the name is the name of an intrinsic procedure, and if there is agreement
between the reference and the status of the intrinsic procedure as being a function or subroutine, the
reference is to that intrinsic procedure. 

(3) If (1) and (2) do not apply, the reference is to an external procedure with that name. 

14.1.2.5 Components 

A component name has the same scope as the type of which it is a component. It may appear only within a
designator of a component of a structure of that type. If the type is accessible in another scoping unit by use
association or host association (14.6.1.2) and the definition of the type does not contain the PRIVATE statement
(4.4.1), the component name is accessible for names of components of structures of that type in that scoping unit. 

14.1.2.6 Argument keywords 

A dummy argument name in an internal procedure, module procedure, or a procedure interface block has a scope
as an argument keyword of the scoping unit of its host. As an argument keyword, it may appear only in a



ISO/IEC 1539 : 1991 (E)

239

procedure reference for the procedure of which it is a dummy argument. If the procedure or procedure interface
block is accessible in another scoping unit by use association or host association (14.6.1.2), the argument
keyword is accessible for procedure references for that procedure in that scoping unit. 

14.1.3 Statement entities 

The name of a variable that appears as a dummy argument in a statement function statement has a scope of the
statement in which it appears. It has the type and type parameters that it would have if it were the name of a
variable in the scoping unit that includes the statement function. 

The name of a variable that appears as the DO variable of an implied-DO in a DATA statement or an array
constructor has a scope of the implied-DO list. It has the type and type parameter that it would have if it were the
name of a variable in the scoping unit that includes the DATA statement or array constructor and this type must
be integer. 

Except for a common block name or a scalar variable name, a name that identifies a global entity or local entity
of class 1 (14.1.2) accessible in the scoping unit of a statement must not be the name of a statement entity of that
statement.  Within the scope of a statement entity, another statement entity must not have the same name.

If the name of a global or local entity accessible in the scoping unit of a statement is the same as the name of a
statement entity in that statement, the name is interpreted within the scope of the statement entity as that of the
statement entity.  Elsewhere in the scoping unit, including parts of the statement outside the scope of the
statement entity, the name is interpreted as that of the global or local entity.

14.2 Scope of labels 
A label is a local entity. No two statements in the same scoping unit may have the same label. 

14.3 Scope of external input/output units 
An external input/output unit is a global entity. 

14.4 Scope of operators 
The intrinsic operators are global entities. A defined operator is a local entity. Within a scoping unit an operator
may identify additional operations as specified by the rules for generic operators (12.3.2.1). 

14.5 Scope of the assignment symbol 
The assignment symbol is a global entity. Within a scoping unit the assignment symbol may identify additional
assignment operations as specified by the rules for generic assignment (12.3.2.1). 

14.6 Association 
Two entities may become associated by name association, pointer association, or storage association. 

14.6.1 Name association 

There are three forms of name association : argument association, use association, and host association.
Argument, use, and host association provide mechanisms by which entities known in one scoping unit may be
accessed in another scoping unit. 



ISO/IEC 1539 : 1991 (E)

240

14.6.1.1 Argument association 

The rules governing argument association are given in Section 12. As explained in 12.4, execution of a procedure
reference establishes an association between an actual argument and its corresponding dummy argument.
Argument association may be sequence association (12.4.1.4). 

The name of the dummy argument may be different from the name, if any, of its associated actual argument.
(Note that an actual argument may be a nameless data entity, such as an expression that is not simply a variable
or constant.) The dummy argument name is the name by which the associated actual argument is known, and by
which it may be accessed, in the referenced procedure. 

Upon termination of execution of a procedure reference, all argument associations established by that reference
are terminated. A dummy argument of that procedure may be associated with an entirely different actual
argument in a subsequent invocation of the procedure. 

14.6.1.2 Use association and host association Use association 

is the association of names in different scoping units specified by a USE statement. The rules for use association
are given in 11.3.2. They allow for the renaming of the entities being accessed. 

The rules for host association are given in 12.1.2.2.1. 

Use association or host association allows access in one scoping unit to entities defined in another scoping unit
and remains in effect throughout the execution of the executable program. 

14.6.2 Pointer association 

Pointer association between a pointer and a target allows the target to be referenced by a reference to the pointer.
At different times during the execution of a program, a pointer may be undefined, associated with different
targets, or be disassociated. The initial association status of a pointer is undefined. If a pointer is associated with
a target, the definition status of the pointer is either defined or undefined, depending on the definition status of
the target. 

14.6.2.1 Pointer association status 

The pointer association status of a pointer is one of following: 

(1) Associated: a pointer becomes associated when 

(a) The pointer is allocated (6.3.1) as the result of the successful execution of an ALLOCATE
statement referencing the pointer, or 

(b) The pointer is pointer-assigned to a target (7.5.2) that is associated or is specified with the
TARGET attribute and, if allocatable, is currently allocated. 

(2) Disassociated: a pointer becomes disassociated when 

(a) The pointer is nullified (6.3.2), 

(b) The pointer is deallocated (6.3.3), or 

(c) The pointer is pointer-assigned to a disassociated pointer (7.5.2). 

(3) Undefined: the pointer association status of a pointer is undefined 

(a) Initially (that is, when the pointer has never been associated or disassociated), 

(b) If its target was never allocated, 

(c) If its target is deallocated other than through the pointer,

(d) If execution of a RETURN or END statement causes the pointer’s target to become undefined
(item (4) of 14.7.6), or



ISO/IEC 1539 : 1991 (E)

241

(e) After the execution of a RETURN or END statement in a procedure where the pointer was
either declared or, with the exceptions described in 6.3.3.2, accessed.

14.6.2.2 Pointer definition status 

The definition status of a pointer is that of its target. If a pointer is associated with a definable target, the
definition status of the pointer may be defined or undefined according to the rules for a variable (14.7). 

14.6.2.3 Relationship between association status and definition status 

If the association status of a pointer is disassociated or undefined, the pointer must not be referenced or
deallocated. Whatever its association status, a pointer always may be nullified, allocated, or pointer assigned. A
nullified pointer is disassociated. When a pointer is allocated, it becomes associated but undefined. When a
pointer is pointer assigned, its association and definition status are determined by its target. 

14.6.3 Storage association 

Storage sequences are used to describe relationships that exist among variables, common blocks, and result
variables. Storage association is the association of two or more data objects that occurs when two or more
storage sequences share or are aligned with one or more storage units. 

14.6.3.1 Storage sequence 

A storage sequence is a sequence of storage units. The size of a storage sequence is the number of storage units
in the storage sequence. A storage unit is a character storage unit, a numeric storage unit, or an unspecified
storage unit. 

In a storage association context: 

(1) A nonpointer scalar object of type default integer, default real, or default logical occupies a single
numeric storage unit. 

(2) A nonpointer scalar object of type double precision real or default complex occupies two contiguous
numeric storage units. 

(3) A nonpointer scalar object of type default character and character length one occupies one
character storage unit. 

(4) A nonpointer scalar object of type default character and character length  occupies 
contiguous character storage units. 

(5) A nonpointer scalar object of type nondefault integer, real other than default or double precision,
nondefault logical, nondefault complex, nondefault character of any length, or nonsequence type
occupies a single unspecified storage unit that is different for each case. 

(6) A nonpointer array of intrinsic type or sequence derived type occupies a sequence of contiguous
storage sequences, one for each array element, in array element order (6.2.2.2). 

(7) A nonpointer scalar object of sequence type occupies a sequence of storage sequences
corresponding to the sequence of its ultimate components. 

(8) A pointer occupies a single unspecified storage unit that is different from that of any nonpointer
object and is different for each combination of type, type parameters, and rank. 

A sequence of storage sequences forms a storage sequence. The order of the storage units in such a composite
storage sequence is that of the individual storage units in each of the constituent storage sequences taken in
succession, ignoring any zero-sized constituent sequences. 

Each common block has a storage sequence (5.5.2.1). 

len len



ISO/IEC 1539 : 1991 (E)

242

14.6.3.2 Association of storage sequences 

Two nonzero-sized storage sequences  and  are storage associated if the th storage unit of  is the same
as the th storage unit of . This causes the ( )th storage unit of  to be the same as the ( )th storage
unit of , for each integer  such that of  and of . 

Storage association also is defined between two zero-sized storage sequences, and between a zero-sized storage
sequence and a storage unit. A zero-sized storage sequence in a sequence of storage sequences is storage
associated with its successor, if any. If the successor is another zero-sized storage sequence, the two sequences
are storage associated. If the successor is a nonzero-sized storage sequence, the zero-sized sequence is storage
associated with the first storage unit of the successor. Two storage units that are each storage associated with the
same zero-sized storage sequence are the same storage unit. 

14.6.3.3 Association of scalar data objects 

Two scalar data objects are storage associated if their storage sequences are storage associated. Two scalar
entities are totally associated if they have the same storage sequence. Two scalar entities are partially
associated if they are associated without being totally associated. 

The definition status and value of a data object affects the definition status and value of any storage associated
entity. An EQUIVALENCE statement, a COMMON statement, or an ENTRY statement may cause storage
association of storage sequences. 

An EQUIVALENCE statement causes storage association of data objects only within one scoping unit, unless
one of the equivalenced entities is also in a common block (5.5.1.1 and 5.5.2.1). 

COMMON statements cause data objects in one scoping unit to become storage associated with data objects in
another scoping unit. 

A named common block is permitted to contain a sequence of differing storage units provided each scoping unit
that accesses the common block specifies an identical sequence of storage units. The same rule applies to blank
common blocks. If the sizes of the two blank common blocks differ, the sequence of storage units of the shorter
block must be identical to the initial sequence of the storage units of the longer block. 

An ENTRY statement in a function subprogram causes storage association of the result variables. 

Partial association may exist only between 

(1) An object of default character or character sequence type and an object of default character or
character sequence type or 

(2) An object of default complex, double precision real, or numeric sequence type and an object of
default integer, default real, default logical, double precision real, default complex, or numeric
sequence type. 

For noncharacter entities, partial association may occur only through the use of COMMON, EQUIVALENCE, or
ENTRY statements. For character entities, partial association may occur only through argument association or
the use of COMMON, EQUIVALENCE, or ENTRY statements. 

In the example: 

REAL A (4), B 
COMPLEX C (2) 
DOUBLE PRECISION D 
EQUIVALENCE (C (2), A (2), B), (A, D) 

the third storage unit of C, the second storage unit of A, the storage unit of B, and the second storage unit of D
are specified as the same. The storage sequences may be illustrated as: 

Storage unit 1 2 3 4 5 
----C(1)----|---C(2)----  

A(1) A(2) A(3) A(4) 

s1 s2 i s1
j s2 i k+ s1 j k+
s2 k 1 i k size≤+≤ s1 1 j k size≤+≤ s2



ISO/IEC 1539 : 1991 (E)

243

--B--  
------D------ 

A (2) and B are totally associated. The following are partially associated: A (1) and C (1), A (2) and C (2), A (3)
and C (2), B and C (2), A (1) and D, A (2) and D, B and D, C (1) and D, and C (2) and D. Note that although
C (1) and C (2) are each storage associated with D, C (1) and C (2) are not storage associated with each other. 

Partial association of character entities occurs when some, but not all, of the storage units of the entities are the
same. In the example: 

CHARACTER A*4, B*4, C*3
EQUIVALENCE (A (2:3), B, C)

A, B, and C are partially associated. 

14.7 Definition and undefinition of variables 
A variable may be defined or may be undefined and its definition status may change during execution of an
executable program. An action that causes a variable to become undefined does not imply that the variable was
previously defined. An action that causes a variable to become defined does not imply that the variable was
previously undefined. 

14.7.1 Definition of objects and subobjects 

Arrays, including sections, and variables of derived, character, or complex type are objects that consist of zero or
more subobjects. Associations may be established between variables and subobjects and between subobjects of
different variables. These subobjects may become defined or undefined. 

(1) An object is defined if and only if all of its subobjects are defined. 

(2) If an object is undefined, at least one (but not necessarily all) of its subobjects are undefined. 

14.7.2 Variables that are always defined 

Zero-sized arrays and zero-length strings are always defined. 

14.7.3 Variables that are initially defined 

The following variables are initially defined: 

(1) Variables specified to have initial values by DATA statements, 

(2) Variables specified to have initial values by type declaration statements, and 

(3) Variables that are always defined. 

14.7.4 Variables that are initially undefined 

All other variables are initially undefined. 

14.7.5 Events that cause variables to become defined 

Variables become defined as follows: 

(1) Execution of an intrinsic assignment statement other than a masked array assignment statement
causes the variable that precedes the equals to become defined. Execution of a defined assignment
statement may cause all or part of the variable that precedes the equals to become defined. 

(2) Execution of a masked array assignment statement may cause some or all of the array elements in
the assignment statement to become defined (7.5.3). 



ISO/IEC 1539 : 1991 (E)

244

(3) As execution of an input statement proceeds, each variable that is assigned a value from the input
file becomes defined at the time that data is transferred to it. (See (5) in 14.7.6.) Execution of a
WRITE statement whose unit specifier identifies an internal file causes each record that is written to
become defined. 

(4) Execution of a DO statement causes the DO variable, if any, to become defined. 

(5) Beginning of execution of the action specified by an implied-DO list in an input/output statement
causes the implied-DO variable to become defined.

(6) Execution of an ASSIGN statement causes the variable in the statement to become defined with a statement label value. 

(7) A reference to a procedure causes the entire dummy argument data object to become defined if the
entire corresponding actual argument is defined with a value that is not a statement label. 

A reference to a procedure causes a subobject of a dummy argument to become defined if the
corresponding subobject of the corresponding actual argument is defined. 

(8) Execution of an input/output statement containing an input/output IOSTAT= specifier causes the
specified integer variable to become defined. 

(9) Execution of a READ statement containing a SIZE= specifier causes the specified integer variable
to become defined. 

(10) Execution of an INQUIRE statement causes any variable that is assigned a value during the
execution of the statement to become defined if no error condition exists. 

(11) When a character storage unit becomes defined, all associated character storage units become
defined. 

When a numeric storage unit becomes defined, all associated numeric storage units of the same type
become defined, except that variables associated with the variable in an ASSIGN statement become undefined when the
ASSIGN statement is executed. When an entity of double precision real type becomes defined, all totally
associated entities of double precision real type become defined. 

When an unspecified storage unit becomes defined, all associated unspecified storage units become
defined. 

(12) When a default complex entity becomes defined, all partially associated default real entities become
defined. 

(13) When both parts of a default complex entity become defined as a result of partially associated
default real or default complex entities becoming defined, the default complex entity becomes
defined. 

(14) When all components of a numeric sequence structure or character sequence structure become
defined as a result of partially associated objects becoming defined, the structure becomes defined. 

(15) Execution of an ALLOCATE or DEALLOCATE statement with a STAT= specifier causes the
variable specified by the STAT= specifier to become defined. 

(16) Allocation of a zero-sized array causes the array to become defined. 

(17) Invocation of a procedure causes any automatic object of zero size in that procedure to become
defined. 

(18) Execution of a pointer assignment statement that associates a pointer with a target that is defined
causes the pointer to become defined. 

14.7.6 Events that cause variables to become undefined 

Variables become undefined as follows: 



ISO/IEC 1539 : 1991 (E)

245

(1) When a variable of a given type becomes defined, all associated variables of different type become
undefined. However, when a variable of type default real is partially associated with a variable of
type default complex, the complex variable does not become undefined when the real variable
becomes defined and the real variable does not become undefined when the complex variable
becomes defined. When a variable of type default complex is partially associated with another
variable of type default complex, definition of one does not cause the other to become undefined.

(2) Execution of an ASSIGN statement causes the variable in the statement to become undefined as an integer. Variables that are
associated with the variable also become undefined.

(3) If the evaluation of a function may cause an argument of the function or a variable in a module or
in a common block to become defined and if a reference to the function appears in an expression in
which the value of the function is not needed to determine the value of the expression, the argument
or variable becomes undefined when the expression is evaluated. 

(4) The execution of a RETURN statement or an END statement within a subprogram causes all
variables local to its scoping unit or local to the current instance of its scoping unit for a recursive
invocation to become undefined except for the following: 

(a) Variables with the SAVE attribute. 

(b) Variables in blank common. 

(c) Variables in a named common block that appears in the subprogram and appears in at least
one other scoping unit that is making either a direct or indirect reference to the subprogram. 

(d) Variables accessed from the host scoping unit. 

(e) Variables accessed from a module that also is referenced directly or indirectly by at least one
other scoping unit that is making either a direct or indirect reference to the subprogram. 

(f) Variables in a named common block that are initially defined (14.7.3) and that have not been
subsequently defined or redefined. 

(5) When an error condition or end-of-file condition occurs during execution of an input statement, all
of the variables specified by the input list or namelist-group of the statement become undefined. 

(6) When an error condition, end-of-file condition, or end-of-record condition occurs during execution
of an input/output statement, some or all of the implied-DO variables may become undefined
(9.4.3). 

(7) Execution of a defined assignment statement may leave all or part of the variable that precedes the
equals undefined. 

(8) Execution of a direct access input statement that specifies a record that has not been written
previously causes all of the variables specified by the input list of the statement to become
undefined. 

(9) Execution of an INQUIRE statement may cause the NAME=, RECL=, and NEXTREC= variables to
become undefined (9.6). 

(10) When a character storage unit becomes undefined, all associated character storage units become
undefined. 

When a numeric storage unit becomes undefined, all associated numeric storage units become
undefined unless the undefinition is a result of defining an associated numeric storage unit of
different type (see (1) above). 

When an entity of double precision real type becomes undefined, all totally associated entities of
double precision real type become undefined. 

When an unspecified storage unit becomes undefined, all associated unspecified storage units
become undefined. 



ISO/IEC 1539 : 1991 (E)

246

(11) A reference to a procedure causes part of a dummy argument to become undefined if the corresponding part of the actual
argument is defined with a value that is a statement label value.

(12) When an allocatable array is deallocated, it becomes undefined. Successful execution of an
ALLOCATE statement causes the allocated array to become undefined. 

(13) Execution of an INQUIRE statement causes all inquiry specifier variables to become undefined if
an error condition exists, except for the variable in the IOSTAT= specifier, if any. 

(14) When a procedure is invoked: 

(a) An optional dummy argument that is not associated with an actual argument is undefined. 

(b) A dummy argument with INTENT (OUT) is undefined. 

(c) An actual argument associated with a dummy argument with INTENT (OUT) becomes
undefined. 

(d) A subobject of a dummy argument is undefined if the corresponding subobject of the actual
argument is undefined. 

(e) The result variable of a function is undefined. 

(15) When the association status of a pointer becomes undefined or disassociated (6.3), the pointer
becomes undefined. 

14.8 Allocation status 
The allocation status of an allocatable array is one of the following at any time during the execution of an
executable program: 

(1) Not currently allocated, which means that the array has never been allocated or that the last
operation on it was a deallocation. 

(2) Currently allocated, which means that the array has been allocated by an ALLOCATE statement and
has not been subsequently deallocated. 

(3) Undefined, which means that the array does not have the SAVE attribute and was currently
allocated when execution of a RETURN or END statement resulted in no executing scoping units
having access to it. 

If the allocation status of an allocatable array is currently allocated, the array may be referenced and defined. An
allocatable array that is not currently allocated must not be referenced or defined. If the allocation status of an
allocatable array is undefined, the array must not be referenced, defined, allocated, or deallocated. 



ISO/IEC 1539 : 1991 (E)

247

Annex A 
(informative) 

Glossary of technical terms 
The following is a list of the principal technical terms used in the International Standard and their definitions. A
reference in parentheses immediately after a term is to the section where the term is defined or explained. The
wording of a definition here is not necessarily the same as in the International Standard. Where the definition
uses a term that is itself defined in this glossary, the first occurrence of the term in that definition is printed in
italics. 

action statement  (2.1) : A single statement specifying a computational action (R216). 

actual argument  (12.4.1) : An expression, a variable, a procedure, or an alternate return specifier that is
specified in a procedure reference. 

allocatable array  (5.1.2.4.3) : A named array having the ALLOCATABLE attribute. Only when it has space
allocated for it does it have a shape and may it be referenced or defined. 

argument  (12) : An actual argument or a dummy argument. 

argument association  (14.6.1.1) : The relationship between an actual argument and a dummy argument during
the execution of a procedure reference. 

argument keyword  (2.5.2) : A dummy argument name. It may be used in a procedure reference ahead of the
equals symbol (R1211) provided the procedure has an explicit interface. 

array  (2.4.5) : A set of scalar data, all of the same type and type parameters, whose individual elements are
arranged in a rectangular pattern. It may be a named array, an array section, a structure component, a function
value, or an expression. Its rank is at least one. Note that in FORTRAN 77, arrays were always named and never
constants. 

array element  (2.4.5, 6.2.2.1) : One of the scalar data that make up an array that is either named or is a
structure component. 

array pointer  (5.1.2.4.3) : A pointer to an array. 

array section  (6.2.2.3) : A subobject that is an array and is not a structure component. 

array-valued : Having the property of being an array. 

assignment statement  (7.5.1.1) : A statement of the form “variable = expression”.

association (14.6) : Name association, pointer association, or storage association. 

assumed-size array  (5.1.2.4.4) : A dummy array whose size is assumed from the associated actual argument. Its
last upper bound is specified by an asterisk. 

attribute  (5) : A property of a data object that may be specified in a type declaration statement (R501). 

automatic data object  (5.1) : A data object that is a local entity of a subprogram, that is not a dummy
argument, and that has a nonconstant character length or array bound. 

belong  (8.1.4.4.3, 8.1.4.4.4) : If an EXIT or a CYCLE statement contains a construct name, the statement
belongs to the DO construct using that name. Otherwise, it belongs to the innermost DO construct in which it
appears. 

block  (8.1) : A sequence of executable constructs embedded in another executable construct, bounded by
statements that are particular to the construct, and treated as an integral unit. 



ISO/IEC 1539 : 1991 (E)

248

block data program unit  (11.4) : A program unit that provides initial values for data objects in named common
blocks. 

bounds  (5.1.2.4.1) : For a named array, the limits within which the values of the subscripts of its array elements
must lie. 

character  (3.1) : A letter, digit, or other symbol.

characteristics (12.2) :

(1) Of a procedure, its classification as a function or subroutine, the characteristics of its dummy
arguments, and the characteristics of its function result if it is a function. 

(2) Of a dummy argument, whether it is a data object, is a procedure, or has the OPTIONAL attribute. 

(3) Of a data object, its type, type parameters, shape, the exact dependence of an array bound or the
character length on other entities, intent, whether it is optional, whether it is a pointer or a target,
and whether the shape, size, or character length is assumed. 

(4) Of a dummy procedure, whether the interface is explicit, the characteristics of the procedure if the
interface is explicit, and whether it is optional. 

(5) Of a function result, its type, type parameters, whether it is a pointer, rank if it is a pointer, shape if
it is not a pointer, the exact dependence of an array bound or the character length on other entities,
and whether the character length is assumed. 

character string  (4.3.2.1) : A sequence of characters numbered from left to right 1, 2, 3, . . . 

character storage unit  (14.6.3.1) : The unit of storage for holding a scalar that is not a pointer and is of type
default character and character length one. 

collating sequence  (4.3.2.1.1) : An ordering of all the different characters of a particular kind type parameter. 

common block  (5.5.2) : A block of physical storage that may be accessed by any of the scoping units in an
executable program. 

component  (4.4) : A constituent of a derived type. 

conformable  (2.4.5) : Two arrays are said to be conformable if they have the same shape. A scalar is
conformable with any array. 

conformance  (1.4) : An executable program conforms to the standard if it uses only those forms and
relationships described therein and if the executable program has an interpretation according to the standard. A
program unit conforms to the standard if it can be included in an executable program in a manner that allows the
executable program to be standard conforming. A processor conforms to the standard if it executes standard-
conforming programs in a manner that fulfills the interpretations prescribed in the standard.

connected (9.3.2) :

(1) For an external unit, the property of referring to an external file. 

