This paper as originally published as:

A. Sloman, ‘The Eglution of Poplog and Pop-11 at Sus&iiversity’ in
POP-11 Comes of Age: The Aalwcement of an Al Programming Language,
Ed J. A.D.W Anderson, Ellis Horwod, pp 30-54, 1989.

THE EVOLUTION OF POPLOG AND POP-11 AT SUSSEX UNIVERSITY

Aaron Sloman
School of Cognitre and Computing Sciences
University of Susse
Brighton BN1 9QN

Introduction: influences from Edinlmgh

| first met POP2 early in 1972 when the late Maxw@l® nev best remembered for the "Hofan/Claves" line
labelling technique, allwed me to borne his teletype and modem to dial up the Elliot 4130 computer in Hdjhb
University. This enabled me to play with some elementary list processing programs.

| later got to knewy POP2 well when | spent the 1972/3 academic session in the department of Computational Logic
in Edinturgh Unwersity, as a Sience Research Council visiting fellolearning about Al, at the vitation of
Bernard Meltzerfounding editor of the Al Journal, whaaw then head of the Department of Computational Logic.

| had some wnderful teachers including Bob Be&r, J Moore, the late Julian Des (who subsequently went to
Canada), Jim Stansfield (who latervesdto MIT), and Dang Bobrow (who also happened to be visiting for a year
between leding BB&N and meing to Xerx RARC). That vas the year wrk began on the nav famous
Boyer/Moore string searching algorithm and their Lisp theoremeprélarry Barrav also helped me learn to da

some graphical utilities he had implemented on a Wee# computer He and others in Donald Michis’
department were doing pioneeringnk on Freddie the robot, using POP2 as the main implementation language for
both the image interpretation and the motion planning and control.

My first non-trvial POP2 program simulated @&rtical two-dimensional wrld (called "Eden") in which a totally
unintelligent robot (called "Adam") could bevgh commands to ma aound, push things, pull things, etc. The
program made heg use of an analogical representation in the form of a 2-D rectangular Erimynade rotation
difficult!

During that time | learnt LISFPOPLER (Julian Daies’ implementation of Carl Hett's Hanner system, a pre-
cursor of Prolog), and LOGO (implemented in Pop-2 by Bdwbrow while visiting Edinlurgh). | also had a taste

of Prolog, as Bob Bwadski was then decloping his ideas about Prolog as a language with both a procedural and a
declaratve interpretation. Dad Warren had arvied as a lesearch student anaéjit trying to persuade us all that
Algol-68 was the best languageee Something must ha happened to him after | left.

Later, around 1975 when | ms back at Sussgl obtained a research grant for a vision project, and thatrge
access for seral years via a 1200 bd phone line to a DEC-10 computer in &@dimiiniversity. For a while we
used the POP-10 system implemented by JuliarieBahut later m@ed onto the "WonderPop" system (kmo as
WPOP) implemented by Robert Rae and Allan Ramsay at &dimton the DEC-10. Tlyewere emplged on a
Science Research Council project tovide software support for Al researchers in the UK who had beeengi
access to the DEC-10. This included people at Sudswersity and Imperial Colige.

WPOP introduced a process mechanism, designed in partveyNi®ueen (ne at Bell Labs), and &rious other

Pop-11 golution Page 1

syntactic and semantixtensions to POP2, including typed arithmetic identifiers and procedures. This made some
compile time optimisation possible, achieg speeds comparable witR®CAL. The -consky- procedure \as
introduced for creating medatatypes. WPOP also used a "caged" store manaiferdifferent data-types stored in
different parts of the address space, making it unnecessary for each recoedddiha pointing to the &y.

My impression is that the caged store manager caused more trouble tlnwiriih - e.g. users had to estimate
cage sizes required for tlifent classes of data, andrigage collectionugs praed very difficult to track davn.
Moreover the s&ing in space in indidual records could be outweighed by unused portions of cages.

In the late 1970s John Gibson, whasnater to play a major role in this stomas a research student at Sussel

he also made hegn use of WPOP on the DEC-10, for hionk on natural language processing, later abandoned
when he decided to concentrate on thesld@ment of Pop-11 and Poplog. He and | spentyraurs testing ng
facilities in WPOP and communicating with Robert Rae about them via electronic mail.

As | was then chairman of the SRC Special Interest Group for Al, as well as being one of the major users of WPOP
| was able to influence some aspects of the Edjymbdesign wrk, including the richer looping syntax. Wever |

failed to cowince others that puision of interactie devdopment tools (including an feient integrated editor)

were at least as important as languagderesions. The gument aginst me vas that the limited address space on the
DEC-10 vas too limited to be cluttered up with things that were not required for the actual running of Al programs.
The opposite vie was talen at Susse as shwn by the deelopment of Poplog, sktched belw.

At that time Frank O’Gorman as working as a research fellowith Max Claves on a vision project at Sugsand
because thewere using Algol68, and finding iy restrictve, Frank implemented aersion of POP2 that ran on
the ICL 1906 computer at the Rutherford LaboratoFhis was, | beliee, the first \ersion of POP that included
hashed property tables, subsequenthemakn by WPOP and Pop-11. It included a compiler written in POP2.
However, the days of the 1906 were numbered and taegion of Pop-2 a&s not used much.

POP dgelopments at Susse

When | returned to Suss&niversity in October 1973, a group of us, including Maxwds, by then Professor of
Artificial Intelligence (probably the first in theonid with that title), along with M@aret Boden, Alistair Chalmers,
and seeral other colleagues started up what we called 'Begnitive Sudies Programme”. Thisag originally
based in theschool of Social Sciences, but very much later it \&s to golve into what is nw a sparateSchool of
Cognitive and Computing Sciences, including a range of undgraduate and postgraduate studies in Atrtificial
Intelligence, Computer Science, Linguistics, Philogophd PsychologyOur teaching and research requirements
stimulated a arietyof deelopments of POP2 that led to what issnknown as Pop-11, the core language of the
Poplog multi-language system.

From the bginning we felt it vas important to teach Al by\dng students plenty of practicat@erience designing
and implementing Al systems, so thatytleeuld learn at first hand some of the problems of analysing cargsks
and making systems that can emulatnerery restricted aspects of human bebar.

The most pwerful language&ilable on the SusseComputing Centre machine at that timassAlgol-68, and for a
while we tried using it for teaching. Mever it was totally unsuitable for our students, most of whom were complete
beginners and quite unused to mathematical formalisms or the kind of rigorous thinking regenréziget a small
Algol-68 program going.

We e/entually managed to obtain amsion of POP2 for ICL machines from @ersational Softare Ltd (nov
defunct) and mounted it on the Sussmiversity computing service ICL 1904 comput&ihe machine &s not
awailable for interactie wse, so | sat for hours punching cards to transform the POP2 system for use in batch mode:
essentially getting the error handler to try to ignameryghing up to the end of the current procedure definition after
each errarl also punched in arious library programs including the first POP turtle, a program thae dxo
simulated turtle around a 2-D arrayJewa a trail of "paint" that could then later be printed out. Thisiged a

Pop-11 golution Page 2

simple graphics capability that could be used on dumb terminals. It ala@altbe students to dwepictures in an
array and then write image interpretation programs that analysed the pictures tumlikOGO turtle, which
produced images on a screen, or sheet of phytedid not gve the computer the ability to "see" them.

For seveal years draing and analysing pictures in a 2-D binary arraswaev we introduced programming and Al
to neav students. Later we started using list-processing tasks (solwegcrossing puzzles or analysing and
generating sentences) to start studeritd afn still uncertain which is better

Fortunately our students did notugabo use punched cards: théad access to a primig alitor on a Modular One
computeywhich shipped programsser to the ICL machine. @irn around could be gthing from a fev minutes to a
whole dayor longer!

This was intolerable, so we obtained funds to purchasewanrcomputer Howeve, we had to choose a machine,
and a programming language.

