
Design Pattern Implementation in Java and AspectJ
Jan Hannemann

University of British Columbia
201-2366 Main Mall

Vancouver B.C. V6T 1Z4
jan@cs.ubc.ca

Gregor Kiczales
University of British Columbia

201-2366 Main Mall
Vancouver B.C. V6T 1Z4

gregor@cs.ubc.ca

ABSTRACT
AspectJ implementations of the GoF design patterns show
modularity improvements in 17 of 23 cases. These improvements
are manifested in terms of better code locality, reusability,
composability, and (un)pluggability.

The degree of improvement in implementation modularity varies,
with the greatest improvement coming when the pattern solution
structure involves crosscutting of some form, including one object
playing multiple roles, many objects playing one role, or an object
playing roles in multiple pattern instances.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
patterns, information hiding, and languages; D.3.3
[Programming Languages]: Language Constructs and Features –
patterns, classes and objects

General Terms
Design, Languages.

Keywords
Design patterns, aspect-oriented programming.

1. INTRODUCTION
The Gang-of-Four (GoF) design patterns [9] offer flexible
solutions to common software development problems. Each
pattern is comprised of a number of parts, including
purpose/intent, applicability, solution structure, and sample
implementations.
A number of GoF patterns involve crosscutting structures in the
relationship between roles in the pattern and classes in each
instance of the pattern [6]. In the Observer pattern, an operation
that changes any Subject must trigger notifications of its
Observers – in other words the act of notification crosscuts one or
more operations in each Subject in the pattern. In the Chain Of
Responsibility pattern, all Handlers need to be able to accept

requests or events and to either handle them or forward them to
the successor in the chain. The event handling mechanism
crosscuts the Handlers.
When the GoF patterns were first identified, the sample
implementations were geared to the current state of the art in
object-oriented languages. Other work [19, 22] has shown that
implementation language affects pattern implementation, so it
seems natural to explore the effect of aspect-oriented
programming techniques [11] on the implementation of the GoF
patterns.
As an initial experiment we chose to develop and compare Java
[27] and AspectJ [25] implementations of the 23 GoF patterns.
AspectJ is a seamless aspect-oriented extension to Java, which
means that programming in AspectJ is effectively programming in
Java plus aspects.
By focusing on the GoF patterns, we are keeping the purpose,
intent, and applicability of 23 well-known patterns, and only
allowing the solution structure and solution implementation to
change. So we are not discovering new patterns, but simply
working out how implementations of the GoF patterns can be
handled using a new implementation tool.
Our results show that using AspectJ improves the implementation
of many GoF patterns. In some cases this is reflected in a new
solution structure with fewer or different participants, in other
cases, the structure remains the same, only the implementation
changes.
Patterns assign roles to their participants, for example Subject and
Observer for the Observer pattern. These roles define the
functionality of the participants in the pattern context. We found
that patterns with crosscutting structure between roles and
participant classes see the most improvement.
The improvement comes primarily from modularizing the
implementation of the pattern. This is directly reflected in the
implementation being textually localized. An integral part of
achieving this is to remove code-level dependencies from the
participant classes to the implementation of the pattern.
The implementation of 17 of the patterns is modularized in this
way. For 12 of the patterns, the modularity enables a core part of
the implementation to be abstracted into reusable code. For 14, it
enables transparent composition of pattern instances, so that
multiple patterns can have shared participants. For the 17
modularized patterns, all pattern code from some or all
participants is moved into the pattern aspect, allowing those
participants to be (un)pluggable with respect to the pattern.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA ’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-471-1/02/0011…$5.00.

161

These results – 74% of GoF patterns implemented in a more
modular way, and 52% reusable – suggest it would be worthwhile
to undertake the experiments of applying AspectJ to more patterns
and/or applying other aspect-oriented techniques to pattern
implementations.
The rest of the paper is organized as follows. Section 2 surveys
previously identified problems in design pattern implementation.
Section 3 introduces the study format. In section 4, we present our
AspectJ implementations and categorize the improvements we
observed. Section 5 shows an analysis of our findings and
observations. Related work is discussed in section 6, and Section
7 summarizes our work.

2. ESTABLISHED CHALLENGES
Numerous authors have identified challenges that arise when
patterns are concretized in a particular software system. The three
most important challenges are related to implementation,
documentation, and composition.
Design pattern implementation usually has a number of
undesirable related effects. Because patterns influence the system
structure and their implementations are influenced by it [7],
pattern implementations are often tailored to the instance of use.
This can lead to them “disappearing into the code” [7] and losing
their modularity [21]. This makes it hard to distinguish between
the pattern, the concrete instance and the object model involved
[15]. Adding or removing a pattern to/from a system is often an
invasive, difficult to reverse change [4]. Consequently, while the
design pattern is reusable, its implementations usually are not
[21].
The invasive nature of pattern code, and its scattering and tangling
with other code creates documentation problems [21]. If multiple
patterns are used in a system, it can become difficult to trace
particular instances of a design pattern, especially if classes are
involved in more than one pattern (i.e. if there is pattern
overlay/composition) [1].
Pattern composition causes more than just documentation
problems. It is inherently difficult to reason about systems with
multiple patterns involving the same classes, because the
composition creates large clusters of mutually dependent classes
[21]. This is an important topic because some design patterns
explicitly use others patterns in their solution.

3. STUDY FORMAT
The findings presented in this paper are based on a comparative
analysis of Java and AspectJ implementations of the GoF design
patterns.
For each of the 23 GoF patterns we created a small example that
makes use of the pattern, and implemented the example in both
Java and AspectJ.1 The Java implementations correspond to the
sample C++ implementations in the GoF book, with minor
adjustments to account for the differences between C++ and Java
(lack of multiple inheritance, etc.). Most patterns have a number
of implementation variants and alternatives. If a pattern offered
more than one possible implementation, we picked the one that
appeared to be the most generally applicable.

1 The code is available for download at:

http://www.cs.ubc.ca/labs/spl/projects/aodps.html

The AspectJ implementations were developed iteratively. The
AspectJ constructs allowed a number of different
implementations, usually with varying tradeoffs. Our goal was to
fully investigate the design space of clearly defined
implementations of each pattern. We ended up creating a total of
57 different implementations, which ranged from 1 to 7 per
pattern. Some of the tradeoffs and design decisions are discussed
in Section 4.

4. RESULTS
This section presents a comparison of the AspectJ and Java
implementations of concrete instances of the GoF design patterns.
Section 4.1 is a detailed discussion of the Observer pattern. We
use this discussion to present properties common to most of the
AspectJ solutions. The remaining patterns are presented by
building on the concepts developed in Section 4.1.

4.1 Example: the Observer pattern
The intent of the Observer pattern is to “define a one-to-many
dependency between objects so that when one object changes
state, all its dependents are notified and updated
automatically”[9]. Object-oriented implementations of the
Observer pattern, such as the sample code in the GoF book (p.
300-303), usually add a field to all potential Subjects that stores a
list of Observers interested in that particular Subject. When a
Subject wants to report a state change to its Observers, it calls its
own notify method, which in turn calls an update method on
all Observers in the list.

