Cryptography CS 555

Topic 3: One-time Pad and Perfect Secrecy

Outline and Readings

- Outline
- One-time pad
- Perfect secrecy
- Limitation of perfect secrecy
- Usages of one-time pad

- Readings:
- Katz and Lindell: Chapter 2

One-Time Pad

- Fix the vulnerability of the Vigenere cipher by using very long keys
- Key is a random string that is at least as long as the plaintext
- Encryption is similar to shift cipher
- Invented by Vernam in the 1920s

One-Time Pad

Let $Z_{m}=\{0,1, \ldots, m-1\}$ be the alphabet.

Plaintext space $=$ Ciphtertext space $=$ Key space $=$ $\left(Z_{m}\right)^{n}$
The key is chosen uniformly randomly
Plaintext $\quad X=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right)$
Key $\quad K=\left(k_{1} k_{2} \ldots k_{n}\right)$
Ciphertext $Y=\left(\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{n}\end{array}\right)$
$e_{k}(X)=\left(x_{1}+k_{1} \quad x_{2}+k_{2} \ldots x_{n}+k_{n}\right) \bmod m$
$d_{k}(Y)=\left(\begin{array}{llll}y_{1}-k_{1} & y_{2}-k_{2} & \ldots & y_{n}-k_{n}\end{array}\right) \bmod m$

The Binary Version of One-Time Pad

Plaintext space $=$ Ciphtertext space = Keyspace $=\{0,1\}^{n}$
Key is chosen randomly
For example:

- Plaintext is

11011011

- Key is

01101001

- Then ciphertext is 10110010

Bit Operators

- Bit AND
$0 \wedge 0=0$
$0 \wedge 1=0$
$1 \wedge 0=0$
$1 \wedge 1=1$
- Bit OR
$0 \vee 0=0 \quad 0 \vee 1=1 \quad 1 \vee 0=1 \quad 1 \vee 1=1$
- Addition mod 2 (also known as Bit XOR)
$0 \oplus 0=0 \quad 0 \oplus 1=1 \quad 1 \oplus 0=1 \quad 1 \oplus 1=0$
- Can we use operators other than Bit XOR for binary version of One-Time Pad?

How Good is One-Time Pad?

- Intuitively, it is secure ...
- The key is random, so the ciphertext is completely random
- How to formalize the confidentiality requirement?
- Want to say "certain thing" is not learnable by the adversary (who sees the ciphertext). But what is the "certain thing"?
- Which (if any) of the following is the correct answer?
- The key.
- The plaintext.
- Any bit of the plaintext.
- Any information about the plaintext.
- E.g., the first bit is 1 , the parity is 0 , or that the plaintext is not "aaaa", and so on

Perfect Secrecy: Shannon
 (Information-Theoretic) Security

- Basic Idea: Ciphertext should provide no "information" about Plaintext
- Have several equivalent formulations:
- The two random variables \mathbf{M} and \mathbf{C} are independent
- Observing what values \mathbf{C} takes does not change what one believes the distribution \mathbf{M} is
- Knowing what is value of \mathbf{M} does not change the distribution of C
- Encrypting two different messages m_{0} and m_{1} results in exactly the same distribution.

Perfect Secrecy Definition 1

Definition 2.1 (From textbook). (Gen,Enc,Dec) over a message space \mathscr{R} is perfectly secure if
\forall probability distribution over \mathscr{M}
\forall message $\mathrm{m} \in \mathscr{R}$
\forall ciphertext $\mathrm{c} \in \mathcal{C}$ for which $\operatorname{Pr}[\mathrm{C}=\mathrm{c}]>0$
We have

$$
\operatorname{Pr}[\mathbf{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]=\operatorname{Pr}[\mathbf{M}=\mathrm{m}] .
$$

Perfect Secrecy Definition 0

Definition. (Gen,Enc,Dec) over a message space \mathscr{M} is perfectly secure if
\forall probability distribution over \mathscr{M}
The random variables \mathbf{M} and \mathbf{C} are independent.

That is,

$$
\begin{aligned}
& \forall \text { message } \mathrm{m} \in \mathscr{M} \\
& \forall \text { ciphertext } \mathrm{c} \in \mathcal{C} \\
& \operatorname{Pr}[\mathbf{M}=\mathrm{m} \wedge \mathrm{C}=\mathrm{c}]=\operatorname{Pr}[\mathbf{M}=\mathrm{m}] \operatorname{Pr}[\mathbf{C}=\mathrm{c}]
\end{aligned}
$$

