
robust-diversity.txt Sat Sep 11 14:57:21 1999 1

 Robust Design through Diversity

 Gerald Jay Sussman
 Matsushita Professor of Electrical Engineering
 Massachusetts Institute of Technology

 Computer Science is in deep trouble. Structured design is a
failure. Systems, as currently engineered, are brittle and fragile.
They cannot be easily adapted to new situations. Small changes in
requirements entail large changes in the structure and configuration.
Small errors in the programs that prescribe the behavior of the system
can lead to large errors in the desired behavior. Indeed, current
computational systems are unreasonably dependent on the correctness of
the implementation, and they cannot be easily modified to account for
errors in the design, errors in the specifications, or the inevitable
evolution of the requirements for which the design was commissioned.
(Just imagine what happens if you cut a random wire in your computer!)
This problem is structural. This is not a complexity problem. It
will not be solved by some form of modularity. We need new ideas. We
need a new set of engineering principles that can be applied to
effectively build flexible, robust, evolvable, and efficient systems.

In the design of any significant system there are many implementation
plans proposed for every component at every level of detail. However,
in the system that is finally delivered this diversity of plans is
lost and usually only one unified plan is adopted and implemented. As
in an ecological system, the loss of diversity in the traditional
engineering process has serious consequences for robustness.

This fragility and inflexibility must not be allowed to continue. The
systems of the future must be both flexible and reliable. They must
be tolerant of bugs and must be adaptable to new conditions. To
advance beyond the existing problems we must change, in a fundamental
way, the nature of the language we use to describe computational
systems. We must develop languages that prescribe the computational
system as cooperating combinations of redundant processes.

From biology we learn that multiple strategies may be implemented in a
single organism to achieve a greater collective effectiveness than any
single approach. For example, cells maintain multiple metabolic
pathways for the synthesis of essential metabolites or for the support
of essential processes. For example, both aerobic and anaerobic
pathways are maintained for the extraction of energy from sugar. The
same cell may use either pathway, or both, depending on the
availability of oxygen in its environment.

Suppose we have several independently implemented systems all designed
to solve the same (imprecisely specified) general class of problems.
Assume for the moment that each design is reasonably competent and
actually correctly works for most of the problems that might be
encountered in actual operation. We know that we can make a more
robust and reliable system by combining the given systems into a
larger system that redundantly uses each of the given systems and
compares their results, choosing the best answer on every problem. If

robust-diversity.txt Sat Sep 11 14:57:21 1999 2

the combination system has independent ways of determining which
answers are acceptable we are in very good shape. But even if we are
reduced to voting, we get a system that can reliably cover a larger
space of solutions. Furthermore, if such a system can automatically
log all cases where one of the designs fails, the operational feedback
can be used to improve the performance of the system that failed.

This redundant design strategy can be used at every level of detail.
Every component of each subsystem can itself be so redundantly
designed and the implementation can be structured to use the redundant
designs. If the component pools are themselves shared among the
subsystems, we get a controlled redundancy that is quite powerful.
However, we can do even better. We can provide a mechanism for
consistency checking of the intermediate results of the independently
designed subsystems, even when no particular value in one subsystem
exactly corresponds to a particular value in another subsystem. Thus
the interaction between systems appears as a set of constraints that
capture the nature of the interactions between the parts of the system.

For a simple example, suppose we have two subsystems that are intended
to deliver the same result, but computed in completely different ways.
Suppose that the designers agree that at some stage in one of the
designs, the product of two of the variables in that design must be
the same as the sum of two of the variables in the other design.
There is no reason why this predicate should not be computed as soon
as all of the four values it depends upon become available, thus
providing consistency checking at runtime and powerful debugging
information to the designers.

The ARPAnet is one of the few engineered systems in use that is robust
in the way we desire. This robustness partly derives from the fact
that network supports a diversity of mechanisms, and partly from the
fact that the late-binding of the packet-routing strategy. The
details of routing are locally determined, by ambient conditions of
the network: there is no central control.

When we design a computational system for some range of tasks we are
trying to specify a behavior. We specify the behavior by a finite
description---the program. We can think of the program as a set of
rules that describes how the state of the system is to evolve given
the inputs, and what outputs are to be produced at each step. Of
course, programming languages provide support for thinking about only
a part of the state at a time: they allow us to separate control flow
from data, and they allow us to take actions based on only a small
part of the data at each step.

A computational system is very much a dynamical system, with a very
complicated state space, and a program is very much like a system of
(differential or difference) dynamical equations, describing the
incremental evolution of the state. One thing we have learned about
dynamical systems over the past hundred years is that only limited
insights can be gleaned by manipulation of the dynamical equations.
We have learned that it is powerful to examine the geometry of the set
of all possible trajectories, the phase portrait, and to understand
how the phase portrait changes with variations of the parameters of

robust-diversity.txt Sat Sep 11 14:57:21 1999 3

the dynamical equations. This picture is not brittle: the knowledge
we obtain is structurally stable.

To support this focus on the development of interacting subsystems
with multiply-redundant design requires the development of languages
that allow description of the function and relationships between
different parts of the overall system. These descriptions "let go" of
the specific logic of individual processes to capture the interactions
that are necessary for the redundancy and robustness of multiple
processes. When stated in this way we see that it is the description
of constraints between functional units of the system that are the
essential parts of the collective description of the system. We
propose to develop laguages that focus on describing these
relationships/constraints among otherwise independent processes. We
also propose to evaluate the relationship of such constraints to the
robustness and flexibility of the system behavior as a whole.