FigureElement

addObserver(Observer)
removeObserver(Observer)
notify()

Point: Subject

getX():int
getY():int
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setX(int)
setY(int)
setColor(Color)

Line: Subject

getP1():Point
getP2():Point
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setP1(Point)
setP2(Point)
setColor(Color)

Figure

Screen: Observer

update()
display(String)

*1
FigureElement

addObserver(Observer)
removeObserver(Observer)
notify()

Point: Subject

getX():int
getY():int
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setX(int)
setY(int)
setColor(Color)

Line: Subject

getP1():Point
getP2():Point
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setP1(Point)
setP2(Point)
setColor(Color)

Figure

Screen: Observer

update()
display(String)

*1

Figure 1. A simple Graphical Figure Element System that uses
the Observer pattern in Java. The underlined methods contain

code necessary to implement this instance of the Observer
pattern.

162

Consider a concrete example of the Observer pattern in the
context of a simple figure package, as shown in Figure 1. In such
a system the Observer pattern would be used to cause mutating
operations to figure elements to update the screen. As shown in
the figure, code for implementing this pattern is spread across the
classes.
All participants (i.e. Point and Line) have to know about their
role in the pattern and consequently have pattern code in them.
Adding or removing a role from a class requires changes in that
class. Changing the notification mechanism (such as switching
between push and pull models [9]) requires changes in all
participating classes.

4.1.1 The abstracted Observer pattern
In the structure of the Observer pattern, some parts are common to
all potential instantiations of the pattern, and other parts are
specific to each instantiation. The parts common to all
instantiations are:

1. The existence of Subject and Observer roles (i.e. the
fact that some classes act as Observer and some as
Subject).

2. Maintenance of a mapping from Subjects to Observers.
3. The general update logic: Subject changes trigger

Observer updates.
The parts specific to each instantiation of the pattern are:

4. Which classes can be Subjects and which can be
Observers.

5. A set of changes of interest on the Subjects that trigger
updates on the Observers

6. The specific means of updating each kind of Observer
when the update logic requires it.

We developed AspectJ code that reflects this separation of
reusable and instance-specific parts. An abstract aspect
encapsulates the generalizable parts (1-3), while one concrete
extension of the aspect for each instance of the pattern fills in the
specific parts (4-6). The reusable ObserverProtocol aspect
is shown in Figure 2.

4.1.1.1 The roles of Subject and Observer
The roles are realized as protected inner interfaces named
Subject and Observer (Figure 2, line 3-4). Their main
purpose is to allow for correct typing of Subjects and Observers in
the context of the pattern implementation, such as in methods like
addObserver. Concrete extensions of the
ObserverProtocol aspect assign the roles to particular
classes (see below).
These interfaces are protected because they will only be used by
ObserverProtocol and its concrete extensions. No code
outside the aspect and extensions needs to handle objects in terms
of these roles.
These interfaces are empty because the pattern defines no methods
on the Subject or Observer roles. The methods that would
typically be defined on the Subject and Observer are instead
defined on the aspect itself (see below).
For patterns that were abstractable we had to decide where to put
the role interfaces. Two locations are possible: Either as a private
interface inside the abstract aspect or as a separate public

interface. We made this decision based on whether the role
interface introduces client-accessed functionality, i.e. exposes
functionality to clients (as for Strategy, Iterator, etc.) or not (as in
the Observer case). If the role has no client-accessible
functionality, it will only be referenced from within pattern
aspects. For that reason, we placed it in the abstract aspect. In the
other case, we moved the interface into a separate file to make it
easier to reference.

4.1.1.2 The Subject-Observer mapping
Implementation of the mapping in the AspectJ code is localized to
the ObserverProtocol aspect. It is realized using a weak
hash map of linked lists to store the Observers for each Subject
(line 6). As each pattern instance is represented by a concrete
subaspect2 of ObserverProtocol, each instance will have its
own mapping.
Changes to the Subject-Observer mappings can be realized via the
public addObserver and removeObserver methods (line
21-26) that concrete subaspects inherit. To have a Screen object
S become the Observer of a Point Subject P, clients call these
methods on the appropriate subaspect (e.g. ColorObserver):
 ColorObserving.aspectOf().addObserver(P, S);

The private getObservers method is only used internally. It
creates the proper secondary data structures (linked lists) on
demand (line 8-19). Note that in this implementation the Subject-

2 A subaspect is the concrete extension of an abstract aspect, the

concept being similar to subclasses in OO languages

01 public abstract aspect ObserverProtocol {
02
03 protected interface Subject { }
04 protected interface Observer { }
05
06 private WeakHashMap perSubjectObservers;07
08 protected List getObservers(Subject s) {
09 if (perSubjectObservers == null) {
10 perSubjectObservers = new WeakHashMap();
11 }
12 List observers =
13 (List)perSubjectObservers.get(s);
14 if (observers == null) {
15 observers = new LinkedList();
16 perSubjectObservers.put(s, observers);
17 }
18 return observers;
19 }
20
21 public void addObserver(Subject s,Observer o){
22 getObservers(s).add(o);
23 }
24 public void removeObserver(Subject s,Observer o){
25 getObservers(s).remove(o);
26 }
27
28 abstract protected pointcut
29 subjectChange(Subject s);
30
31 abstract protected void
32 updateObserver(Subject s, Observer o);
33
34 after(Subject s): subjectChange(s) {
35 Iterator iter = getObservers(s).iterator();
36 while (iter.hasNext()) {
37 updateObserver(s, ((Observer)iter.next()));
38 }
39 }
40 }

Figure 2: The generalized ObserverProtocol aspect

163

Observer mapping data structure is centralized in each concrete
extension. All concrete aspects that subclass the abstract pattern
aspect will automatically have an individual copy of the field.
This follows the structure presented in [9]. This can cause a
bottleneck in some situations. These can be fixed, on a per
pattern-instance basis, by overriding getObservers with a
method that uses a more decentralized data structure.
Generally, whenever a pattern solution requires a mapping
between participants (i.e. the successor field of handlers in Chain
Of Responsibility) and the pattern implementation is abstractable,
we can either define a field on the participant, or keep the
mapping in a central data structure in the abstract aspect (as in this
example). Whichever approach is chosen, the point of access to
the data structure is the instance-specific aspect, so that different
instances of the pattern involving the same participants are
possible and will not become confused.

4.1.1.3 The update logic
In the reusable aspect, the update logic implements the general
concept that Subjects can change in ways that require all their
observers to be updated. This implementation does not define
exactly what constitutes a change, or how Observers should be
updated. The general update logic consists of three parts:
The changes of interest depict conceptual operations, a set of
points in program execution, at which a Subject should update its
Observers (to notify them of changes to its state). In AspectJ, sets
of such points are identified with pointcut constructs. In the
reusable aspect, we only know there are modifications of interest,
but we do not know what they are. Therefore, we define an
abstract pointcut named subjectChange that is to be
concretized by instance-specific subaspects (line 28-29).
In the reusable part we only know that the Observers will have to
be updated in the context of the pattern, but cannot predict how
that is best achieved. We define an abstract update method
updateObserver that will be concretized for each pattern
instance (line 31-32). That way, each instance of the Observer
pattern can choose its own update mechanism.
Finally, the reusable aspect implements the update logic in terms
of the generalizable implementation parts mentioned above. This
logic is contained in the after advice (line 34-39). This after
advice says: whenever execution reaches a join point matched by
the subjectChange pointcut, update all Observers of the
appropriate Subject afterwards.

