Cryptography CS 555

Topic 3: One-time Pad and Perfect Secrecy

Outline and Readings

- Outline
 - One-time pad
 - Perfect secrecy
 - Limitation of perfect secrecy
 - Usages of one-time pad

- Readings:
 - Katz and Lindell: Chapter 2

One-Time Pad

- Fix the vulnerability of the Vigenere cipher by using very long keys
- Key is a random string that is at least as long as the plaintext
- Encryption is similar to shift cipher
- Invented by Vernam in the 1920s

One-Time Pad

Let $Z_m = \{0, 1, \dots, m-1\}$ be the alphabet.

Plaintext space = Ciphtertext space = Key space = $(Z_m)^n$

The key is chosen uniformly randomly

The Binary Version of One-Time Pad

Plaintext space = Ciphtertext space =
Keyspace = {0,1}ⁿ
Key is chosen randomly
For example:
Plaintext is 11011011

- Key is 01101001
- Then ciphertext is 10110010

Bit Operators

• Bit AND

 $0 \land 0 = 0$ $0 \land 1 = 0$ $1 \land 0 = 0$ $1 \land 1 = 1$

- Bit OR $0 \lor 0 = 0$ $0 \lor 1 = 1$ $1 \lor 0 = 1$ $1 \lor 1 = 1$
- Addition mod 2 (also known as Bit XOR) $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$
- Can we use operators other than Bit XOR for binary version of One-Time Pad?

How Good is One-Time Pad?

- Intuitively, it is secure ...
 - The key is random, so the ciphertext is completely random
- How to formalize the confidentiality requirement?
 - Want to say "certain thing" is not learnable by the adversary (who sees the ciphertext). But what is the "certain thing"?
- Which (if any) of the following is the correct answer?
 - The key.
 - The plaintext.
 - Any bit of the plaintext.
 - Any information about the plaintext.
 - E.g., the first bit is 1, the parity is 0, or that the plaintext is not "aaaa", and so on

Perfect Secrecy: Shannon (Information-Theoretic) Security

- Basic Idea: Ciphertext should provide no "information" about Plaintext
- Have several equivalent formulations:
 - The two random variables **M** and **C** are independent
 - Observing what values C takes does not change what one believes the distribution M is
 - Knowing what is value of M does not change the distribution of C
 - Encrypting two different messages m_0 and m_1 results in exactly the same distribution.

Perfect Secrecy Definition 1

Definition 2.1 (From textbook). (**Gen,Enc,Dec)** over a message space \mathcal{R} is perfectly secure if

 \forall probability distribution over \mathfrak{M}

 \forall message m $\in \mathfrak{M}$

 \forall ciphertext c $\in \mathcal{C}$ for which Pr[C=c] > 0

We have

Pr[M=m | C=c] = Pr[M = m].

Perfect Secrecy Definition 0

Definition. (**Gen,Enc,Dec**) over a message space *M* is perfectly secure if

 \forall probability distribution over \mathfrak{M}

The random variables **M** and **C** are independent.

That is, ∀ message m∈𝔐 ∀ ciphertext c ∈ l Pr [**M=**m ∧C=c] = Pr [**M** = m] Pr [**C** = c]

Definition 0 equiv. Definition 1

Definition 0 implies Definition 1

- Idea: Given Pr $[\mathbf{M}=m \land C=c] = \Pr [\mathbf{M} = m] \Pr [\mathbf{C} = c]$, for any c such that Pr $[\mathbf{C} = c] > 0$, divide both sides of the above with Pr $[\mathbf{C} = c]$, we have Pr $[\mathbf{M}=m | C=c] = \Pr [\mathbf{M} = m]$.
- Definition 1 implies Definition 0

- Idea:
$$\forall c \in \mathcal{C} \text{ s.t. } Pr[C=c] > 0$$

Pr [M=m | C=c] = Pr [M = m], multiple both side by Pr[C=c], obtain Pr [M=m \land C=c] = Pr [M = m] Pr [C = c] $\forall c \in \mathcal{C}$ s.t. Pr[C=c] = 0 we have Pr [M=m \land C=c] = 0 = Pr [M=m] Pr[C=c]

Perfect Secrecy. Definition 2.

Definition in Lemma 2.2. (Gen,Enc,Dec) over a message space \mathscr{R} is perfectly secure if

 \forall probability distribution over \mathscr{R}

 \forall message $m \in \mathcal{M}$ (assuming $\Pr[M=m]>0$)

 \forall ciphertext $c \in \mathcal{C}$

We have

Pr[C=c | M=m] = Pr[C=c].

