
Data-Oriented Design

Richard Fabian

September 26, 2013

Contents

1 Data-Oriented Design 1

1.1 It’s all about the data 2

1.2 Data is not the problem domain 4

1.3 Data and Statistics 5

1.4 Data changes . 6

1.5 How is data formed? 8

1.6 The framework . 11

2 Existence Based Processing 15

2.1 Why use an if . 15

2.2 Don’t use booleans 22

2.3 Don’t use enums . 26

2.4 Prelude to polymorphism 27

2.5 Dynamic runtime polymorphism 28

2.6 Event handling . 31

3 Component Based Objects 35

3.1 Components in the wild 36

3.2 Away from the hierarchy 38

3.3 Towards Managers 41

3.4 There is no Entity 42

i

ii CONTENTS

4 Hierarchical Level of Detail 45
4.1 Existence . 46
4.2 Mementos . 48
4.3 JIT Data Generation 49
4.4 Alternative Axes . 50

5 Condition Tables 53
5.1 Building Questions 53
5.2 Flip it on its head 55
5.3 Logging decisions for debug 56
5.4 Branching without branching 58

6 Finite State Machines 61
6.1 Tables as States . 61
6.2 Implementing Transitions 62
6.3 Condition tables as Triggers 63
6.4 Conditions as Events 64

7 Searching 65
7.1 Indexes . 65
7.2 data-oriented Lookup 66
7.3 Finding low and high 70
7.4 Finding random . 71

8 Sorting 75
8.1 Do you need to? . 75
8.2 Maintain by insertion sort or parallel merge sort . . 76
8.3 Sorting for your platfom 77

9 Relational Databases 81
9.1 Normalisation . 83
9.2 Implicit Entities . 93
9.3 Components imply entities 96
9.4 Cosmic Hierarchies 99
9.5 Structs of Arrays . 100

CONTENTS iii

9.6 Stream Processing 101
9.7 Beautiful Homogeneity 103

10 Optimisations 105
10.1 Tables . 106
10.2 Transforms . 110
10.3 Spatial sets for collisions 112
10.4 Lazy Evaluation for the masses 112
10.5 Not getting what you didn’t ask for 113
10.6 Varying Length Sets 115
10.7 Bit twiddling decision tables 117
10.8 Joins as intersections 119
10.9 Data driven techniques 119

11 Concurrency 121
11.1 Thread-safe . 122
11.2 Inherently concurrent operations 124
11.3 Gateways . 126

12 In Practice 131
12.1 Data-manipulation 131
12.2 Game entities . 136

13 Maintenance and reuse 143
13.1 Debugging . 144
13.2 Reusability . 145
13.3 Unit Testing . 147
13.4 Refactoring . 149

14 Design Patterns 151
14.1 What caused design patterns 151
14.2 Data-Oriented Design Patterns 152
14.3 Existing design patterns 158
14.4 Locking out anti-patterns 169
14.5 Game Development Patterns 171

iv CONTENTS

15 What’s wrong? 173
15.1 The Harm . 174
15.2 Mapping the problem 177
15.3 Internalised state . 182
15.4 Hierarchical design 184
15.5 Divions of labour . 187
15.6 Reusable generic code 189

16 Hardware 193
16.1 Sequential data . 194
16.2 Deep Pipes . 195
16.3 Microcode . 197
16.4 Single Instruction Multiple Data 198
16.5 Predictable instructions 199

17 Future 201
17.1 Parallel processing 203
17.2 Distributed computing 205
17.3 Runtime hardware configuration 207
17.4 Data centric development in hardware design 208

Introduction

It took a lot longer than expected to be able to write this book, but
it’s been all the better for how long the ideas have been fermenting
in my head and how many of the concepts have been tested out in
practice. In many cases, the following chapters are ideas that started
out as simple observations and slowly evolved into solid frameworks
for building software in a data-oriented manner. Some sections have
remained largely unchanged from their first drafts, such as the sec-
tions on existence based processing or the arguments against the
object-oriented approach, but others have been re-written a number
of times, trying to distill just the right kind of information at the
right pace.