4.1.2 Pattern-instance-specific concrete aspects
Each concrete subaspect of ObserverProtocol defines one
particular kind of observing relationship, in other words a single
pattern instance. Within that kind of relationship, there can be any
number of Subjects, each with any number of Observers. The
subaspect defines three things:

• The classes that play the roles of Subjects and
Observers. This is done using the declare parents
construct, which adds superclasses or super-interfaces to
a class, to assign the roles defined in the abstract aspect.

• The conceptual operations on the subject that require
updating the Observers. This is done by concretizing the
subjectChange pointcut.

• How to update the observers. This is done by
concretizing updateObserver. The choice between
push or pull model for updates is no longer necessary as
we have access to both the Subject and the Observer at
this point and can customize the updates.

The declare parents construct is part of the AspectJ open
class mechanism that allows aspects to modify existing classes
without changing their code. This open class mechanism can
attach fields, methods, or – as in this case – interfaces to existing
classes.
Figure 3 shows two different instances of the Observer pattern
involving the classes Point, Line, and Screen. In both
instances, Point and Line play the role of Subject, and
Screen plays the role of Observer. The first observes color
changes, and the second observes coordinate changes.
Note that the type casts in line 13 and 31 are expected disappear
with the planned AspectJ support for generics. It will then be
possible to create parameterized subaspects that incorporate the
role assignment and are type safe.
Particular classes can play one or both of the Subject and
Observer roles, either in the same pattern instance or separate
pattern instances. Figure 4 shows a third pattern instance in which
Screen acts as Subject and Observer at the same time.

In the AspectJ version all code pertaining to the relationship
between Observers and Subjects is moved into an aspect, which
changes the dependencies between the modules. Figure 5 shows
the structure for this case.

01 public aspect ColorObserver extends ObserverProtocol { 16 public aspect CoordinateObserver extends
02 17 ObserverProtocol {
03 declare parents: Point implements Subject; 18
04 declare parents: Line implements Subject; 19 declare parents: Point implements Subject;
05 declare parents: Screen implements Observer; 20 declare parents: Line implements Subject;
06 21 declare parents: Screen implements Observer;
07 protected pointcut subjectChange(Subject s): 22
08 (call(void Point.setColor(Color)) || 23 protected pointcut subjectChange(Subject s):
09 call(void Line.setColor(Color))) && target(s); 24 (call(void Point.setX(int))
10 25 || call(void Point.setY(int))
11 protected void updateObserver(Subject s, 26 || call(void Line.setP1(Point))
12 Observer o) { 27 || call(void Line.setP2(Point))) && target(s);
13 ((Screen)o).display("Color change."); 28
14 } 29 protected void updateObserver(Subject s,
15 } 30 Observer o) {
 31 ((Screen)o).display("Coordinate change.");
 32 }
 33 }

Figure 3. Two different Observer instances.

164

4.1.3 Properties of this implementation
This implementation of the Observer pattern has the following
closely related modularity properties:

• Locality – All the code that implements the Observer
pattern is in the abstract and concrete observer aspects,
none of it is in the participant classes. The participant
classes are entirely free of the pattern context, and as a
consequence there is no coupling between the
participants. Potential changes to each Observer pattern
instance are confined to one place.

• Reusability – The core pattern code is abstracted and
reusable. The implementation of ObserverProtocol is
generalizing the overall pattern behavior. The abstract
aspect can be reused and shared across multiple
Observer pattern instances. For each pattern instance,
we only need to define one concrete aspect.

• Composition transparency – Because a pattern
participant’s implementation is not coupled to the
pattern, if a Subject or Observer takes part in multiple
observing relationships their code does not become
more complicated and the pattern instances are not
confused. Each instance of the pattern can be reasoned
about independently.

• (Un)pluggability – Because Subjects and Observers
need not be aware of their role in any pattern instance,
it is possible to switch between using a pattern and not
using it in the system.

4.2 Other patterns
In the following we describe the remaining 22 GoF patterns and
how the AspectJ implementation is different from a pure Java
version. The patterns are grouped by common features, either of
the pattern structures or their AspectJ implementations.

4.2.1 Composite, Command, Mediator, Chain of
Responsibility: roles only used within pattern aspect
Similar to the Observer pattern, these patterns introduce roles that
need no client-accessible interface and are only used within the
pattern. In AspectJ such roles are realized with empty (protected)
interfaces. The types they introduce are used within the pattern
protocol. One abstract aspect for each pattern defines the roles
and attaches default implementations where possible (see Figure 6
for parts of the abstract Composition aspect).
For patterns involving particular conceptual operations, the
abstract pattern aspect introduces an abstract pointcut (to be

concretized for each instance of the pattern), which captures the
join points that should trigger important events (such as the
execution of a Command in the Command pattern). As in the
Observer example, advice (after, before, or around) is responsible
for calling the appropriate methods.
In the Composite case, to allow walking the tree structure inherent
to the patterns, we define facilities to have a visitor traverse and/or
change the structure. These visitors are defined in the concrete
aspect. See Figure 7 for an example of how statistics can be
collected from the Composition structure. In this example we
show an instance of the Composite pattern modeling a file system.
Directories are Composites, and files are Leafs. The example
shows how to calculate the disk space needed for the file system,
assuming that File objects have a size field. Again, clients use
a public method on the aspect to access the new functionality.
Appropriate methods on the participants are introduced privately
and are visible only by the aspect.3

4.2.2 Singleton, Prototype, Memento, Iterator,
Flyweight: aspects as object factories
These patterns administrate access to specific object instances. All
of them offer factory methods to clients and share a create-on-
demand strategy. The patterns are abstracted (reusable) in
AspectJ, with code for the factory in the aspect.
In the AspectJ implementations, the factory methods are either
parameterized methods on the abstract aspect or methods attached
to the participants. If the former approach is used, multiple
instances of the pattern compose transparently, even if all factory
methods have the same names. The Singleton case is special in
that we can turn the original constructor into the factory method
using around advice and returning the unique object on all
constructor calls.
Parameterized factory methods can alternatively be implemented
according to Nordberg’s factory example [18]: the factory method
is empty (returns null or a default object). Other return values
are provided by around advice on that method. If the arguments

3 Due to a bug in AspectJ release 1.0.6 the private abstract

introduction of Component.sizeOnDisk() does not work.
This is scheduled to be fixed in the next release.