We dd not want students to ke o fight with imporerished languages or restricted programmingrenments, ht
our resources wereewy limited. At that time, typical introductory computing coursesvéiege either simply let
students play with @mes or packages, or if thntroduced programming theften used numerical programming
problems, and imperished or unfriendly languagesdilBasic or Rscal. LOGO s an attempt to breatway from
some of the restrictions of such languages, and for a time we seriously consigéngdab Interdata computer and
using the LOGO system ddoped by Geage Coulouris and colleagues at Queen Mary @ellsondon.

In order to help mewaluate LOGO, Dany Bobrav arranged for me to hva access to the MAXC computer at
Xerox FARC (a micro-coded DEC-10 lookaélk, Max Claves allaved me to use his teletype and modem, and
University College London accepted me as a user of th@eemental transatlantic netrk service. | spent mgn

hours sitting in Brighton typing in characters that went via a long round-about route to California and then were
echoed back. What aay to use communications satellites!

These tests enabled me to decide that LOG® mally too impeerished for our purposes. The MAX@nsion did
not even support list processing, so | had to implement a horrible list-processing package véngreselink was
represented by a LOGO "sentence" made oft@GO "words". Theconcept of a "sentence" in LOGGasnery ill
defined, and it &s not at all clear what the f@ifence between aokd and a one-ard sentence as supposed to be,
especially as the same double quote symbol d$wsed for both evrds and sentences.

Moreover, the attempt to reduce the syntactic comipyeby eliminating parentheses and commas had produced a
language in which allui the simplest commands were unreadablel (Ris reason | as later ery surprised to
learn that LOGO s being used to teach Al to ungiaduates in Edinlsgh University, especially when theasked

me to be theirx@ernal aminer Howeva, it turned out that thehad little choice because therasvno suitable Al
language @eilable on the machine their undeaduates had to use.)

Having rejected LOGO at Susswe dill wanted a teaching language thatswaverful enough for us to use for our
own research, so that the products of our moreaaded work could be madevailable as library programs for
novices to use asuiding blocks or demonstration programsorFour avn sanity we did not wish to use one
language for teaching and another for researchd¥é hoped that we could use a language trest suitable for
absolute bginners ot alloved a gradual transition to more and more sophisticated prograhomiment during the
course of a studesttegee.

Since neither Max Clees nor | had computer science qualifications or adequateléaige and xperience, Stee
Hardy, who joined us in October 1974 aw gven the task of selecting a machine andviatimg the programming
tools meeting our criteria. He had pi@usly been a research student at k&smiversity, supervised by Mik Brady

He had met POP2 on the DEC-10 at Kddmiversity, where he used it to implement sophisticated tools on which he
built his PhD project on synthesising Lisp procedures from input/ouaumples, so he had a deep appreciation of
its paver. He dso knev Lisp well, haing huilt an interpreter for it as part of his post-graduate studies, as well as
using it as the object of study in his thesis.

Pop-11 golution Page 3

Steve muld hare wsed Lisp as the implementation language for his thesik taut he preferred POP2. One reason, |
think, apart from the greater readability of POPasuwhat POP2 pwided a useful "state g@g" mechanism that
allowed him to write routines that attempted to solv poblem and then, if things got fidult, suspended
themseles and only resumedorking later on if ne supporting @idence vas turned up by other modules. These
"cue-seeking" routines communicated via a global data-base using pattern-directed progedatierinLater this
kind of mechanism, which | suspectasvindependently wented in a number of places, came to bevikmas a
"blackboard", using terminology adopted at CgiaéMelon Unversity in their speech understanding project.

After coming to Sussg Steve investigated \arious computers (including the British machine called the Modular
One). Eentually we decided touy a PDP11/40. But we still lacl a teaching language.

We mnsidered Lisp it decided its syntax as too impwerished for non-mathematical gieners. | still belige that

a rich redundant syntax, although it requires more rules to be learnt, reduces theetgton the usees well as

enabling the compiler to g nore useful error messages if you maknistake. Unfortunatelymary designers of
computer languages think only about more formal properties of the language, such as the parseability by computer
having a well defined semantics, and so on. Computer Scientists are not (or used not to be) concerned about
cognitive processes in users of computer languages.

Anyhow, we dd not find a Lisp that as aailable for ary of the machines we had considered.

There were other serious objections to Lisp as a teaching languaigsxafple it had no boolean data-type, and
using the empty list to represeatde vas \ery confusing for bginners. Vrse, maw Lisp systems did not produce
an error when CAR or CDR ag applied to NIL, bt simply returned NIL, making detection of certain kinds of
program design errors #ifult. We dso felt that the use of twkinds of \alues for ariables, the functionalue and
the non-function &lue, was confusing and made it hard to treat functions in the saageas other objects, e.g.
locally redefining them within another function. Moven the problem of forming functional closures in Lisp had
been soled by clumsy and inéfient mechanism (fungs) whereas POP2 had angalg and dficient, though less
general mechanism, partial application.

Some of the defects that made us reject Lisp were subsequently remedied in the definition of Scheme, and its
descendant,Though not, alas, in Common Lisp.

We thought about Prolog, ub felt that it was too specialised andowld give begnners a distorted we of
computation, in addition to presenting them with a number 6€dlif conceptual problems. E.g. whan't you hare

a rule saying that X is the brother of Y if X is male and Y is the brother of X? In logic there is nothing wrong with
this. In most Prolog implementations it leads to infinite loops, as do aihgrfatural constructs.

Eventually after much discussion and heart-searchingy&telax and | decided that POP2 had madvantages
over al the alternatie languages that werevailable, both for bginners and for their teachers. It also had some
flaws, including thedct that the open stack, while supporting a number gbatieonstructs, could lead to obscure
bugs. But we felt that the adatages easily outweighed the disattages.

The birth of Pop-11

Having chosen our machine and our language, we tried to get hold of a POP2 for the PDP11 cvarmuisr
implementation projects were unearthed, including one in Indiathiy al had unpredictable finishing dates, so
Steve @t davn in the Summer of 1975 and byxhdanuary we were able to start using his POP system for teaching,
under the RSX-11 operating system. He called it Pop-11 because Juliems Dad called his DEC-10 system
POP-10.

The first Pop-11 as written entirely in MERO-11, the PDP11 assembly language. It compiled Pop-11 source to

an intermediate language, whiclasvthen interpreted. Despite the compeaeaiowness of an interpreteand the
small size of the machine, this system, and later the Uarsion sergd us ery well for seeral years.

Pop-11 golution Page 4

Unfortunately the operating system ywided with the machine (RSX11-D) did not pide proper time sharing
facilities, so Stee had to implement those too.

Because the PDP11 had such a small address space (32K bédsit we had to do without\s®al of the &cilities

of POP2, especially sections, usefinable data-types, statesssy and jumpout. But most other features of POP2
were there, including (shg floating point arithmetic, wearray (though not neanyarray), updaters, macros and
partial application, though not dynamic lists. Access to the operating sysiemiava ector containing special
procedures and otheadilities.

Although Stee dd most of the design and implementation there were continuous discussions of required features.
Besides leang out some POP2 features toesgpace, we took the opportunity to introdu@isus impreements

to the language. Our objections to Lispse of NIL for false wvas matched by our objections to PGP®&e of the

integer O for &lse, so we introduced a boolean data-type, though we continuedwaaaiaon-false entity to be
equivalent to true in conditionals and loop termination tests. (Perhaps #saawnista). We dso introduced an
"undef" data type, to be the @elt value of uninitialised ariables, instead of folwing the POP2 use of a pair
containing the wrd "undef" to indicate an undefinedlwe. This ne data-type allaved more errors due to
uninitialised \ariables to be detected immediatelyd helped considerably with deiging.

Although sections were not prided, a library package prioled a "prefix" mechanism for automatically attaching a
prefix to certain identifiers so that yheould not clash with other uses of those identifiers. This remaailalzle as
a Pop-11 library package in Poplog.