(2) For an external file, the property of having an external unit that refers to it. 

constant  (2.4.3.1.2) : A data object whose value must not change during execution of an executable program. It
may be a named constant or a literal constant. 

constant expression  (7.1.6.1) : An expression satisfying rules that ensure that its value does not vary during
program execution. 

construct  (8) : A sequence of statements starting with a CASE, DO, IF, or WHERE statement and ending with
the corresponding terminal statement. 

data : Plural of datum. 



ISO/IEC 1539 : 1991 (E)

249

data entity  (2.4.3) : A data object, the result of the evaluation of an expression, or the result of the execution of
a function reference (called the function result). A data entity has a data type (either intrinsic or derived) and has,
or may have, a data value (the exception is an undefined variable). Every data entity has a rank and is thus either
a scalar or an array. 

data object  (2.4.3) : A data entity that is a constant, a variable, or a subobject of a constant. 

data type  (2.4.1) : A named category of data that is characterized by a set of values, together with a way to
denote these values and a collection of operations that interpret and manipulate the values. For an intrinsic type,
the set of data values depends on the values of the type parameters. 

datum : A single quantity that may have any of the set of values specified for its data type. 

definable  (2.5.4) : A variable is definable if its value may be changed by the appearance of its name or
designator on the left of an assignment statement. An allocatable array that has not been allocated is an example
of a data object that is not definable. An example of a subobject that is not definable is C (I) when C is an array
that is a constant and I is an integer variable. 

defined  (2.5.4) : For a data object, the property of having or being given a valid value. 

defined assignment statement  (7.5.1.3) : An assignment statement that is not an intrinsic assignment statement
and is defined by a subroutine and an interface block that specifies ASSIGNMENT (=). 

defined operation  (7.1.3) : An operation that is not an intrinsic operation and is defined by a function that is
associated with a generic identifier. 

deleted feature  (1.6) : A feature in FORTRAN 77 that is considered to have been redundant and largely unused.
No features in FORTRAN 77 have been deleted from the standard. Note that a feature designated as an obsolescent
feature in the standard may become a deleted feature in the next revision. 

derived type  (2.4.1.2, 4.4) : A type whose data have components, each of which is either of intrinsic type or of
another derived type. 

designator : See subobject designator. 

disassociated  (2.4.6) : A pointer is disassociated following execution of a DEALLOCATE or NULLIFY
statement, or following pointer association with a disassociated pointer. 

dummy argument  (12.5.2.2, 12.5.2.3, 12.5.2.5, 12.5.4) : An entity whose name appears in the parenthesized list
following the procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY statement, or
a statement function statement. 

dummy array : A dummy argument that is an array. 

dummy pointer : A dummy argument that is a pointer. 

dummy procedure  (12.1.2.3) : A dummy argument that is specified or referenced as a procedure. 

elemental  (12.4.3, 12.4.5) : An adjective applied to an intrinsic operation, procedure, or assignment statement
that is applied independently to elements of an array or corresponding elements of a set of conformable arrays
and scalars. 

entity : The term used for any of the following: a program unit, a procedure, an operator, an interface block, a
common block, an external unit, a statement function, a type, a named variable, an expression, a component of a
structure, a named constant, a statement label, a construct, or a namelist group. 

executable construct  (2.1) : A CASE, DO, IF, or WHERE construct or an action statement (R216). 

executable program  (2.2.1) : A set of program units that includes exactly one main program. 

executable statement  (2.3.1) : An instruction to perform or control one or more computational actions. 



ISO/IEC 1539 : 1991 (E)

250

explicit interface  (12.3.1) : For a procedure referenced in a scoping unit, the property of being an internal
procedure, a module procedure, an intrinsic procedure, an external procedure that has an interface block, a
recursive procedure reference in its own scoping unit, or a dummy procedure that has an interface block. 

explicit-shape array  (5.1.2.4.1) : A named array that is declared with explicit bounds. 

expression  (7.1) : A sequence of operands, operators, and parentheses (R723). It may be a variable, a constant,
a function reference, or may represent a computation. 

extent  (2.4.5) : The size of one dimension of an array. 

external file  (9.2.1) : A sequence of records that exists in a medium external to the executable program. 

external procedure  (2.2.3.1) : A procedure that is defined by an external subprogram or by a means other than
Fortran. 

external subprogram  (2.2) : A subprogram that is not contained in a main program, module, or another
subprogram. Note that a module is not called a subprogram. Note that in FORTRAN 77, a block data program unit
is called a subprogram. 

external unit  (9.3) : A mechanism that is used to refer to an external file. It is identified by a nonnegative
integer. 

file  (9.2) : An internal file or an external file. 

function  (2.2.3) : A procedure that is invoked in an expression. 

function result  (12.5.2.2) : The data object that returns the value of a function. 

function subprogram  (12.5.2.2) : A sequence of statements beginning with a FUNCTION statement that is not
in an interface block and ending with the corresponding END statement. 

generic identifier : A lexical token that appears in an INTERFACE statement and is associated with all the
procedures in the interface block. 

global entity  (14.1.1) : An entity identified by a lexical token whose scope is an executable program. It may be
a program unit, a common block, or an external procedure. 

host  (2.2.3.3) : A main program or subprogram that contains an internal procedure is called the host of the
internal procedure. A module that contains a module procedure is called the host of the module procedure. 

host association  (11.2.2) : The process by which an internal subprogram, module subprogram, or derived type
definition accesses entities of its host. 

implicit interface  (12.3.1) : A procedure referenced in a scoping unit other than its own is said to have an
implicit interface if the procedure is an external procedure that does not have an interface block, a dummy
procedure that does not have an interface block, or a statement function. 

inquiry function  (13.1) : An intrinsic function whose result depends on properties of the principal argument
other than the value of the argument. 

intent  (12.5.2.1) : An attribute of a dummy argument that is neither a procedure nor a pointer, which indicates
whether it is used to transfer data into the procedure, out of the procedure, or both. 

instance of a subprogram  (12.5.2.4) : The copy of a subprogram that is created when a procedure defined by
the subprogram is invoked. 

interface block  (12.3.2.1) : A sequence of statements from an INTERFACE statement to the corresponding
END INTERFACE statement. 

interface body  (12.3.2.1) : A sequence of statements in an interface block from a FUNCTION or
SUBROUTINE statement to the corresponding END statement. 

interface of a procedure  (12.3) : See procedure interface. 



ISO/IEC 1539 : 1991 (E)

251

internal file  (9.2.2) : A character variable that is used to transfer and convert data from internal storage to
internal storage. 

internal procedure  (2.2.3.3) : A procedure that is defined by an internal subprogram. 

internal subprogram  (2.2) : A subprogram contained in a main program or another subprogram. 

intrinsic  (2.5.7) : An adjective applied to types, operations, assignment statements, and procedures that are
defined in the standard and may be used in any scoping unit without further definition or specification.

invoke (2.2.3) :

(1) To call a subroutine by a CALL statement or by a defined assignment statement. 

(2) To call a function by a reference to it by name or operator during the evaluation of an expression.

keyword (2.5.2) : Statement keyword or argument keyword. 

kind type parameter : A parameter whose values label the available kinds of an intrinsic type. 

label : See statement label. 

length of a character string  (4.3.2.1) : The number of characters in the character string. 

lexical token  (3.2) : A sequence of one or more characters with an indivisible interpretation. 

line  (3.3.1) : A source-form record containing from 0 to 132 characters. 

literal constant  (2.4.1.3.2) : A constant without a name. Note that in FORTRAN 77, this was called simply a
constant. 

local entity  (14.1.2) : An entity identified by a lexical token whose scope is a scoping unit. 

main program  (2.2.2, 11.1) : A program unit that is not a module, subprogram, or block data program unit. 

many-one array section  (6.2.2.3.2) : An array section with a vector subscript having two or more elements
with the same value. 

module  (2.2.4, 11.3) : A program unit that contains or accesses definitions to be accessed by other program
units. 

module procedure  (2.2.3.2) : A procedure that is defined by a module subprogram. 

module subprogram  (2.2) : A subprogram that is contained in a module but is not an internal subprogram. 

name  (3.2.2) : A lexical token consisting of a letter followed by up to 30 alphanumeric characters (letters, digits,
and underscores). Note that in FORTRAN 77, this was called a symbolic name.

name association (14.6.1) : Argument association, use association, or host association. 

named : Having a name. 

named constant  (2.4.3.1.2) : A constant that has a name. Note that in FORTRAN 77, this was called a symbolic
constant. 

numeric storage unit  (14.6.3.1) : The unit of storage for holding a scalar that is not a pointer and is of type
default real, default integer, or default logical. 

numeric type : Integer, real or complex type.

object (2.4.3.1) : Data object. 

obsolescent feature  (1.6) : A feature in FORTRAN 77 that is considered to have been redundant but that is still in
frequent use. 

operand  (2.5.8) : An expression that precedes or succeeds an operator. 

operation  (7.1.2) : A computation involving one or two operands. 



ISO/IEC 1539 : 1991 (E)

252

operator  (2.5.8) : A lexical token that specifies an operation. 

pointer  (2.4.6) : A variable that has the POINTER attribute. A pointer must not be referenced or defined unless
it is pointer associated with a target. If it is an array, it does not have a shape unless it is pointer associated. 

pointer assignment  (7.5.2) : The pointer association of a pointer with a target by the execution of a pointer
assignment statement or the execution of an assignment statement for a data object of derived type having the
pointer as a subobject. 

pointer assignment statement  (7.5.2) : A statement of the form “pointer-name => target”. 

pointer associated  (6.3, 7.5.2) : The relationship between a pointer and a target following a pointer assignment
or a valid execution of an ALLOCATE statement. 

pointer association  (14.6.2) : The process by which a pointer becomes pointer associated with a target. 

present  (12.5.2.8) : A dummy argument is present in an instance of a subprogram if it is associated with an
actual argument and the actual argument is a dummy argument that is present in the invoking procedure or is not
a dummy argument of the invoking procedure. 

procedure  (2.2.3, 12.1) : A computation that may be invoked during program execution. It may be a function or
a subroutine. It may be an intrinsic procedure, an external procedure, a module procedure, an internal procedure,
a dummy procedure, or a statement function. A subprogram may define more than one procedure if it contains
ENTRY statements. 

procedure interface  (12.3) : The characteristics of a procedure, the name of the procedure, the name of each
dummy argument, and the generic identifiers (if any) by which it may be referenced. 

processor  (1.2) : The combination of a computing system and the mechanism by which executable programs are
transformed for use on that computing system. 

program : See executable program and main program. 

program unit  (2.2) : The fundamental component of an executable program. A sequence of statements and
comment lines. It may be a main program, a module, an external subprogram, or a block data program unit. 

rank  (2.4.5) : The number of dimensions of an array. Zero for a scalar. 

record  (9.1) : A sequence of values that is treated as a whole within a file. 

reference  (2.5.5) : The appearance of a data object name or subobject designator in a context requiring the
value at that point during execution, or the appearance of a procedure name, its operator symbol, or a defined
assignment statement in a context requiring execution of the procedure at that point. Note that neither the act of
defining a variable nor the appearance of the name of a procedure as an actual argument is regarded as a
reference.

scalar (2.4.6) :

(1) A single datum that is not an array. 

(2) Not having the property of being an array. 

scope  (14) : That part of an executable program within which a lexical token has a single interpretation. It may
be an executable program, a scoping unit, a single statement, or a part of a statement. 

scoping unit  (2.2) : One of the following: 

(1) A derived-type definition, 

(2) An interface body, excluding any derived-type definitions and interface bodies contained within it,
or 

(3) A program unit or subprogram, excluding derived-type definitions, interface bodies, and
subprograms contained within it. 



ISO/IEC 1539 : 1991 (E)

253

section subscript  (6.2.2) : A subscript, vector subscript, or subscript triplet in an array section selector. 

selector : A syntactic mechanism for designating 

(1) Part of a data object. It may designate a substring, an array element, an array section, or a structure
component. 

(2) The set of values for which a CASE block is executed. 

shape  (2.4.5) : For an array, the rank and extents. The shape may be represented by the rank-one array whose
elements are the extents in each dimension. 

size  (2.4.5) : For an array, the total number of elements. 

standard module  (1.7) : A module standardized as a separate collateral standard. 

statement  (3.3) : A sequence of lexical tokens. It usually consists of a single line, but the ampersand symbol
may be used to continue a statement from one line to another and the semicolon symbol may be used to separate
statements within a line. 

statement entity  (14) : An entity identified by a lexical token whose scope is a single statement or part of a
statement. 

statement function  (12.5.4) : A procedure specified by a single statement that is similar in form to an
assignment statement. 

statement keyword  (2.5.2) : A word that is part of the syntax of a statement and that may be used to identify the
statement. 

statement label  (3.2.5) : A lexical token consisting of up to five digits that precedes a statement and may be
used to refer to the statement. 

storage association  (14.6.3) : The relationship between two storage sequences if a storage unit of one is the
same as a storage unit of the other. 

storage sequence  (14.6.3.1) : A sequence of contiguous storage units. 

storage unit  (14.6.3.1) : A character storage unit, a numeric storage unit, or an unspecified storage unit. 

stride  (6.2.2.3.1) : The increment specified in a subscript triplet. 

structure  (2.4.1.2) : A scalar data object of derived type. 

structure component  (6.1.2) : The part of a data object of derived type corresponding to a component of its
type. 

subobject  (2.4.3.1) : A portion of a named data object that may be referenced or defined independently of other
portions. It may be an array element, an array section, a structure component, or a substring. 

subobject designator  (2.5.1) : A name, followed by one of more of the following: component selectors, array
section selectors, array element selectors, and substring selectors. 

subprogram  (2.2) : A function subprogram or a subroutine subprogram. Note that in FORTRAN 77, a block data
program unit was called a subprogram. 

subroutine  (2.2.3) : A procedure that is invoked by a CALL statement or by a defined assignment statement. 

subroutine subprogram  (12.5.2.3) : A sequence of statements beginning with a SUBROUTINE statement that
is not in an interface block and ending with the corresponding END statement. 

subscript  (6.2.2) : One of the list of scalar integer expressions in an array element selector. Note that in
FORTRAN 77, the whole list was called the subscript. 

subscript triplet  (6.2.2) : An item in the list of an array section selector that contains a colon and specifies a
regular sequence of integer values. 



ISO/IEC 1539 : 1991 (E)

254

substring  (6.1.1) : A contiguous portion of a scalar character string. Note that an array section can include a
substring selector; the result is called an array section and not a substring. 

target  (5.1.2.8) : A named data object specified in a TARGET statement or type declaration statement
containing the TARGET attribute, a data object created by an ALLOCATE statement for a pointer, or a subobject
of such an object. 

transformational function : An intrinsic function that is neither an elemental function nor an inquiry function.
It usually has array arguments and an array result whose elements have values that depend on the values of many
of the elements of the arguments.

type (4) : Data type. 

type declaration statement  (5) : An INTEGER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER,
LOGICAL, or TYPE (type-name) statement. 

type parameter  (2.4.1.1) : A parameter of an intrinsic data type. KIND= and LEN= are the type parameters. 

type parameter values  (4.3) : The values of the type parameters of a data entity of an intrinsic data type. 

ultimate component  (4.4) : For a derived-type or a structure, a component that is of intrinsic type or has the
POINTER attribute, or an ultimate component of a component that is a derived type and does not have the
POINTER attribute. 

undefined  (2.5.4) : For a data object, the property of not having a determinate value. 

unspecified storage unit  (14.6.3.1) : A unit of storage for holding a pointer or a scalar that is not a pointer and
is of type other than default integer, default character, default real, double precision real, default logical, or
default complex. 

use association  (14.6.1.2) : The association of names in different scoping units specified by a USE statement. 

variable  (2.4.3.1.1) : A data object whose value can be defined and redefined during the execution of an
executable program. It may be a named data object, an array element, an array section, a structure component,
or a substring. Note that in FORTRAN 77, a variable was always scalar and named. 

vector subscript  (6.2.2.3.2) : A section subscript that is an integer expression of rank one. 

whole array  (6.2.1) : A named array. 



ISO/IEC 1539 : 1991 (E)

255

Annex B 
(informative) 

Decremental features 

B.1 Deleted features 
The deleted features are those features of FORTRAN 77 that are redundant and considered largely unused. Section
1.6.1 describes the nature of the deleted features. The list of deleted features in this International Standard is
empty. 

B.2 Obsolescent features 
The obsolescent features are those features of FORTRAN 77 that are redundant and for which better methods are
available in FORTRAN 77. Section 1.6.2 describes the nature of obsolescent features. The obsolescent features are: 

(1) Arithmetic IF — use the IF statement (8.1.2.4) or IF construct (8.1.2) 

(2) Real and double precision DO control variables and DO loop control expressions — use integer
(8.1.4.1) 

(3) Shared DO termination and termination on a statement other than END DO or CONTINUE — use
an END DO or a CONTINUE statement for each DO statement 

(4) Branching to an END IF statement from outside its IF block — branch to the statement following
the END IF 

(5) Alternate return — see B.2.1 

(6) PAUSE statement — see B.2.2 

(7) ASSIGN and assigned GO TO statements — see B.2.3 

(8) Assigned FORMAT specifiers — see B.2.4 

(9) cH edit descriptor — see B.2.5 

B.2.1 Alternate return 

An alternate return introduces labels into an argument list to allow the called procedure to direct the execution of
the caller upon return. The same effect can be achieved with a return code that is used in a computed GO TO
statement or CASE construct on return. This avoids an irregularity in the syntax and semantics of argument
association. For example, 

CALL SUBR_NAME (X, Y, Z, *100, *200, *300) 

may be replaced by 

CALL SUBR_NAME (X, Y, Z, RETURN_CODE) 
SELECT CASE (RETURN_CODE) 

CASE (1) 
... 

CASE (2) 
... 

CASE (3) 
... 



ISO/IEC 1539 : 1991 (E)

256

CASE DEFAULT 
... 

END SELECT 

B.2.2 PAUSE statement 

Execution of a PAUSE statement requires operator or system-specific intervention to resume execution. In most
cases, the same functionality can be achieved as effectively and in a more portable way with the use of an
appropriate READ statement that awaits some input data. 

B.2.3 ASSIGN and assigned GO TO statements 

The ASSIGN statement allows a label to be dynamically assigned to an integer variable, and the assigned GO TO
statement allows “indirect branching” through this variable. This hinders the readability of the program flow,
especially if the integer variable also is used in arithmetic operations. The two totally different usages of the
integer variable can be an obscure source of error. 

These statements have commonly been used to simulate internal procedures, which now can be coded directly. 

B.2.4 Assigned FORMAT specifiers 

The ASSIGN statement also allows the label of a FORMAT statement to be dynamically assigned to an integer
variable, which can later be used as a format specifier in READ, WRITE, or PRINT statements. This hinders
readability, permits inconsistent usage of the integer variable, and can be an obscure source of error. 

This functionality is available via character variables, arrays, and constants. 

B.2.5 H editing 

This edit descriptor can be a source of error. The same functionality is available using the character constant edit
descriptor. 



ISO/IEC 1539 : 1991 (E)

257

Annex C 
(informative) 

Section notes 

C.1 Section 1 notes 

C.1.1 Conformance (1.4) 

The standard requires a standard-conforming processor to be capable of detecting and reporting the use within a
program unit of forms designated as deleted or obsolescent and of additional forms or relationships, where such
use can be detected by reference to the numbered syntax rules and their associated constraints. It is recommended
that the processor be accompanied by documentation that specifies the limits it imposes on the size and
complexity of a program and the means of reporting when these limits are exceeded, that defines the additional
forms and relationships it allows, and that defines the means of reporting the use of additional forms and
relationships and the use of deleted or obsolescent forms. Note that in this context, the use of a deleted form is
the use of an additional form. 

It is recommended that the processor be accompanied by documentation that specifies the methods or semantics
of processor-dependent facilities. 

C.2 Section 2 notes 

C.2.1 Keywords 

Argument keywords can make procedure references more readable and allow actual arguments to be in any order.
This latter property permits optional arguments (2.5.2). 

C.3 Section 3 notes 

C.3.1 Representable characters (3.1.5) 

FORTRAN 77 allowed any character to occur in a character context. This standard provides a new feature to allow
source programs to contain characters of more than one kind (4.3.2.1). Characters of different kinds are often
identified by control characters (called “escape” or “shift” characters). It is difficult, if not impossible, for
example, to process, edit, or print files where control characters may not have their intended meaning (as in
FORTRAN 77) and where other occurrences may have a control meaning. To provide compatibility with FORTRAN

77 and to allow this standard to meet portability goals, the following approach is incorporated: 

(1) In fixed source form, the definition of rep-char is not changed. 

(2) Control characters are not allowed in character contexts in free source form. 

C.3.2 Comment lines (3.3.1.1, 3.3.2.1) 

The standard does not restrict the number of consecutive comment lines. The limit on the number of continuation
lines permitted for a statement should not be construed as being a limitation on the number of consecutive
comment lines. 



ISO/IEC 1539 : 1991 (E)

258

C.3.3 Statement labels (3.2.5) 

There are 99999 unique statement labels and a processor must accept any of them as a statement label. However,
a processor may have an implementation limit on the total number of unique statement labels in one program
unit. 

C.3.4 Source form (3.3) 

In fixed source form, an exclamation point (!) in character position 6 is interpreted as a continuation indicator
unless it appears within commentary indicated by a “C” or “**” in character position 1 or by another “!” in
character positions 1–5 (3.3.2.3). 

The source form of FORTRAN 77, FORTRAN 66, and the initial Fortran in 1954 was predicated on a common form
of input, the 80-column card. However, on the IBM 704, only 72 columns could be used and the remaining eight
columns were designated as commentary. In some implementations of FORTRAN 77, these columns are so used.
They contain “line numbers” and are used by an editor to manage changes to a program (3.3.2). 

The Fortran Standards Subcommittee believes that 66 positions are inadequate to represent readable Fortran
source code, particularly with “long” names and the use of indentation. Consequently, in the new source form,
this standard relaxes the FORTRAN 77 restriction on source line size. 

Given the need for an incompatible new source form in Fortran, additional restrictions of the rigid card form are
relaxed. Positions six and seven are no longer “special” and the continuation mark is on the line being continued
rather than on the continuation line. Blank characters are generally significant in the new source form, but other
features of the new form apply to either form, and are allowed in either (3.3.1). 

The rule allowing optional blanks at specific places in some keywords (for example, ENDIF or END IF) is
intended to permit a reasonable choice to users accustomed to insignificant blanks. 

In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs
whose source form might be of either form, observing the following rules allows the code to be used with either: 

(1) Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72; 

(2) Treat blanks as being significant; 

(3) Use only the exclamation mark (!) to indicate a comment, but do not start the comment in column 6; 

(4) For continued statements, place an ampersand (&) in both character position 73 of a continued line
and character position 6 of a continuing line. 

C.4 Section 4 notes 

C.4.1 Zero (4.3.1) 

A processor must not consider a negative zero to be different from a positive zero. 

C.4.2 Characters (4.2) 

Free source form allows only graphic characters as representable characters. Almost all control characters have
uses or effects that effectively preclude their use in character literals. Nevertheless, for compatibility with
FORTRAN 77, control characters remain permitted in principle in fixed source form. 