Most people come at data-oriented design from object-oriented
design, and have heard of it only because of people claiming that
object-oriented design is bad, or wrong, or simply not the only way
of doing things. This may be the case for large scale software, and
though object-oriented code does have its place (as we shall discuss
in chapter 15), it has been the cause1 of much wasted time and effort
during its relatively short life in our passionate industry of software
development and games development in particular.

My own journey through imperative procedural programming,
then Object-oriented programming then finally finding, embracing,

1Large Scale C++ is a book almost entirely dedicated to showing how object
oriented development needn’t destroy the productivity of large scale software
projects

v

vi INTRODUCTION

and now spreading the word of Data-Oriented design, all started
with C++. I like to think of C++ as a go to language for the best
of both worlds when you require one of the worlds to be assembly
level quality of a control over your instructions. The other world is
the world of abstractions, the ability to create more code that does
more in less time. Over the years, I have learned a great deal about
how C++ helps add layer upon layer of abstraction to help make less
code do more, but I’ve also seen how the layers of various quality
code can cause a cascade of errors and unmaintainable spaghetti
that puts off even the most crunch hardened programmers.

I’d like to thank those who have helped in the making of this
book, whether by reading early versions of this text and criticising
the content of structure, or by being an inspiration or guiding light
on what would truly best represent this new paradigm. You can
thank the critics for the layout of the chapters and the removal of so
much of the negativity that originally sat on the pages in the critique
of design patterns. Design patterns are very nearly the opposite of
data-oriented design; it was natural that they took a beating, but
the whole chapter felt like a flame war so was removed.

This book is a practical guide for serious game developers. It is
for game developers working to create triple A titles across multiple
platforms, for independent developers trying to get the most out
of their chosen target hardware, in fact for anyone who develops
cutting edge software in restrictive hardware. It is a book about
how to write code. It is a book written to educate games developers
in a coding paradigm that is future proof, unlike the style of coding
we’ve become so accustomed to. It is a book rooted in C++, the
language of choice by games developers of the last ten years, and
provides practical advice on how to migrate without throwing away
years of accumulated code and experience. This book is about how
you can transform your development.

If you’re a diehard object-oriented programmer who doesn’t be-
lieve all this hype around this new pseudo-paradigm, then you’ve
probably not even picked up this book, but for those that do, I hope
that this book will give you the chance to change your mind. So

vii

here’s to opening minds, but not so much that your brains fall out.

Chapter 1

Data-Oriented Design

Data-oriented design has been around for decades in one form or
another, but was only officially given a name by Noel Llopis in his
September 2009 article of the same name. The idea that it is a
programming paradigm is seen as contentious as many believe that
it can be used side by side with another paradigm such as object-
oriented programming, procedural programming, or functional pro-
gramming. In one respect they are right, data-oriented design can
function alongside the other paradigms, but so can they. A Lisp
programmer knows that functional programming can coexist with
object-oriented programming and a C programmer is well aware that
object-oriented programming can coexist with procedural program-
ming. We shall ignore these comments and claim that data-oriented
design is another important tool; a tool just as capable of coexistence
as the rest.

The time was right in 2009. The hardware was ripe for a change
in how to develop. Badly programmed potentially very fast com-
puters, hindered by a hardware ignorant programming paradigm
made many engine programmers weep. The times have changed,
and many mobile and desktop solutions now need the data-oriented
design approach less, not because the machines are better at mitigat-

1

2 CHAPTER 1. DATA-ORIENTED DESIGN

ing ineffective programming, but the games being designed are less
demanding. As we move towards ubiquity for multi-core machines,
not just the desktops, but our phones too, and towards a world of
programming for massively parallel processing design as in the com-
pute cores on our graphics cards and in our consoles, the need for
data-oriented design will only grow. It will grow because abstrac-
tions and serial thinking will be the bottleneck of your competitors,
and those that embrace the data-oriented approach will thrive.