Having seen hev useful a pattern matcheras in his wn research, Ste asily cowvinced us that it ws essential to
extend the language to include ailbin pattern matcher with genent \ariables, together withxeended list syntax
using "™ and for inserting thealue of a ariable into a list or splicing in a list of items. He wrote the pattern
matcherlike everything else, in assemblérhis alloved may list processing programs to be much clearer: a pattern
could often be used tshow what was intended, instead of an obscure looping procedure that vale nuch
longer to write and dely. For example the follaving pattern wuld match a list of lists containing a list containing
ITEM1 and ITEM2 and wuld assign a (possibly empty) list of all the intaring elements to theasiable FOUND

(the symbol "==" will match annumber of items):

== [=="item1 ??found “item2 ==] ==

So if the \alue of "item1" is "e" and thealue of "item2" is
list

then the abe pattern could be matchedaigst the

[labc][defghij[kimn]opaq]
and would bind the list [f g h] to theariable "found".

Writing a program to do this in Lisp oaBcal vould require at least three loops and a yricéintrol structure, and
would be hard to get right first time, and probablgreharder to understand when read. A Prolegsion wuld
also be less clear than the Pop-Etsion because the Prolog matcher (i.e. the unifier) does not supposgrse
variables &cept for the final ggment of a list. Using "==" and "?&table" to match arbitrary list gments
simplifies mag programs.

The use of a pattern matcher made possible a library packagelipgoa simple pattern-directed database
mechanism, and this pred to be a weful core for aariety of library programs and student projects concerned with
interesting Al tasks, as well as more general introductions to computing techniques.

Another important x@ension introduced by Site Hardy was the praision of numerical indeng of lists and other

data-types, so that thepression "item(5)" could be used instead of "subscrv(5, item)" or "subscrs(5,item)" to
access or update the 5th element oéetor or string and instead of

hd(tl(tl(tl(tl(item)))))

Pop-11 golution Page 5

or something lik Lisp’s "CADDDDR", for accessing or updating the fifth element of a list.

This was the pre-cursor of the "class_applgtifity introduced in Poplog Pop-11, which alte ary object of aiy

type to be treated as if it were a procedure. Occasionally this use of a data-structure as a procedure causes problems,
but it permits the construction of gent general purpose utility programs that access or update tielRment of a

structure, one of mgrnways in which a language &kPop-11 that lacks typedaviables, bt has typed objects, can

facilitate re-use of code.

Other generalised Yerloaded) &cilities for a range of data types were introduced, includiptpde, which put all
the contents of a data-structure on a stack, and fill which "filled" a data-structure with objects from the stack.

The pattern matcher and numerical ixidg enabled students to learn to use list processing in quite comple
programs without hang to learn that lists were really binary trees: an ivaieimplementation detail for mgn
purposes.

Several other a&tensions to Pop-11, some added after the transfer toAKe1981, allaved programs to be more
general. Br example, the original Pop-11 list concatenatioe infix operator "<>", &s generalised (by John Gibson

| think) as a concatenator for stringgnas, \ectors, anden procedures. So if procl and proc2 are procedures the
expression

procl <> proc2

denotes the procedure that first applies procl and then applies proc2 (each of whicle whitaker arguments it
requires from the Pop-11 stack, and put bagkrasults).

The «tension of <> to a range oéutorlike data-types, lik the numerical indéng of structures, mads it possible

to write generic programs that can be re-used inadety of contgts. This generalises thedt that most
programming languages alosome "werloaded" procedures, such as the equality operator and the printing
function. The ne Pop-11 features introduced later in connection with the class mechanismxededee this
"overloading" capability in seeral directions. Thewerloaded procedures all use the data-types of thgimaents to

select appropriate procedures to run. The benefit is that it is possible to define generic procedures that can be used on
a variety of data-typesatilitating re-use of well tried and tested scfte.

On the other hand the numerical iroig could sometimes lead to obscure errors. Theaedfficult trade-of

between language features that increase the chances that you will get your program right first time because high
level general &cilities are wailable, and features that malt easier for the system to help you detect mistakor

instance by doing more compile time checking. Strongly typed languages select the second eptieferi&d the

first.

Another languagextension in Pop-11 &s the ‘chain’ &cility which alloved the implementation okgto, exitfrom,

the catch and thve pair, and other useful control structures for dealing with abnormiés érom procedures. This
made it unnecessary to pide the jumpoutdcility of POP2. Havever, these controldcilities were potential sources
of obscure programming problems, as were the process mechanisms introducadhtibtdohn Gibson later
introduced "dynamic localxpressions" (with the égword "dlocal") into Poplog Pop-11, making it possible for a
procedure alvays to trap abnormalxés so that eerything that had to be tidied up when a procedure finishad, w
tidied up. Similarly a procedure that could be resumed and suspended as part of a @®@dss able to ensure
that ewironments were s&d and restored appropriatelysing dlocal.

The problem of limited address space on the PDPA4 partially soled by preiding an auto-loading library
mechanism that aleed us to add a host of useful utilities to Pop-11 without requiring themdapadome of the
precious address space for users who did ot them. W& dso added more and more Al demonstration programs
that students could either run and play with, or incorporate as subroutines inwheragrams, or cgpand
extend. This helped to makop-11 \ery popular for teaching Al.

Another change from POP2 alled macros to return results on the stack, which were concatenated onto proglist,

Pop-11 golution Page 6

the compiler input stream, instead ofvimg to male a ist of nav program tet items to gie o the macresults
procedure. This change made it much easier to trace and derros, as well as making macro definitions easier
to understand. Pop-11 also made it possible to define a macro as a ¥st@fdesingle tet item.

| think the main contribtion of Max Claves at this stage ag the imention of highly motvating exercises and
examples, and a style of teaching thavals encouraged students to lookytwed the technical niceties to assess
their releyance to understanding the nature of human intelligence. krig @asy to fayet about these long term
objectves in teaching programming, especially when some of the studentsleajming about programming tricks.

Before we switched to Unix, there were natiormatting facilities on the PDP11, so while the students were
writing their noddy Pop-11 programs, @&eHardy and | (mostly Ste) implemented a quite sophisticated formatter
in Pop-11, which we used for producing our teaching documentatiera\ery limited laboratory funds and |
can still remember o we used to see paper (and trees) by printing teaching documentation on the back of old
line-printer output.

Ever since then we kra @mntinued to use Pop-11 for anety of non-Al purposes.df example one of our research
students bilt a fourvoice electronic tone generatand John Gibson wrote Pop-11 programs te tiaka readable
notation and compile it into instructions towdrithe generatod wrote a Pop-11 program to help with production of
indexes for books, and it has since been used bgrakauthors at Sussever since. Roger Eans, much lateused
Pop-11 to write a TRFF preiewer on Sun wrkstations. Pop-11 programs, combined with C programs or shell
scripts, hae keen in use by the Poplogwdopment team for manyears for configuration control and distriton

of library files across a md netvork of computers. And so on. The full potential of Pop-11 as a general purpose
programming language for non-Al tasks has yet to be appreciated byrdeatage!

The mave © Unix on the PDP11

We were \ery pleased that we (and our students) no longer had to use the ICL magchR8Xb11 gveus may
headaches, and the machine crashed on the slightestgtion. \\¢ then heard from Gege Coulouris that the
Unix(tm) operating system ag fir more fleible and more ralst (if a disk accessailed it tried agin instead of
crashing).

So with the help of DEC UK we switched to Unix in 1976, and in about 6 weeks Starrote his system in Unix
assemblerUnix made a huge dédrence to the delopment emironment. Preiously we had used aewy primitive
editor written in Pop-11,W3 nov we were able to suspend Pop-1lydke a nore sophisticated editathen resume
Pop-11 and compile the file that had been changed. At first we used the unix 'ed’ then later a screEor exitor
nave wsers the 'ed’ error messages (usually only "?"), and the bizarre pattern elements for searcHirigv@uid
match ag character), wereery confusing, so we had to produce a modifiedsion more suitble for ordinary
mortals.

| remember a DEC maintenance engineer being amazed by the number of students who were able to use our PDP11
simultaneously and get a reasonable response. Thas wnainly because the use of an incremental compiler
substantially reduced the number offeliént programs that had to be et once, and reduced the amount of
context-switching between editpcompiler, linker, user program and dagger | think we eentually got up to about

20 simultaneous users on a PDP11/40 with 256 Kbytes main memory and 15 Mbytes disk space. Users mostly
switched between Pop-11 and ed.