01 public aspect ScreenObserver
02 extends ObserverProtocol {
03
04 declare parents: Screen implements Subject;
05 declare parents: Screen implements Observer;
06
07 protected pointcut subjectChange(Subject s):
08 call(void Screen.display(String)) && target(s);
09
10 protected void updateObserver(
11 Subject s, Observer o) {
12 ((Screen)o).display("Screen updated.");
13 }
14 }

Figure 4. The same class can be Subject and Observer

Point Line Display

ColorObserver
Subject Observer

subjectChange

Point Line Display

ColorObserver
Subject Observer

subjectChange

Figure 5: The structure of an instance of the Observer

pattern in AspectJ. Subject and Observer roles crosscut
classes, and the changes of interest (the subjectChange

pointcut) crosscuts methods in various classes.

165

are appropriate, the advice creates a new matching object;
otherwise it just proceeds with the regular execution. This allows
us extend the factory (in terms of new products) without changing
its code. Participants no longer need to have pattern code in them;
the otherwise close coupling between an original object and its
representation or accessor (Memento, Iterator) is removed from
the participants.

4.2.3 Adapter, Decorator, Strategy, Visitor, Proxy:
language constructs
Using AspectJ, the implementation of some patterns completely
disappears, because AspectJ language constructs implement them
directly. This applies to these patterns in varying degrees.
The Adapter and Visitor pattern can be realized by extending the
interface of the Adaptee (via AspectJ’s open class mechanism).
Decorator, Strategy and Proxy have alternate implementations
based on attaching advice (mentioned for Decorator in [18]).
While simpler and more modular, the approaches have inherent
limitations. The advice-based implementation of Decorator loses
its dynamic manipulation properties (dynamic reordering of
Decorators) and is thus less flexible. The interface augmentation
for Adapter cannot be realized in this manner when we want to

replace an existing method with another one that has the same
name and arguments but a different return type.
Protection or delegation proxies can be implemented to be
reusable using the above approach, but some applications of the
Proxy pattern require the Proxy and the Subject to be two distinct
objects (such as remote and virtual proxy). In these cases the Java
and AspectJ implementations are identical.

4.2.4 Abstract Factory, Factory Method, Template
Method, Builder, Bridge: multiple inheritance
These patterns are structurally similar: Inheritance is used to
distinguish different but related implementations. As this is
already nicely realized in OO, these patterns could not be given
more reusable implementations. However, with AspectJ it is
possible to replace the abstract classes mentioned in the GoF
solution by interfaces without losing the ability to attach (default)
implementations to their methods. With Java, we cannot use
interfaces if we want to define a default implementation for
methods that are part of the pattern code. In that respect,
AspectJ’s open class mechanism effectively provides a limited
form of multiple inheritance.

Besides that, Builder and Bridge have the following additional
implementation considerations. For Builder, an aspect can
intercept calls to the creation methods and replace them with
alternate implementations using around advice (see Strategy
above). For Bridge, a decoupling of Abstraction and Implementor
can be achieved by using polymorphic advice as suggested by
Nordberg [24]. While this approach reduces the coupling between
the participants, it is less flexible when it comes to dynamically
changing Implementors.

4.2.5 State, Interpreter: scattered code modularized
These patterns introduce tight coupling between their participants.
In the AspectJ implementations, parts of the scattered code can be
modularized.
In the State pattern, the crosscutting code for state transitions can
be modularized in an aspect using (mainly) after advice. For
Interpreter, it is still possible to augment or change the behavior

public abstract aspect CompositionProtocol {

 protected interface Component {}
 protected interface Composite extends Component {}
 protected interface Leaf extends Component {}

 private WeakHashMap perComponentChildren =
 new WeakHashMap();

 private Vector getChildren(Component s) {
 Vector children;
 children = (Vector)perComponentChildren.get(s);
 if (children == null) {
 children = new Vector();
 perComponentChildren.put(s, children);
 }
 return children;
 }

 public void addChild(Composite composite,
 Component component) {
 getChildren(composite).add(component);
 }
 public void removeChild(Composite composite,
 Component component) {
 getChildren(composite).remove(component);
 }

 public Enumeration getAllChildren(Component c) {
 return getChildren(c).elements();
 }

 protected interface FunctionVisitor {
 public Object doIt(Component c);
 }

 protected static Enumeration
 recurseFunction(Component c,
 FunctionVisitor fv) {
 Vector results = new Vector();
 for (Enumeration enum = getAllChildren(c);
 enum.hasMoreElements();) {
 Component child;
 child = (Component)enum.nextElement();
 results.add(fv.doIt(child));
 }
 return results.elements();
 }
}

Figure 6. Part of the abstract Composite pattern
implementation

public aspect FileSystemComposite extends
 CompositeProtocol {

 declare parents: Directory implements Composite;
 declare parents: File implements Leaf;

 public int sizeOnDisk(Component c) {
 return c.sizeOnDisk();
 }

 private abstract int Component.sizeOnDisk();

 private int Directory.sizeOnDisk() {

int diskSize = 0;
java.util.Enumeration enum;
for (enum =
 SampleComposite.aspectOf().getAllChildren(this);
 enum.hasMoreElements();) {
 diskSize +=
 ((Component)enum.nextElement()).sizeOnDisk();
}
return diskSize;

 }

 private int File.sizeOnDisk() {
 return size;
 }
} }

Figure 7. Part of a Composition pattern instance aspect

166

of the system without changing all participant classes. This can be
accomplished by attaching methods to the participants using the
open class mechanism.

4.2.6 Façade: no benefit from AspectJ
implementation
For this pattern, the AspectJ approach is not structurally different
from the Java implementation. Façade provides a unified interface
to a set of interfaces to a subsystem, to make the subsystem easier
to use. This example mainly requires namespace management and
good coding style.

5. ANALYSIS
In this section, we present an analysis of the previously observed
benefits of implementing patterns with AspectJ. The analysis is
broken into three parts:

• The general improvements observed in many pattern re-
implementations.

• The specific improvements associated with particular
patterns.

• The origins of crosscutting structure in patterns, and a
demonstration that observed improvements correlate
with the presence of crosscutting structure in the
pattern.

5.1 General Improvements
For a number of patterns, the AspectJ implementations manifest
several closely related modularity benefits: locality, reusability,
dependency inversion, transparent composability, and
(un)pluggability. Attempting to say which of these is primary is
difficult, instead we simply describe them and discuss some of
their interrelationships.
The AspectJ implementations of 17 of the 23 GoF patterns were
localized. For 12 of these, the locality enables a core part of the
implementation to be abstracted into reusable code. In 14 of the
17 we observed transparent composability of pattern instances, so
that multiple patterns can have shared participants (see Table 1).
The improvements in the AspectJ implementations are primarily
due to inverting dependencies, so that pattern code depends on
participants, not the other way around. This is directly related to
locality – all dependencies between patterns and participants are
localized in the pattern code.
An object or class that is oblivious of its role in a pattern can be
used in different contexts (such as outside the pattern) without
modifications or redundant code, thereby increasing the
reusability of participants. If participants do not need to have
pattern-specific code, they can be readily removed from or added
to a particular pattern instance, making the participants
(un)pluggable. To benefit from this, the participants must have a
meaning outside the pattern implementation. For example, the
participants in a Chain Of Responsibility pattern often have other
responsibilities in the application they are in (as widgets in the
GUI example in GoF), while Strategy objects usually just
encapsulate an algorithm.
The locality also means that existing classes can be incorporated
into a pattern instance without the need to adapt them; all the
changes are made in the pattern instance. This makes the pattern
implementations themselves relatively (un)pluggable.