C.4.3 Intrinsic and derived data types (4.3, 4.4) 

FORTRAN 77 provided only data types explicitly defined in the standard (logical, integer, real, double precision,
complex, and character). This standard provides those intrinsic types and provides derived types to allow the
creation of new data types. A derived-type definition specifies a data structure consisting of components of



ISO/IEC 1539 : 1991 (E)

259

intrinsic types and of derived types. Such a type definition does not represent a data object, but rather, a template
for declaring named objects of that derived type. For example, the definition 

TYPE POINT 
INTEGER X_COORD 
INTEGER Y_COORD 

END TYPE POINT 

specifies a new derived type named POINT which is composed of two components of intrinsic type integer
(X_COORD and Y_COORD). The statement TYPE (POINT) FIRST, LAST declares two data objects, FIRST
and LAST, that can hold values of type POINT. 

FORTRAN 77 provided REAL and DOUBLE PRECISION intrinsic types as approximations to mathematical real
numbers. This standard generalizes REAL as an intrinsic type with a type parameter that selects the
approximation method. The type parameter is named KIND and has values that are processor dependent.
DOUBLE PRECISION is treated as a synonym for REAL ( ), where  is the implementation-defined kind type
parameter value KIND (0.0D0). 

Real literal constants may be specified with a kind type parameter to ensure that they have a particular kind type
parameter value (4.3.1.2). 

For example, with the specifications 

INTEGER Q 
PARAMETER (Q = 8) 
REAL (Q) B 

the literal constant 10.93_Q has the same precision as the variable B. 

FORTRAN 77 did not allow zero-length character strings. They are permitted by this standard (4.3.2.1). 

Objects are of different derived type if they are declared using different derived-type definitions. For example, 

TYPE APPLES 
INTEGER NUMBER 

END TYPE APPLES 
TYPE ORANGES 

INTEGER NUMBER 
END TYPE ORANGES 
TYPE (APPLES) COUNT1 
TYPE (ORANGES) COUNT2 
COUNT1 = COUNT2 ! Erroneous statement mixing apples and oranges 

Even though all components of objects of type APPLES and objects of type ORANGES have identical intrinsic
types, the objects are of different types. 

C.4.4 Selection of the approximation methods 

This standard permits the selection of the real approximation method for an entire program to be parameterized
through the use of the parameterized real data type and module. This is accomplished by defining a named
integer constant, say FLOAT, to have a specific kind type parameter value, and to use that named constant in all
real, complex, and derived-type declarations. For example, the specification statements 

INTEGER FLOAT 
PARAMETER (FLOAT = 8) 
REAL (FLOAT) X, Y 
COMPLEX (FLOAT) Z 

specify that the approximation method corresponding to a kind type parameter value of 8 is supplied for the data
objects X, Y, and Z in the program unit. The kind type parameter value FLOAT can be made available to an

k k



ISO/IEC 1539 : 1991 (E)

260

entire program by placing the INTEGER and PARAMETER specification statements in a module and accessing
the named constant FLOAT with a USE statement. Note that by changing 8 to 4 once in the module, a different
approximation method is selected. 

To avoid the use of the processor-dependent values 4 or 8, replace 8 by KIND (0.0) or KIND (0.0D0). Another
way to avoid these processor-dependent values is to select the kind value using the intrinsic inquiry function
SELECTED_REAL_KIND. This function, given integer arguments P and R specifying minimum requirements
for decimal precision and decimal exponent range, respectively, returns the kind type parameter value of the
approximation method that has at least P decimal digits of precision and at least a range for positive numbers of

 to . In the above specification statement, the 8 may be replaced by, for instance,
SELECTED_REAL_KIND (10, 50), which requires an approximation method to be selected with at least 10
decimal digits of precision and an exponent range from  to . 

There are no magnitude or ordering constraints placed on kind values, in order that implementers may have
flexibility in assigning such values and may add new kinds without changing previously assigned kind values. 

As kind values have no portable meaning, a good practice is to use them in programs only through named
constants as described above (for example, SINGLE, IEEE_SINGLE, DOUBLE, and QUAD), rather than using
the kind values directly. 

C.4.5 Storage of derived types (4.4.1) 

A structure resolves into a sequence of components of intrinsic type. Unless the structure includes a SEQUENCE
statement, the use of this terminology in no way implies that these components are stored in this, or any other,
order. Nor is there any requirement that contiguous storage be used. The sequence merely refers to the fact that
in writing the definitions there will necessarily be an order in which the components appear, and this will define
a sequence of components. This order is of limited significance since a component of an object of derived type
will always be accessed by a component name except in the following contexts: the sequence of expressions in a
derived-type value constructor, the data values in namelist input data, and the inclusion of the structure in an
input/output list of a formatted data transfer, where it is expanded to this sequence of components. Provided the
processor adheres to the defined order in these cases, it is otherwise free to organize the storage of the
components for any structure in memory as best suited to the particular architecture. 

C.4.6 Pointers 

This standard introduces pointers as names that can change dynamically their association with a target object. In
a sense, a normal variable is a name with a fixed association with a specific object. A normal variable name
refers to the same storage space throughout the lifetime of a variable. A pointer name may refer to different
storage space, or even no storage space, at different times. A variable may be considered to be a descriptor for
space to hold values of the appropriate type, type parameters, and array rank such that the values stored in the
descriptor are fixed when the variable is created by its declaration. A pointer also may be considered to be a
descriptor, but one whose values may be changed dynamically so as to describe different pieces of storage. When
a pointer is declared, space to hold the descriptor is created, but the space for the target object is not created. 

A derived type may have one or more components that are defined to be pointers. It may have a component that
is a pointer to an object of the same derived type. This “recursive” data definition allows dynamic data structures
such as linked lists, trees, and graphs to be constructed. For example, 

TYPE CELL ! Define a "recursive" type 
INTEGER :: VAL 
TYPE (CELL), POINTER :: NEXT_CELL 

END TYPE CELL 
 
TYPE (CELL), TARGET :: HEAD 
TYPE (CELL), POINTER :: CURRENT, TEMP ! Declare pointers 
INTEGER :: IOEM, K 
 

10 R– 10R

10 50– 1050



ISO/IEC 1539 : 1991 (E)

261

CURRENT => HEAD ! CURRENT points to head of list 
NULLIFY (CURRENT % NEXT_CELL) 
DO 

READ (*, *, IOSTAT = IOEM) K ! Read next value, if any 
IF (IOEM /= 0) EXIT 
ALLOCATE (TEMP) ! Create new cell each iteration 
TEMP % VAL = K ! Assign value to cell 
NULLIFY (TEMP % NEXT_CELL) ! Set status to disassociated 
CURRENT % NEXT_CELL => TEMP ! Attach new cell to list 
CURRENT => TEMP ! CURRENT points to new end of list 

END DO 

A list is now constructed and the last linked cell contains a disassociated pointer. A loop can be used to “walk
through” the list. 

CURRENT => HEAD 
DO 

IF (.NOT. ASSOCIATED (CURRENT % NEXT_CELL)) EXIT 
CURRENT => CURRENT % NEXT_CELL 
WRITE (*, *) CURRENT % VAL 

END DO 

C.5 Section 5 notes 

C.5.1 Type declaration statements (5.1) 

Type declaration statements in FORTRAN 77 required different attributes of an entity to be specified in different
statements (INTEGER, SAVE, DATA, etc.). This standard allows the attributes of an entity to be specified in a
single extended form of the type statement. For example, 

INTEGER, DIMENSION (10, 10), SAVE :: A, B, C 
REAL, PARAMETER :: PI = 3.14159265, E = 2.718281828 

To retain compatibility and consistency with FORTRAN 77, most of the attributes that may be specified in the
extended type statement may alternatively be specified in separate statements. 

C.5.2 The POINTER attribute (5.1.2.7) 

The POINTER attribute must be specified to declare a pointer. The type, type parameters, and rank, which may
be specified in the same statement or with one or more attribute specification statements, determine the
characteristics of the target objects that may be associated with the pointers declared in the statement. An
obvious model for interpreting declarations of pointers is that such declarations create for each name a descriptor.
Such a descriptor includes all the data necessary to describe fully and locate in memory an object and all
subobjects of the type, type parameters, and rank specified. The descriptor is created empty; it does not contain
values describing how to access an actual memory space. These descriptor values will be filled in when the
pointer is associated with actual target space. 

The following example illustrates the use of pointers in an iterative algorithm: 

PROGRAM DYNAM_ITER 
REAL, DIMENSION (:, :), POINTER :: A, B, SWAP ! Declare pointers 
... 
READ (*, *) N, M 
ALLOCATE (A (N, M), B (N, M)) ! Allocate target arrays 
! Read values into A 
... 
ITER: DO 



ISO/IEC 1539 : 1991 (E)

262

... 
! Apply transformation of values in A to produce values in B 
... 
IF (CONVERGED) EXIT ITER 
! Swap A and B 
SWAP => A; A => B; B => SWAP 

END DO ITER 
... 

END 

C.5.3 The TARGET attribute (5.1.2.8) 

The TARGET attribute must be specified for any nonpointer object that may, during the execution of the
program, become associated with a pointer. This attribute is defined solely for optimization purposes. It allows
the processor to assume that any nonpointer object not explicitly declared as a target may be referred to only by
way of its original declared name. The rule in 5.1.2.8 ensures that this is true even if the object is in a common
block and the corresponding object in the same common block in another program unit has the TARGET
attribute. It also means that implicitly-declared objects must not be used as pointer targets. This will allow a
processor to perform optimizations that otherwise would not be possible in the presence of certain pointers. 

The following example illustrates the use of the TARGET attribute in an iterative algorithm: 

PROGRAM ITER 
REAL, DIMENSION (1000, 1000), TARGET :: A, B 
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP 
... 
! Read values into A 
... 
IN => A ! Associate IN with target A 
OUT => B ! Associate OUT with target B 
... 
ITER:DO 

... 
! Apply transformation of IN values to produce OUT 
... 
IF (CONVERGED) EXIT ITER 
! Swap IN and OUT 
SWAP => IN; IN => OUT; OUT => SWAP 

END DO ITER 
... 

END 

C.5.4 PARAMETER statements and IMPLICIT NONE (5.2.10, 5.3) 

Because an implicitly typed named constant may precede an IMPLICIT statement only if that IMPLICIT
statement serves to confirm the type of the named constant, it follows that if an IMPLICIT NONE statement is to
appear, it must precede all PARAMETER statements. 

C.5.5 EQUIVALENCE statement extensions (5.5.1) 

The EQUIVALENCE statement has been extended to allow the equivalencing of sequence structures and the
equivalencing of objects of intrinsic type with nondefault type parameters, but there are strict rules regarding the
appearance of these objects in an EQUIVALENCE statement. 

Structures that appear in EQUIVALENCE statements must be sequence structures. If a sequence structure is not
of numeric sequence type or of character sequence type, it must be equivalenced only to objects of the same type. 



ISO/IEC 1539 : 1991 (E)

263

A numeric sequence structure may be equivalenced to another numeric sequence structure, an object of default
integer type, default real type, double precision real type, default complex type, or default logical type such that
components of the structure ultimately become associated only with objects of these types. 

A character sequence structure may be equivalenced to an object of default character type or another character
sequence structure. 

Other objects may be equivalenced only to objects of the same type and kind type parameters. 

C.5.6 COMMON statement extensions (5.5.2) 

Modules provide global access to all objects; however, the COMMON statement also has been extended to allow
access in more than one scoping unit to objects with the POINTER attribute, to sequence structures, and to
objects of intrinsic type with nondefault type parameters. 

A common block is permitted to contain sequences of different storage units, provided each scoping unit that
accesses the common block specifies an identical sequence of storage units for the common block. This
extension allows a single common block to contain both numeric and character objects. 

Association in different scoping units between objects of default type, objects of double precision real type, and
sequence structures is permitted according to the rules for equivalence objects (5.5.1). 

C.6 Section 6 notes 

C.6.1 Substrings (6.1.1) 

Substrings are of zero length when the starting point exceeds the ending point. This was not allowed in FORTRAN

77. This standard also allows substrings of literal character constants and named character constants. 

C.6.2 Array element references (6.2.2) 

A subscript reference to an element outside the declared bounds is not standard conforming, as in FORTRAN 77. 

C.6.3 Structure components (6.1.2) 

Components of a structure are referenced by writing the components of successive levels of the structure
hierarchy until the desired component is described. For example, 

TYPE ID_NUMBERS 
INTEGER SSN 
INTEGER EMPLOYEE_NUMBER 

END TYPE ID_NUMBERS 
 
TYPE PERSON_ID 

CHARACTER (LEN=30) LAST_NAME 
CHARACTER (LEN=1) MIDDLE_INITIAL 
CHARACTER (LEN=30) FIRST_NAME 
TYPE (ID_NUMBERS) NUMBER 

END TYPE PERSON_ID 
 
TYPE PERSON 

INTEGER AGE 
TYPE (PERSON_ID) ID 

END TYPE PERSON 
 
TYPE (PERSON) GEORGE, MARY 
 



ISO/IEC 1539 : 1991 (E)

264

PRINT *, GEORGE % AGE ! Print the AGE component 
PRINT *, MARY % ID % LAST_NAME ! Print LAST_NAME of MARY 
PRINT *, MARY % ID % NUMBER % SSN ! Print SSN of MARY 
PRINT *, GEORGE % ID % NUMBER ! Print SSN and EMPLOYEE_NUMBER of GEORGE 

A structure component may be a data object of intrinsic type as in the case of GEORGE % AGE or it may be of
derived type as in the case of GEORGE % ID % NUMBER. The resultant component may be a scalar or an array
of intrinsic or derived type. 

TYPE LARGE 
INTEGER ELT (10) 
INTEGER VAL 

END TYPE LARGE 
 
TYPE (LARGE) A (5) ! 5 element array, each of whose elements 

! includes a 10 element array ELT and 
! a scalar VAL. 

PRINT *, A (1) ! Prints 10 element array ELT and scalar VAL. 
PRINT *, A (1) % ELT (3) ! Prints scalar element 3 

! of array element 1 of A. 
PRINT *, A (2:4) % VAL ! Prints scalar VAL for array elements 

! 2 to 4 of A. 

C.6.4 Pointer allocation and association 

The effect of ALLOCATE, DEALLOCATE, NULLIFY, and pointer assignment is that they are interpreted as
changing the values in the descriptor that is the pointer. An ALLOCATE is assumed to create space for a suitable
object and to “assign” to the pointer the values necessary to describe that space. A NULLIFY breaks the
association of the pointer with the space. A DEALLOCATE breaks the association and releases the space.
Depending on the implementation, it could be seen as setting a flag in the pointer that indicates whether the
values in the descriptor are valid, or it could clear the descriptor values to some (say zero) value indicative of the
pointer not currently pointing to anything. A pointer assignment copies the values necessary to describe the space
occupied by the target into the descriptor that is the pointer. Descriptors are copied, values of objects are not. 

If PA and PB are both pointers and PB currently is associated with a target, then 

PA => PB 

results in PA being associated with the same target as PB. If PB was disassociated, then PA becomes
disassociated. 

The standard is specified so that such associations are direct and independent. A subsequent statement 

PB => D 

or 

ALLOCATE (PB) 

has no effect on the association of PA with its target. A statement 

DEALLOCATE (PB) 

leaves PA as a “dangling pointer” to space that has been released. The program must not use PA again until it
becomes associated via pointer assignment or an ALLOCATE statement. 

DEALLOCATE should only be used to release space that was created by a previous ALLOCATE. Thus the
following is invalid: 

REAL, TARGET :: T 
REAL, POINTER :: P 



ISO/IEC 1539 : 1991 (E)

265

... 
P => T 
DEALLOCATE (P) ! Not allowed: P’s target was not allocated 

The basic principle is that ALLOCATE, NULLIFY, and pointer assignment primarily affect the pointer rather
than the target. ALLOCATE creates a new target but, other than breaking its connection with the specified
pointer, it has no effect on the old target. Neither NULLIFY nor pointer assignment has any effect on targets. A
given piece of memory that was allocated and associated with a pointer will become inaccessible to a program if
the pointer is nullified and no other pointer was associated with this piece of memory. Such pieces of memory
may be reused by the processor if this is expedient. However, whether such inaccessible memory is in fact reused
is entirely processor dependent. 

C.7 Section 7 notes 

C.7.1 Character assignment 

The FORTRAN 77 restriction that none of the character positions being defined in the character assignment
statement may be referenced in the expression has been removed (7.5.1.5). 

C.7.2 Evaluation of function references 

If more than one function reference appears in a statement, they may be executed in any order (subject to a
function result being evaluated after the evaluation of its arguments) and their values must not depend on the
order of execution. This lack of dependence on order of evaluation permits parallel execution of the function
references (7.1.7.1). 

C.7.3 Pointers in expressions 

A pointer is basically considered to be like any other variable when it is used as a primary in an expression. If a
pointer is used as an operand to an operator that expects a value, the pointer will automatically deliver the value
contained in the space currently described by the pointer, that is, the value of the target object currently
associated with the pointer. In value-demanding expression contexts, pointers are dereferenced. 

C.7.4 Pointers on the left side of an assignment 

A pointer that appears on the left of an intrinsic assignment statement also is dereferenced and is taken to be
referring to the space that is its current target. Therefore, the assignment statement specifies the normal copying
of the value of the right-hand expression into this target space. All the normal rules of intrinsic assignment hold;
the type and type parameters of the expression and the pointer target must agree and the shapes must be
conformable. 

For intrinsic assignment of derived types, nonpointer components are assigned and pointer components are
pointer assigned. Dereferencing is applied only to entire scalar objects, not selectively to pointer subobjects. 

For example, suppose a type such as 

TYPE CELL 
INTEGER :: VAL 
TYPE (CELL), POINTER :: NEXT_CELL 

ENDTYPE 

is defined and objects such as HEAD and CURRENT are declared using 

TYPE (CELL), TARGET :: HEAD 
TYPE (CELL), POINTER :: CURRENT 

If a linked list has been created and attached to HEAD and the pointer CURRENT has been allocated space,
statements such as 



ISO/IEC 1539 : 1991 (E)

266

CURRENT = HEAD 
CURRENT = CURRENT % NEXT_CELL 

cause the contents of the cells referenced on the right to be copied to the cell referred to by CURRENT. In
particular, the right-hand side of the second statement causes the pointer component in the cell, CURRENT, to be
selected. This pointer is dereferenced because it is in an expression context to produce the target’s integer value
and a pointer to a cell that is contained in the target’s NEXT_CELL component. The left-hand side causes the
pointer CURRENT to be dereferenced to produce its present target, namely space to hold a cell (an integer and a
cell pointer). The integer value on the right is copied to the integer space on the left and the pointer components
are pointer assigned (the descriptor on the right is copied into the space for a descriptor on the left). When a
statement such as 

CURRENT => CURRENT % NEXT_CELL 

is executed, the descriptor value in CURRENT % NEXT_CELL is copied to the descriptor named CURRENT. In
this case, CURRENT is made to point at a different target. 

In the intrinsic assignment statement, the space associated with the current pointer does not change but the values
stored in that space do. In the pointer assignment, the current pointer is made to associate with different space.
Using the intrinsic assignment causes a linked list of cells to be moved up through the current “window”; the
pointer assignment causes the current pointer to be moved down through the list of cells. 

C.8 Section 8 notes 

C.8.1 Loop control 

Fortran provides several forms of loop control: 

(1) With an iteration count and a DO variable. This is the classic Fortran DO loop. 

(2) Test a logical condition before each execution of the loop (DO WHILE). 

(3) DO “forever”. 

C.8.2 The CASE construct 

At most one case block is selected for execution within a CASE construct, and there is no fall-through from one
block into another block within a CASE construct. Thus there is no requirement for the user to exit explicitly
from a block. 

C.8.3 Examples of invalid DO constructs 

The following are all examples of invalid skeleton DO constructs: 

Example 1: 

DO I = 1, 10 
... 

END DO LOOP ! No matching construct name 

Example 2: 

LOOP: DO 1000 I = 1, 10 ! No matching construct name 
... 

1000 CONTINUE 

Example 3: 

LOOP1: DO 
... 



ISO/IEC 1539 : 1991 (E)

267

END DO LOOP2 ! Construct names don’t match 

Example 4: 

DO I = 1, 10 ! Label required or ... 
... 

1010 CONTINUE ! ... END DO required 

Example 5: 

DO 1020 I = 1, 10 
... 

1021 END DO ! Labels don’t match 

Example 6: 

FIRST: DO I = 1, 10 
SECOND: DO J = 1, 5 

... 
END DO FIRST ! Improperly nested DOs 

END DO SECOND 

C.9 Section 9 notes 

C.9.1 Input/output records (9.1) 

What is called a “record” in Fortran is commonly called a “logical record”. There is no concept in Fortran of a
“physical record”. 

An endfile record does not necessarily have any physical embodiment. The processor may use a record count or
other means to register the position of the file at the time an ENDFILE statement is executed, so that it can take
appropriate action when that position is reached again during a read operation. The endfile record, however it is
implemented, is considered to exist for the BACKSPACE statement (9.1.3). 

C.9.2 Files (9.2) 

This standard accommodates, but does not require, file cataloging. To do this, several concepts are introduced. 

C.9.2.1 File connection (9.3) 

Before any input/output may be performed on a file, it must be connected to a unit. The unit then serves as a
designator for that file as long as it is connected. To be connected does not imply that “buffers” have or have not
been allocated, that “file-control tables” have or have not been filled out, or that any other method of
implementation has been used. Connection means that (barring some other fault) a READ or WRITE statement
may be executed on the unit, hence on the file. Without a connection, a READ or WRITE statement must not be
executed. 

C.9.2.2 File existence (9.2.1.1) 

Totally independent of the connection state is the property of existence, this being a file property. The processor
“knows” of a set of files that exist at a given time for a given executable program. This set would include tapes
ready to read, files in a catalog, a keyboard, a printer, etc. The set may exclude files inaccessible to the
executable program because of security, because they are already in use by another executable program, etc. This
standard does not specify which files exist, hence wide latitude is available to a processor to implement security,
locks, privilege techniques, etc. Existence is a convenient concept to designate all of the files that an executable
program can potentially process. 



ISO/IEC 1539 : 1991 (E)

268

All four combinations of connection and existence may occur: 

Means are provided to create, delete, connect, and disconnect files. 

C.9.2.3 File names (9.3.4.1) 

A file may have a name. The form of a file name is not specified. If a system does not have some form of
cataloging or tape labeling for at least some of its files, all file names will disappear at the termination of
execution. This is a valid implementation. Nowhere does this standard require names to survive for any period of
time longer than the execution time span of an executable program. Therefore, this standard does not impose
cataloging as a prerequisite. The naming feature is intended to allow use of a cataloging system where one exists. 

C.9.2.4 File access (9.2.1.2) 

This standard does not address problems of security, protection, locking, and many other concepts that may be
part of the concept of “right of access”. Such concepts are considered to be in the province of an operating
system. 

The OPEN and INQUIRE statements can be extended naturally to consider these things. 

Possible access methods for a file are: sequential and direct. The processor may implement two different types of
files, each with its own access method. It might also implement one type of file with two different access
methods. 

Direct access to files is of a simple and commonly available type, that is, fixed-length records. The key is a
positive integer. 

C.9.2.5 Nonadvancing input/output (9.2.1.3.1) 

Data transfer statements affect the positioning of an external file. In FORTRAN 77, if no error or end-of-file
condition exists, the file is positioned after the record just read or written and that record becomes the preceding
record. This standard contains the record positioning ADVANCE= specifier in a data transfer statement that
provides the capability of maintaining a position within the current record from one formatted data transfer
statement to the next data transfer statement. The value NO provides this capability. The value YES positions the
file after the record just read or written. The default is YES. 