Unix pipes also allwed us to write programs thatescame the address space limitation byiig several Pop-11
programs running in parallel and sending messages to each Tileemas not popular with other users of the
machine!

One use of Unixdcilities was a lilt in Pop-11 "help" macro thatvoked the Unix formatter nrdéfto format and

print out a help file. | later introduced a "teach" program written in Pop-11 thatkdllosers to print out a portion
of a tet file, try out some Pop-11 commands, print more of tixe file, try more commands, etc. These later

Pop-11 golution Page 7

evdved into the Poplog TEBH files.

As Unix was spreading on PDP11s and more and more othesrsities wanted to teach Al, we started distriimg

Pop-11 on RKO5 disks, for a nominal aofpar | dont recall hav mary sites obtained it from us,ub centres of
expertise deeloped in a number of wmrsities including Nottingham, Aberdeenawick, Queen Mary Coltge

and Shdield, as well as some places outside the UK. dswlso successfully used at Marlborough @Qellea
"public” (i.e. private!) school for bgs, as an alternag o BASIC.

Further deelopments in the 70s

At Sussa&, Pop-11 started spreading into other SchoolsieSigard (nav in Edinburgh) used Pop-11 for teaching
programming and Al to Experimental Psychology students in the School of Biological Sciences, and Jim Hunter
(who later moed to Aberdeen Uniersity) introduced Pop-11 for teaching and research in the School of Engineering
and Applied Sciences. Itag Stee Isard who persuaded us to drop the "function end" format for defining
procedures, indvaur of "define ... end".

Around 1978 Jim HunteKeith Baler (nav Professor of Computer Science at Reading) and | set up a project to
develop a distriluted Pop-11 system. Allan Ramsay andiiBaOwen were empiged as research fells on this
project and a simulatedexsion ran (shly) on a PDP11/34,ui during the time \ailable for the project we wer
managed to get the Cambridge Ring system aokvso that we could distnitbe the Pop-11 program«es the
network of LSI-11 microcomputers, as planned.wéger, the project did produce potentially useful programs for
specifying (and then generating) a netkvof Pop-11 processes, the processors to whighdteuld be allocated,

the communication channels to be used, dtor.instance, it \as possible to assign more than one Pop-11 process
to a particular processan which case thewould be time-sharedubeach processag defined so that all it needed

to knov were logical names for its communication channels, whether pipes or real communication ports between
machines. This made it possible to reconfigure aorétwasily (though not while running). Thisagzone of man
examples of the potential uses of Pop-11 for non-Al tasks.

For teaching purposes, we obtained the PDP11 Prolog that Chris Mellish had implemented whileurgEdartal
Steve Hardy wrote a Lisp system in C, so by around 1980 we were able to teach Pop-11, Lisp and Prolog to our
students, all on the PDP11/40.

By then Bill Clocksin had implemented a POP2 system for the PDP11/40 iruighiribniversity, and for a while it
was wsed for teaching there. It had more of the DEC-10 PGieflities than SusgePop-11, including user
extendable record andewtor classes, so itag well suited for afone wanting compatibility with older POP2
systems. But it lackd some of thextensions we thought essential for our purposes, such asithé lpattern
matcheyand the boolean and undef data-types. So wernused it.

Jon Cunningham, who had been a reserch student at Besersity, joined us as an Al lecturer in October 1980.
He had started his PhDork using LISP to implement a program for checking consigteficaive physics axioms,

but was quickly cowerted to Pop-11 after coming to Sussand then he played an important part in our design
discussions, and subsequently implemented a numbgtesfstons to Pop-11, and some useful library programs and
teaching programs. He later implemented a program that translated LISP into Pop-11, aghirdeful for teaching
Lisp to students who had learnt Pop-11. This is stéilable as the (unsupported) Poplog library program LIB
OLDLISP.

Later he vas to implement the first Poplog LISP compikeribset of Maclisp, subsequently replaced by Poplog
Common Lisp.

Chris Mellish joined us in 1981 and also played an important role in Popleppiment, especially when he wrote
the first Prolog system in Pop-11.

Pop-11 golution Page 8

The birth of Poplog Pop-11

In 1981 the SusgdJniversity Computing Centre replaced its ICL machine with a groupfof /780 computers,
at last preiding a good interacte rvice, and the opportunity to wi#op programs with a big address space
(though each machine initially had only 2.5Mbytes memory).

By then our courses had gro and the PDP11/40a8 unable to cope, so we desperately needed to transfer our
teaching to the bigger machinese Wted John Gibson in the summer of 1981, and by a tortuous route he managed,
at amazing speed, to re-implement Pop-11 on A% Mnning VMS, in time for us to start teaching in Octoldére
bootstrapping process made use ofvStelardy’s FDP11 Pop-11 written in Unix assembl@nother Pop-11 he
wrote in C, and finally John GibsenPop-11 written in Pop-11 to run on théX. Programs to translate thevne
Pop-11 system sources intdX VMS assembler were written in Pop-11, so a Pop-11 systasrequired to run
these programs in order to do the translation. The output files could then be assemlel@dynichkun.The full

story of that gtraordinary bootstrapping operation should be told in print some day

All this would not hae keen possible without the co-operation of the Experimental Psychology labpvetiariy
allowed us to use theirAX for some of the deslopment work before the ne machines were\ailable in the
Computing Centre.

The \AX Pop-11 compiler vas not completed until aviehours before our first batch of students came into the
terminal room and attempted to compile and run our "Eliza" demonstration program. Being a first draft compiler it
was ery slav, and with so may students all simultaneously asking it compile a lepdile we almost ground the

VAX to a halt. But it worked, and, once compiled, the Eliza program ran at a reasonable speed, usingisioa

of the pattern matcher written in Pop-11.

Both compilation andxecution speeds lva keen enormously increased since then.

At that time we decided to enrich the syntax of Pop-11 with a wide range of looping constructs, and also decided
that all syntax closers should be formed by prefixing "end" to the opdnes haing played with forms lik "while

... do ... enddo” weventually settled for "while..do...endwhile”, "define....enddefie¢t. Havever, there were still

plenty of POP2 users that we wished toveor) so some of the POP2 (and WPOP) syntaxg still accommodated,
including "function.....end" and the use of "close" to terminate loops and conditionals. Alas these contirgue to b

some Pop-11 users, for instance because "end" and "close" are syrdax w

There were tw very important changes introduced iAX/Pop-11. The first ws that the language no longer used
an interpreted intermediate language. Instead procedures were compiled aly tteeraachine codeSecondly the
new VAX Pop-11 system as mostly written in Pop-11 plus aM@ssembler files. This meant that fromnon
development work was going to be much easier as gnartensions could be tried out interaety in a running
Pop-11 system and then latarilbin to the system. This enormously speeded up subsequesibiaent, and
allowed mawy extensions to the system to be thoroughly tested befoyantbiee added.

The editor VED vas such anxtension. Stee Hardy wrote a first draft in Pop-11 in about three weeks, around
August 1981, testing it on the PDP11 as th&X\Pop-11 vas not yet ready then took VED @er, moved it onto the
VAX and gaveit the ability to handle more than one wimndon the screen. Later thisersion vas lilt into the
Pop-11 system so that users did notehta recompile it each time. This split-screegrsion of VED vas meant to

be a temporary patch until we had a proper multi-wineditor (as in the Poplog LIB WIND®@S library), lut
somehw the temporary patch remained the standard VED aterfuntil the Poplog wingo manager (PWM)
arrived in 1986. Exen nav mary people still use it.(It should be replaced by a multi windanterface on the X
Windaws system.)