Pattern locality should also allow a developer to easily impose
global policies related to the design patterns, such as adding
thread safety, logging facilities or performance optimizations.
In essence, we observe typical advantages generally associated
with localized concerns with regards to future changes and
program evolution. In particular, the problematic case of pattern
composition/overlay [1, 7, 15, 21] becomes better structured (and
easier to reason about) when pattern instances are defined in
separate modular units.
In addition to code-level benefits, the modularity of the design
pattern implementation also results in an inherent documentation
benefit. As mentioned in [1, 21], the mere existence of classes that
exclusively contain pattern code serve as records of what patterns
are being used. In the AspectJ cases, we observe two additional
improvements. First, all code related to a particular pattern
instance is contained in a single module (which defines
participants, assigns roles, etc.). This means that the entire
description of a pattern instance is localized and does not “get
lost” [21] or “degenerate” [7] in the system. Secondly, with the
current AspectJ IDE support, all references, advised methods etc.
are hyperlinks that allow a developer an overview of the
assignment of roles and where the conceptual operations of
interest are.
In 12 cases we were able to develop reusable pattern
implementations. This happened by generalizing the roles, pattern
code, communication protocols, and relevant conceptual
operations in an abstract reusable aspect. For any concrete
instance of the pattern, the developer defines the participants
(assigns roles) and fills in instance-specific code. Changes to
communication protocols or methods that are part of the abstract
classes or interfaces involved do not require adjusting all
participants.
If we can reuse generalized pattern code and localize the code for
a particular pattern instance, multiple instances of the same
pattern in one application are not easily confused (composition
transparency). The same participating object or class can even
assume different roles in different instances of the same pattern
(see the Observer example above). This solves a common problem
with having multiple instances of a design pattern in one
application.

5.2 Specific improvements
5.2.1 The Singleton case
The AspectJ version of the pattern implementation opened up two
design options that are not possible in Java: First, is Singleton an
inherited property, or do we have an inheritance anomaly?
Second, do we want a devoted factory method to provide the
Singleton instance, or do we want the constructor to return it
whenever it is called?
We decided to implement the Singleton property as inherited, but
provided facilities to exclude specific subclasses from the
Singleton protection if desired.
For the second, we decided that using the constructor instead of a
devoted factory method was beneficial. The factory, if desired,
can then be implemented either directly in the class, or as a
transparently composed aspect.

167

5.2.2 Multiple inheritance and Java
As originally presented, some of the GoF patterns make use of
multiple-inheritance in their implementation, for example the
class version of the Adapter pattern. For many patterns, the roles
that participants play within the patterns are realized as abstract
classes in Java. Participant classes inherit interfaces and default
implementations from these abstract classes. But if the participant
classes have functionality outside the pattern context (such as GUI
widgets as Subjects or Observers in the Observer pattern), they
are usually already part of an inheritance hierarchy. Since Java
lacks multiple inheritance, implementation in these cases can be

somewhat awkward: In Java, if a participant has to inherit both its
role and its other functionality, then one of the supertypes has to
be realized as an interface. Unfortunately, interfaces in Java
cannot contain code, making it impossible to attach default
implementations of methods, for example.

The open class mechanism in AspectJ provides us with a more
flexible way of implementing these patterns, as it allows to attach
both interfaces and implementations (code) to existing classes.

Table 1. Design pattern, roles, and desirable properties of their AspectJ implementations

 Modularity Properties Kinds of Roles

Pattern Name Locality(**) Reusability
Composition
Transparency (Un)pluggability Defining(*) Superimposed

Façade Same implementation for Java and AspectJ Façade -

Abstract Factory no no no no Factory, Product -

Bridge no no no no
Abstraction,
Implementor

 -

Builder no no no no Builder, (Director) -

Factory Method no no no no Product, Creator -

Interpreter no no n/a no Context, Expression -

Template Method (yes) no no (yes)
(AbstractClass),
(ConcreteClass)

(AbstractClass),
(ConcreteClass)

Adapter yes no yes yes Target, Adapter Adaptee

State (yes) no n/a (yes) State Context

Decorator yes no yes yes Component, Decorator ConcreteComponent

Proxy (yes) no (yes) (yes) (Proxy) (Proxy)

Visitor (yes) yes yes (yes) Visitor Element

Command (yes) yes yes yes
Command Commanding,

Receiver

Composite yes yes yes (yes) (Component) (Composite, Leaf)

Iterator yes yes yes yes (Iterator) Aggregate

Flyweight yes yes yes yes FlyweightFactory Flyweight

Memento yes yes yes yes Memento Originator

Strategy yes yes yes yes Strategy Context

Mediator yes yes yes yes - (Mediator), Colleague

Chain of Responsibility yes yes yes yes - Handler

Prototype yes yes (yes) yes - Prototype

Singleton yes yes n/a yes - Singleton

Observer yes yes yes yes - Subject, Observer
 (*) The distinctions between defining and superimposed roles for the different patterns were not always easy to make. In some cases, roles are
clearly superimposed (e.g. the Subject role in Observer), or defining (e.g. State in the State pattern). If the distinction was not totally clear, the role
names are shown in parentheses in either or both categories.
(**) Locality: “(yes)” means that the pattern is localized in terms of its superimposed roles but the implementation of the remaining defining role is
still done using multiple classes (e.g. State classes for the State pattern). In general, (yes) for a desirable property means that some restrictions
apply

168

5.2.3 Breaking cyclic dependencies
Some design patterns regulate complex interactions between sets of
objects. In object-oriented implementations these classes are tightly
coupled and mutually dependent. One example of a design pattern
that introduces cyclic dependencies is Mediator, a variation of the
Observer pattern that is often used in UI programming. Here,
changes to Colleagues (e.g. widgets) trigger updates in the Mediator
object (e.g. director). The Mediator, on the other hand, might update
some or all of the Colleagues as a reaction to this.
A typical structure for this pattern is shown in Figure 8 (left).
Inheritance relationships (the Mediator and Colleague interface) are
not shown. The pattern introduces cyclic dependencies between
Mediator and Colleagues (denoted by arrows pointing in opposite
direction). The pattern code (for updates etc.) is distributed both
over Mediator and all Colleagues.
In the AspectJ implementation (Figure 8, right), the indirection
introduced by the ConcreteMediator aspect removes the cyclic
dependencies. The aspect defines the participants, assigns the roles
and identifies which points in the execution trigger updates.
Colleagues do not have to have any pattern-related code in them,
they are “freed” of the pattern. Changes to the pattern (for example,
the notification interface) are limited to a single module (the aspect).
Again, an abstract aspect (here: MediatorProtocol) implements
generalizable parts of the pattern.