The tab edit descriptor and the slash are still appropriate for use with this type of record access but the tab will
not reposition before the left tab limit. 

A BACKSPACE of a file that is currently positioned within a record causes the specified unit to be positioned
before the current record. 

If the last data transfer statement was WRITE and the file is currently positioned within a record, the file will be
positioned implicitly after the current record before an ENDFILE record is written to the file, that is, a REWIND,
BACKSPACE, or ENDFILE statement following a nonadvancing WRITE statement causes the file to be
positioned at the end of the current output record before the endfile record is written to the file. 

Connect Exist Examples 

Yes Yes A card reader loaded and ready to be read

Yes No A printer before the first line is written 

No Yes A file named ’JOAN’ in the catalog

No No A file on a reel of tape, not known to the processor 



ISO/IEC 1539 : 1991 (E)

269

This standard provides a SIZE= specifier to be used with nonadvancing data transfer statements. The variable in
the SIZE= specifier will contain the count of the number of characters that make up the sequence of values read
by the data edit descriptors in this input statement. 

The count is especially helpful if there is only one list item in the input list since it will contain the number of
characters that were present for the item. 

The EOR= specifier is provided to indicate when an end-of-record condition has been encountered during a
nonadvancing data transfer statement. The end-of-record condition is not an error condition. If this specifier is
present, the current input list item that required more characters than the record contained will be padded with
blanks if PAD= ’YES’ is in effect. This means that the iolist item was successfully completed. The file will then
be positioned after the current record. The IOSTAT= specifier, if present, will be defined with a processor-
dependent negative value and the data transfer statement will be terminated. Program execution will continue
with the statement specified in the EOR= specifier. The EOR= specifier gives the capability of taking control of
execution when the end-of-record has been found. Implied-DO variables retain their last defined value and any
remaining items in the iolist retain their definition status when an end-of-record condition occurs. The SIZE=
specifier, if present, will contain the number of characters read with the data edit descriptors during this READ
statement. 

For nonadvancing input, the processor is not required to read partial records. The processor may read the entire
record into an internal buffer and make successive portions of the record available to successive input statements. 

C.9.3 OPEN statement (9.3.4) 

A file may become connected to a unit in either of two ways: preconnection or execution of an OPEN statement.
Preconnection is performed prior to the beginning of execution of an executable program by means external to
Fortran. For example, it may be done by job control action or by processor-established defaults. Execution of an
OPEN statement is not required to access preconnected files (9.3.3). 

The OPEN statement provides a means to access existing files that are not preconnected. An OPEN statement
may be used in either of two ways: with a file name (open-by-name) and without a file name (open-by-unit). A
unit is given in either case. Open-by-name connects the specified file to the specified unit. Open-by-unit connects
a processor-determined default file to the specified unit. (The default file may or may not have a name.) 

Therefore, there are three ways a file may become connected and hence processed: preconnection, open-by-
name, and open-by-unit. Once a file is connected, there is no means in standard Fortran to determine how it
became connected. 

An OPEN statement may also be used to create a new file. In fact, any of the foregoing three connection methods
may be performed on a file that does not exist. When a unit is preconnected, writing the first record creates the
file. With the other two methods, execution of the OPEN statement creates the file. 

When an OPEN statement is executed, the unit specified in the OPEN may or may not already be connected to a
file. If it is already connected to a file (either through preconnection or by a prior OPEN), then omitting the
FILE= specifier in the OPEN statement implies that the file is to remain connected to the unit. Such an OPEN
statement may be used to change the values of the BLANK=, DELIM=, or PAD= specifiers. 

Note that, since an OPEN that specifies STATUS = ’SCRATCH’ is not allowed to have a FILE= specifier, such
an OPEN always attempts to retain any connection that the specified unit may have. If the unit were already
connected to a file, and if that connection did not have a STATUS of SCRATCH, then the OPEN would be illegal
because the value of the STATUS= specifier must not be changed by the OPEN. 

If the value of the ACTION= specifier is WRITE, then READ statements must not refer to this connection.
ACTION = ’WRITE’ does not restrict positioning by a BACKSPACE statement or positioning specified by the
POSITION= specifier with the value APPEND. However, a BACKSPACE statement or an OPEN statement
containing POSITION = ’APPEND’ may fail if the processor requires reading of the file to achieve the
positioning. 



ISO/IEC 1539 : 1991 (E)

270

The following examples illustrate these rules. In the first example, unit 10 is preconnected to a SCRATCH file;
the OPEN statement changes the value of PAD= to YES. 

CHARACTER (LEN = 20) CH1 
WRITE (10, ’(A)’) ’THIS IS RECORD 1’ 
OPEN (UNIT = 10, STATUS = ’SCRATCH’, PAD = ’YES’) 
REWIND 10 
READ (10, ’(A20)’) CH1 ! CH1 now has the value 

! ’THIS IS RECORD 1 ’ 

In the next example, unit 12 is first connected to a file named FRED, with a status of OLD. The second OPEN
statement then opens unit 12 again, retaining the connection to the file FRED, but changing the value of the
DELIM= specifier to QUOTE. 

CHARACTER (LEN = 25) CH2, CH3 
OPEN (12, FILE = ’FRED’, STATUS = ’OLD’, DELIM = ’NONE’) 
CH2 = ’"THIS STRING HAS QUOTES."’ 

! Quotes in string CH2 
WRITE (12, *) CH2 ! Written with no delimiters 
OPEN (12, DELIM = ’QUOTE’) ! Now quote is the delimiter 
REWIND 12 
READ (12, *) CH3 ! CH3 now has the value 

! ’THIS STRING HAS QUOTES. ’ 

The next example is invalid because it attempts to change the value of the STATUS= specifier. 

OPEN (10, FILE = ’FRED’, STATUS = ’OLD’) 
WRITE (10, *) A, B, C 
OPEN (10, STATUS = ’SCRATCH’) ! Attempts to make FRED 

! a SCRATCH file 

The previous example could be made valid by closing the unit first, as in the next example. 

OPEN (10, FILE = ’FRED’, STATUS = ’OLD’) 
WRITE (10, *) A, B, C 
CLOSE (10) 
OPEN (10, STATUS = ’SCRATCH’) ! Opens a different 

! SCRATCH file 

C.9.4 Connection properties (9.3.2) 

When a unit becomes connected to a file, either by execution of an OPEN statement or by preconnection, the
following connection properties may be established: 

(1) An access method, which is sequential or direct, is established for the connection (9.3.4.3). 

(2) A form, which is formatted or unformatted, is established for a connection to a file that exists or is
created by the connection. For a connection that results from execution of an OPEN statement, a
default form (which depends on the access method, as described in 9.2.1.2) is established if no form
is specified. For a preconnected file that exists, a form is established by preconnection. For a
preconnected file that does not exist, a form may be established, or the establishment of a form may
be delayed until the file is created (for example, by execution of a formatted or unformatted WRITE
statement) (9.3.4.4). 

(3) A record length may be established. If the access method is direct, the connection establishes a
record length that specifies the length of each record of the file. An existing file with records that
are not all of equal length must not be connected for direct access. 



ISO/IEC 1539 : 1991 (E)

271

If the access method is sequential, records of varying lengths are permitted. In this case, the record
length established specifies the maximum length of a record in the file (9.3.4.5). 

(4) A blank significance property, which is ZERO or NULL, is established for a connection for which
the form is formatted. This property has no effect on output. For a connection that results from
execution of an OPEN statement, the blank significance property is NULL by default if no blank
significance property is specified. For a preconnected file, the property is NULL. The blank
significance property of the connection is effective at the beginning of each formatted input
statement. During execution of the statement, any BN or BZ edit descriptors encountered may
temporarily change the effect of embedded and trailing blanks (9.3.4.6). 

FORTRAN 77 did not define default values for the blank significance properties of internal and preconnected files.
This standard defines the default values for these files to be NULL, matching that of files connected by the
OPEN statement. 

A processor has wide latitude in adapting these concepts and actions to its own cataloging and job control
conventions. Some processors may require job control action to specify the set of files that exist or that will be
created by an executable program. Some processors may require no job control action prior to execution. This
standard enables processors to perform dynamic open, close, or file creation operations, but it does not require
such capabilities of the processor. 

The meaning of “open” in contexts other than Fortran may include such things as mounting a tape, console
messages, spooling, label checking, security checking, etc. These actions may occur upon job control action
external to Fortran, upon execution of an OPEN statement, or upon execution of the first read or write of the file.
The OPEN statement describes properties of the connection to the file and may or may not cause physical
activities to take place. It is a place for an implementation to define properties of a file beyond those required in
standard Fortran. 

C.9.5 CLOSE statement (9.3.5) 

Similarly, the actions of dismounting a tape, protection, etc. of a “close” may be implicit at the end of a run. The
CLOSE statement may or may not cause such actions to occur. This is another place to extend file properties
beyond those of standard Fortran. Note, however, that the execution of a CLOSE statement on a unit followed by
an OPEN statement on the same unit to the same file or to a different file is a permissible sequence of events.
The processor must not deny this sequence solely because the implementation chooses to do the physical act of
closing the file at the termination of execution of the program.

C.9.6 INQUIRE statement (9.6) 

Table C.1 indicates the values assigned to the INQUIRE statement specifier variables when no error condition is
encountered during execution of the INQUIRE statement. 

C.9.7 Keyword specifiers 

Keyword forms of specifiers are used because there are many specifiers and a positional notation is difficult to
remember. The keyword form sets a style for processor extensions. The UNIT= and FMT= keywords are offered
for completeness, but their use is optional. Thus, compatibility with ANSI X3.9-1966 (FORTRAN 66) and FORTRAN

77 is achieved. 

C.9.8 Format specifications (9.4.1.1) 

Format specifications may be included in the READ and WRITE statements, as in: 

READ (UNIT = 10, FMT = ’(I3, A4, F10.2)’) K, ALPH, X 



ISO/IEC 1539 : 1991 (E)

272

C.9.9 Unformatted input/output (9.4.4.4.1) 

Unformatted input/output involving derived-type list items forms the single exception to the rule that the
appearance of an aggregate list item (such as an array) is equivalent to the appearance of its expanded list of
component parts. This exception permits the processor greater latitude in improving efficiency or in matching the
processor-dependent sequence of values for a derived-type object to similar sequences for aggregate objects used
by means other than Fortran. However, formatted input/output of all list items and unformatted input/output of
list items other than those of derived types adhere to the above rule. 

Table 3.1 Values assigned to INQUIRE specifier variables

INQUIRE by file INQUIRE by unit

Specifier Unconnected Connected Connected Unconnected

ACCESS= UNDEFINED SEQUENTIAL or DIRECT UNDEFINED 

ACTION= UNDEFINED READ, WRITE, or READWRITE UNDEFINED 

BLANK= UNDEFINED NULL, ZERO, or UNDEFINED UNDEFINED 

DELIM= UNDEFINED APOSTROPHE, QUOTE,
NONE, or UNDEFINED UNDEFINED 

DIRECT= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

EXIST= .TRUE. if file exists,
.FALSE. otherwise

.TRUE. if unit exists, 
.FALSE. otherwise 

FORM= UNDEFINED FORMATTED or UNFORMATTED UNDEFINED 

FORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

IOLENGTH= RECL= value for output-item-list 

IOSTAT= 0 for no error, a positive integer for an error 

 NAME=
Filename

(may not be same
as FILE= value)

Filename
if named,

else undefined
Undefined 

NAMED= .TRUE. .TRUE. if file named,
.FALSE. otherwise .FALSE. 

NEXTREC= Undefined If direct access, next record #;
else undefined Undefined 

NUMBER= –1 Unit number –1 

OPENED= .FALSE. .TRUE. .FALSE. 

PAD= YES YES or NO YES 

POSITION= UNDEFINED
REWIND, APPEND,
ASIS, UNDEFINED,

or a processor-dependent value 
UNDEFINED 

READ= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

READWRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

RECL= Undefined If direct access, record length;
else maximum record length Undefined 

SEQUENTIAL= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

UNFORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 

WRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN 



ISO/IEC 1539 : 1991 (E)

273

C.9.10 Input/output restrictions 

An example of a restriction on input/output statements (9.8) is that an input statement must not specify that data
are to be read from a printer. 

C.9.11 Pointers in an input/output list 

Data transfers always involve the movement of values between a file and internal storage. A pointer as such
cannot be read or written. A pointer may, therefore, appear as an item in an input/output list if it is currently
associated with a target that can receive a value (input) or can deliver a value (output). A derived type object
with one or more pointer components must not appear as an item in an input/output list because the value of a
pointer component is the descriptor for a location in memory. As such, this has no processor-independent
representation. 

C.9.12 Derived type objects in an input/output list (9.4.2) 

A component of a derived type may be declared to be private (4.4, 5.1.2.2). A derived-type object must not
appear in an input/output list if any of its components or subobjects of any of its components have been declared
to be private and its derived type definition does not appear in the same module as the data transfer statement. 

In a formatted input/output statement, edit descriptors are associated with effective list items, which are always
scalar and of intrinsic type. The rules in 9.4.2 determine the set of effective list items corresponding to each
actual list item in the statement. These rules may have to be applied repetitively until all of the effective list
items are scalar items of intrinsic type. 

C.10 Section 10 notes 

C.10.1 Character constant format specification (10.1.2, 10.7.1) 

If a character constant is used as a format specifier in an input/output statement, care must be taken that the value
of the character constant is a valid format specification. In particular, if a format specification delimited by
apostrophes contains an apostrophe edit descriptor, two apostrophes must be written to delimit the apostrophe
edit descriptor and four apostrophes must be written for each apostrophe that occurs within the apostrophe edit
descriptor. For example, the text: 

2 ISN’T 3 

may be written by various combinations of output statements and format specifications: 

WRITE (6, 100) 2, 3 
100 FORMAT (1X, I1, 1X, ’ISN’’T’, 1X, I1) 
 

WRITE (6, ’(1X, I1, 1X, ’’ISN’’’’T’’, 1X, I1)’) 2, 3 
 

WRITE (6, ’(A)’) ’ 2 ISN’’T 3’ 

Note that doubling of internal apostrophes usually may be avoided by using quotation marks to delimit the
format specification and doubling of internal quotation marks usually may be avoided by using apostrophes as
delimiters. 

C.10.2 T edit descriptor (10.6.1.1) 

The T edit descriptor includes the vertical spacing character (9.4.5) in lines that are to be printed. T1 specifies the
vertical spacing character and T2 specifies the first character that is printed. 



ISO/IEC 1539 : 1991 (E)

274

C.10.3 Length of formatted records 

The length of a formatted record is not always specified exactly and may be processor dependent (10.8.2, 10.9.2). 

C.10.4 Number of records (10.3, 10.4, 10.6.2) 

The number of records read by an explicitly formatted advancing input statement can be determined from the
following rule: a record is read at the beginning of the format scan (even if the input list is empty), at each slash
edit descriptor encountered in the format, and when a format rescan occurs at the end of the format. 

The number of records written by an explicitly formatted advancing output statement can be determined from the
following rule: a record is written when a slash edit descriptor is encountered in the format, when a format rescan
occurs at the end of the format, and at completion of execution of the output statement (even if the output list is
empty). Thus, the occurrence of n successive slashes between two other edit descriptors causes n – 1 blank lines
if the records are printed. The occurrence of n slashes at the beginning or end of a complete format specification
causes n blank lines if the records are printed. However, a complete format specification containing n slashes
(n > 0) and no other edit descriptors causes n + 1 blank lines if the records are printed. For example, the
statements 

PRINT 3 
3 FORMAT (/) 

will write two records that cause two blank lines if the records are printed. 

C.10.5 List-directed input/output (10.8) 

List-directed input/output allows data editing according to the type of the list item instead of by a format
specifier. It also allows data to be free-field, that is, separated by commas or blanks. 

If no list items are specified in a list-directed input/output statement, one input record is skipped or one empty
output record is written. 

C.10.6 List-directed input (10.8.1) 

The following examples illustrate list-directed input. A blank character is represented by b. 

Example 1: 

Program: 

J = 3 
READ *, I 
READ *, J 

Sequential input file: 

record 1: b1b,4bbbbb 
record 2: ,2bbbbbbbb 

Result: I = 1, J = 3. 

Explanation: The second READ statement reads the second record. The initial comma in the record designates a
null value; therefore, J is not redefined. 

Example 2: 

Program: 

CHARACTER A *8, B *1 
READ *, A, B 

Sequential input file: 



ISO/IEC 1539 : 1991 (E)

275

record 1: ’bbbbbbbb’ 

record 2: ’QXY’b’Z’ 

Result: A = ’bbbbbbbb’, B = ’Q’ 

Explanation: In the first record, the rightmost apostrophe is interpreted as delimiting the constant (it cannot be
the first of a pair of embedded apostrophes representing a single apostrophe because this would involve the
prohibited “splitting” of the pair by the end of a record); therefore, A is set to the character constant ’bbbbbbbb’.
The end of a record acts as a blank, which in this case is a value separator because it occurs between two
constants. 

C.10.7 Namelist list items for character input (10.9.1.3) 

Corresponding to a namelist input list item of character data type, the character constant must be delimited either
with apostrophes or with quotes. The delimiter is required to avoid ambiguity between undelimited character
constants and object names. The value of the DELIM= specifier, if any, in the OPEN statement for an external
file is ignored during namelist input (9.3.4.9). 

C.10.8 Namelist output records (10.9.2.2) 

Namelist output records produced with a DELIM= specifier with a value of NONE and which contain a character
constant may not be acceptable as namelist input records. 

C.11 Section 11 notes 

C.11.1 Main program and block data program unit (11.1, 11.4) 

The name of the main program or of a block data program unit has no explicit use within the Fortran language.
It is available for documentation and for possible use by a processor. 

A processor may implement an unnamed main program or unnamed block data program unit by assigning it a
default name. However, this name must not conflict with any other global name in a standard-conforming
executable program. This might be done by making the default name one which is not permitted in a standard-
conforming program (for example, by including a character not normally allowed in names) or by providing
some external mechanism such that for any given program the default name can be changed to one that is
otherwise unused. 

C.11.2 Dependent compilation (11.3) 

This standard, like its predecessors, is intended to permit the implementation of conforming processors in which
a program can be broken into multiple units, each of which can be separately translated in preparation for
execution. Such processors are commonly described as supporting separate compilation. There is an important
difference between the way separate compilation can be implemented under this standard and the way it could be
implemented under the previous standards. Under the previous standards, any information required to translate a
program unit was specified in that program unit. Each translation was thus totally independent of all others.
Under this standard, a program unit can use information that was specified in a separate module and thus may be
dependent on that module. The implementation of this dependency in a processor may be that the translation of
a program unit may depend on the results of translating one or more modules. Processors implementing the
dependency this way are commonly described as supporting dependent compilation. 

The dependencies involved here are new only in the sense that the Fortran processor is now aware of them. The
same information dependencies existed under the previous standards, but it was the programmer’s responsibility
to transport the information necessary to resolve them by making redundant specifications of the information in
multiple program units. The availability of separate but dependent compilation offers several potential
advantages over the redundant textual specification of information: 



ISO/IEC 1539 : 1991 (E)

276

(1) Specifying information at a single place in the program ensures that different program units using
that information will be translated consistently. Redundant specification leaves the possibility that
different information will erroneously be specified. Even if some kind of textual inclusion facility is
used to ensure that the text of the specifications is identical in all involved program units, the
presence of other specifications (for example, an IMPLICIT statement) may change the
interpretation of that text. 

(2) During the revision of a program, it is possible for a processor to assist in determining whether
different program units have been translated using different (incompatible) versions of a module,
although there is no requirement that a processor provide such assistance. Inconsistencies in
redundant textual specification of information, on the other hand, tend to be much more difficult to
detect. 

(3) Putting information in a module provides a way of packaging it. Without modules, redundant
specifications frequently must be interleaved with other specifications in a program unit, making
convenient packaging of such information difficult. 

(4) Because a processor may be implemented such that the specifications in a module are translated
once and then repeatedly referenced, there is the potential for greater efficiency than when the
processor must translate redundant specifications of information in multiple program units. 

The exact meaning of the requirement that the public portions of a module be available at the time of reference
is processor defined. For example, a processor could consider a module to be available only after it has been
compiled and require that if the module has been compiled separately, the result of that compilation must be
identified to the compiler when compiling program units that use it. 

C.11.2.1 USE statement and dependent compilation (11.3.2) 

Another benefit of the USE statement is its enhanced facilities for name management. If one needs to use only
selected entities in a module, one can do so without having to worry about the names of all the other entities in
that module. If one needs to use two different modules that happen to contain entities with the same name, there
are several ways to deal with the conflict. If none of the entities with the same name are to be used, they can
simply be ignored. If the name happens to refer to the same entity in both modules (for example, if both modules
obtained it from a third module), then there is no confusion about what the name denotes and the name can be
freely used. If the entities are different and one or both is to be used, the local renaming facility in the USE
statement makes it possible to give those entities different names in the program unit containing the USE
statements. 

A typical implementation of dependent but separate compilation may involve storing the result of translating a
module in a file (or file element) whose name is derived from the name of the module. Note, however, that the
name of a module is limited only by the Fortran rules and not by the names allowed in the file system. Thus the
processor may have to provide a mapping between Fortran names and file system names. 

The result of translating a module could reasonably either contain only the information textually specified in the
module (with “pointers” to information originally textually specified in other modules) or contain all information
specified in the module (including copies of information originally specified in other modules). Although the
former approach would appear to save on storage space, the latter approach can greatly simplify the logic
necessary to process a USE statement and can avoid the necessity of imposing a limit on the logical “nesting” of
modules via the USE statement. 

Variables declared in a module retain their definition status on much the same basis as variables in a common
block. That is, saved variables retain their definition status throughout the execution of a program, while
variables that are not saved retain their definition status only during the execution of scoping units that reference
the module. In some cases, it may be appropriate to put a USE statement such as 

USE MY_MODULE, ONLY: 



ISO/IEC 1539 : 1991 (E)

277

in a scoping unit in order to assure that other procedures that it references can communicate through the module.
In such a case, the scoping unit would not access any entities from the module, but the variables not saved in the
module would retain their definition status throughout the execution of the scoping unit. 

There is an increased potential for undetected errors in a scoping unit that uses both implicit typing and the USE
statement. For example, in the program fragment 

SUBROUTINE SUB 
USE MY_MODULE 
IMPLICIT INTEGER (I-N), REAL (A-H, O-Z) 
X = F (B) 
A = G (X) + H (X + 1) 

END SUBROUTINE 

X could be either an implicitly typed real variable or a variable obtained from the module MY_MODULE and
might change from one to the other because of changes in MY_MODULE unrelated to the action performed by
SUB. Logic errors resulting from this kind of situation can be extremely difficult to locate. Thus, the use of these
features together is discouraged. 

C.11.2.2 Accessibility attributes (11.3.1) 

The PUBLIC and PRIVATE attributes, which can be declared only in modules, divide the entities in a module
into those which are actually relevant to a scoping unit referencing the module and those that are not. This
information may be used to improve the performance of a Fortran processor. For example, it may be possible to
discard much of the information on the private entities once a module has been translated, thus saving on both
storage and the time to search it. Similarly, it may be possible to recognize that two versions of a module differ
only in the private entities they contain and avoid retranslating program units that use that module when
switching from one version of the module to the other. 

C.11.3 Pointers in modules 

A pointer from a module program unit may be accessible in a procedure via use association. Such pointers have
a lifetime that is greater than targets that are declared in the procedure, unless such targets are saved. Therefore,
if such a pointer is associated with a local target, there is the possibility that when the procedure completes
execution, the target will cease to exist, leaving the pointer “dangling”. This standard considers such pointers to
be in an undefined state. They are neither associated nor disassociated. They must not be used again in the
program until their status has been reestablished. There is no requirement on a processor to be able to detect
when a pointer target ceases to exist. 