• Equivalence with Definition 0 straightforward.

Perfect Indistinguishability

Definition in Lemma 2.3. (Gen,Enc,Dec) over a message space \mathscr{M} is perfectly secure if

 \forall probability distribution over \mathscr{M}

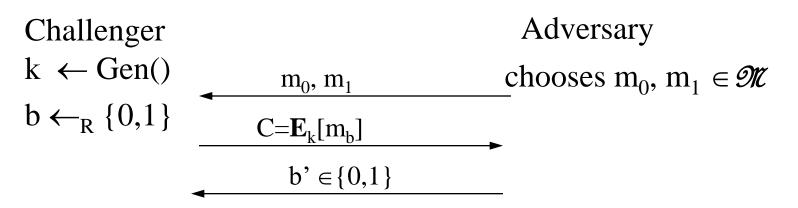
 \forall messages $m_0, m_1 \in \mathcal{M}$

 \forall ciphertext $c \in \mathcal{C}$

We have

$$Pr[C=c | M=m_0] = Pr[C=c | M=m_1]$$

To prove that this definition implies Definition 0, consider Pr [C=c].


CS555

Spring 2012/Topic 3

Adversarial Indistinguishability

• Define an experiment called **PrivK**eav:

- Involving an Adversary and a Challenger
- Instantiated with an Adv algorithm A, and an encryption scheme Π = (Gen, Enc, Dec)

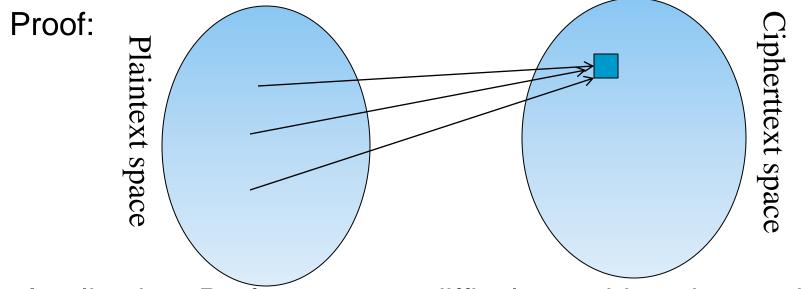
Priv $K^{eav} = 1$ if b=b', and **Priv** $K^{eav} = 0$ if $b \neq b'$

Adversarial Indistinguishability (con'd)

Definition 2.4. (**Gen,Enc,Dec)** over a message space \mathcal{M} is perfectly secure if

 \forall adversary A it holds that

$$\Pr[\mathbf{PrivK^{eav}}_{\mathbf{A},\Pi}=1] = \frac{1}{2}$$


Proposition 2.5. Definition 2.1 is equivalent to Definition 2.4.

Perfect Secrecy

- Fact: When keys are uniformly chosen in a cipher, a deterministic cipher has Shannon security iff. the number of keys encrypting m to c is the same for any pair of (m,c)
- One-time pad has perfect secrecy (Proof?)
 In textbook

The "Bad News" Theorem for Perfect Secrecy

- Question: OTP requires key as long as messages, is this an inherent requirement for achieving perfect secrecy?
- Answer. Yes. Perfect secrecy implies that key-length ≥ msg-length

Implication: Perfect secrecy difficult to achieve in practice

Key Randomness in One-Time Pad

- One-Time Pad uses a very long key, what if the key is not chosen randomly, instead, texts from, e.g., a book are used as keys.
 - this is not One-Time Pad anymore
 - this does not have perfect secrecy
 - this can be broken
 - How?
- The key in One-Time Pad should never be reused.
 - If it is reused, it is Two-Time Pad, and is insecure!
 - Why?

Usage of One-Time Pad

- To use one-time pad, one must have keys as long as the messages.
- To send messages totaling certain size, sender and receiver must agree on a shared secret key of that size.
 - typically by sending the key over a secure channel
- This is difficult to do in practice.
- Can't one use the channel for send the key to send the messages instead?
- Why is OTP still useful, even though difficult to use?

Usage of One-Time Pad

- The channel for distributing keys may exist at a different time from when one has messages to send.
- The channel for distributing keys may have the property that keys can be leaked, but such leakage will be detected
 - Such as in Quantum cryptography

Coming Attractions ...

 Cryptography: Block ciphers, encryption modes, cryptographic functions