5.3 Crosscutting structure of design patterns
This section presents the origins of crosscutting structure in the
patterns and shows that the observed benefits of using AspectJ in
pattern implementation correlate with crosscutting in the pattern.
Roles define the behavior and functionality of participants in a
pattern. Examples of such roles are Component, Leaf and
Composite for the Composite pattern, Subject and Observer for the
Observer pattern, or Abstract- and ConcreteFactory for the Abstract
Factory pattern. Crosscutting in pattern structure is caused by
different kinds of roles and their interaction with participant classes.
In some patterns, the roles are defining: the participants have no
functionality outside the pattern. That is, the roles define the
participants completely. Objects that play the Façade role, for
example, provide a unified interface to a subsystem and (usually)

have no other behavior of their own. Defining roles often include a
client-accessible interface.
In other patterns, the roles are superimposed: they are assigned to
classes that have functionality and responsibility outside the pattern.
In the Observer pattern for example, the classes that play Subject
and Observer do more than just fulfilling the pattern requirements.
In a GUI context, Subjects could be widgets, for example. In other
words, classes that have behavior outside the Observer pattern
context. The Subject role is thus only an augmentation of the already
existing class. Superimposed roles usually do not have a client-
accessible interface.
In object-oriented programming, defining roles are often realized by
subclassing an abstract superclass to achieve different but related
behaviors; superimposed roles are often interfaces that define
behavior and responsibilities.4

5.3.1 Roles and crosscutting
Superimposed roles lead to three different kinds of crosscutting
among patterns and participants:

• Roles can crosscut participant classes. That is, for 1 role,
there can be n classes, and 1 class can have n roles; i.e. the
Subject role as shown in Figure 5.

• Conceptual operations of interest can crosscut methods in
one or more classes. That is, for one conceptual operation
there can be n methods, and 1 method can be in n
conceptual operations; i.e. the subjectChange
operations triggering an Observer update as shown in
Figure 5.

• Roles from multiple patterns can crosscut each other with
respect to classes and/or methods. That is, 2 classes that
pattern A sees as part of 1 role, pattern B may see as in
more than 1 role, and vice versa. The same is true for
conceptual operations; i.e. Subject role and
subjectChange operations as shown in Figure 9.

4 There is a misalignment in Java in that methods on a

superimposed role may only be intended for use by the pattern,
but they have to be defined on an interface, which require they
be public.

ConcreteMediator
(code)

Colleague_1
(code)

Colleague_2
(code)

Colleague_3
(code)

Colleague_4
(code)

Colleague_1

Colleague_3

Colleague_3

Colleague_4

MediatorPattern
(code)

ConcreteMediator
(code)

ConcreteMediator
(code)

Colleague_1
(code)

Colleague_2
(code)

Colleague_3
(code)

Colleague_4
(code)

Colleague_1

Colleague_3

Colleague_3

Colleague_4

MediatorPattern
(code)

ConcreteMediator
(code)

Figure 8: Dependencies and (pattern) code distribution in a typical instance of the Mediator pattern for Java (left) and AspectJ

(right) implementations. The AspectJ implementation removes cyclic dependencies and localizes the pattern code.

169

Table 1 shows that the types of roles a pattern introduces and the
observed benefits of an AspectJ implementation correlate. The
design patterns can be divided into three groups: those with only
defining roles, those with both kinds of roles and those with only
superimposed roles. The table shows that while the AspectJ
implementations of the patterns in first group show no
improvements, patterns from the last group show improvements in
all modularity benefit categories we identified. For patterns that
have both kinds of roles, the results are dependent on the
particular pattern.
Given that AspectJ is intended to modularize crosscutting
structure, this result should not be surprising. It says that patterns
that involve primarily crosscutting structure are well modularized
in an AspectJ implementation. (Note that AspectJ does not
remove the crosscutting of the pattern, but rather provides
mechanisms to modularize that structure.)

5.3.2 A predictive model?
The tight correlation between pattern roles, the crosscutting a
pattern introduces, and the observed benefits of an AspectJ
implementation suggest a predictive model of the benefit from
AspectJ implementation of a given design pattern.
With defining roles, each unit of abstraction (class) represents a
single concept, i.e. the functionality of a class corresponds to its
role in the pattern. Inheritance is used to distinguish between
related but different implementations. In such a case, transparency
and pluggability are not useful properties, as each participant is
inherently useful only within one particular pattern instance.
With superimposed behavior, the situation is different.
Participants have their own responsibilities and justification
outside the pattern context. If we force one such class into the
pattern context, we have – at the very least – two concerns
represented by one module of abstraction (class): The original
functionality and the pattern-specific behavior. The resulting
tangling and oftentimes code duplication can cause problems as
the modularity is compromised. For these patterns and their
implementations, a clean modularization of the pattern
functionality and the original functionalities of the participants is
desirable. In an AspectJ implementation it is usually possible to
modularize the abstracted pattern behavior and have one aspect
per pattern instance assign roles, conceptual operations, and fill in
instance-specific code. Since the participants do have a meaning
outside the pattern context, they are not inherently restricted to a
single role or even a single pattern instance.

This model appears to be accurate for those GoF patterns that
have only defining or only superimposed roles. For others, the
expected benefits seem to depend on the number of participants
implementing a particular kind of role. Superimposed roles that
map to multiple participants (e.g. Element in Visitor, Composite
or Leaf in Composite) indicate potential for modularization, even
if the pattern also includes defining roles.

6. RELATED WORK
There is a lot of related work focusing either on patterns beyond
the GoF patterns, or on issues beyond those in this paper. Note
that since our work focuses on the implementation of existing
design patterns, we do not mention publications dealing with
finding new patterns. In particular, related work has been done to:

1. Investigate pattern applicability in other language
paradigms

2. Automate code generation for patterns, to create a
design patterns code library, or to develop tool support
for program design with patterns

3. Classify existing patterns in order to reduce the number
of distinct patterns or to pinpoint inherent relationships
between them

4. Address the problem of design pattern composition
5. Enhance the representation of design patterns

6.1 Design patterns and language paradigms
Work in this area is directly related to this paper: We investigate
design pattern implementations in AspectJ (AOP) and compare it
to implementations in Java (OO).
Norvig’s work on design patterns in dynamic programming [19]
explores impacts on the GoF design patterns when implemented
in Lisp and/or Dylan. This work is another indicator that patterns
depend on the language paradigm. Of the 23 patterns, he found
that 16 either become either invisible or simpler due to first-class
types, first-class functions, macros, method combination,
multimethods, or modules.
Sullivan investigated the impact of a dynamic, higher-order OO
language (Scheme with a library of functions and macros to
provide OO facilities) on design pattern implementations [22]. In-
line with Norvig’s work, he observed that some design pattern
implementations disappear (if language constructs capture them),

Point Line Display

ColorObserver

Subject Observer
subjectChange

ColorDisplayObserver

Subject Observer

Point Line Display

ColorObserver

Subject Observer

ColorDisplayObserver

Subject Observer
subjectChange

Point Line Display

ColorObserver

Subject Observer
subjectChange

ColorDisplayObserver

Subject Observer

Point Line Display

ColorObserver

Subject Observer

ColorDisplayObserver

Subject Observer
subjectChange

Figure 9: Crosscutting caused by pattern composition. In particular, this figure shows how pattern composition introduces

additional crosscutting by extending Figure 5 with a second pattern instance. The left illustrates how a class can play multiple
roles, while the right shows how mapping points in program execution onto the code crosscuts the participant’s methods.