C.11.4 Example of a module (11.3) 

In addition to providing a portable means of avoiding the redundant specification of information in multiple
program units, a module provides a convenient means of “packaging” related entities, such as the definitions of
the representation and operations of an abstract data type. The following example of a module defines a data
abstraction for a SET data type where the elements of each set are of type integer. The standard set operations of
UNION, INTERSECTION, and DIFFERENCE are provided. The CARDINALITY function returns the
cardinality of (number of elements in) its set argument. Two functions returning logical values are included,
ELEMENT and SUBSET. ELEMENT defines the operator .IN. and SUBSET extends the operator <=.
ELEMENT determines if a given scalar integer value is an element of a given set, and SUBSET determines if a
given set is a subset of another given set. (Two sets may be checked for equality by comparing cardinality and
checking that one is a subset of the other, or checking to see if each is a subset of the other.) 

The transfer function SETF converts a vector of integer values to the corresponding set, with duplicate values
removed. Thus, a vector of constant values can be used as set constants. An inverse transfer function VECTOR
returns the elements of a set as a vector of values in ascending order. In this SET implementation, set data objects
have a maximum cardinality of 200. 



ISO/IEC 1539 : 1991 (E)

278

MODULE INTEGER_SETS 
! This module is intended to illustrate use of the module facility 
! to define a new data type, along with suitable operators. 
 
INTEGER, PARAMETER :: MAX_SET_CARD = 200 
 
TYPE SET ! Define SET data type 

PRIVATE 
INTEGER CARD 
INTEGER ELEMENT (MAX_SET_CARD) 

END TYPE SET 
 
INTERFACE OPERATOR (.IN.) 

MODULE PROCEDURE ELEMENT 
END INTERFACE 
 
INTERFACE OPERATOR (<=) 

MODULE PROCEDURE SUBSET 
END INTERFACE 
 
INTERFACE OPERATOR (+) 

MODULE PROCEDURE UNION 
END INTERFACE 
 
INTERFACE OPERATOR (-) 

MODULE PROCEDURE DIFFERENCE 
END INTERFACE 
 
INTERFACE OPERATOR (*) 

MODULE PROCEDURE INTERSECTION 
END INTERFACE 
 
CONTAINS 
 
INTEGER FUNCTION CARDINALITY (A) ! Returns cardinality of set A 

TYPE (SET) A 
CARDINALITY = A % CARD 

END FUNCTION CARDINALITY 
 
LOGICAL FUNCTION ELEMENT (X, A) ! Determines if 

INTEGER X ! element X is in set A 
TYPE (SET) A 
ELEMENT = ANY (A % ELEMENT (1 : A % CARD) .EQ. X) 

END FUNCTION ELEMENT 
 
FUNCTION UNION (A, B) ! Union of sets A and B 

TYPE (SET) A, B, UNION 
INTEGER J 
UNION = A 
DO J = 1, B % CARD 

IF (.NOT. (B % ELEMENT (J) .IN. A)) THEN 
IF (UNION % CARD < MAX_SET_CARD) THEN 

UNION % CARD = UNION % CARD + 1 
UNION % ELEMENT (UNION % CARD) = & 



ISO/IEC 1539 : 1991 (E)

279

B % ELEMENT (J) 
ELSE 

! Maximum set size exceeded . . . 
END IF 

END IF 
END DO 

END FUNCTION UNION 
 
FUNCTION DIFFERENCE (A, B) ! Difference of sets A and B 

TYPE (SET) A, B, DIFFERENCE 
INTEGER J, X 
DIFFERENCE % CARD = 0 ! The empty set 
DO J = 1, A % CARD 

X = A % ELEMENT (J) 
IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET (1, X) 

END DO 
END FUNCTION DIFFERENCE 
 
FUNCTION INTERSECTION (A, B) ! Intersection of sets A and B 

TYPE (SET) A, B, INTERSECTION 
INTERSECTION = A - (A - B) 

END FUNCTION INTERSECTION 
 
LOGICAL FUNCTION SUBSET (A, B) ! Determines if set A is 

TYPE (SET) A, B ! a subset of set B 
INTEGER I 
SUBSET = A % CARD <= B % CARD 
IF (.NOT. SUBSET) RETURN ! For efficiency 
DO I = 1, A % CARD 

SUBSET = SUBSET .AND. (A % ELEMENT (I) .IN. B) 
END DO 

END FUNCTION SUBSET 
 
TYPE (SET) FUNCTION SETF (V) ! Transfer function between a vector 

INTEGER V (:) ! of elements and a set of elements 
INTEGER J ! removing duplicate elements 
SETF % CARD = 0 
DO J = 1, SIZE (V) 

IF (.NOT. (V (J) .IN. SETF)) THEN 
IF (SETF % CARD < MAX_SET_CARD) THEN 

SETF % CARD = SETF % CARD + 1 
SETF % ELEMENT (SETF % CARD) = V (J) 

ELSE 
! Maximum set size exceeded . . . 

END IF 
END IF 

END DO 
END FUNCTION SETF 
 
FUNCTION VECTOR (A) ! Transfer the values of set A 

TYPE (SET) A ! into a vector in ascending order 
INTEGER, POINTER :: VECTOR (:) 
INTEGER I, J, K 
ALLOCATE (VECTOR (A % CARD)) 



ISO/IEC 1539 : 1991 (E)

280

VECTOR = A % ELEMENT (1 : A % CARD) 
DO I = 1, A % CARD - 1 ! Use a better sort if 

DO J = I + 1, A % CARD ! A % CARD is large 
IF (VECTOR (I) > VECTOR (J)) THEN 

K = VECTOR (J); VECTOR (J) = VECTOR (I); VECTOR (I) = K 
END IF 

END DO 
END DO 

END FUNCTION VECTOR 
 
END MODULE INTEGER_SETS 
 

Examples of using INTEGER_SETS (A, B, and C are variables of type SET; X is an integer variable): 

! Check to see if A has more than 10 elements 
IF (CARDINALITY (A) > 10) ... 
 
! Check for X an element of A but not of B 
IF (X .IN. (A - B)) ... 
 
! C is the union of A and the result of B intersected 
! with the integers 1 to 100 
C = A + B * SETF ((/ (I, I = 1, 100) /)) 
 
! Does A have any even numbers in the range 1:100? 
IF (CARDINALITY (A * SETF ((/ (I, I = 2, 100, 2) /))) > 0) ... 
 
PRINT *, VECTOR (B) ! Print out the elements of set B, in ascending order 

C.12 Section 12 notes 

C.12.1 Examples of host association (12.1.2.2.1) 

The first two examples are examples of valid host association. The third example is an example of invalid host
association. 

Example 1: 

PROGRAM A 
INTEGER I, J 
... 

CONTAINS 
SUBROUTINE B 

INTEGER I ! Declaration of I hides 
! program A’s declaration of I 

... 
I = J ! Use of variable J from program A 

! through host association 
END SUBROUTINE B 

END PROGRAM A 

Example 2: 

PROGRAM A 
TYPE T 



ISO/IEC 1539 : 1991 (E)

281

... 
END TYPE T 
... 

CONTAINS 
SUBROUTINE B 

IMPLICIT TYPE (T) (C) ! Refers to type T declared below 
! in subroutine B, not type T 
! declared above in program A 

... 
TYPE T 

... 
END TYPE T 

... 
END SUBROUTINE B 

END PROGRAM A 

Example 3: 

PROGRAM Q 
REAL (KIND = 1) :: C 

... 
CONTAINS 

SUBROUTINE R 
REAL (KIND = KIND (C)) :: D ! Invalid declaration 

! See below 
REAL (KIND = 2) :: C 

... 
END SUBROUTINE R 

END PROGRAM Q 

In the declaration of D in subroutine R, the use of C would refer to the declaration of C in subroutine R, not
program Q. However, it is invalid because the declaration of C must occur before it is used in the declaration of
D. 

C.12.2 External procedures (12.3.2.2) 

Of the various types of procedures described in this section, only external procedures have global names. An
implementation may wish to assign global names to other entities in the Fortran program such as internal
procedures, intrinsic procedures, procedures implementing intrinsic operators, procedures implementing
input/output operations, etc. If this is done, it is the responsibility of the processor to ensure that none of these
names conflicts with any of the names of the external procedures, with other globally named entities in a
standard-conforming program, or with each other. For example, this might be done by including in each such
added name a character that is not allowed in a standard-conforming name or by using such a character to
combine a local designation with the global name of the program unit in which it appears. 

There is a potential portability problem in a scoping unit that references an external procedure without declaring
it in either an EXTERNAL statement or a procedure interface block. On a different processor, the name of that
procedure may be the name of a nonstandard intrinsic procedure and the processor would be permitted to
interpret those procedure references as references to that intrinsic procedure. (On that processor, the program
would also be viewed as not conforming to the standard because of the references to the nonstandard intrinsic
procedure.) Declaration in an EXTERNAL statement or a procedure interface block causes the references to be
to the external procedure regardless of the availability of an intrinsic procedure with the same name. Note that
declaration of the type of a procedure is not enough to make it external, even if the type is inconsistent with the
type of the result of an intrinsic of the same name. 



ISO/IEC 1539 : 1991 (E)

282

C.12.3 Procedures defined by means other than Fortran (12.5.3) 

A processor is not required to provide any means other than Fortran for defining external procedures. Among the
means that might be supported are the machine assembly language, other high level languages, the Fortran
language extended with nonstandard features, and the Fortran language as supported by another Fortran
processor (for example, a previously existing FORTRAN 77 processor). 

Procedures defined by means other than Fortran are considered external procedures because their definitions are
not contained within a Fortran program unit and because they are referenced using global names. The use of the
term external should not be construed as any kind of restriction on the way in which these procedures may be
defined. For example, if the means other than Fortran has its own facilities for internal and external procedures,
it is permissible to use them. If the means other than Fortran can create an “internal” procedure with a global
name, it is permissible for such an “internal” procedure to be considered by Fortran to be an external procedure.
The means other than Fortran for defining external procedures, including any restrictions on the structure for
organization of those procedures, are entirely processor dependent. 

A Fortran processor may limit its support of procedures defined by means other than Fortran such that these
procedures may affect entities in the Fortran environment only on the same basis as procedures written in
Fortran. For example, it might prohibit the value of a local variable from being changed by a procedure reference
unless that variable were one of the arguments to the procedure. 

C.12.4 Procedure interfaces (12.3) 

In FORTRAN 77, the interface to an external procedure was always deduced from the form of references to that
procedure and any declarations of the procedure name in the referencing program unit. In this standard, features
such as argument keywords and optional arguments make it impossible to deduce sufficient information about the
dummy arguments from the nature of the actual arguments to be associated with them, and features such as
array-valued function results and pointer function results make necessary extensions to the declaration of a
procedure that cannot be done in a way that would be analogous with the handling of such declarations in
FORTRAN 77. Hence, mechanisms are provided through which all the information about a procedure’s interface
may be made available in a scoping unit that references it. A procedure whose interface must be deduced as in
FORTRAN 77 is described as having an implicit interface. A procedure whose interface is fully known is described
as having an explicit interface. 

A scoping unit is allowed to contain a procedure interface block for procedures that do not exist in the executable
program, provided the procedure described is never referenced. The purpose of this rule is to allow
implementations in which the use of a module providing procedure interface blocks describing the interface of
every routine in a library would not automatically cause each of those library routines to be a part of the program
referencing the module. Instead, only those library procedures actually referenced would be a part of the
executable program. (In implementation terms, the mere presence of a procedure interface block would not
generate an external reference in such an implementation.) 

C.12.5 Argument association and evaluation (12.4.1) 

There is a significant difference between the argument association allowed in this standard and that supported by
FORTRAN 77 and FORTRAN 66. In FORTRAN 77 and 66, actual arguments were limited to consecutive storage units.
With the exception of assumed length character dummy arguments, the structure imposed on that sequence of
storage units was always determined in the invoked procedure and not taken from the actual argument. Thus it
was possible to implement FORTRAN 66 and FORTRAN 77 argument association by supplying only the location of
the first storage unit (except for character arguments, where the length would also have to be supplied). However,
this standard allows arguments that do not reside in consecutive storage locations (for example, an array section),
and dummy arguments that assume additional structural information from the actual argument (for example,
assumed-shape dummy arguments). Thus, the mechanism to implement the argument association allowed in this
standard must be more general. 

Because there are practical advantages to a processor that can support references to and from procedures defined
by a FORTRAN 77 processor, requirements for explicit interfaces have been added to make it possible to determine



ISO/IEC 1539 : 1991 (E)

283

whether a simple (FORTRAN 66/FORTRAN 77) argument association implementation mechanism is sufficient or
whether the more general mechanism is necessary (12.3.1.1). Thus a processor can be implemented whose
procedures expect the simple mechanism to be used whenever the procedure’s interface is one which uses only
FORTRAN 77 features and which expects the more general mechanism otherwise (for example, if there are
assumed-shape or optional arguments). At the point of reference, the appropriate mechanism can be determined
from the interface if it is explicit and can be assumed to be the simple mechanism if it is not. Note that if the
simple mechanism is determined to be what the procedure expects, it may be necessary for the processor to
allocate consecutive temporary storage for the actual argument, copy the actual argument to the temporary
storage, reference the procedure using the temporary storage in place of the actual argument, copy the contents
of temporary storage back to the actual argument, and deallocate the temporary storage. 

Note that while this is the specific implementation method these rules were designed to support, it is not the only
one possible. For example, on some processors, it may be possible to implement the general argument association
in such a way that the information involved in FORTRAN 77 argument association may be found in the same places
and the “extra” information is placed so it does not disturb a procedure expecting only FORTRAN 77 argument
association. With such an implementation, argument association could be translated without regard to whether
the interface is explicit or implicit. Alternatively, it would be possible to disallow discontiguous arguments when
calling procedures defined by the FORTRAN 77 processor and let any copying to and from contiguous storage be
done explicitly in the program. Yet another possibility would be not to allow references to procedures defined by
a FORTRAN 77 processor. 

The provisions for expression evaluation give the processor considerable flexibility for obtaining expression
values in the most efficient way possible. This includes not evaluating or only partially evaluating an operand,
for example, if the value of the expression can be determined otherwise (7.1.7.1). This flexibility applies to
function argument evaluation, including the order of argument evaluation, delaying argument evaluation, and
omitting argument evaluation. A processor may delay the evaluation of an argument in a procedure reference
until the execution of the procedure refers to the value of that argument, provided delaying the evaluation of the
argument does not otherwise affect the results of the executable program. The processor may, with similar
restrictions, entirely omit the evaluation of an argument not referenced in the execution of the procedure. This
gives processors latitude for optimization (for example, for parallel processing). 

Note that successive commas must not be used to omit optional arguments. 

C.12.6 Argument intent specification (12.4.1.1) 

Argument intent specifications serve several purposes in addition to documenting the intended use of dummy
arguments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could
redefine it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy
argument could possibly be referenced before it is defined. If the procedure’s interface is explicit, the processor
can also verify that actual arguments corresponding to INTENT (OUT) or INTENT (INOUT) dummy arguments
are definable. A more sophisticated processor could use this information to optimize the translation of the
referencing scoping unit by taking advantage of the fact that actual arguments corresponding to INTENT (IN)
dummy arguments will not be changed and that any prior value of an actual argument corresponding to an
INTENT (OUT) dummy argument will not be referenced and can thus be discarded. 

Note that INTENT (OUT) means that the value of the argument after invoking the procedure is entirely the result
of executing that procedure. If there is any possibility that an argument should retain its current value rather than
being redefined, INTENT (INOUT) should be used rather than INTENT (OUT), even if there is no explicit
reference to the value of the dummy argument. 

Note also that INTENT (INOUT) is not equivalent to the default. The argument corresponding to an INTENT
(INOUT) dummy argument always must be definable, while an argument corresponding to a dummy argument
with default intent need be definable only if the dummy argument is actually redefined. 



ISO/IEC 1539 : 1991 (E)

284

C.12.7 Dummy argument restrictions (12.5.2.9) 

The restrictions on entities associated with dummy arguments are intended to allow a processor to translate a
procedure on the assumption that each dummy argument is distinct from any other entity accessible in the
procedure. This allows a variety of optimizations in the translation of the procedure, including implementations
of argument association in which the value of the actual argument is maintained in a register or in local storage. 

C.12.8 Pointers and targets as arguments 

If a dummy argument is declared to be a pointer, it may be matched only by an actual argument that also is a
pointer, and the characteristics of both arguments must agree. A model for such an association is that descriptor
values of the actual pointer are copied to the dummy pointer. If the actual pointer has an associated target, this
target becomes accessible via the dummy pointer. If the dummy pointer becomes associated with a different
target during execution of the procedure, this target will be accessible via the actual pointer after the procedure
completes execution. If the dummy pointer becomes associated with a local target that ceases to exist when the
procedure completes, the actual pointer will be left dangling in an undefined state. Such dangling pointers must
not be used. 

Since it is intended to allow implementations to make local copies of actual arguments, a pointer that is
associated with a nonpointer actual argument is not associated with its corresponding dummy argument, since
that latter might be stored in a local copy. Similarly, on return, a pointer that is associated with a nonpointer
dummy argument becomes undefined, since the dummy argument may have been kept in a local copy that is no
longer available. If it is required to maintain such pointer association, the dummy argument should be replaced
by a pointer to the target object. For example, consider the procedure 

SUBROUTINE BEST (P, A) 
REAL, POINTER :: P 
REAL, TARGET :: A (:) 

... ! Find the best element, A(I) 
P => A (I) 
RETURN 

END 

and the invocation 

REAL, POINTER :: PBEST 
REAL, TARGET :: B (10000) 

... 
CALL BEST (PBEST, B) 

This leaves PBEST undefined. However, if A is given the attribute POINTER instead of TARGET: 

SUBROUTINE BEST (P, A) 
REAL, POINTER :: P 
REAL, POINTER :: A (:) 

... ! Find the best element, A(I) 
P => A (I) 
RETURN 

END 

the invocation 

REAL, POINTER :: PB (:), PBEST 
REAL, TARGET :: B (10000) 
PB => B 

... ! Calculate B 
CALL BEST (PBEST, PB) 

leaves PBEST associated with the “best” element of B. 



ISO/IEC 1539 : 1991 (E)

285

C.12.9 The ASSOCIATED function (13.13.13) 

The ASSOCIATED intrinsic function may be used to test whether a pointer is associated with a target. The one-
argument form is used for this purpose. In the two-argument form, the ASSOCIATED function tests whether the
pointer first argument is associated with the space that is referred to by the second argument. In most cases, it
will be used to test if two pointers are associated with the same target. 

C.12.10 Internal procedure restrictions 

This standard does not allow internal procedures to be used as actual arguments, in part to simplify the problem
of ensuring that internal procedures with recursive hosts access entities from the correct instance of the host. If,
as an extension, a processor allows internal procedures to be used as actual arguments, the correct instance in this
case is the instance in which the procedure is supplied as an actual argument, even if the corresponding dummy
argument is eventually invoked from a different instance. 

C.12.11 The result variable (12.5.2.2) 

The result variable is similar to any other variable local to a function subprogram. Its existence begins when
execution of the function is initiated and ends when execution of the function is terminated. However, because
the final value of this variable is used subsequently in the evaluation of the expression that invoked the function,
an implementation may wish to defer releasing the storage occupied by that variable until after its value has been
used in expression evaluation. 

C.13 Section 13 notes 

C.13.1 Summary of features 

This section is a summary of the principal array features. 

C.13.1.1 Whole array expressions and assignments (7.5.1.2, 7.5.1.5) 

An important new feature is that whole array expressions and assignments are permitted. For example, the
statement 

A = B + C * SIN (D) 

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-by-element; that is, the
sine function is taken on each element of D, each result is multiplied by the corresponding element of C, added
to the corresponding element of B, and assigned to the corresponding element of A. Functions, including user-
written functions, may be array valued and may be generic with scalar versions. All arrays in an expression or
across an assignment must conform; that is, have exactly the same shape (number of dimensions and set of
lengths in each dimension), but scalars may be included freely and these are interpreted as being broadcast to a
conforming array. Expressions are evaluated before any assignment takes place. 

C.13.1.2 Array sections (2.4.5, 6.2.2.3) 

Whenever whole arrays may be used, it is also possible to use subarrays called “sections”. For example: 

A (:, 1:N, 2, 3:1:-1) 

consists of a subarray containing the whole of the first dimension, positions 1 to N of the second dimension,
position 2 of the third dimension and positions 1 to 3 in reverse order of the fourth dimension. This is an
artificial example chosen to illustrate the different forms. Of course, a common use may be to select a row or
column of an array, for example: 

A (:, J) 



ISO/IEC 1539 : 1991 (E)

286

C.13.1.3 WHERE statement (7.5.3) 

The WHERE statement applies a conforming logical array as a mask on the individual operations in the
expression and in the assignment. For example: 

WHERE (A .GT. 0) B = LOG (A) 

takes the logarithm only for positive components of A and makes assignments only in these positions. 

The WHERE statement also has a block form (WHERE construct). 

C.13.1.4 Automatic and allocatable arrays (5.1, 5.1.2.4.3) 

A major advance for writing modular software is the presence of automatic arrays, created on entry to a
subprogram and destroyed on return, and allocatable arrays whose rank is fixed but whose actual size and
lifetime is fully under the programmer’s control through explicit ALLOCATE and DEALLOCATE statements.
The declarations 

SUBROUTINE X (N, A, B) 
REAL WORK (N, N); REAL, ALLOCATABLE :: HEAP (:, :) 

specify an automatic array WORK and an allocatable array HEAP. Note that a stack is an adequate storage
mechanism for the implementation of automatic arrays, but a heap will be needed for allocatable arrays. 

C.13.1.5 Array constructors (4.5) 

Arrays, and in particular array constants, may be constructed with array constructors exemplified by: 

(/ 1.0, 3.0, 7.2 /) 

which is a rank-one array of size 3, 

(/ (1.3, 2.7, L = 1, 10), 7.1 /) 

which is a rank-one array of size 21 and contains the pair of real constants 1.3 and 2.7 repeated 10 times
followed by 7.1, and 

(/ (I, I = 1, N) /) 

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this way, but higher
dimensional arrays may be made from them by means of the intrinsic function RESHAPE. 

C.13.1.6 Intrinsic functions 

All of the FORTRAN 77 intrinsic functions except LEN and all of the scalar intrinsic functions that have been
added to the language, except REPEAT and TRIM, have been extended to be applicable to arrays. Each such
function is applied element-by-element to produce an array of the same shape. In addition, the following array
intrinsics have been added, many of which return array-valued results. 