1.1 It’s all about the data

Data is all we have. Data is what we need to transform in order
to create a user experience. Data is what we load when we open a
document. Data is the graphics on the screen and the pulses from
the buttons on your game pad and the cause of your speakers and
headphones producing waves in the air and the method by which you
level up and how the bad guy knew where you were to shoot at you
and how long the dynamite took to explode and how many rings you
dropped when you fell on the spikes and the current velocity of every
particle in the beautiful scene that ended the game, that was loaded
off the disc and into your life. Any application is nothing without
its data. Photoshop without the images is nothing. Word is nothing
without the characters. Cubase is worthless without the events. All
the applications that have ever been written have been written to
output data based on some input data. The form of that data can
be extremely complex, or so simple it requires no documentation at
all, but all applications produce and need data.

Instructions are data too. Instructions take up memory, use up
bandwidth, and can be transformed, loaded, saved and constructed.
It’s natural for a developer to not think of instructions as being
data1, but there is very little differentiating them on older, less pro-
tective hardware. Even though memory set aside for executables is

1unless they are a Lisp programmer

1.1. IT’S ALL ABOUT THE DATA 3

protected from harm and modification on most contemporary hard-
ware, this relatively new invention is still merely an invention. In-
structions are still data, and once more, they are what we transform
too. We take instructions and turn them into actions. The number,
size, and frequency of them is something that matters and that we
have control over.

This forms the basis of the argument for a data-oriented ap-
proach to development, but leaves out one major element. All this
data and the transforming of data, from strings, to images, to in-
structions, they all have to run on something. Sometimes that thing
is quite abstract, such as a virtual machine running on unknown
hardware. Sometimes that thing is concrete, such as knowing which
specific CPU and what speed and memory capacity and bandwidth
you have available. But in all cases, the data is not just data, but
data that exists on some hardware somewhere, and it has to be
transformed by some hardware. In essence, data-oriented design is
the practice of designing software by developing transforms for well
formed data where well formed is guided by the target hardware
and the transforms that will operate on it. Sometimes the data isn’t
well defined, and sometimes the hardware is equally evasive, but in
most cases a good background of hardware appreciation can help
out almost every software project.

If the ultimate result of an application is data, and all input
can be represented by data, and it is recognised that all data trans-
forms are not performed in a vacuum, then a software development
methodology can be founded on these principles, the principles of
understanding the data, and how to transform it given some knowl-
edge of how a machine will do what it needs to do with data of this
quantity, frequency, and it’s statistical qualities. Given this basis,
we can build up a set of founding statements about what makes a
methodology data-oriented.

4 CHAPTER 1. DATA-ORIENTED DESIGN

1.2 Data is not the problem domain

The first principle: Data is not the problem domain.
For some, it would seem that data-oriented design is the antithe-

sis of most other programming paradigms because data-oriented de-
sign is a technique that does not readily allow the problem domain to
enter into the software so readily. It does not recognise the concept
of an object in any way, as data is consistently without meaning,
whereas the abstraction heavy paradigms try to pretend the com-
puter and its data do not exist at every turn, abstracting away the
idea that there are bytes, or CPU pipelines, or other hardware fea-
tures.

The data-oriented design approach doesn’t build the real world
problem into the code. This could be seen as a failing of the data-
oriented approach by veteran object-oriented developers, as many
examples of the success of object-oriented design come from being
able to bring the human concepts to the machine, then in this middle
ground, a solution can be written in this language that is understand-
able by both human and computer. The data-oriented approach
gives up some of the human readability by leaving the problem do-
main in the design document, but stops the machine from having to
handle human concepts at any level by just that same action.

Let us consider first how the problem domain becomes part of the
software in programming paradigms that promote abstraction. In
the case of objects, we tie meanings to data by associating them with
their containing classes and their associated functions. In high level
abstraction, we separate actions and data by high level concepts,
which might not apply at the low level, thus reducing the likelihood
that the functions will be efficiently implemented.