Released from the 32Kwd address space limitation John Gibs@swable to restore mawf the features of POP2
and WPOPincluding dynamic lists, user definable record aectar classes, hashed propertiesyanyarray saved
images, "lightweight processes", sections and other features, some of them descnbdddglof these &cilities
were generalised in Pop-11, and some of the generalisations are descritved belo

Pop-11 golution Page 9

The Pop-11 process mechanismvided the main processdilities that were in WPOP on the DEC-10, such as
procedures to create, run, suspend, resume, or kill a procegavdrdadditional mechanismsxeended the pwer of
Pop-11 processes, including consproctaalify for creating a ng process from part of the current calling chain,
e.g. forstate-sd@ing programs. Dynamic localxpressions also enhanced the process mechanism, as mentioned
abore, and discussed further ba&lo

It was also decided to replace the old operating systemaogenivhich in POP2 had used a special function called
"popmess" and in PDP-11 Popll had beemaov of specialdcilities. Instead, we started using a collection of
procedures, such as sysopen, sysread, syswrite, syssasleep, and so on. This required more spatevas fr
more comenient.

He was also able to addw&eal novel mechanisms of which perhaps one of the most importastavcollection of
procedures madevalable to users, for planting instructions for the Pop-11 virtual machine, which could then be
compiled to machine code and run. (I think the original idea for doing this kind of thing in Pop-11 cameevia Ste
Hardy, from a language called "CLU", about which I lsnnothing.)

These code-planting procedures enabled users to defingyniax words that etended the language as required for
different applications. Tlyewere also later used to pide incremental compilers for other languages, first Prolog,
then a teaching Lisp, then Common Lisp, then ML. Usersvbkse hae implemented other languages in Poplog.

The code-planting procedureavg more paver than the old macragility, snce macros could be used only to
define nev constructs that were translatable intgdePop-11. The same limitation applies to Lisp macros: using
macros in Lisp, you can define onlywneonstructs that are translatable into Lisp. By contrast, with direct access to
the Pop-11 virtual machine, users could defing symtactic form that could be translated into virtual machine
instructions, allwing a richer set of possible languaggéedsions than macros do.

Without that pwer it would have keen hard to implement incremental compilers for Lisp, Prolog, ML, and other
languages, although sler interpreted ersions wuld hare keen possible.

However, the initial set of Pop-11 virtual machine instructions did nov@raequate for all applications, svep

the years thehad to be etended into what is mo known as the Poplog virtual machine, which supports special
facilities for Prolog, preides full lexical scoping, and other features that were not in POP2, \WP@dtly versions

of Pop-11.

While language deslopment went on, we were also able xte&d the teaching and programmingieznment. This
included preision of usefextendable search lists for program libraries and documentation libraresds@/
extended the editor so that it could be a general purposesiceenbth for bnesing code and documentation and for
interaction with programs: the editouffer was a data structure that both users and programs could write into and
read from. This made it a suitable intexé for a @riety of tools including simple graphics tools, an electronic mail
front end, a tet formatter and others.

As nev languages were added to Poplog it became necessary to tailovitbaraant, including the editpso that

it could provide equal support for all languages, and switch itawdef automatically depending on which language
was aurrently in use. This raised a number of deep problems tlvat to& yet been fully resobd, including the
problem of coping elgantly with a file that includes commands infdient languages: e.g. it can be a problem for

the editor to decide automatically precisely which language is the "current” one. E.g. if you ask for help file while
editing a prolog file with the cursor currently in a Pop-11 sub-section, should the help file veddtdm the
Pop-11 area or the prolog area? Of coursgaatomatic inference system will get it wrong sometimes, so the user
has to preide the answer

Pop-11 golution Page 10

The addition of Prolog

During 1982, Chris Mellish and Ste Hardy deised a model for implementing Prolog, using Pop-11 closures to
represent Prolog continuations, and Chris implemented a Prolog in Pop-11, whie leaming Pop-11. Itavked,
but was somehat slav compared with high performance Prolog systems.

One reason for comparei downess vas that we decided that itaw particularly useful to enable Prolog to share
data-structures with Pop-11. This meant thata$ wot alays possible to infer that because a Prolog program could
no longer access some structurey thiere inaccessible. Tienight still be accessible if thyehad been handed to a
Pop-11 program and stored somhere for later use. This meant that structures that could be allocated using a stack
in a stand-alone Prolog, had to be onasbgge collectable heap in Poplog. The useadbage collections could

slow things davn, though the more memoryaw aailable the less this mattered, since&ihg more memory reduced

the frequeng of garbage collections.

There were other inBfiencies in the original implementation, which led John Gibsorxtend the Pop-11 virtual
machine to preide additional mechanisms specifically to support Prologr &le, instead of Prolog
continuations being Pop-11 closures allocated on the heap (and therefore requivagge g-ollections), thevere
allocated on a special stack resshfor Prolog continuations. Additional changes were made to speed up back-
tracking and unification.

It was as a result of such changes for Prolog that we started referring to the Poplog virtual machine rather than the
Pop-11 virtual machine.

Since the basicftilities are wailable as Poplog virtual machine instructions and callsuitth im Pop-11 procedures,
it is possible in principle to implement amtension to Pop-11 that acts as a dialect of Prolog, using a totally
different syntax.

We therefore discussed at length whether Pop-11 shouldtbrded to include a logic programming subsat, b
argued that most usersowld prefer their Prolog programs to be compatible with otbesians of Prolog. So we left
Prolog as a quite distinct language, while defining procedures for calling Pop-11 from Prolog aedsace v

Steve Hardy did implement a simplifiedevsion of Prolog using Pop-11 syntax and the Pop-11 database mechanism
and the pattern matcher syntdkis still available as LIB SUPER (for "superdatabase") in the Poplog library

Another important problem as whether to le® Pop-11 and Prolog sharing data-structuresmithe inevitable
efficiency cost. We consulted a a&riety of users and theexdict was clear: people anted the fbeibility of shared
data-structures more than yhwanted increased fefiengy. This choice between #ftéility and eficiencgy has been
and alvays will be a dificult tradeof in the derelopment of high leel languages.

The addition of Common Lisp, and its implications

During 1983 it became clear that Common Lisggswgoing to be some kind of international standard. Merdbe

firm that was responsible for commercial matikg of Poplog (then called Systems Designers Ltd, later renamed as
SD, and later still SD-Scicon), decided that the small Lisp system produced by Jon Cunniraghaat adequate

for the marlet place.

So we arranged to implement a Common Lisp in Poplog under the supervision of Jon Cunningham, partially
supported at first by a grant from Systems Designers and later by a research council grant. One of our recent
graduates John Miams was appointed to erk with Jon, and after some initial help from Jon, gradually taek o

the main design and implementation task himself, though some aspects of Common Lisp required John Gibson to
make dhanges deep in the system, such as the introductionvofcategories of numbers (indefinite precision
integers, ratios, compkenumbers), and alve dl extensions to the virtual machine to suppowidelly scoped

Pop-11 golution Page 11

identifiers, non-local gotos and the "unwind-protect” mechanism.

Some additional>densions to the Poplog virtual machine were needed because Lisp did/@at limlean data-
type and treated the empty list, NIL, adsk, and also because of the use of Poplgogn stack for passing
arguments and results.

The addition of full arithmeticacilities meant that gnother language implemented in Poplog could also use them.
For example, Poplog Prolog immediately acquired indefinite precision arithmetic, ratios and xcompibers.
Similarly when ML was added.

Useful extensions to the Poplog virtual machine made for the benefit of Common Lisp, generalised in some cases
(e.g. prwision of file-local leical variables), were made ogemiently accessible to Pop-11 programmers by
extending the Pop-11 syntaxofFinstance ng syntax was introduced for declaringasiables as bdcally scoped

(Ivars, Iconstant, dbrs).

Lexical (static) scoping led to an importanbkition of Pop-11 programming style. In particylby using it in the
Poplog system sources we were able to reduce the frgqakhuags. Oer the last f& years most of the Pop-11
libraries were also transformed to usedal scoping, or

Lconstant’ed and brs’ed

as the Reision notes often put it.
Lexical scoping did not makcuite as big a dierence to Pop-11 as to Lisp, since Pop-11 hadyal included
partial application, which prided a subset of thadilities of leical closures in a moreféefient and compact form.
However, partial application is not as general, and sometimes it can be more obscure, since in orderatcestakl
procedure access the syntactically enclosalgesof x leical scoping allars you to write:

procedure(); Xendprocedure
whereas using partial application to do the same thing yeeithavrite something like:

procedure(x); Xendprocedure(%x%o)

Moreover, whereas a bdcal closure can directly update the enclosingcl ervironment the partially applied
procedure cannot, unless a referencemiatly created to hand den to the sub-procedure as thadue of x.