170

some stay virtually unchanged and some become simpler or have
different focus.
Nordberg describes how AOP and component-based development
can help in software module dependency management [17]. In a
different work, he views design pattern improvements from the
point of view of indirections and shows how replacing or
augmenting OO indirection with AOP indications can lead to
better designs [18].
Kühne showed the benefits of combining programming paradigms
via design patterns [12]. In his work, he introduces design
patterns to integrate high-level concepts from functional
programming in OOP.
DemeterJ is an adaptive aspect-oriented extension to Java and
another example of how new language constructs can make design
patterns (as described in GoF) disappear. The Visitor design
pattern is directly supported in DemeterJ [26].
A few aspect-oriented design patterns have been suggested. For
example, Lorenz’s work describing Visitor Beans, an AOP pattern
using JavaBeans [14], or AOP versions of particular design
patterns as the Command pattern [20].

6.2 Pattern libraries, parameterized patterns,
and tool support
Since design pattern descriptions contain information about how
the participants interact with each other, what interfaces and
variables they have to have, it is only natural to investigate how
much of the design and code generation process can be
automated. In many cases, the design patterns “essence” can be
encapsulated in an abstract aspect and reused. These aspects can
be thought of as a library for patterns, or as library of building
blocks for systems using design patterns.
Budinsky et al. [4] propose a tool for automated code generations
from design pattern descriptions. Their tool integrates pattern
code into existing systems using multiple inheritance. An
interesting property of their tool is that it allows for different
versions of each design pattern, according to the pattern
descriptions in GoF. Such design choices are dynamically
reflected in updated UML diagrams and changed code, so that
developers can see the effects of their choices.
In a paper by Florijn et al. [7] a different tool is presented that
uses a pattern representation based on so-called fragments (see
section 6.5) that allows detecting whether a pattern does not
conform to a particular design pattern “contract” and that can
suggest improvements.
A paper by Mapelsden et. al. [15] shows a CASE tool that uses
their design pattern modeling language DPML (see section 6.5).
The tool provides an explicit separation between design patterns,
their instances, and object models, which a user study found
effective in managing the use of design patterns.
Alexandrescu’s [2] generic components offer a different approach
to make design pattern more flexible and reusable. These
components are reusable C++ templates that are used to create
new pattern implementations with little recoding. In [21], Soukup
describes a C++ library of reusable pattern implementations,
which uses an approach quite similar to ours. To avoid invasive
changes to existing classes, “pattern classes” are introduced,
which are encapsulations of the pattern role implementations.
These classes include pattern code and a description of the pattern

and participants in a parameterized form describing the roles and
which code to inject where. Concrete instance of a pattern are
created using these descriptions and a special code generator. In
our work, the functionality of the pattern classes are replaced by
abstract aspects that encapsulate the roles and pattern behaviors.
Instead of weaving a role-class mapping and the description to
create code, a concrete aspect is used to assign the roles and to fit
in appropriate code.

6.3 Pattern Classification
Based on our comparison, we classify design patterns according to
their usage of roles, as this is what we found to affect their
potential to benefit from an aspect-oriented implementation.
Various works have addressed the growing number of design
patterns and tried to classify existing patterns according to various
characteristics. Agerbo [1] distinguishes between fundamental
design patterns (FDPs), and language-dependent design patterns
(LDDPs). While FDPs are not covered by any language construct
(in any language), LDDDs have different implementations (or
disappear completely) depending on the language used.
Gil [10] proposes a similar classification based on the closeness of
patterns to actual language constructs. He identifies three different
types of patterns: clichés, idioms, and cadet patterns. Clichés are
“common uses of prevalent mechanisms” of a particular
programming language, idioms are language mechanisms of non-
mainstream languages, and cadet patterns are “abstraction
mechanisms not yet incorporated in any programming language”.
We used the reasoning that Façade is more a generally accepted
mechanism for information hiding (a Cliché in Gil’s terminology)
than a fully-fledged pattern to explain why it does not profit from
an AspectJ implementation.
Zimmer [23] investigated the relationship between patterns in
pattern compositions. He introduces a three-layer classification of
the GoF design pattern based on their potential role in pattern
compositions. The different categories are “basic design patterns
and techniques” for rudimentary patterns used in others; “design
patterns for typical software problems” for higher-level patterns
for more specific problems. Finally, “design patterns specific to an
application domain” is for domain specific patterns. Compared to
our work it appears that patterns that use other patterns in their
solution (i.e. are higher up in the hierarchy) should introduce
more crosscutting than others and profit more form an AspectJ
implementation. It turns out, however, that the usage of roles is
much more relevant for determining how crosscutting a pattern is.

6.4 Roles and pattern composition
Pattern composition has been shown as a challenge to applying
design patterns. In our work, we show how coding design patterns
as aspects can solve the modularity problems associated with
pattern composition.
The Role Object Pattern [3] has been introduced to deal with
different requirements imposed on objects in different contexts.
This approach is an OO attempt to deal with superimposed roles5.
The separation of core functionality and role is realized by
introducing role object fields into the core classes, which
themselves share a high-level interface with the role classes. This

5 In that the core classes already have defined responsibility and

the role introduces additional responsibilities.

171

creates cyclic references: ComponentCore stores a list of roles,
and each ComponentRole has a reference to the core object
they are attached to. While introducing tight coupling between
core and role, this approach enables dynamically adding and
removing roles from an object. Fowler [8] presents guidelines on
different variations of the pattern and when to use them.
Other work describes different approaches to model roles and
their relationship to the concrete classes playing those roles.
Mikkonen [16] formalizes them as behavioral layers (object
slices). Florijn et. al. [7] introduces a fragment model (see below)
that represents participant roles as a particular kind of fragments.
Mapelsden et. al [15] differentiate explicitly between patterns,
their instances, and object models. Their graphical notation
(DMPL) allows mapping roles to concrete classes. Design pattern
libraries and code generators usually introduce a means to assign
pattern roles to concrete classes. The most commonly used tools
to weave role-related code into existing classes are multiple
inheritance [1, 4, 16], or a dedicated weaver [21].

6.5 Alternative pattern representations
This area is remotely related in that it outlines new approaches to
design pattern notation.
A number of papers address problems with the preciseness of the
pattern description format presented in GoF. Lauder and Kent
[13] introduce a hierarchical model (consisting of three layers
based on UML notations) for describing pattern structures and
dynamic behavior. The role model captures the “pure pattern”,
and is refined by a type-model (similar to the GoF UML
diagrams), which is in turn refined by an instance-specific model
that uses the concrete names a particular pattern instance. The
authors claim that the three models complement each other and
that a developer should have access to all three models of a
particular pattern.
Florijn et. al. [7] suggest a fragment-based representation of
design patterns. A fragment depicts a design element such as a
class, method or association). Patterns themselves and all
elements in a pattern instance (classes, relationships among them,
code) are represented as (graphs of) fragments.
Mapelsden et. al. [15] introduce the design pattern modeling
language DPML, built upon similar concepts as UML. This multi-
level approach (design patterns, pattern instances, and object
models) makes it possible to show objects and their roles within
the pattern.
Mikkonen [16] addresses the problem that the temporal behavior
of design patterns is difficult to reason about and proposes a
formal notation for this purpose. This model formalizes patterns
as behavioral layers, and realizes the interactions between objects
as atomic actions. With this approach, pattern compositions can
be modeled.