When a class owns some data, it gives that data a context,
and that context can sometimes limit the ability to reuse the data.
Adding functions to a context can bring in further data, which
quickly leads to classes that contain many different pieces of data
that are unrelated in themselves, but need to be in the same class
because an operation required a context, but the operation also re-

1.3. DATA AND STATISTICS 5

quired additional data. Normally this becomes hard to untangle as
functions that operate over the whole context drag in random pieces
of data from all over the class meaning that many data items cannot
be removed as they would then be inaccessible.

When we consider the data from the data-oriented design point
of view, data is mere facts that can be interpreted in whatever way
necessary to get the output data in the format it needs to be. We
only care about what transforms we do, and where the data ends up.
In practice, when you discard meanings from data, you also reduce
the chance of tangling the facts with their contexts, and thus you
also reduce the likelihood of mixing unrelated data just for the sake
of an operation or two.

1.3 Data and Statistics

The second principle: Data is type, frequency, quantity, shape and
probability.

The second statement is that data is not just the structure. A
common misconception about data-oriented design is that it’s all
about cache misses. Even if it was all about making sure you never
missed the cache, and it was all about structuring your classes so
the hot and cold data was split apart, it would be a generally useful
addition to your toolkit of thought, but data-oriented design is about
all aspects of the data. To write a book on how to avoid cache
misses, you need more than just some tips on how to organise your
structures, you need a grounding in what is really happening inside
your computer when it is running your program. Teaching that in a
book is also impossible as it would only apply to one generation of
hardware, and one generation of programming languages, however
data oriented design is not rooted in one language and one set of
hardware. The schema of the data is still important, but the actual
values are as important, if not more so. It is not enough to have
some photographs of a cheetah to determine how fast it can run.
You need to see it in the wild.

6 CHAPTER 1. DATA-ORIENTED DESIGN

The data-oriented design model is centred around data, live data,
real data, information data. Object-oriented design is centred around
the problem and its solution. Objects, not real things, but abstract
representations of things that make up the design of the solution
to the problem presented in the application design document. The
objects only manipulate the data needed to represent them without
any consideration for the hardware or the real world data patterns or
quantities. This is why object-oriented design allows you to quickly
build up first versions of applications, allowing you to put the first
version of the design document or problem definition directly into
the code.

Data-oriented design takes a different approach to the problem,
instead of assuming that we know nothing about the hardware, it as-
sumes we know nothing about the problem. Anyone who has written
a sizable piece of software should recognise that the technical design
for any project can change so much that there is hardly anything
recognisable from the first draft in the final implementation. Data-
oriented design avoids this waste of resources by never assuming that
the design needs to exist anywhere other than in a document while
it proceeds to provide a solution to the current problem.

Data-Oriented Design takes it’s cues from the data that is seen
or expected. Instead of planning for all eventualities, or planning to
make things adaptable, it uses the most probable input to direct the
choice of algorithm. Instead of planning to be extendible, it plans
to be simple, and get the job done. Extendible can be added later,
with the safety net of unit tests to ensure that it remains working
as it did while it was simple.

1.4 Data changes

Data-oriented design is current. Object-oriented design starts to
show its weaknesses when designs change. Object-oriented design
suffers from an inertia inherent in keeping the problem domain cou-
pled with the implementation. A data-oriented approach to design

1.4. DATA CHANGES 7

takes note of the change in design by understanding the change in the
data. The data-oriented approach to design also allows for change
to the code when the source of data changes, unlike the encapsu-
lated internal state manipulations of the object-oriented approach.
In general, data-oriented design handles change better as pieces of
data and transforms can be more simply coupled and decoupled than
objects can be mutated and reused.

The reason this is so comes from the linking of intention and
aspect that comes with lumping data and functions in with concepts
of objects where the objects are the schema, the aspect, the use
case, and the real world or design counterpart to the code. If you
link your data manipulations to your data then you make it hard
to unlink data related by operation. If you link your operations
by related data, then you make it hard to unlink your operations
when the data changes or splits. If you keep your data in one place,
write operations in another place, and keep the aspects and roles of
data intrinsic from how the operations and transforms are applied to
the data, then you will find that many refactorings that would have
been large and difficult in object oriented code, become trivial. With
this benefit comes a cost of keeping tabs on what data is required
for each operation, and the potential danger of desynchronisation.
This consideration can lead to keeping some cold code in an object
oriented style where objects are responsible for maintaining internal
consistency over efficiency and mutability.