One unfortunate consequence of fallog Common Lisp s that whereas prieusly dividing two integers alvays
produced either an inger or a decimal number (e.g. 10/3 produced a decimal 3.3333@2rintieision could nav
produce ratios. Although for some purposes thés \&n impreement, because tiichad absolute accunacthey
could also slev programs dan: a trap for programmers who are used togete being coerced to reals omision.

I now think a nev distinct operator should ke keen introduced for the production of ratios. But at least Pop-11 is
no worse than Common Lisp in this respect.

Dynamic local g&pressions

A very important generalisation of Lispinwind-protect mechanism pridled ‘dynamic local pressions’, which
specify actions to be performed on entry mit 0 a procedure, including abnormal entry (such as resuming a
suspended process) and abnormxél @sing chain, ®itfrom, or procedure suspension. The syntactiedyv'dlocal”

was aded to Pop-11 to indicate the use of dynamic logpiessions. When combined with the use of procedures
that hae pdaters this allws el@ant constructs for automatically \8ag and restoring the contents of data-
structures, or performing other actionsr Example, whereas in a procedure definition

Pop-11 golution Page 12

dlocal foo, baz;

simply specified that thealues of the ariables foo and baz should be&eshon entry to the procedure and restored
on «it, the declaration

dlocal % hd(list) %;

specified that on entry to therocedure (or re-entry in a process) thpression ‘hd(list)’ should beveluated and

the result stored, and oxie(normal or abnormal) thexpression should bevauated ‘in update mode’, i.e. as if
‘-> hd(list)’ had been written. Thiseuld ensure that whater was done to the head of the list by the procedure, the
original value would alvays be restored orx.

In addition, it wvas made possible to specifyfdient actions depending whether the proceduas leing entered
normally, left normally left abnormally resumed in a process, or suspended in a process. This enabled the use of
processes to be cleaner and more modudmiucing the frequegcof bugs caused by urpected interactions
between evironments, and enabling process resumption and suspension to be traced easily

The introduction of "actie variables" that could store multiplealues, and ran procedures whemethey were
accessed or updated, igtated well with this dlocal mechanism.

This work on dynamic localxpressions led to a clarification of the distinction betwegitddly and dynamically
scoped identifiers. John Gibson pointed out that the use ofwhatding for dynamic ariables essentially meant
that these should best be thought of as "permanemidbles: thg aways point to the same memory location,
though the contents of that location could, if required, lsedsand restored on procedure entry and.€élhis saing
and restoring &s shan to be simply a special case of the notion of dynamic logakssion, esluated in access
mode on procedure entry (to getlwes to se) and in update mode (to restore tredues) on xit.

This analysis sheed that the prgdous use of "ars" for non-lgical local \ariables had med up tw roles:
declaring a permanentasiable, and specifying entry anditeactions. These roles were waseparated in that
"dlocal" could be used for the latter purpose. tiuld be cleaner to force the declaration of permananaives
always to be done globallyout this suggestion &s resisted on the grounds that guld stop a lot of programs
working. So local "ars" declarations with their dual role were retained.

Other ettensions to Pop-11

One by-product of thexéensions required for Common Lispasgvthe introduction of generalised properties which
allowed compl& items to be used as indeg keys to retrieve gored information, unlig the old Pop2 properties,
which indexed on the address of a pointéfhe nev mechanism required the user to yide a hashing function for
the generalised propertiegjthit soon became clear that ibuld be useful to prade a hiilt in default hashing
function that could be redefined by users for particular data-types, to suit their needsa3 luasrw'syshash" and
"newmapping" the simplifiedersion of "nevanyproperty”. Thesyshash procedureas one of seeral "overloaded"
procedures that used the data type of igument to select an appropriate procedure to run, making the ne
association mechanisneny general and modulasince suitable hashing functions could beviled for diferent
data-types as tlyavere introduced.

A major generalisation as later introduced by Roger &hs - a "destid property which could be used to associate
with an object a procedure to be run when the object becoarbagg and is about to be discarded: a ‘destro
action’.

This males it possible to do things éktelling a windav manager that a particular wingdas no longer needed
because the data-structure with which mswassociated is wogarbage. Similarly in a netwk of distrituted

communicating processes, it isw@ossible for the information that some item has becomwbage to be
communicated automatically to other processes that need wo kaaspect that aariety of important applications

Pop-11 golution Page 13

of destrg actions will emege as rperience with use of thadility grows.

A Poplog Pop-11 library program shie hav the generalised association mechanisms can be used to implement a
"views" package, in which dd#rent \alues are associated with objects irfeddént vievs. A particular case is
associating dférent truth alues with the same proposition infdient lypothetical contets, e.g. while ®ploring
alternatve possible plans to sodvsome problem.

Classes and object oriented programming

The notion of allwing each data-type to ¥ its ovn hashing function as an instance of a more geneedlility,

the Pop-11 "class" mechanism. There axersé built in classes, such as ige; ratio, procedure,ector word, pair

reference etc. In addition users can define additional record classesctodclasses. Each class has associated a
collection of information, including specific procedures, for instance procedures for equality testing, for printing, for
accessing and updating components, etc. The information associated with a data-type is encapsulated in a special
type of record, a '&y'. Thereis one ley for each type (andelys havetheir avn key, whose ley is itself).

This notion of a class is anxtension of the POP2 data-type mechanism in tharaleaspects of the information
associated with a class can be changed by thefasexample the class_print, class_=, class_hash, and class_apply
the latter being the procedure to beoked whene&er an instance of the class is treated as a procedure, i.e. applied to
something.

This mechanism pxrades a simple it useful, one-layered, single-inheritance object oriented system.

From 1983 we lgen to experiment with a &riety of diferent object orientedxéensions to Pop-11, some including

multiple inheritance, meta-classes and mixins. One of them used Pop-11 processes as class instances and the process
variables as slots. Mark Rubinstein, a former student of ours vanked on Poplog for a while, implementedaa f

more sophisticated OOP system. This isvinas LIB FLA/OURS, and has been used by marojects.

A more eficient, though possibly less general, OOP system is being designed and will be added later

Sections and identifiers

Sections in POP2 made it possible taeéhafferent portions of programs woped by diferent programmers,
without fear of clashes between identifiers, since only the identifigporied’ from a section were accessible
outside it. These sections were tree-structured, eitiiék "package" notion of Common Lisp.

In Poplog Pop-11 the notion of a sectioasaxtended in arious vays to mak the mechanism more generally

useful. In particularit was made possible for the compiler to re-enter a section, so thakafople, a package

defined in a section could e tional etensions that were compiled in the same name space. This required the
introduction of section path-names so that a deeply nested section could be entered Itivez$lyalso made

possible to referxglicitly to an identifier defined in a section by prefixing the section pathname. Thus if foo is
defined in subsection SEC2 of subsection SEC1 section SECO, then it can be accessed from outside these sections
using the format "$-SEC0$-SEC1$-SEC2$-foo": not particularly prattyat least it maés possible what &8 not

previously possible.

Another etension vas the introduction of a "global" declaration type making it possible to declare that an should be
automatically imported into all eer level sections.

In fact, some of the need for sectionsswemaed by alowing "top level" lexically scoped identifiers. Thus global
variables and procedure names defined in a file could be declared tach#ylescoped, meaning that theould be
accessed only by other procedures whose definitions were syntactically nested within that file. This made it possible
in mary cases toeoid the overhead of a section. More precisely the scope of "teg"léexical identifiers vas made

Pop-11 golution Page 14

to be a particular compilation stream, andiaility was proided to enable one file to be "included" in another as
part of the same compilation stream, by analogy with " include" in C.

This section mechanism made it possible teeh&o prolog databases within Poplog, running irfefiént sections.