C.13.1.6.1 Vector and matrix multiply functions 

DOT_PRODUCT (VECTOR_A, VECTOR_B) Dot product of two arrays 
MATMUL (MATRIX_A, MATRIX_B) Matrix multiplication 

C.13.1.6.2 Array reduction functions 

ALL (MASK, DIM) True if all values are true 
ANY (MASK, DIM) True if any value is true 
COUNT (MASK, DIM) Number of true elements in an array 
MAXVAL (ARRAY, DIM, MASK) Maximum value in an array 
MINVAL (ARRAY, DIM, MASK) Minimum value in an array 
PRODUCT (ARRAY, DIM, MASK) Product of array elements 



ISO/IEC 1539 : 1991 (E)

287

SUM (ARRAY, DIM, MASK) Sum of array elements 

C.13.1.6.3 Array inquiry functions 

ALLOCATED (ARRAY) Array allocation status 
LBOUND (ARRAY, DIM) Declared lower dimension bounds of an array 
SHAPE (SOURCE) Declared shape of an array or scalar 
SIZE (ARRAY, DIM) Declared total number of array elements 
UBOUND (ARRAY, DIM) Declared upper dimension bounds of an array 

C.13.1.6.4 Array construction functions 

MERGE (TSOURCE, FSOURCE, MASK) Merge under mask 
PACK (ARRAY, MASK, VECTOR) Pack an array into a vector under a mask 
SPREAD (SOURCE, DIM, NCOPIES) Replicates an array by adding a dimension 
UNPACK (VECTOR, MASK, FIELD) Unpack a vector into an array under a mask 

C.13.1.6.5 Array reshape function 

RESHAPE (SOURCE, SHAPE, Reshape an array 
PAD, ORDER) 

C.13.1.6.6 Array manipulation functions 

CSHIFT (ARRAY, SHIFT, DIM) Circular shift 
EOSHIFT (ARRAY, SHIFT, End-off shift 

BOUNDARY, DIM) 
TRANSPOSE (MATRIX) Transpose of matrix 

C.13.1.6.7 Array location functions 

MAXLOC (ARRAY, MASK) Location of a maximum value in an array 
MINLOC (ARRAY, MASK) Location of a minimum value in an array 

C.13.2 Examples 

The array features have the potential to simplify the way that almost any array-using program is conceived and
written. Many algorithms involving arrays can now be written conveniently as a series of computations with
whole arrays. 

C.13.2.1 Unconditional array computations 

At the simplest level, statements such as 

A = B + C 

or 

S = SUM (A) 

can take the place of entire DO loops. The loops were required to perform array addition or to sum all the
elements of an array. 



ISO/IEC 1539 : 1991 (E)

288

Further examples of unconditional operations on arrays that are simple to write are: 

The Fourier sum  may also be computed without writing a DO loop if one makes use of the

element-by-element definition of array expressions as described in Section 7. Thus, we can write 

F = SUM (A * COS (X)) 

The successive stages of calculation of F would then involve the arrays: 

The final scalar result is obtained simply by summing the elements of the last of these arrays. Thus, the processor
is dealing with arrays at every step of the calculation. 

C.13.2.2 Conditional array computations 

Suppose we wish to compute the Fourier sum in the above example, but to include only those terms a(i) cos x(i)
that satisfy the condition that the coefficient a(i) is less than 0.01 in absolute value. More precisely, we are now
interested in evaluating the conditional Fourier sum

where the index runs from 1 to N as before. 

This can be done by using the MASK parameter of the SUM function, which restricts the summation of the
elements of the array A ∗ COS (X) to those elements that correspond to true elements of MASK. Clearly, the
mask required is the logical array expression ABS (A) .LT. 0.01. Note that the stages of evaluation of this
expression are:

The conditional Fourier sum we arrive at is: 

CF = SUM (A * COS (X), MASK = ABS (A) .LT. 0.01) 

If the mask is all false, the value of CF is zero. 

matrix multiply P = MATMUL (Q, R) 

largest array element L = MAXVAL (P) 

factorial N F = PRODUCT ((/ (K, K = 2, N) /)) 

A  = (/ A (1), ..., A (N) /) 

X  = (/ X (1), ..., X (N) /) 

COS (X)  = (/ COS (X (1)), ..., COS (X (N)) /) 

A * COS (X)  = (/ A (1) * COS (X (1)), ..., A (N) * COS (X (N)) /) 

A  = (/ A (1), ..., A (N) /) 

ABS (A)  = (/ ABS (A (1)), ..., ABS (A (N)) /) 

ABS (A) .LT. 0.01  = (/ ABS (A (1)) .LT. 0.01, ..., ABS (A (N)) .LT. 0.01 /) 

F ai xicos×

i 1=

N

∑=

CF ai xicos×
ai 0.01<

∑=



ISO/IEC 1539 : 1991 (E)

289

The use of a mask to define a subset of an array is crucial to the action of the WHERE statement. Thus for
example, to set an entire array to zero, we may write simply A = 0; but to set only the negative elements to zero,
we need to write the conditional assignment 

WHERE (A .LT. 0) A = 0 

The WHERE statement complements ordinary array assignment by providing array assignment to any subset of
an array that can be restricted by a logical expression. 

In the Ising model described below, the WHERE statement predominates in use over the ordinary array
assignment statement. 

C.13.2.3 A simple program: the Ising model 

The Ising model is a well-known Monte Carlo simulation in 3-dimensional Euclidean space which is useful in
certain physical studies. We will consider in some detail how this might be programmed. The model may be
described in terms of a logical array of shape N by N by N. Each gridpoint is a single logical variable which is
to be interpreted as either an up-spin (true) or a down-spin (false). 

The Ising model operates by passing through many successive states. The transition to the next state is governed
by a local probabilistic process. At each transition, all gridpoints change state simultaneously. Every spin either
flips to its opposite state or not according to a rule that depends only on the states of its 6 nearest neighbors in
the surrounding grid. The neighbors of gridpoints on the boundary faces of the model cube are defined by
assuming cubic periodicity. In effect, this extends the grid periodically by replicating it in all directions
throughout space. 

The rule states that a spin is flipped to its opposite parity for certain gridpoints where a mere 3 or fewer of the 6
nearest neighbors currently have the same parity as it does. Also, the flip is executed only with probability P (4),
P (5), or P (6) if as many as 4, 5, or 6 of them have the same parity as it does. (The rule seems to promote
neighborhood alignments that may presumably lead to equilibrium in the long run.) 

C.13.2.3.1 Problems to be solved 

Some of the programming problems that we will need to solve in order to translate the Ising model into Fortran
statements using entire arrays are: 

(1) Counting nearest neighbors that have the same spin; 

(2) Providing an array-valued function to return an array of random numbers; and 

(3) Determining which gridpoints are to be flipped. 

C.13.2.3.2 Solutions in Fortran 

The arrays needed are: 

LOGICAL ISING (N, N, N), FLIPS (N, N, N) 
INTEGER ONES (N, N, N), COUNT (N, N, N) 
REAL THRESHOLD (N, N, N) 

The array-valued function needed is: 

FUNCTION RAND (N) 
REAL RAND (N, N, N) 

The transition probabilities are specified in the array 

REAL P (6) 

The first task is to count the number of nearest neighbors of each gridpoint g that have the same spin as g. 

Assuming that ISING is given to us, the statements 



ISO/IEC 1539 : 1991 (E)

290

ONES = 0 
WHERE (ISING) ONES = 1 

make the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0 for a down-spin. 

The next array we construct, COUNT, will record for every gridpoint of ISING the number of spins to be found
among the 6 nearest neighbors of that gridpoint. COUNT will be computed by adding together 6 arrays, one for
each of the 6 relative positions in which a nearest neighbor is found. Each of the 6 arrays is obtained from the
ONES array by shifting the ONES array one place circularly along one of its dimensions. This use of circular
shifting imparts the cubic periodicity. 

COUNT = CSHIFT (ONES, SHIFT = -1, DIM = 1) & 
+ CSHIFT (ONES, SHIFT = 1, DIM = 1) & 
+ CSHIFT (ONES, SHIFT = -1, DIM = 2) & 
+ CSHIFT (ONES, SHIFT = 1, DIM = 2) & 
+ CSHIFT (ONES, SHIFT = -1, DIM = 3) & 
+ CSHIFT (ONES, SHIFT = 1, DIM = 3) 

At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints where the Ising
model has a down-spin. But we want a count of down-spins at those gridpoints, so we correct COUNT at the
down (false) points of ISING by writing: 

WHERE (.NOT. ISING) COUNT = 6 - COUNT 

Our object now is to use these counts of what may be called the “like-minded nearest neighbors” to decide which
gridpoints are to be flipped. This decision will be recorded as the true elements of an array FLIP. The decision to
flip will be based on the use of uniformly distributed random numbers from the interval . These will be
provided at each gridpoint by the array-valued function RAND. The flip will occur at a given point if and only if
the random number at that point is less than a certain threshold value. In particular, by making the threshold
value equal to 1 at the points where there are 3 or fewer like-minded nearest neighbors, we guarantee that a flip
occurs at those points (because p is always less than 1). Similarly, the threshold values corresponding to counts
of 4, 5, and 6 are set to P (4), P (5), and P (6) in order to achieve the desired probabilities of a flip at those points
(P (4), P (5), and P (6) are input parameters in the range 0 to 1).

The thresholds are established by the statements: 

THRESHOLD = 1.0 
WHERE (COUNT .EQ. 4) THRESHOLD = P (4) 
WHERE (COUNT .EQ. 5) THRESHOLD = P (5) 
WHERE (COUNT .EQ. 6) THRESHOLD = P (6) 

and the spins that are to be flipped are located by the statement: 

FLIPS = RAND (N) .LE. THRESHOLD 

All that remains to complete one transition to the next state of the ISING model is to reverse the spins in ISING
wherever FLIPS is true: 

WHERE (FLIPS) ISING = .NOT. ISING 

C.13.2.3.3 The complete Fortran subroutine 

The complete code, enclosed in a subroutine that performs a sequence of transitions, is as follows: 

SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P) 
 

LOGICAL ISING (N, N, N), FLIPS (N, N, N) 
INTEGER ONES (N, N, N), COUNT (N, N, N) 
REAL THRESHOLD (N, N, N), P (6) 

 
DO I = 1, ITERATIONS 

0 p 1<≤



ISO/IEC 1539 : 1991 (E)

291

ONES = 0 
WHERE (ISING) ONES = 1 
COUNT = CSHIFT (ONES, -1, 1) + CSHIFT (ONES, 1, 1) & 

+ CSHIFT (ONES, -1, 2) + CSHIFT (ONES, 1, 2) & 
+ CSHIFT (ONES, -1, 3) + CSHIFT (ONES, 1, 3) 

WHERE (.NOT. ISING) COUNT = 6 - COUNT 
THRESHOLD = 1.0 
WHERE (COUNT .EQ. 4) THRESHOLD = P (4) 
WHERE (COUNT .EQ. 5) THRESHOLD = P (5) 
WHERE (COUNT .EQ. 6) THRESHOLD = P (6) 
FLIPS = RAND (N) .LE. THRESHOLD 
WHERE (FLIPS) ISING = .NOT. ISING 

END DO 
 
CONTAINS 

FUNCTION RAND (N) 
REAL RAND (N, N, N) 
CALL RANDOM_NUMBER (HARVEST = RAND) 
RETURN 

END FUNCTION RAND 
END 

C.13.2.3.4 Reduction of storage 

The array ISING could be removed (at some loss of clarity) by representing the model in ONES all the time. The
array FLIPS can be avoided by combining the two statements that use it as: 

WHERE (RAND (N) .LE. THRESHOLD) ISING = .NOT. ISING 

but an extra temporary array would probably be needed. Thus, the scope for saving storage while performing
whole array operations is limited. If N is small, this will not matter and the use of whole array operations is
likely to lead to good execution speed. If N is large, storage may be very important and adequate efficiency will
probably be available by performing the operations plane by plane. The resulting code is not as elegant, but all

the arrays except ISING will have size of order  instead of .

C.13.3 FORmula TRANslation and array processing 

Many mathematical formulas can be translated directly into Fortran by use of the array processing features. 

We assume the following array declarations: 

REAL X (N), A (M, N) 

Some examples of mathematical formulas and corresponding Fortran expressions follow. 

C.13.3.1 A sum of products 

The expression

can be formed using the Fortran expression

SUM (PRODUCT (A, DIM=1))

The argument DIM=1 means that the product is to be computed down each column of A. If A had the value

N2 N3

aij
i 1=

M

∏
j 1=

N

∑



ISO/IEC 1539 : 1991 (E)

292

the result of this expression is BE + CF + DG. 

C.13.3.2 A product of sums 

The expression

can be formed using the Fortran expression

PRODUCT (SUM (A, DIM = 2)) 

The argument DIM = 2 means that the sum is to be computed along each row of A. If A had the value

the result of this expression is (B+C+D)(E+F+G).

C.13.3.3 Addition of selected elements 

The expression

can be formed using the Fortran expression 

SUM (X, MASK = X .GT. 0.0) 

The mask locates the positive elements of the array of rank one. If X has the vector value (0.0, –0.1, 0.2, 0.3, 0.2,
–0.1, 0.0), the result of this expression is 0.7. 

C.13.4 Sum of squared residuals 

The expression

can be formed using the Fortran statements 

XMEAN = SUM (X) / SIZE (X) 
SS = SUM ((X - XMEAN) ** 2) 

Thus, SS is the sum of the squared residuals. 

B C D
E F G

aij
j 1=

N

∑
i 1=

M

∏

B C D
E F G

xi
xi 0.0>

∑

xi xmean–( )2

i 1=

N

∑



ISO/IEC 1539 : 1991 (E)

293

C.13.5 Vector norms: infinity-norm and one-norm 

The infinity-norm of vector X = (X (1), ..., X (N)) is defined as the largest of the numbers ABS (X (1)), ..., ABS
(X (N)) and therefore has the value MAXVAL (ABS (X)). 

The one-norm of vector X is defined as the sum of the numbers ABS (X (1)), ..., ABS (X (N)) and therefore has
the value SUM ( ABS (X)). 

C.13.6 Matrix norms: infinity-norm and one-norm 

The infinity-norm of the matrix A = (A (I, J)) is the largest row-sum of the matrix ABS (A (I, J)) and therefore
has the value MAXVAL (SUM (ABS (A), DIM = 2)). 

The one-norm of the matrix A = (A (I, J)) is the largest column-sum of the matrix ABS (A (I, J)) and therefore
has the value MAXVAL (SUM (ABS (A), DIM = 1)). 

C.13.7 Logical queries 

The intrinsic functions allow quite complicated questions about tabular data to be answered without use of loops
or conditional constructs. Consider, for example, the questions asked below about a simple tabulation of
students’ test scores. 

Suppose the rectangular table T (M, N) contains the test scores of M students who have taken N different tests.
T is an integer matrix with entries in the range 0 to 100. 

Example: The scores on 4 tests made by 3 students are held as the table

Question: What is each student’s top score? 

Answer: MAXVAL (T, DIM = 2); in the example: [90, 80, 66]. 

Question: What is the average of all the scores? 

Answer: SUM (T) / SIZE (T); in the example: 62. 

Question: How many of the scores in the table are above average? 

Answer: ABOVE = T .GT. SUM (T) / SIZE (T); N = COUNT (ABOVE); in the example: ABOVE is the logical
array (t = true, . = false):

and COUNT (ABOVE) is 6. 

Question: What was the lowest score in the above-average group of scores? 

Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in the example: 66. 

Question: Was there a student whose scores were all above average? 

Answer: With ABOVE as previously defined, the answer is yes or no according as the value of the expression
ANY (ALL (ABOVE, DIM = 2)) is true or false; in the example, the answer is no. 

85 76 90 60
71 45 50 80
66 45 21 55

t t t .
t . . t
t . . .



ISO/IEC 1539 : 1991 (E)

294

C.13.8 Parallel computations 

The most straightforward kind of parallel processing is to do the same thing at the same time to many operands.
Matrix addition is a good example of this very simple form of parallel processing. Thus, the array assignment A
= B + C specifies that corresponding elements of the identically-shaped arrays B and C be added together in
parallel and that the resulting sums be assigned in parallel to the array A. 

The process being done in parallel in the example of matrix addition is of course the process of addition; the
array feature that implements matrix addition as a parallel process is the element-by-element evaluation of array
expressions. 

These observations lead us to look to element-by-element computation as a means of implementing other simple
parallel processing algorithms. 

C.13.9 Example of element-by-element computation 

Several polynomials of the same degree may be evaluated at the same point by arranging their coefficients as the
rows of a matrix and applying Horner’s method for polynomial evaluation to the columns of the matrix so
formed. 

The procedure is illustrated by the code to evaluate the three cubic polynomials

in parallel at the point t = X and to place the resulting vector of numbers [P (X), Q (X), R (X)] in the real array
RESULT (3). 

The code to compute RESULT is just the one statement

RESULT = M (:, 1) + X * (M (:, 2) + X * (M (:, 3) + X * M (:, 4))) 

where M represents the matrix M (3, 4) with value

C.13.10 Bit manipulation and inquiry procedures 

The procedures IOR, IAND, NOT, IEOR, ISHFT, ISHFTC, IBITS, MVBITS, BTEST, IBSET, and IBCLR are
defined by MIL-STD 1753 for scalar arguments and are extended in this standard to accept array arguments and
to return array-valued results. 

C.14 Section 14 notes 

C.14.1 Storage association of zero-sized objects 

Zero-sized objects may occur in a storage association context as the result of changing a parameter. For example,
a program might contain the following declarations: 

INTEGER, PARAMETER :: PROBSIZE = 10 
INTEGER, PARAMETER :: ARRAYSIZE = PROBSIZE * 100 
REAL, DIMENSION (ARRAYSIZE) :: X 

P t( ) 1 2t 3t2– 4t3+ +=

Q t( ) 2 3t– 4t2 5t3–+=

R t( ) 3 4t 5t2– 6t3+ +=

1 2 3– 4
2 3– 4 5–
3 4 5– 6



ISO/IEC 1539 : 1991 (E)

295

INTEGER, DIMENSION (ARRAYSIZE) :: IX 
... 

COMMON / EXAMPLE / A, B, C, X, Y, Z 
EQUIVALENCE (X, IX) 

... 

If the first statement is subsequently changed to set PROBSIZE to zero, the program still will conform to the
standard. 


	1. Overview 1
	1.1 Scope 1
	1.2 Processor 1
	1.3 Inclusions and exclusions 1
	1.3.1 Inclusions 1
	1.3.2 Exclusions 1

	1.4 Conformance 2
	1.4.1 FORTRAN 77 compatibility 3

	1.5 Notation used in this International Standard 3
	1.5.1 Syntax rules Syntax rules 3
	1.5.2 Assumed syntax rules 4
	1.5.3 Syntax conventions and characteristics 5
	1.5.4 Text conventions 5

	1.6 Deleted and obsolescent features 5
	1.6.1 Nature of deleted features 5
	1.6.2 Nature of obsolescent features 5

	1.7 Modules 6
	1.8 Normative references 6

	2. Fortran terms and concepts 7
	2.1 High level syntax 7
	2.2 Program unit concepts 9
	2.2.1 Executable program 10
	2.2.2 Main program 10
	2.2.3 Procedure 10
	2.2.4 Module 10

	2.3 Execution concepts 11
	2.3.1 Executable/nonexecutable statements 11
	2.3.2 Statement order 11
	2.3.3 The END statement 12
	2.3.4 Execution sequence 12

	2.4 Data concepts 12
	2.4.1 Data type 13
	2.4.2 Data value 13
	2.4.3 Data entity 13
	2.4.4 Scalar 14
	2.4.5 Array 14
	2.4.6 Pointer 15
	2.4.7 Storage 15

	2.5 Fundamental terms 15
	2.5.1 Name and designator 15
	2.5.2 Keyword 15
	2.5.3 Declaration 16
	2.5.4 Definition 16
	2.5.5 Reference 16
	2.5.6 Association 16
	2.5.7 Intrinsic 16
	2.5.8 Operator 16
	2.5.9 Sequence 16


	3. Characters, lexical tokens, and source form 17
	3.1 Processor character set 17
	3.1.1 Letters 17
	3.1.2 Digits 17
	3.1.3 Underscore 17
	3.1.4 Special characters 18
	3.1.5 Other characters 18

	3.2 Low-level syntax 18
	3.2.1 Keywords 18
	3.2.2 Names 18
	3.2.3 Constants 19
	3.2.4 Operators 19
	3.2.5 Statement labels 20
	3.2.6 Delimiters Delimiters 20

	3.3 Source form 20
	3.3.1 Free source form 21
	3.3.2 Fixed source form 22

	3.4 Including source text 23

	4. Intrinsic and derived data types 24
	4.1 The concept of data type 24
	4.1.1 Set of values 24
	4.1.2 Constants 24
	4.1.3 Operations 25

	4.2 Relationship of types and values to objects 25
	4.3 Intrinsic data types 25
	4.3.1 Numeric types 25
	4.3.2 Nonnumeric types 29

	4.4 Derived types 31
	4.4.1 Derived-type definition 31
	4.4.2 Determination of derived types 34
	4.4.3 Derived-type values 35
	4.4.4 Construction of derived-type values 35
	4.4.5 Derived-type operations and assignment 36

	4.5 Construction of array values 36

	5. Data object declarations and specifications 38
	5.1 Type declaration statements 38
	5.1.1 Type specifiers 40
	5.1.2 Attributes 42

	5.2 Attribute specification statements 47
	5.2.1 INTENT statement 47
	5.2.2 OPTIONAL statement 47
	5.2.3 Accessibility statements 48
	5.2.4 SAVE statement 48
	5.2.5 DIMENSION statement 49
	5.2.6 ALLOCATABLE statement 49
	5.2.7 POINTER statement 49
	5.2.8 TARGET statement 50
	5.2.9 DATA statement 50
	5.2.10 PARAMETER statement 52

	5.3 IMPLICIT statement 52
	5.4 NAMELIST statement 54
	5.5 Storage association of data objects 55
	5.5.1 EQUIVALENCE statement 55
	5.5.2 COMMON statement 56


	6. Use of data objects 59
	6.1 Scalars 60
	6.1.1 Substrings 60
	6.1.2 Structure components 60

	6.2 Arrays 61
	6.2.1 Whole arrays 61
	6.2.2 Array elements and array sections 61

	6.3 Dynamic association 64
	6.3.1 ALLOCATE statement 64
	6.3.2 NULLIFY statement 66
	6.3.3 DEALLOCATE statement 66


	7. Expressions and assignment 68
	7.1 Expressions 68
	7.1.1 Form of an expression 68
	7.1.2 Intrinsic operations 72
	7.1.3 Defined operations 73
	7.1.4 Data type, type parameters, and shape of an expression 73
	7.1.5 Conformability rules for intrinsic operations 74
	7.1.6 Scalar and array expressions 75
	7.1.7 Evaluation of operations 77

	7.2 Interpretation of intrinsic operations 81
	7.2.1 Numeric intrinsic operations 81
	7.2.2 Character intrinsic operation 82
	7.2.3 Relational intrinsic operations 82
	7.2.4 Logical intrinsic operations 83

	7.3 Interpretation of defined operations 84
	7.3.1 Unary defined operation 84
	7.3.2 Binary defined operation 84

	7.4 Precedence of operators 85
	7.5 Assignment 86
	7.5.1 Assignment statement 86
	7.5.2 Pointer assignment 89
	7.5.3 Masked array assignment-WHERE 90


	8. Execution control 92
	8.1 Executable constructs containing blocks 92
	8.1.1 Rules governing blocks 92
	8.1.2 IF construct 93
	8.1.3 CASE construct 94
	8.1.4 DO construct 97

	8.2 Branching 103
	8.2.1 Statement labels 103
	8.2.2 GO TO statement 103
	8.2.3 Computed GO TO statement 103
	8.2.4 ASSIGN and assigned GO TO statement 103
	8.2.5 Arithmetic IF statement 104

	8.3 CONTINUE statement 104
	8.4 STOP statement 104
	8.5 PAUSE statement 104

	9. Input/output statements 105
	9.1 Records 105
	9.1.1 Formatted record 105
	9.1.2 Unformatted record 105
	9.1.3 Endfile record 105

	9.2 Files 106
	9.2.1 External files 106
	9.2.2 Internal files 108

	9.3 File connection 109
	9.3.1 Unit existence 110
	9.3.2 Connection of a file to a unit 110
	9.3.3 Preconnection 110
	9.3.4 The OPEN statement 110
	9.3.5 The CLOSE statement 113