A big misunderstanding for many new to the data-oriented design
paradigm, a concept brought over from abstraction based develop-
ment, is that we can design a static library or set of templates to
provide generic solutions to everything presented in this book as a
data-oriented solution. The awful truth is that data, though it can
be generic by type, is not generic in any real world sense. The val-
ues are different, and often contain patterns that we can turn to our
advantage. How would it be possible to do compression if it were
not for patterns? Our runtime code can also benefit from this but it
is overlooked as being not object-oriented, or being too hard coded.
It can be better to hard code a transform than pretend it’s not hard

8 CHAPTER 1. DATA-ORIENTED DESIGN

coded by wrapping it in a generic container and using the wrong
algorithms on it. Using existing templates like this provide a known
benefit of a minor increase in readability to those who already know
of the library, and potentially less bugs if the functionality was in
some way generic. But, if the functionality was not very well mapped
to the existing generic solution, writing it with a templated function
and then extending would possibly make the code harder to read by
hiding the fact that the technique had been changed subtly. Hard
coding a new algorithm is frequently a better choice as long as it has
sufficient tests, and tests are easier to write if you constrain yourself
to the facts about the data, and only work with simple data and not
stateful objects.

1.5 How is data formed?

The games we write have a lot of data, in a lot of different for-
mats. We have textures in multiple formats for multiple platforms.
There are animations, usually optimised for different skeletons or
types of playback. There are sounds, lights, and scripts. Don’t for-
get meshes, they now consist of multiple buffers of attributes. Only
a very small proportion of meshes are old fixed function type with
vertices containing positions, UVs, and normals. The data in games
development is hard to box, and getting harder to pin down as more
ideas that were previously considered impossible have now become
commonplace. This is why we spend a lot of time working on editors
and tool chains, so we can take the free form output from design-
ers and artists and find a way to put it into our engines. Without
our tool-chains, editors, viewers, and tweaking tools, there would
be no way we could produce a game with the time we have. The
Object-oriented approach provides a good way to wrap our heads
around all these different formats of data. It gives a centralised
view of where each type of data belongs, and classifies it by what
can be done to it. This makes it very easy to add and use data
quickly, but implementing all these different wrapper objects takes

1.5. HOW IS DATA FORMED? 9

time. Adding new functionality to these objects can sometimes re-
quire large refactorings as occasionally objects are classified in such
a way that they don’t allow for new features to exist. For exam-
ple, in many old engines, there was no way to upload a texture that
didn’t use a 32 bit or less pixel stride. With the advent of floating
point textures all that code required a minor refactoring. In the
past it was not possible to read a texture from the vertex shader, so
when texture based skinning came along, many engine programmers
had to refactor their render update. They had to allow for a vertex
shader texture upload because it might be necessary when upload-
ing transforms for rendering a skinned mesh. In many engines, mesh
data is optimised for rendering, but when you have to do mesh ray
casting to see where bullets have hit, or for doing IK, or physics, then
you need multiple representations of an entity, at which point the
object oriented approach starts to look cobbled together as there
are less objects that represent real things, and more objects used
as containers so programmers can think in larger building blocks.
These blocks hinder though, as they become the only blocks used
in thought, and stop potential mental connections from happening.
We went from 2D sprites, to 3D meshes following the format of the
hardware provider, to custom data streams and compute units turn-
ing the streams into rendered triangles. Wave data, to banks, to
envelope controlled grain tables and slews of layered sounds. Tile
maps, to portals and rooms, to streamed, multiple level of detail
chunks of world, to hybrid mesh palette, props, and unique stitch-
ing assets. From flip-book, to euler angle sequences, to quaternions
and slerped anims, to animation trees and behaviour mapping.