Definition 0 equiv. Definition 1

- Definition 0 implies Definition 1
- Idea: Given $\operatorname{Pr}[\mathbf{M}=\mathrm{m} \wedge \mathbf{C}=\mathrm{c}]=\operatorname{Pr}[\mathbf{M}=\mathrm{m}] \operatorname{Pr}[\mathbf{C}=\mathrm{c}]$, for any c such that $\operatorname{Pr}[\mathbf{C}=c]>0$, divide both sides of the above with $\operatorname{Pr}[\mathbf{C}=\mathrm{c}]$, we have
$\operatorname{Pr}[\mathbf{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]=\operatorname{Pr}[\mathbf{M}=\mathrm{m}]$.
- Definition 1 implies Definition 0
- Idea: $\forall c \in \mathcal{C}$ s.t. $\operatorname{Pr}[\mathrm{C}=c]>0$
$\operatorname{Pr}[\mathbf{M}=m \mid C=c]=\operatorname{Pr}[\mathbf{M}=m]$, multiple both side by
$\operatorname{Pr}[\mathrm{C}=\mathrm{c}]$, obtain $\operatorname{Pr}[\mathbf{M}=\mathrm{m} \wedge \mathrm{C}=\mathrm{c}]=\operatorname{Pr}[\mathbf{M}=\mathrm{m}] \operatorname{Pr}[\mathbf{C}=\mathrm{c}]$
$\forall c \in \mathcal{C}$ s.t. $\operatorname{Pr}[\mathrm{C}=\mathrm{c}]=0$ we have
$\operatorname{Pr}[\mathrm{M}=\mathrm{m} \wedge \mathrm{C}=\mathrm{c}]=0=\operatorname{Pr}[\mathrm{M}=\mathrm{m}] \operatorname{Pr}[\mathrm{C}=\mathrm{c}]$

Perfect Secrecy. Definition 2.

Definition in Lemma 2.2. (Gen,Enc,Dec) over a message space \mathscr{M} is perfectly secure if
\forall probability distribution over \mathscr{M}
\forall message $\mathrm{m} \in \mathscr{M}$ (assuming $\operatorname{Pr}[\mathrm{M}=\mathrm{m}]>0$)
\forall ciphertext $\mathrm{c} \in \mathcal{C}$
We have

$$
\operatorname{Pr}[\mathbf{C}=\mathrm{c} \mid \mathbf{M}=\mathrm{m}]=\operatorname{Pr}[\mathbf{C}=\mathrm{c}] .
$$

- Equivalence with Definition 0 straightforward.

Perfect Indistinguishability

Definition in Lemma 2.3. (Gen,Enc,Dec) over a message space \mathscr{M} is perfectly secure if
\forall probability distribution over \mathscr{M}
\forall messages $\mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathscr{M}$
\forall ciphertext $\mathrm{c} \in \mathcal{C}$
We have

$$
\operatorname{Pr}\left[\mathbf{C}=\mathrm{c} \mid \mathbf{M}=\mathrm{m}_{0}\right]=\operatorname{Pr}\left[\mathbf{C}=\mathrm{c} \mid \mathbf{M}=\mathrm{m}_{1}\right]
$$

To prove that this definition implies Definition 0, consider $\operatorname{Pr}[\mathbf{C}=c]$.

Adversarial Indistinguishability

- Define an experiment called PrivK ${ }^{\text {eav: }}$
- Involving an Adversary and a Challenger
- Instantiated with an Adv algorithm A, and an encryption scheme $\Pi=$ (Gen, Enc, Dec)

Challenger

$\operatorname{PrivK}^{\text {eav }}=1$ if $b=b^{\prime}$, and $\operatorname{PrivK}^{\text {eav }}=0$ if $b \neq b$,

Adversarial Indistinguishability (con'd)

Definition 2.4. (Gen,Enc,Dec) over a message space \mathscr{M} is perfectly secure if
\forall adversary A it holds that

$$
\operatorname{Pr}\left[\text { PrivK }^{\text {eav }}{ }_{\mathrm{A}, \Pi}=1\right]=1 / 2
$$

Proposition 2.5. Definition 2.1 is equivalent to Definition 2.4.

Perfect Secrecy

- Fact: When keys are uniformly chosen in a cipher, a deterministic cipher has Shannon security iff. the number of keys encrypting m to c is the same for any pair of (m, c)
- One-time pad has perfect secrecy (Proof?)
- In textbook

The "Bad News" Theorem for Perfect

 Secrecy- Question: OTP requires key as long as messages, is this an inherent requirement for achieving perfect secrecy?
- Answer. Yes. Perfect secrecy implies that key-length \geq msg-length
Proof:

- Implication: Perfect secrecy difficult to achieve in practice

Key Randomness in One-Time Pad

- One-Time Pad uses a very long key, what if the key is not chosen randomly, instead, texts from, e.g., a book are used as keys.
- this is not One-Time Pad anymore
- this does not have perfect secrecy
- this can be broken
- How?
- The key in One-Time Pad should never be reused.
- If it is reused, it is Two-Time Pad, and is insecure!
- Why?

Usage of One-Time Pad

- To use one-time pad, one must have keys as long as the messages.
- To send messages totaling certain size, sender and receiver must agree on a shared secret key of that size.
- typically by sending the key over a secure channel
- This is difficult to do in practice.
- Can't one use the channel for send the key to send the messages instead?
- Why is OTP still useful, even though difficult to use?

Usage of One-Time Pad

- The channel for distributing keys may exist at a different time from when one has messages to send.
- The channel for distributing keys may have the property that keys can be leaked, but such leakage will be detected
- Such as in Quantum cryptography

Coming Attractions ...

- Cryptography: Block ciphers, encryption modes, cryptographic functions