7. SUMMARY
Improvement from using AspectJ in pattern implementations is
directly correlated to the presence of crosscutting structure in the
patterns. This crosscutting structure arises in patterns that
superimpose behavior on their participants. In such patterns the
roles can crosscut participant classes, and conceptual operations
can crosscut methods (and constructors). Multiple such patterns
can also crosscut each other with respect to shared participants.

The improvements manifest themselves as a set of properties
related to modularity. The pattern implementations are more
localized, and in a number of cases are reusable. Because the
AspectJ solutions better align dependencies in the code with
dependencies in the solution structure, AspectJ implementations
of the patterns are sometimes also composable.
Localizing pattern implementation provides inherent code
comprehensibility benefits – the existence of a single named unit
of pattern code makes the presence and structure of the pattern
more explicit. In addition, it provides an anchor for improved
documentation of the code.
Our results suggest several directions for further experimentation,
including applying AspectJ to more patterns, attempting to make
systematic use of our reusable pattern implementations, and
attempting to use AspectJ in legacy code bases that are known to
be influenced by design pattern thinking. Another avenue for
future work is to compare these results with the use of other
aspect-oriented techniques.

8. ACKNOWLEDGEMENTS
Our thanks go to Gail Murphy and the anonymous reviewers for
their helpful comments on earlier versions of this paper.

9. REFERENCES
[1] Agerbo, E., Cornils, A. How to preserve the benefits of

Design Patterns. Proceedings of OOPSLA 1998, pp. 134-143

[2] Alexandrescu, A. Modern C++ Design: Generic
Programming and Design Patterns Applied. Addison-
Wesley, 2001

[3] Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. Role
Object Pattern. Proceedings of PLoP '97. Technical Report
WUCS-97-34. Washington University Dept. of Computer
Science, 1997

[4] Budinsky, F., Finnie, M., Yu, P., Vlissides, J. Automatic
code generation from Design Patterns. IBM Systems Journal
35(2): 151-171

[5] Coplien, J. O. Idioms and Patterns as Architectural
Literature. IEEE Software Special Issue on Objects, Patterns,
and Architectures, January 1997

[6] Coplien, J. O. Software Design Patterns: Common Questions
and Answers. In: Rising L., (Ed.), The Patterns Handbook:
Techniques, Strategies, and Applications. Cambridge
University Press, NY, January 1998, pp. 311-320

[7] Florijn, G., Meijers, M., Winsen, P. van. Tool support for
object-oriented patterns. Proceedings of ECOOP 1997

[8] Fowler M.: Dealing with roles. Proceedings of PLoP '97.
Technical Report WUCS-97-34. Washington University
Dept. of Computer Science, 1997

[9] Gamma, E. et al. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994

[10] Gil, J., Lorenz, D. H. Design Patterns vs. Language Design.
ECOOP 1997 Workshop paper

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwing, J. Aspect-Oriented

172

Programming. Proceedings of ECOOP ’97, Springer Verlag,
pages 220-242, 1997

[12] Kühne, T. A Functional Pattern System for Object-Oriented
Design. Ph.D. Thesis, Darmstadt University of Technology,
Verlag Dr. Kovac, ISBN 3-86064-770-9, July 1999

[13] Lauder, A., Kent, S. Precise Visual Specification of Design
Patterns. Proceedings of ECOOP 1998

[14] Lorenz, David H. Visitor Beans: An Aspect-Oriented
Pattern. ECOOP 1998 Workshops, pages 431-432, 1998

[15] Mapelsden, D., Hosking, J. and Grundy, J. Design Pattern
Modelling and Instantiation using DPML. In Proceeding of
TOOLS Pacific 2002, Sydney, Australia. Conferences in
Research and Practice in Information Technology, 10. Noble,
J. and Potter, J., Eds., ACS

[16] Mikkonen, T. Formalizing Design Patterns. Proceedings of
ICSE 1998, pp. 115-124

[17] Nordberg, M. E. Aspect-Oriented Dependency Inversion.
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, October 2001

[18] Nordberg, M. E. Aspect-Oriented Indirection – Beyond
Object-Oriented Design Patterns. OOPSLA 2001 Workshop
"Beyond Design: Patterns (mis)used", October 2001

[19] Norvig, P. Design Patterns in Dynamic Programming. In:
Object World 96, Boston MA, May 1996

[20] Sletten, B. Beyond Actions – A Semantically Rich Command
Pattern for the Java™ Foundation Classes (JFC/Swing) API.
Presentation at JavaOne 2002

[21] Soukup, J. Implementing Patterns. In: Coplien J. O.,
Schmidt, D. C. (eds.) Pattern Languages of Program Design.
Addison Wesley 1995, pp. 395-412

[22] Sullivan, G. T. Advanced Programming Language Features
for Executable Design Patterns. Lab Memo, MIT Artificial
Intelligence Laboratory, number AIM-2002-005, 2002

[23] Zimmer, W. Relationships Between Design Patterns. In:
Coplien, J. O., Schmidt, D. C. (eds.) Pattern Languages of
Program Design. Addison-Wesley, 1995, pp. 345-364

[24] The AspectJ user mailing list.
http://aspectj.org/pipermail/users/

[25] The AspectJ web site. http://www.aspectj.org

[26] The DemeterJ web site.
http://www.ccs.neu.edu/research/demeter/DemeterJava/

[27] The Java web site. http://www.java.sun.com

173

	INTRODUCTION
	ESTABLISHED CHALLENGES
	
	
	
	
	
	Design pattern implementation usually has a number of undesirable related effects. Because patterns influence the system structure and their implementations are influenced by it [7], pattern implementations are often tailored to the instance of use. This

	STUDY FORMAT
	RESULTS
	Example: the Observer pattern
	The abstracted Observer pattern
	The roles of Subject and Observer
	The Subject-Observer mapping
	The update logic

	Pattern-instance-specific concrete aspects
	Properties of this implementation

	Other patterns
	Composite, Command, Mediator, Chain of Responsibility: roles only used within pattern aspect
	Singleton, Prototype, Memento, Iterator, Flyweight: aspects as object factories
	Adapter, Decorator, Strategy, Visitor, Proxy: language constructs
	Abstract Factory, Factory Method, Template Method, Builder, Bridge: multiple inheritance
	State, Interpreter: scattered code modularized
	Façade: no benefit from AspectJ implementation

	ANALYSIS
	General Improvements
	Specific improvements
	The Singleton case
	Multiple inheritance and Java
	Breaking cyclic dependencies

	Crosscutting structure of design patterns
	Roles and crosscutting
	A predictive model?

	RELATED WORK
	Design patterns and language paradigms
	Pattern libraries, parameterized patterns, and tool support
	Pattern Classification
	Roles and pattern composition
	Alternative pattern representations

	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