	9.4 Data transfer statements 114
	9.4.1 Control information list 115
	9.4.2 Data transfer input/output list 118
	9.4.3 Error, end-of-record, and end-of-file conditions 120
	9.4.4 Execution of a data transfer input/output statement 120
	9.4.5 Printing of formatted records 123
	9.4.6 Termination of data transfer statements 123

	9.5 File positioning statements 124
	9.5.1 BACKSPACE statement 124
	9.5.2 ENDFILE statement 124
	9.5.3 REWIND statement 125

	9.6 File inquiry 125
	9.6.1 Inquiry specifiers 125
	9.6.2 Restrictions on inquiry specifiers 129
	9.6.3 Inquire by output list 129

	9.7 Restrictions on function references and list items 129
	9.8 Restriction on input/output statements 129

	10. Input/output editing 130
	10.1 Explicit format specification methods 130
	10.1.1 FORMAT statement 130
	10.1.2 Character format specification 130

	10.2 Form of a format item list 131
	10.2.1 Edit descriptors 131
	10.2.2 Fields 132

	10.3 Interaction between input/output list and format 132
	10.4 Positioning by format control 133
	10.5 Data edit descriptors 134
	10.5.1 Numeric editing 134
	10.5.2 Logical editing 138
	10.5.3 Character editing 138
	10.5.4 Generalized editing 138

	10.6 Control edit descriptors 139
	10.6.1 Position editing 140
	10.6.2 Slash editing 140
	10.6.3 Colon editing 141
	10.6.4 S, SP, and SS editing 141
	10.6.5 P editing 141
	10.6.6 BN and BZ editing 141

	10.7 Character string edit descriptors 142
	10.7.1 Character constant edit descriptor 142
	10.7.2 H editing 142

	10.8 List-directed formatting 142
	10.8.1 List-directed input 142
	10.8.2 List-directed output 144

	10.9 Namelist formatting 145
	10.9.1 Namelist input 146
	10.9.2 Namelist output 148


	11. Program units 150
	11.1 Main program 150
	11.1.1 Main program specifications 150
	11.1.2 Main program executable part 150
	11.1.3 Main program internal procedures 151

	11.2 External subprograms 151
	11.3 Modules 151
	11.3.1 Module reference 151
	11.3.2 The USE statement and use association 152
	11.3.3 Examples of the use of modules 153

	11.4 Block data program units 155

	12. Procedures 157
	12.1 Procedure classifications 157
	12.1.1 Procedure classification by reference 157
	12.1.2 Procedure classification by means of definition 157

	12.2 Characteristics of procedures 159
	12.2.1 Characteristics of dummy arguments 159
	12.2.2 Characteristics of function results 160

	12.3 Procedure interface 160
	12.3.1 Implicit and explicit interfaces 160
	12.3.2 Specification of the procedure interface 161

	12.4 Procedure reference 165
	12.4.1 Actual argument list 165
	12.4.2 Function reference 168
	12.4.3 Elemental intrinsic function reference 168
	12.4.4 Subroutine reference 168
	12.4.5 Elemental intrinsic subroutine reference 168

	12.5 Procedure definition 168
	12.5.1 Intrinsic procedure definition 168
	12.5.2 Procedures defined by subprograms 169
	12.5.3 Definition of procedures by means other than Fortran 175
	12.5.4 Statement function 175


	13. Intrinsic procedures 177
	13.1 Intrinsic functions 177
	13.2 Elemental intrinsic procedures 177
	13.2.1 Elemental intrinsic function arguments and results 177
	13.2.2 Elemental intrinsic subroutine arguments 177

	13.3 Positional arguments or argument keywords 177
	13.4 Argument presence inquiry function 178
	13.5 Numeric, mathematical, character, kind, logical, and bit procedures 178
	13.5.1 Numeric functions 178
	13.5.2 Mathematical functions 178
	13.5.3 Character functions 178
	13.5.4 Character inquiry function 178
	13.5.5 Kind functions 178
	13.5.6 Logical function 178
	13.5.7 Bit manipulation and inquiry procedures 178

	13.6 Transfer function 179
	13.7 Numeric manipulation and inquiry functions 179
	13.7.1 Models for integer and real data 179
	13.7.2 Numeric inquiry functions 180
	13.7.3 Floating point manipulation functions 180

	13.8 Array intrinsic functions 180
	13.8.1 The shape of array arguments 180
	13.8.2 Mask arguments 180
	13.8.3 Vector and matrix multiplication functions 180
	13.8.4 Array reduction functions 181
	13.8.5 Array inquiry functions 181
	13.8.6 Array construction functions 181
	13.8.7 Array reshape function 181
	13.8.8 Array manipulation functions 181
	13.8.9 Array location functions 181
	13.8.10 Pointer association status inquiry functions 181

	13.9 Intrinsic subroutines 182
	13.9.1 Date and time subroutines 182
	13.9.2 Pseudorandom numbers 182
	13.9.3 Bit copy subroutine 182

	13.10 Generic intrinsic functions 182
	13.10.1 Argument presence inquiry function 182
	13.10.2 Numeric functions 182
	13.10.3 Mathematical functions 183
	13.10.4 Character functions 183
	13.10.5 Character inquiry function 184
	13.10.6 Kind functions 184
	13.10.7 Logical function 184
	13.10.8 Numeric inquiry functions 184
	13.10.9 Bit inquiry function 184
	13.10.10 Bit manipulation functions 184
	13.10.11 Transfer function 184
	13.10.12 Floating-point manipulation functions 185
	13.10.13 Vector and matrix multiply functions 185
	13.10.14 Array reduction functions 185
	13.10.15 Array inquiry functions 185
	13.10.16 Array construction functions 185
	13.10.17 Array reshape function 186
	13.10.18 Array manipulation functions 186
	13.10.19 Array location functions 186
	13.10.20 Pointer association status inquiry function 186

	13.11 Intrinsic subroutines 186
	13.12 Specific names for intrinsic functions 186
	13.13 Specifications of the intrinsic procedures 188

	14. Scope, association, and definition 235
	14.1 Scope of names 235
	14.1.1 Global entities 235
	14.1.2 Local entities 235
	14.1.3 Statement entities 239

	14.2 Scope of labels 239
	14.3 Scope of external input/output units 239
	14.4 Scope of operators 239
	14.5 Scope of the assignment symbol 239
	14.6 Association 239
	14.6.1 Name association 239
	14.6.2 Pointer association 240
	14.6.3 Storage association 241

	14.7 Definition and undefinition of variables 243
	14.7.1 Definition of objects and subobjects 243
	14.7.2 Variables that are always defined 243
	14.7.3 Variables that are initially defined 243
	14.7.4 Variables that are initially undefined 243
	14.7.5 Events that cause variables to become defined 243
	14.7.6 Events that cause variables to become undefined 244

	14.8 Allocation status 246

	A. Glossary of technical terms 247
	B. Decremental features 255
	14.9 Deleted features 255
	B.1 Obsolescent features 255
	B.1.1 Alternate return 255
	B.1.2 PAUSE statement 256
	B.1.3 ASSIGN and assigned GO TO statements 256
	B.1.4 Assigned FORMAT specifiers 256
	B.1.5 H editing 256


	C. Section notes 257
	14.10 Section 1 notes 257
	C.0.1 Conformance (1.4) 257

	C.1 Section 2 notes 257
	C.1.1 Keywords 257

	C.2 Section 3 notes 257
	C.2.1 Representable characters (3.1.5) 257
	C.2.2 Comment lines (3.3.1.1, 3.3.2.1) 257
	C.2.3 Statement labels (3.2.5) 258
	C.2.4 Source form (3.3) 258

	C.3 Section 4 notes 258
	C.3.1 Zero (4.3.1) 258
	C.3.2 Characters (4.2) 258
	C.3.3 Intrinsic and derived data types (4.3, 4.4) 258
	C.3.4 Selection of the approximation methods 259
	C.3.5 Storage of derived types (4.4.1) 260
	C.3.6 Pointers 260

	C.4 Section 5 notes 261
	C.4.1 Type declaration statements (5.1) 261
	C.4.2 The POINTER attribute (5.1.2.7) 261
	C.4.3 The TARGET attribute (5.1.2.8) 262
	C.4.4 PARAMETER statements and IMPLICIT NONE (5.2.10, 5.3) 262
	C.4.5 EQUIVALENCE statement extensions (5.5.1) 262
	C.4.6 COMMON statement extensions (5.5.2) 263

	C.5 Section 6 notes 263
	C.5.1 Substrings (6.1.1) 263
	C.5.2 Array element references (6.2.2) 263
	C.5.3 Structure components (6.1.2) 263
	C.5.4 Pointer allocation and association 264

	C.6 Section 7 notes 265
	C.6.1 Character assignment 265
	C.6.2 Evaluation of function references 265
	C.6.3 Pointers in expressions 265
	C.6.4 Pointers on the left side of an assignment 265

	C.7 Section 8 notes 266
	C.7.1 Loop control 266
	C.7.2 The CASE construct 266
	C.7.3 Examples of invalid DO constructs 266

	C.8 Section 9 notes 267
	C.8.1 Input/output records (9.1) 267
	C.8.2 Files (9.2) 267
	C.8.3 OPEN statement (9.3.4) 269
	C.8.4 Connection properties (9.3.2) 270
	C.8.5 CLOSE statement (9.3.5) 271
	C.8.6 INQUIRE statement (9.6) 271
	C.8.7 Keyword specifiers 271
	C.8.8 Format specifications (9.4.1.1) 271
	C.8.9 Unformatted input/output (9.4.4.4.1) 272
	C.8.10 Input/output restrictions 273
	C.8.11 Pointers in an input/output list 273
	C.8.12 Derived type objects in an input/output list (9.4.2) 273

	C.9 Section 10 notes 273
	C.9.1 Character constant format specification (10.1.2, 10.7.1) 273
	C.9.2 T edit descriptor (10.6.1.1) 273
	C.9.3 Length of formatted records 274
	C.9.4 Number of records (10.3, 10.4, 10.6.2) 274
	C.9.5 List-directed input/output (10.8) 274
	C.9.6 List-directed input (10.8.1) 274
	C.9.7 Namelist list items for character input (10.9.1.3) 275
	C.9.8 Namelist output records (10.9.2.2) 275

	C.10 Section 11 notes 275
	C.10.1 Main program and block data program unit (11.1, 11.4) 275
	C.10.2 Dependent compilation (11.3) 275
	C.10.3 Pointers in modules 277
	C.10.4 Example of a module (11.3) 277

	C.11 Section 12 notes 280
	C.11.1 Examples of host association (12.1.2.2.1) 280
	C.11.2 External procedures (12.3.2.2) 281
	C.11.3 Procedures defined by means other than Fortran (12.5.3) 282
	C.11.4 Procedure interfaces (12.3) 282
	C.11.5 Argument association and evaluation (12.4.1) 282
	C.11.6 Argument intent specification (12.4.1.1) 283
	C.11.7 Dummy argument restrictions (12.5.2.9) 284
	C.11.8 Pointers and targets as arguments 284
	C.11.9 The ASSOCIATED function (13.13.13) 285
	C.11.10 Internal procedure restrictions 285
	C.11.11 The result variable (12.5.2.2) 285

	C.12 Section 13 notes 285
	C.12.1 Summary of features 285
	C.12.2 Examples 287
	C.12.3 FORmula TRANslation and array processing 291
	C.12.4 Sum of squared residuals 292
	C.12.5 Vector norms: infinity-norm and one-norm 293
	C.12.6 Matrix norms: infinity-norm and one-norm 293
	C.12.7 Logical queries 293
	C.12.8 Parallel computations 294
	C.12.9 Example of element-by-element computation 294
	C.12.10 Bit manipulation and inquiry procedures 294

	C.13 Section 14 notes 294
	C.13.1 Storage association of zero-sized objects 294


	Contents
	Foreword
	Introduction
	Standard programming language Fortran

	Overview
	Array operations
	Numerical computation
	Parameterized character data type
	Derived types
	Modular definitions
	Pointers
	Language evolution

	Organization of this International Standard
	High/low level concepts
	Data concepts
	Computations
	Execution control
	Input/output
	Program units
	Scoping and association rules

	Acknowledgements

	Section 1 : Overview
	1.1 Scope
	1.2 Processor
	1.3 Inclusions and exclusions
	1.3.1 Inclusions
	1.3.2 Exclusions

	1.4 Conformance
	1.4.1 FORTRAN 77 compatibility

	1.5 Notation used in this International Standard
	1.5.1 Syntax rules Syntax rules
	1.5.2 Assumed syntax rules
	1.5.3 Syntax conventions and characteristics
	1.5.4 Text conventions

	1.6 Deleted and obsolescent features
	1.6.1 Nature of deleted features
	1.6.2 Nature of obsolescent features

	1.7 Modules
	1.8 Normative references

	Section 2 : Fortran terms and concepts
	2.1 High level syntax
	2.2 Program unit concepts
	2.2.1 Executable program
	2.2.2 Main program
	2.2.3 Procedure
	2.2.3.1 External procedure
	2.2.3.2 Module procedure
	2.2.3.3 Internal procedure
	2.2.3.4 Procedure interface block

	2.2.4 Module

	2.3 Execution concepts
	2.3.1 Executable/nonexecutable statements
	2.3.2 Statement order
	2.3.3 The END statement
	2.3.4 Execution sequence

	2.4 Data concepts
	2.4.1 Data type
	2.4.1.1 Intrinsic type
	2.4.1.2 Derived type

	2.4.2 Data value
	2.4.3 Data entity
	2.4.3.1 Data object
	2.4.3.1.1 Variable
	2.4.3.1.2 Constant
	2.4.3.1.3 Constant subobject

	2.4.3.2 Expression
	2.4.3.3 Function reference

	2.4.4 Scalar
	2.4.5 Array
	2.4.6 Pointer
	2.4.7 Storage

	2.5 Fundamental terms
	2.5.1 Name and designator
	2.5.2 Keyword
	2.5.3 Declaration
	2.5.4 Definition
	2.5.5 Reference
	2.5.6 Association
	2.5.7 Intrinsic
	2.5.8 Operator
	2.5.9 Sequence


	Section 3 : Characters, lexical tokens, and source form
	3.1 Processor character set
	3.1.1 Letters
	3.1.2 Digits
	3.1.3 Underscore
	3.1.4 Special characters
	3.1.5 Other characters

	3.2 Low-level syntax
	3.2.1 Keywords
	3.2.2 Names
	3.2.3 Constants
	3.2.4 Operators
	3.2.5 Statement labels
	3.2.6 Delimiters Delimiters

	3.3 Source form
	3.3.1 Free source form
	3.3.1.1 Free form commentary
	3.3.1.2 Free form statement separation
	3.3.1.3 Free form statement continuation
	3.3.1.3.1 Noncharacter context continuation
	3.3.1.3.2 Character context continuation

	3.3.1.4 Free form statements

	3.3.2 Fixed source form
	3.3.2.1 Fixed form commentary
	3.3.2.2 Fixed form statement separation
	3.3.2.3 Fixed form statement continuation
	3.3.2.4 Fixed form statements


	3.4 Including source text

	Section 4 : Intrinsic and derived data types
	4.1 The concept of data type
	4.1.1 Set of values
	4.1.2 Constants
	4.1.3 Operations

	4.2 Relationship of types and values to objects
	4.3 Intrinsic data types
	4.3.1 Numeric types
	4.3.1.1 Integer type
	4.3.1.2 Real type
	4.3.1.3 Complex type

	4.3.2 Nonnumeric types
	4.3.2.1 Character type
	4.3.2.1.1 Collating sequence

	4.3.2.2 Logical type


	4.4 Derived types
	4.4.1 Derived-type definition
	4.4.2 Determination of derived types
	4.4.3 Derived-type values
	4.4.4 Construction of derived-type values
	4.4.5 Derived-type operations and assignment

	4.5 Construction of array values

	Section 5 : Data object declarations and specifications
	5.1 Type declaration statements
	5.1.1 Type specifiers
	5.1.1.1 INTEGER
	5.1.1.2 REAL
	5.1.1.3 DOUBLE PRECISION
	5.1.1.4 COMPLEX
	5.1.1.5 CHARACTER
	5.1.1.6 LOGICAL
	5.1.1.7 Derived type

	5.1.2 Attributes
	5.1.2.1 PARAMETER attribute
	5.1.2.2 Accessibility attribute
	5.1.2.3 INTENT attribute
	5.1.2.4 DIMENSION attribute
	5.1.2.4.1 Explicit-shape array
	5.1.2.4.2 Assumed-shape array
	5.1.2.4.3 Deferred-shape array
	5.1.2.4.4 Assumed-size array

	5.1.2.5 SAVE attribute
	5.1.2.6 OPTIONAL attribute
	5.1.2.7 POINTER attribute
	5.1.2.8 TARGET attribute
	5.1.2.9 ALLOCATABLE attribute
	5.1.2.10 EXTERNAL attribute
	5.1.2.11 INTRINSIC attribute


	5.2 Attribute specification statements
	5.2.1 INTENT statement
	5.2.2 OPTIONAL statement
	5.2.3 Accessibility statements
	5.2.4 SAVE statement
	5.2.5 DIMENSION statement
	5.2.6 ALLOCATABLE statement
	5.2.7 POINTER statement
	5.2.8 TARGET statement
	5.2.9 DATA statement
	5.2.10 PARAMETER statement

	5.3 IMPLICIT statement
	5.4 NAMELIST statement
	5.5 Storage association of data objects
	5.5.1 EQUIVALENCE statement
	5.5.1.1 Equivalence association
	5.5.1.2 Equivalence of default character objects
	5.5.1.3 Array names and array element designators
	5.5.1.4 Restrictions on EQUIVALENCE statements

	5.5.2 COMMON statement
	5.5.2.1 Common block storage sequence
	5.5.2.2 Size of a common block
	5.5.2.3 Common association
	5.5.2.4 Differences between named common and blank common
	5.5.2.5 Restrictions on common and equivalence



	Section 6 : Use of data objects
	6.1 Scalars
	6.1.1 Substrings
	6.1.2 Structure components

	6.2 Arrays
	6.2.1 Whole arrays
	6.2.2 Array elements and array sections
	6.2.2.1
	6.2.2.2 Array elements
	6.2.2.3 Array element order
	6.2.2.4 Array sections
	6.2.2.4.1 Subscript triplet
	6.2.2.4.2 Vector subscript



	6.3 Dynamic association
	6.3.1 ALLOCATE statement
	6.3.1.1 Allocation of allocatable arrays
	6.3.1.2 Allocation of pointer targets

	6.3.2 NULLIFY statement
	6.3.3 DEALLOCATE statement
	6.3.3.1 Deallocation of allocatable arrays
	6.3.3.2 Deallocation of pointer targets



	Section 7 : Expressions and assignment
	7.1 Expressions
	7.1.1 Form of an expression
	7.1.1.1 Primary
	7.1.1.2 Level-1 expressions
	7.1.1.3 Level-2 expressions
	7.1.1.4 Level-3 expressions
	7.1.1.5 Level-4 expressions
	7.1.1.6 Level-5 expressions
	7.1.1.7 General form of an expression

	7.1.2 Intrinsic operations
	7.1.3 Defined operations
	7.1.4 Data type, type parameters, and shape of an expression
	7.1.4.1 Data type, type parameters, and shape of a primary
	7.1.4.2 Data type, type parameters, and shape of the result of an operation

	7.1.5 Conformability rules for intrinsic operations
	7.1.6 Scalar and array expressions
	7.1.6.1 Constant expression
	7.1.6.2 Specification expression

	7.1.7 Evaluation of operations
	7.1.7.1 Evaluation of operands
	7.1.7.2 Integrity of parentheses
	7.1.7.3 Evaluation of numeric intrinsic operations
	7.1.7.4 Evaluation of the character intrinsic operation
	7.1.7.5 Evaluation of relational intrinsic operations
	7.1.7.6 Evaluation of logical intrinsic operations
	7.1.7.7 Evaluation of a defined operation


	7.2 Interpretation of intrinsic operations
	7.2.1 Numeric intrinsic operations
	7.2.1.1 Integer division
	7.2.1.2 Complex exponentiation

	7.2.2 Character intrinsic operation
	7.2.3 Relational intrinsic operations
	7.2.4 Logical intrinsic operations

	7.3 Interpretation of defined operations
	7.3.1 Unary defined operation
	7.3.2 Binary defined operation

	7.4 Precedence of operators
	7.5 Assignment
	7.5.1 Assignment statement
	7.5.1.1 General form
	7.5.1.2 Intrinsic assignment statement
	7.5.1.3 Defined assignment statement
	7.5.1.4 Intrinsic assignment conformance rules
	7.5.1.5 Interpretation of intrinsic assignments
	7.5.1.6 Interpretation of defined assignment statements

	7.5.2 Pointer assignment
	7.5.3 Masked array assignment-WHERE
	7.5.3.1 General form of the masked array assignment
	7.5.3.2 Interpretation of masked array assignments



	Section 8 : Execution control
	8.1 Executable constructs containing blocks
	8.1.1 Rules governing blocks
	8.1.1.1 Executable constructs in blocks
	8.1.1.2 Control flow in blocks
	8.1.1.3 Execution of a block

	8.1.2 IF construct
	8.1.2.1 Form of the IF construct
	8.1.2.2 Execution of an IF construct
	8.1.2.3 Examples of IF constructs
	8.1.2.4 IF statement

	8.1.3 CASE construct
	8.1.3.1 Form of the CASE construct
	8.1.3.2 Execution of a CASE construct
	8.1.3.3 Examples of CASE constructs

	8.1.4 DO construct
	8.1.4.1 Forms of the DO construct
	8.1.4.1.1 Form of the block DO construct
	8.1.4.1.2 Form of the nonblock DO construct

	8.1.4.2 Range of the DO construct
	8.1.4.3 Active and inactive DO constructs
	8.1.4.4 Execution of a DO construct
	8.1.4.4.1 Loop initiation
	8.1.4.4.2 The execution cycle
	8.1.4.4.3 CYCLE statement
	8.1.4.4.4 Loop termination

	8.1.4.5 Examples of DO constructs


	8.2 Branching
	8.2.1 Statement labels
	8.2.2 GO TO statement
	8.2.3 Computed GO TO statement
	8.2.4 ASSIGN and assigned GO TO statement
	8.2.5 Arithmetic IF statement

	8.3 CONTINUE statement
	8.4 STOP statement
	8.5 PAUSE statement

	Section 9 : Input/output statements
	9.1 Records
	9.1.1 Formatted record
	9.1.2 Unformatted record
	9.1.3 Endfile record

	9.2 Files
	9.2.1 External files
	9.2.1.1 File existence
	9.2.1.2 File access
	9.2.1.2.1 Sequential access
	9.2.1.2.2 Direct access

	9.2.1.3 File position
	9.2.1.3.1 Advancing and nonadvancing input/output
	9.2.1.3.2 File position prior to data transfer
	9.2.1.3.3 File position after data transfer


	9.2.2 Internal files
	9.2.2.1 Internal file properties
	9.2.2.2 Internal file restrictions


	9.3 File connection
	9.3.1 Unit existence
	9.3.2 Connection of a file to a unit
	9.3.3 Preconnection
	9.3.4 The OPEN statement
	9.3.4.1 FILE= specifier in the OPEN statement
	9.3.4.2 STATUS= specifier in the OPEN statement
	9.3.4.3 ACCESS= specifier in the OPEN statement
	9.3.4.4 FORM= specifier in the OPEN statement
	9.3.4.5 RECL= specifier in the OPEN statement
	9.3.4.6 BLANK= specifier in the OPEN statement
	9.3.4.7 POSITION= specifier in the OPEN statement
	9.3.4.8 ACTION= specifier in the OPEN statement
	9.3.4.9 DELIM= specifier in the OPEN statement
	9.3.4.10 PAD= specifier in the OPEN statement