Closely related to the delopment of the section mechanismasmthe introduction of a cleavdion between wards,
which are the globally accessible entries in the Pop-11 dicticaadyidentifiers, which are the entities thavéa
syntactic properties and denotalues. A section is then simply a mapping frororadg in the dictionary to
identifiers. A collection of proceduresa® provided to enable operations on identifiers to behia a manner
independent of the current section, ualikor instance alof(word), which can associate f@ifent \alues with the
word in different sections, causing surprises when programs defined in a sectioalaisend then run when
another section is current.

In addition, the syntactic properties of identifiers were enriched to cope wattety\of nev facilities. For example
besides ordinary identifiers, macros, and infix operators, alided in POP2, Pop-11 noalows actve identifiers

with an associated irger (the "multiplicity”), syntax wrds, and syntax operators with a numeric precedence. Along
other dimensions, identifiers can be specified @sdeor permanent, constant ariable, global to sections or not,
and of type procedure or not. It may be possible later to introduecédeatifier types, in the interests ofielency

and improred compile time checking.

Extensions to the store manager

The etension of Pop-11 to permikternal procedure calls, together with the need for more user comiradtore
management led toceensions to the store managesr example there are motwo garbage collectors, aster one
using the technique of cgimg all non-@rbage to a me area then coying it back, and a sker one for use when
not enough space ivalable for the coging version. In addition, users can "lock" the heap when it isvknihat
evaything in it at a particular point is norapage. This substantially reduces tHerefrequired from the arbage
collector and the space required for the gog version. ler ekample, when compiling a Ige program it is possible
to re-lock the heap after each file is compiled, thereby dramatically reducing the total time requiratbeige g
collection.

It is also possible to create "layeredVeshimages, so that users can share certain programs uedhisege, and
then huild their avn sared image relatie o the shared one. On some operating systems (VMS, Dynix, SunOS 4.0)
the shared images will map into shared memaeity substantial diciency gaines on multiprocessing systems.

In order to accommodatexternally linked procedures that could dynamically allocate store, the Poplog store

manager \&s generalised to accommodate gnsented heap, where "holes" in the heap were reddry aternal
programs for theirwn use.

The emegence of a tw-level virtual machine

As the demand for Poplog to be ported to more machin@g drbecame clearer that the porting task should be
simplified. To achieve this John Gibson désed a mechanism using not just one virtual machinepvmo, a high

level Poplog virtual machine (PVM) and awviolevd Poplog implementation machine (PIM). The PVM yides

powerful facilities making it a suitable @et for compilers for high el languages. The PIM is arf more
primitive, a a leve similar to the VAX instruction set, and therefore is much easier to translate arietyw of

machine languages for thfent architectures. A language-independent and machine-independent compiler bridges
the gap between the PVM and the PIM. Because this compiler is both language independent and machine
independent a lot of it can be put into making ia$t and enabling it to do optimisation while compiling.

Thus it is (relatiely) easy to add a melanguage that will run on all architectures supporting the PIM, and it is easy

Pop-11 golution Page 15

to port the PIM to a e architecture whereupon all the languagegéted at the PVM are immediatelyagable

(along with a rich softare deelopment emironment, intgrated screen editosophisticated store managédull

operating system intexte, etc). Furthenew languages added to Poplog using the toolsiged will tend to be
more rolust than a stand-alone compilerilbfrom scratch, for which all the design and implementationkvihas to
be done speciallyOf course a specially tailored compiler can be mofieieht.

This design hasdpt the deelopment and maintenance costs of Poplrddwer than thg would have keen for four
separately implemented incrementally compiled languages running on a range of machines, as well as supporting
tightly-coupled mixd-language programming.

The actual mechanism is more comxpilean | hae indicated as the incremental compilation of user procedures to

machine code ready foxecution requires slightly diérent mechanisms from the batch compilation of system
sources to produce assembly language files faiild#hg or porting the system.

Miscellaneous delopments

Over the last f& years, under the pressure of requirements from users, a number of futtmsioms were made,
such as pnasion of huilt in mechanisms for ectors of signed inteers, nev "fast " procedures for impwved
efficiency, a gneralised signal handling mechanism, impdotracing and dalgging fcilities, etensions to the
external language inteate, more fieible versions of the recordclass arettorclass data-type declarati@eifities,
extended string handling xeended printing procedures, acflity to enable a property tovioke a pocedure to
simulate an association if one is not found in the table, modbl#eterminal handling and input/outpugdilities,
new facilities to control the beka@ur of the compilerfor instance so as to allothe user to ary the trade-déf
between speed and safety

Fortunately the autoloadable library mechanism regkt possible for some of thatensions to be put into the
library rather than into the main system, so that tltenot add to the werheads of users who do not require them.

Ports to n& machines - back from VMS to Unix

From mid 1984 a XX running Berleley Unix(tm) becameailable, so the Poplog systemas/ ported to that, and
subsequently ersions were madevalable on a wariety of machines running @&rent kinds of unix, starting with
the Bleasdale, then Sun-2, Sun-3, GEC-63yleePackard verkstations, Apollo, Orion-2 (with Clipper Processor),
Sequent Symmetry (multiple 80386 processor), Sun-4, Sun-386i. Additional portsefyeelik to the Decstation
with MIPS processor

In order to &cilitate transfer of programs between VMS and Unix, the VM&ion of Poplog (and therefore
Pop-11) vas altered to permit the use of filenames in Unix format. Since/ mfathe same file manipulation
procedures arevailable in both VMS and Unix Poplog, this means that ynamograms can ne be ported between
the two operating systems without change,\pded that thg all use the Unix format for file names.

In 1987 a subset of Pop-11 kmo as Alphapop as ported to the Apple Macintosh by CogmtiApplications Ltd,
and \ery nicely intgrated with the Mac user intade. This implementation reged a dowing review in Byte May
1988. MostAlphapop programs will run in Poplog Pop-11 Isince Poplog Pop-11 pides a much wider range
of facilities, the cowmerse is not generally true. Mever, a rumber of teaching programswoped in Poplog
Pop-11 are\ailable for use with Alphapop.

Pop-11 golution Page 16

Future deelopments

Although it is possible for users to emplBop-115s language xdension &cilities to produce xensions that are
tailored to their requirements, weveamntinued to try to abstract from commonly required typeskt#nsions to
find ways of making them easier to igtate with the language and its suppoxiremment, including the editor

For example users va dways been able to define macros or syntaxds with their an opening and closing
braclets, for creating e program or data modules or thewi looping constructs for iteratingyer special purpose
datatypes. If one introduces thesavrmnstructs the use of f&frent words can mask the relationship witkisting
constructs, and pvent the &isting tools (e.g. editing aids) fromorking straightfornvardly with the nes forms.

In order to @ercome this we recently introduced the notion of a syntax form that hadefseable syntax ards to

extend that form. Thus the "define ... enddefine" construct carbaased with a usespecifiable role, by including
a wlon followed by a sub-sytaxavd after "define", as in

enddefine;
define :instance

enddefine;

The behwaiour of define will then be controlled by a uskafined procedure associated with tlegwkord. Similarly
although Pop-11 comes with a rich collection of looping forms, including:

for <variable> in <list> do <actions> endfor

for V1V2 ..Vnin L1, L2,...,Ln do <actions> endfor

for <variable> on <list> do <actions> endfor

for V1V2 ..VnonLl, L2,...,.Ln do <actions> endfor

for <variable> in <structure> using_subscriptor <procedure> do
<actions>

endfor

for <variable> from <number> by <number> to <number> do <actions> endfor

for <variable> from <number> to <number> do <actions> endfor
(Default: by 1)

for <variable> by <number> to <number> do <actions> endfor
(Default: from 1)

for <variable> to <number> do <actions> endfor
(Defaults: from 1, by 1)

for <action> step <action> till <condition> do <actions> endfor
it is useful for users to be able to use "for ... endfor" to specify thairieratve constructs tailored to particular

forms of data, for instance iteratingep entries in an association table. lan Rogers designed and implemented an
extension allving a useidefined leyword (a sub-syntax ard, like "in"), following the \ariable list, to specify the

Pop-11 golution Page 17

action to be tadn.

Thus the use of theelword "for" can continue to be used to indicate an iteeatbntrol structure, while alleing
new versions to be introduced for particular problem types. This is analogous to the changevikdt aédine” to
be used as a syntaowd to indicate the general notion of a topeledeclaration of a ne object or type of object,
while allowving a user definable sub-syntarnd to indicate a particular specialisation.

There are probably othekamples of this general notionaiting to be disceered. It appears to be amtension to
syntax of some of the ideas of inheritancevjmesly associated with data and proceduresvéder | expect there is
still work to be done to dése a good clean general form of this idea.

| do not knav how far this kind of attempt to identify and pide useful abstractions can go or should go. The
evdution of Pop-11 needs to be wled davn, and the formation of a Pop91 standards committee must be an
excellent thing, especially as there is no danger that a frozen standard will get iayttoé the mechanisms that
allow users to define theinn higher leel application-specific constructs, in order to aid readability and therefore
program deelopment, testing, and maintenance.

One of the issues that still needs to be addressed vsipro of nev type declarations to enable mordiaént
programs to be written and to enable the compiler to do more checking.

It is possible that some of the need for this is reduced since Robert Duncan and Simon Nichols added Standard ML
to Poplog. Since ML is a strongly typed functional language, in which types can be polymorphic wehicimes

some of the restrictions of typed languages Rascal, it vould be possible in principle to use ML to define those
procedures that require the compile time checking and and run-tiimeref of a typed language. E€ient
procedures written in ML could then bevaked as needed by procedures using the more general aritlée
mechanisms of Pop-11.

However, in order to tak advantage of this it may be necessary to imprine facilities in Poplog for compiling
languages lige ML. For example, it should not alays be necessary to ot integers or decimals between their
standard machine representations and the standard Poplog representations, which octsre e used for type
identification.

Fecilities for fast intger arithmetic on machine igers are already prviwled in SYSPOPthe exttended dialect of
Pop-11 used for Poplog systemveepment, which also prades C-like pointer manipulation and otheadilities
required for ery eficient programs. SYSPOP and the POPC compilkich is used to compile the Poplog system
sources, are not at preseméilable to users, lt will be shortly (probably early in 1990). This will enable users to
compile and link Pop-11 and SYSPOP programs required for an application, which can then run without
unnecessary systemwdpment tools nhormallydilt into Poplog Pop-11.

Modified versions of POPC could be used for cross-compilation for embedded systems, opening up a host of ne
potential applications for Poplog.

Pop-11 and Lisp

It is very interesting for Pop-11 users to note that whereas Common aspupposed to prime the standard that

would eliminate the problems arising from the wideetBity of Lisp systems deloped pr&iously, in fact a number

of divergent Lisp systems continue to be used, and it looks as if Lisp dialects based on Scheme, such as the language
T, are graving in popularity There is also a nwe © produce a European dialect of Lisp that is smaller and cleaner

than Common Lisp.

The Scheme-based dialects are much closer to Pop-11 than Common Lisp is gitteathenctions as ordinary
values of \ariables, and this alles more general and eglant procedures to be written. tdever, dl dialects of Lisp
share a major problem, name therywsimple and efgnt syntax that is ery attractie © computer scientists and
mathematicians,u is often ery unattractie © working programmers, ancxy confusing for some learners.

Pop-11 golution Page 18

Sometimes this is simply because the programmers are accustomed to other languages. But some of the resistance to
Lisp can be justified by thedt that a syntactically imperished language imposes a greater cognitad on the
user

For example in Lisp the significance of arpeession will depend on its position in a list structure, requiring the
reader to @amine a lager cont&t in order to interpret thexpression, wheres in Pop-11 and other languages with a
Pascal-like g/ntax the significance is indicated by locaykvords. This is illustrated by the téfence in multi-
branch conditionals.

In Pop-11 the form

if ...then ...
elseifthen ...
elseifthen ...
elseifthen ...
elseifthen ...
else

endif

would correspond, in Lisp, to

(cond
(o))
(o))
(o))
(o))
(o))
(()¢-))

This structure is clear enough when it can all beriak at a glance,ub in a real program one may be confronted
with a line of the form

whose significance can be ascertained only by looking soayeupw, whereas the corresponding line of Pop-11
would be

elseif then
making it \ery clear that this is a condition in a multi-branch conditional.

The «tra syntactic redunagalso helps the compiler to generate more helpful error messages if, in the course of
writing or altering a program a bragtkis put in the wrong place, though theelikood of this is reduced by a good
editor.

This is simply one xample to illustrate the point that although syntactic richness may increase the number of
different syntax wrds that users ke © learn, and may complicate the tasks of both syntaerdmditors and
parsing programs or compilers, itvegtheless can play an important role in increasing intelligibility for humans, and
this may be important both for learning to use the language and for production and maintenance of apele in lar
teams where people oftenvedad read and wrk on programs written by others.

Of course, these syntactic limitations are not as important as the semantic limitations of some other languages. |
would not, for &le, use the more readable syntaxaddal as a reason for preferring it to Lisp, which las f

more flibility and paver. Howeve, when semantic limits are not the issue, the syntactferdiices may be
decisve in slecting a language.

Pop-11 golution Page 19

If the need to write, read, or modify programs disappears in the future because allkhe done at a highenid

of abstraction, with code handled only by programs not people, then théssendiés between languages will
become irreleant. Howvever, the need for human programmers will probably remain with us foy years to come,
evan if the proportion of non-programmers using computers continueswo gro

My own conjecture is thabne of the reasons (and there may be othersy wh programming languages and
techniques hae ot been widely accepted by non-Al programmers is simply the syntax of Lisp, the only Al
language manof them hae looked at. This conjecture is supported by the number of programmers in industry who
were put of by Lisp and yet liked Pop-11 despite its similarity inywer. This difference in acceptability & shan

by a surey d Alvey-funded projects in the UK conducted berKHartle at the Rutherford Appleton Laboratory
Only three languages were rated "good"dblyusers, on a "good/inddrent/poor" scale: POP-11ARLOG and

C++. Of these three, POP-11 had the most users. The complete list of languages mentioned in€lu@=sl, PR
LISP, C, Pascal, lertran, Ada, and others.

By offering programmersaimiliar with cowentional languages the opportunity to appreciate tharstdges of Al
tools for rapid prototyping and thorough testing, without the shock afmihérity that Lisp gres them, Pop-11 has
the potential to maka krge diference to the number of programmers willing to use Abldgpment emironments.
Many who have made the transition to Pop-11 can then, if necestamy to Lisp without haing to learn so much
all at once.

Acknowledgements

The Unversity of Susse has preided a congenial and accommodatingiemment for this wrk for the last
fourteen years, and some of tle-gighted administrators supported us morally and financigllg Science and
Engineering Research Council and theedd\Directorate helped with funding for some of thedepments. Stdifat
SD-Scicon, ne Integgral Solutions Ltd, made important suggestions from the atiack point of viev, did some of
the porting vark, and collaborated with us on support and maintenance.

Robin Popplestone must, of course, be aekedged as the originator of manf the features that ke made the
POP amily of languages so pleasant to use. Weolleagues and students at Susaed some users in other places
have influenced deslopments by praiding ideas and sometimes code, including especiallpussa, Andrav
Casson, Jon Cunningham, Robert Duncan, James Goodlat, F&tedy, David Hogg, Stee Isard, Dm Khabaza,
Jonathan Leenthol, Rudi Lutz, Chris Mellish, Aled Morris, Simon Nichols, Allan Ramdayn Rogers, Mark
Rubinstein, Ben Rubinstien, Chris Thornton, Johii&khs, and Daid Young, and at Helett Packard Laboratories
Steve Knight and Chris Dollin.

However, there is one person without whom Poplog Pop-11 could net legopened, and who must &tke credit
for all the most important gelopments since 1981, namely John Gibson.

POPLOG is a trade mark of the Werisity of Susse

UNIX is a trade mark of Bell LaboratoriesAX and VMS are trade marks of Digital Equipment Corporation.

Pop-11 golution Page 20