	9.3.5 The CLOSE statement
	9.3.5.1 STATUS= specifier in the CLOSE statement


	9.4 Data transfer statements
	9.4.1 Control information list
	9.4.1.1 Format specifier
	9.4.1.2 Namelist specifier
	9.4.1.3 Record number
	9.4.1.4 Input/output status
	9.4.1.5 Error branch
	9.4.1.6 End-of-file branch
	9.4.1.7 End-of-record branch
	9.4.1.8 Advance specifier
	9.4.1.9 Character count

	9.4.2 Data transfer input/output list
	9.4.3 Error, end-of-record, and end-of-file conditions
	9.4.4 Execution of a data transfer input/output statement
	9.4.4.1 Direction of data transfer
	9.4.4.2 Identifying a unit
	9.4.4.3 Establishing a format
	9.4.4.4 Data transfer
	9.4.4.4.1 Unformatted data transfer
	9.4.4.4.2 Formatted data transfer

	9.4.4.5 List-directed formatting
	9.4.4.6 Namelist formatting

	9.4.5 Printing of formatted records
	9.4.6 Termination of data transfer statements

	9.5 File positioning statements
	9.5.1 BACKSPACE statement
	9.5.2 ENDFILE statement
	9.5.3 REWIND statement

	9.6 File inquiry
	9.6.1 Inquiry specifiers
	9.6.1.1 FILE= specifier in the INQUIRE statement
	9.6.1.2 EXIST= specifier in the INQUIRE statement
	9.6.1.3 OPENED= specifier in the INQUIRE statement
	9.6.1.4 NUMBER= specifier in the INQUIRE statement
	9.6.1.5 NAMED= specifier in the INQUIRE statement
	9.6.1.6 NAME= specifier in the INQUIRE statement
	9.6.1.7 ACCESS= specifier in the INQUIRE statement
	9.6.1.8 SEQUENTIAL= specifier in the INQUIRE statement
	9.6.1.9 DIRECT= specifier in the INQUIRE statement
	9.6.1.10 FORM= specifier in the INQUIRE statement
	9.6.1.11 FORMATTED= specifier in the INQUIRE statement
	9.6.1.12 UNFORMATTED= specifier in the INQUIRE statement
	9.6.1.13 RECL= specifier in the INQUIRE statement
	9.6.1.14 NEXTREC= specifier in the INQUIRE statement
	9.6.1.15 BLANK= specifier in the INQUIRE statement
	9.6.1.16 POSITION= specifier in the INQUIRE statement
	9.6.1.17 ACTION= specifier in the INQUIRE statement
	9.6.1.18 READ= specifier in the INQUIRE statement
	9.6.1.19 WRITE= specifier in the INQUIRE statement
	9.6.1.20 READWRITE= specifier in the INQUIRE statement
	9.6.1.21 DELIM= specifier in the INQUIRE statement
	9.6.1.22 PAD= specifier in the INQUIRE statement

	9.6.2 Restrictions on inquiry specifiers
	9.6.3 Inquire by output list

	9.7 Restrictions on function references and list items
	9.8 Restriction on input/output statements

	Section 10 : Input/output editing
	10.1 Explicit format specification methods
	10.1.1 FORMAT statement
	10.1.2 Character format specification

	10.2 Form of a format item list
	10.2.1 Edit descriptors
	10.2.2 Fields

	10.3 Interaction between input/output list and format
	10.4 Positioning by format control
	10.5 Data edit descriptors
	10.5.1 Numeric editing
	10.5.1.1 Integer editing
	10.5.1.2 Real and complex editing
	10.5.1.2.1 F editing
	10.5.1.2.2 E and D editing
	10.5.1.2.3 EN editing
	10.5.1.2.4 ES editing
	10.5.1.2.5 Complex editing


	10.5.2 Logical editing
	10.5.3 Character editing
	10.5.4 Generalized editing
	10.5.4.1 Generalized numeric editing
	10.5.4.1.1 Generalized integer editing
	10.5.4.1.2 Generalized real and complex editing

	10.5.4.2 Generalized logical editing
	10.5.4.3 Generalized character editing


	10.6 Control edit descriptors
	10.6.1 Position editing
	10.6.1.1 T, TL, and TR editing
	10.6.1.2 X editing

	10.6.2 Slash editing
	10.6.3 Colon editing
	10.6.4 S, SP, and SS editing
	10.6.5 P editing
	10.6.5.1 Scale factor

	10.6.6 BN and BZ editing

	10.7 Character string edit descriptors
	10.7.1 Character constant edit descriptor
	10.7.2 H editing

	10.8 List-directed formatting
	10.8.1 List-directed input
	10.8.1.1 Null values
	10.8.1.2 List-directed input example

	10.8.2 List-directed output

	10.9 Namelist formatting
	10.9.1 Namelist input
	10.9.1.1 Namelist group object names
	10.9.1.2 Namelist input values
	10.9.1.3 Namelist group object list items
	10.9.1.4 Null values
	10.9.1.5 Blanks
	10.9.1.6 Namelist input example

	10.9.2 Namelist output
	10.9.2.1 Namelist output editing
	10.9.2.2 Namelist output records



	Section 11 : Program units
	11.1 Main program
	11.1.1 Main program specifications
	11.1.2 Main program executable part
	11.1.3 Main program internal procedures

	11.2 External subprograms
	11.3 Modules
	11.3.1 Module reference
	11.3.2 The USE statement and use association
	11.3.3 Examples of the use of modules
	11.3.3.1 Identical common blocks
	11.3.3.2 Global data
	11.3.3.3 Derived types
	11.3.3.4 Global allocatable arrays
	11.3.3.5 Procedure libraries
	11.3.3.6 Operator extensions
	11.3.3.7 Data abstraction
	11.3.3.8 Public entities renamed


	11.4 Block data program units

	Section 12 : Procedures
	12.1 Procedure classifications
	12.1.1 Procedure classification by reference
	12.1.2 Procedure classification by means of definition
	12.1.2.1 Intrinsic procedures
	12.1.2.2 External, internal, and module procedures
	12.1.2.2.1 Host association
	12.1.2.2.2 Host association and use association

	12.1.2.3 Dummy procedures
	12.1.2.4 Statement functions


	12.2 Characteristics of procedures
	12.2.1 Characteristics of dummy arguments
	12.2.1.1 Characteristics of dummy data objects
	12.2.1.2 Characteristics of dummy procedures
	12.2.1.3 Characteristics of asterisk dummy arguments

	12.2.2 Characteristics of function results

	12.3 Procedure interface
	12.3.1 Implicit and explicit interfaces
	12.3.1.1 Explicit interface

	12.3.2 Specification of the procedure interface
	12.3.2.1 Procedure interface block
	12.3.2.1.1 Defined operations
	12.3.2.1.2 Defined assignments

	12.3.2.2 EXTERNAL statement
	12.3.2.3 INTRINSIC statement
	12.3.2.4 Implicit interface specification


	12.4 Procedure reference
	12.4.1 Actual argument list
	12.4.1.1 Arguments associated with dummy data objects
	12.4.1.2 Arguments associated with dummy procedures
	12.4.1.3 Arguments associated with alternate return indicators
	12.4.1.4 Sequence association

	12.4.2 Function reference
	12.4.3 Elemental intrinsic function reference
	12.4.4 Subroutine reference
	12.4.5 Elemental intrinsic subroutine reference

	12.5 Procedure definition
	12.5.1 Intrinsic procedure definition
	12.5.2 Procedures defined by subprograms
	12.5.2.1 Effects of INTENT attribute on subprograms
	12.5.2.2 Function subprogram
	12.5.2.3 Subroutine subprogram
	12.5.2.4 Instances of a subprogram
	12.5.2.5 ENTRY statement
	12.5.2.6 RETURN statement
	12.5.2.7 CONTAINS statement
	12.5.2.8 Restrictions on dummy arguments not present
	12.5.2.9 Restrictions on entities associated with dummy arguments

	12.5.3 Definition of procedures by means other than Fortran
	12.5.4 Statement function


	Section 13 : Intrinsic procedures
	13.1 Intrinsic functions
	13.2 Elemental intrinsic procedures
	13.2.1 Elemental intrinsic function arguments and results
	13.2.2 Elemental intrinsic subroutine arguments

	13.3 Positional arguments or argument keywords
	13.4 Argument presence inquiry function
	13.5 Numeric, mathematical, character, kind, logical, and bit procedures
	13.5.1 Numeric functions
	13.5.2 Mathematical functions
	13.5.3 Character functions
	13.5.4 Character inquiry function
	13.5.5 Kind functions
	13.5.6 Logical function
	13.5.7 Bit manipulation and inquiry procedures

	13.6 Transfer function
	13.7 Numeric manipulation and inquiry functions
	13.7.1 Models for integer and real data
	13.7.2 Numeric inquiry functions
	13.7.3 Floating point manipulation functions

	13.8 Array intrinsic functions
	13.8.1 The shape of array arguments
	13.8.2 Mask arguments
	13.8.3 Vector and matrix multiplication functions
	13.8.4 Array reduction functions
	13.8.5 Array inquiry functions
	13.8.6 Array construction functions
	13.8.7 Array reshape function
	13.8.8 Array manipulation functions
	13.8.9 Array location functions
	13.8.10 Pointer association status inquiry functions

	13.9 Intrinsic subroutines
	13.9.1 Date and time subroutines
	13.9.2 Pseudorandom numbers
	13.9.3 Bit copy subroutine

	13.10 Generic intrinsic functions
	13.10.1 Argument presence inquiry function
	13.10.2 Numeric functions
	13.10.3 Mathematical functions
	13.10.4 Character functions
	13.10.5 Character inquiry function
	13.10.6 Kind functions
	13.10.7 Logical function
	13.10.8 Numeric inquiry functions
	13.10.9 Bit inquiry function
	13.10.10 Bit manipulation functions
	13.10.11 Transfer function
	13.10.12 Floating-point manipulation functions
	13.10.13 Vector and matrix multiply functions
	13.10.14 Array reduction functions
	13.10.15 Array inquiry functions
	13.10.16 Array construction functions
	13.10.17 Array reshape function
	13.10.18 Array manipulation functions
	13.10.19 Array location functions
	13.10.20 Pointer association status inquiry function

	13.11 Intrinsic subroutines
	13.12 Specific names for intrinsic functions
	13.13 Specifications of the intrinsic procedures
	13.13.1 ABS (A)
	13.13.2 ACHAR (I)
	13.13.3 ACOS (X)
	13.13.4 ADJUSTL (STRING)
	13.13.5 ADJUSTR (STRING)
	13.13.6 AIMAG (Z)
	13.13.7 AINT (A, KIND)
	13.13.8 ALL (MASK, DIM)
	13.13.9 ALLOCATED (ARRAY)
	13.13.10 ANINT (A, KIND)
	13.13.11 ANY (MASK, DIM)
	13.13.12 ASIN (X)
	13.13.13 ASSOCIATED (POINTER, TARGET)
	13.13.14 ATAN (X)
	13.13.15 ATAN2 (Y, X)
	13.13.16 BIT_SIZE (I)
	13.13.17 BTEST (I, POS)
	13.13.18 CEILING (A)
	13.13.19 CHAR (I, KIND)
	13.13.20 CMPLX (X, Y, KIND)
	13.13.21 CONJG (Z)
	13.13.22 COS (X)
	13.13.23 COSH (X)
	13.13.24 COUNT (MASK, DIM)
	13.13.25 CSHIFT (ARRAY, SHIFT, DIM)
	13.13.26 DATE_AND_TIME (DATE, TIME, ZONE, VALUES)
	13.13.27 DBLE (A)
	13.13.28 DIGITS (X)
	13.13.29 DIM (X, Y)
	13.13.30 DOT_PRODUCT (VECTOR_A, VECTOR_B)
	13.13.31 DPROD (X, Y)
	13.13.32 EOSHIFT (ARRAY, SHIFT, BOUNDARY, DIM)
	13.13.33 EPSILON (X)
	13.13.34 EXP (X)
	13.13.35 EXPONENT (X)
	13.13.36 FLOOR (A)
	13.13.37 FRACTION (X)
	13.13.38 HUGE (X)
	13.13.39 IACHAR (C)
	13.13.40 IAND (I, J)
	13.13.41 IBCLR (I, POS)
	13.13.42 IBITS (I, POS, LEN)
	13.13.43 IBSET (I, POS)
	13.13.44 ICHAR (C)
	13.13.45 IEOR (I, J)
	13.13.46 INDEX (STRING, SUBSTRING, BACK)
	13.13.47 INT (A, KIND)
	13.13.48 IOR (I, J)
	13.13.49 ISHFT (I, SHIFT)
	13.13.50 ISHFTC (I, SHIFT, SIZE)
	13.13.51 KIND (X)
	13.13.52 LBOUND (ARRAY, DIM)
	13.13.53 LEN (STRING)
	13.13.54 LEN_TRIM (STRING)
	13.13.55 LGE (STRING_A, STRING_B)
	13.13.56 LGT (STRING_A, STRING_B)
	13.13.57 LLE (STRING_A, STRING_B)
	13.13.58 LLT (STRING_A, STRING_B)
	13.13.59 LOG (X)
	13.13.60 LOG10 (X)
	13.13.61 LOGICAL (L, KIND)
	13.13.62 MATMUL (MATRIX_A, MATRIX_B)
	13.13.63 MAX (A1, A2, A3, ...)
	13.13.64 MAXEXPONENT (X)
	13.13.65 MAXLOC (ARRAY, MASK)
	13.13.66 MAXVAL (ARRAY, DIM, MASK)
	13.13.67 MERGE (TSOURCE, FSOURCE, MASK)
	13.13.68 MIN (A1, A2, A3, ...)
	13.13.69 MINEXPONENT (X)
	13.13.70 MINLOC (ARRAY, MASK)
	13.13.71 MINVAL (ARRAY, DIM, MASK)
	13.13.72 MOD (A, P)
	13.13.73 MODULO (A, P)
	13.13.74 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)
	13.13.75 NEAREST (X, S)
	13.13.76 NINT (A, KIND)
	13.13.77 NOT (I)
	13.13.78 PACK (ARRAY, MASK, VECTOR)
	13.13.79 PRECISION (X)
	13.13.80 PRESENT (A)
	13.13.81 PRODUCT (ARRAY, DIM, MASK)
	13.13.82 RADIX (X)
	13.13.83 RANDOM_NUMBER (HARVEST)
	13.13.84 RANDOM_SEED (SIZE, PUT, GET)
	13.13.85 RANGE (X)
	13.13.86 REAL (A, KIND)
	13.13.87 REPEAT (STRING, NCOPIES)
	13.13.88 RESHAPE (SOURCE, SHAPE, PAD, ORDER)
	13.13.89 RRSPACING (X)
	13.13.90 SCALE (X, I)
	13.13.91 SCAN (STRING, SET, BACK)
	13.13.92 SELECTED_INT_KIND (R)
	13.13.93 SELECTED_REAL_KIND (P, R)
	13.13.94 SET_EXPONENT (X, I)
	13.13.95 SHAPE (SOURCE)
	13.13.96 SIGN (A, B)
	13.13.97 SIN (X)
	13.13.98 SINH (X)
	13.13.99 SIZE (ARRAY, DIM)
	13.13.100 SPACING (X)
	13.13.101 SPREAD (SOURCE, DIM, NCOPIES)
	13.13.102 SQRT (X)
	13.13.103 SUM (ARRAY, DIM, MASK)
	13.13.104 SYSTEM_CLOCK (COUNT, COUNT_RATE, COUNT_MAX)
	13.13.105 TAN (X)
	13.13.106 TANH (X)
	13.13.107 TINY (X)
	13.13.108 TRANSFER (SOURCE, MOLD, SIZE)
	13.13.109 TRANSPOSE (MATRIX)
	13.13.110 TRIM (STRING)
	13.13.111 UBOUND (ARRAY, DIM)
	13.13.112 UNPACK (VECTOR, MASK, FIELD)
	13.13.113 VERIFY (STRING, SET, BACK)


	Section 14 : Scope, association, and definition
	14.1 Scope of names
	14.1.1 Global entities
	14.1.2 Local entities
	14.1.2.1 Common blocks
	14.1.2.2 Function results
	14.1.2.3 Unambiguous generic procedure references
	14.1.2.4 Resolving procedure references
	14.1.2.4.1 Resolving procedure references to names established to be generic
	14.1.2.4.2 Resolving procedure references to names established to be only specific
	14.1.2.4.3 Resolving procedure references to names not established

	14.1.2.5 Components
	14.1.2.6 Argument keywords

	14.1.3 Statement entities

	14.2 Scope of labels
	14.3 Scope of external input/output units
	14.4 Scope of operators
	14.5 Scope of the assignment symbol
	14.6 Association
	14.6.1 Name association
	14.6.1.1 Argument association
	14.6.1.2 Use association and host association Use association

	14.6.2 Pointer association
	14.6.2.1 Pointer association status
	14.6.2.2 Pointer definition status
	14.6.2.3 Relationship between association status and definition status

	14.6.3 Storage association
	14.6.3.1 Storage sequence
	14.6.3.2 Association of storage sequences
	14.6.3.3 Association of scalar data objects


	14.7 Definition and undefinition of variables
	14.7.1 Definition of objects and subobjects
	14.7.2 Variables that are always defined
	14.7.3 Variables that are initially defined
	14.7.4 Variables that are initially undefined
	14.7.5 Events that cause variables to become defined
	14.7.6 Events that cause variables to become undefined

	14.8 Allocation status

	Glossary of technical terms
	Decremental features
	B.1 Deleted features
	B.2 Obsolescent features
	B.2.1 Alternate return
	B.2.2 PAUSE statement
	B.2.3 ASSIGN and assigned GO TO statements
	B.2.4 Assigned FORMAT specifiers
	B.2.5 H editing


	Section notes
	C.1 Section 1 notes
	C.1.1 Conformance (1.4)

	C.2 Section 2 notes
	C.2.1 Keywords

	C.3 Section 3 notes
	C.3.1 Representable characters (3.1.5)
	C.3.2 Comment lines (3.3.1.1, 3.3.2.1)
	C.3.3 Statement labels (3.2.5)
	C.3.4 Source form (3.3)

	C.4 Section 4 notes
	C.4.1 Zero (4.3.1)
	C.4.2 Characters (4.2)
	C.4.3 Intrinsic and derived data types (4.3, 4.4)
	C.4.4 Selection of the approximation methods
	C.4.5 Storage of derived types (4.4.1)
	C.4.6 Pointers

	C.5 Section 5 notes
	C.5.1 Type declaration statements (5.1)
	C.5.2 The POINTER attribute (5.1.2.7)
	C.5.3 The TARGET attribute (5.1.2.8)
	C.5.4 PARAMETER statements and IMPLICIT NONE (5.2.10, 5.3)
	C.5.5 EQUIVALENCE statement extensions (5.5.1)
	C.5.6 COMMON statement extensions (5.5.2)

	C.6 Section 6 notes
	C.6.1 Substrings (6.1.1)
	C.6.2 Array element references (6.2.2)
	C.6.3 Structure components (6.1.2)
	C.6.4 Pointer allocation and association

	C.7 Section 7 notes
	C.7.1 Character assignment
	C.7.2 Evaluation of function references
	C.7.3 Pointers in expressions
	C.7.4 Pointers on the left side of an assignment

	C.8 Section 8 notes
	C.8.1 Loop control
	C.8.2 The CASE construct
	C.8.3 Examples of invalid DO constructs

	C.9 Section 9 notes
	C.9.1 Input/output records (9.1)
	C.9.2 Files (9.2)
	C.9.2.1 File connection (9.3)
	C.9.2.2 File existence (9.2.1.1)
	C.9.2.3 File names (9.3.4.1)
	C.9.2.4 File access (9.2.1.2)
	C.9.2.5 Nonadvancing input/output (9.2.1.3.1)

	C.9.3 OPEN statement (9.3.4)
	C.9.4 Connection properties (9.3.2)
	C.9.5 CLOSE statement (9.3.5)
	C.9.6 INQUIRE statement (9.6)
	C.9.7 Keyword specifiers
	C.9.8 Format specifications (9.4.1.1)
	C.9.9 Unformatted input/output (9.4.4.4.1)
	C.9.10 Input/output restrictions
	C.9.11 Pointers in an input/output list
	C.9.12 Derived type objects in an input/output list (9.4.2)

	C.10 Section 10 notes
	C.10.1 Character constant format specification (10.1.2, 10.7.1)
	C.10.2 T edit descriptor (10.6.1.1)
	C.10.3 Length of formatted records
	C.10.4 Number of records (10.3, 10.4, 10.6.2)
	C.10.5 List-directed input/output (10.8)
	C.10.6 List-directed input (10.8.1)
	C.10.7 Namelist list items for character input (10.9.1.3)
	C.10.8 Namelist output records (10.9.2.2)

	C.11 Section 11 notes
	C.11.1 Main program and block data program unit (11.1, 11.4)
	C.11.2 Dependent compilation (11.3)
	C.11.2.1 USE statement and dependent compilation (11.3.2)
	C.11.2.2 Accessibility attributes (11.3.1)

	C.11.3 Pointers in modules
	C.11.4 Example of a module (11.3)

	C.12 Section 12 notes
	C.12.1 Examples of host association (12.1.2.2.1)
	C.12.2 External procedures (12.3.2.2)
	C.12.3 Procedures defined by means other than Fortran (12.5.3)
	C.12.4 Procedure interfaces (12.3)
	C.12.5 Argument association and evaluation (12.4.1)
	C.12.6 Argument intent specification (12.4.1.1)
	C.12.7 Dummy argument restrictions (12.5.2.9)
	C.12.8 Pointers and targets as arguments
	C.12.9 The ASSOCIATED function (13.13.13)
	C.12.10 Internal procedure restrictions
	C.12.11 The result variable (12.5.2.2)

	C.13 Section 13 notes
	C.13.1 Summary of features
	C.13.1.1 Whole array expressions and assignments (7.5.1.2, 7.5.1.5)
	C.13.1.2 Array sections (2.4.5, 6.2.2.3)
	C.13.1.3 WHERE statement (7.5.3)
	C.13.1.4 Automatic and allocatable arrays (5.1, 5.1.2.4.3)
	C.13.1.5 Array constructors (4.5)
	C.13.1.6 Intrinsic functions
	C.13.1.6.1 Vector and matrix multiply functions
	C.13.1.6.2 Array reduction functions
	C.13.1.6.3 Array inquiry functions
	C.13.1.6.4 Array construction functions
	C.13.1.6.5 Array reshape function
	C.13.1.6.6 Array manipulation functions
	C.13.1.6.7 Array location functions


	C.13.2 Examples
	C.13.2.1 Unconditional array computations
	C.13.2.2 Conditional array computations
	C.13.2.3 A simple program: the Ising model
	C.13.2.3.1 Problems to be solved
	C.13.2.3.2 Solutions in Fortran
	C.13.2.3.3 The complete Fortran subroutine
	C.13.2.3.4 Reduction of storage


	C.13.3 FORmula TRANslation and array processing
	C.13.3.1 A sum of products
	C.13.3.2 A product of sums
	C.13.3.3 Addition of selected elements

	C.13.4 Sum of squared residuals
	C.13.5 Vector norms: infinity-norm and one-norm
	C.13.6 Matrix norms: infinity-norm and one-norm
	C.13.7 Logical queries
	C.13.8 Parallel computations
	C.13.9 Example of element-by-element computation
	C.13.10 Bit manipulation and inquiry procedures

	C.14 Section 14 notes
	C.14.1 Storage association of zero-sized objects