All these types of data are pretty common if you’ve worked in
games at all, and many engines do provide a abstraction to these
more fundamental types. When a new type of data becomes heavily
used, it is promoted into the engine as a core type. We normally con-
sider the trade off of new types being handled as special cases until
they become ubiquitous, to be one of usability vs performance. We
don’t want to provide free access to the lesser understood elements
of game development. People who are not, or can not, invest time

10 CHAPTER 1. DATA-ORIENTED DESIGN

in finding out how best to use new features, should be discouraged
from using them. The Object-Oriented games development way to
do that is to not provide objects that represent them, and instead
only offer the features to people who know how to utilise the more
advanced tools.

Apart from the objects representing digital assets, there are also
objects for internal game logic. For every game there are objects
that only exist to further the gameplay. Collectable card games
have a lot of textures, but they also have a lot objects for rules,
card stats, player decks, match records, even objects to represent
the current state of play. All of these objects are completely custom
designed for one game. There may be sequels, but even they could
well use quite different game logic, and therefore require different
data, which would imply different methods on the now guaranteed
different objects.

Game data is complex. Any first layout of the data is inspired
by the game’s design. However, once the development is underway,
it needs to keep up with however the game evolves. Object-oriented
techniques offer a quick way to implement a given design. Object-
oriented development is quick at implementing each design in turn,
but it doesn’t offer a way to migrate from one data schema to the
next. There are hacks, such as those used in version based asset
handlers, but normally, games developers change the tool-chain and
the engine at the same time, do a full re-export of all the assets, and
commit to the next version all in one go. This can be quite a painful
experience if it has to happen over multiple sites at the same time,
or if you have a lot of assets, or if you are trying to provide engine
support for more than one title, and only one wants to change to
the new revision.

There has not yet been a successful effort to build a generic
game asset solution. This is because all games differ in so many
subtle ways that if you did provide a generic solution, it wouldn’t
be a game solution, just a new language. There is no solution to
be found in trying to provide all the possible types of object that
a game can use. But, there is a solution if we go back to thinking

1.6. THE FRAMEWORK 11

about a game as merely running a set of computations on some data.

1.6 What can provide a computational
framework for such complex data?

Games developers are notorious for thinking about games develop-
ment from either a low level all out performance perspective, or from
a very high level gameplay and interaction perspective. This may
have come about because of the widening gap between the amount of
code that has to be performant, and the amount of code to make the
game complete. Object-oriented techniques provide good coverage
of the high level aspect, and the assembler gurus have been hack-
ing away at performance for so long even their beards have beards.
There has never been much of a middle ground in games develop-
ment, which is probably why the structure and performance tech-
niques employed by big-iron companies never seemed useful. When
games development was first flourishing in the late 1990’s, academic
or corporate software engineering practices were seen as suspicious
because wherever they were employed, there was a dramatic drop in
game performance, and whenever any prospective employees came
from those industries, they never managed to impress. As games
machines became more like standard micro-computers, and stan-
dard micro-computers became more similar to the mainframes of
old, the more obvious it became that standard professional software
engineering practices could be useful. Now the scale of games has
grown to match the hardware, and with each successive generation,
the number of man hours to develop a game has grown exponentially,
which is why project management and software engineering practices
have become de-facto at the larger games companies. There was a
time when games developers were seen as cutting edge programmers,
inventing new technology as the need arises, but with the advent of
less adventurous hardware (most notably in the x86 based XBox,
and it’s only mildly interesting successor), there has been less call
for ingenious coding practices, and more call for a standardised pro-

12 CHAPTER 1. DATA-ORIENTED DESIGN

cess. This means that game development can be tuned to ensure the
release date will coincide with marketing dates. There will always
be an element of randomness in high profile games development be-
cause there will always be an element of innovation that virtually
guarantees that you will not be able to predict how long the project,
or at least one part of the project, will take.

Part of the difficulty in adding new and innovative features to a
game is the data layout. If you need to change the data layout for a
game, it will need objects to be redesigned or extended in order to
work within the existing framework. If there is no new data, then a
feature might require that previously separate systems suddenly be
able to talk to each other quite intimately. This coupling can often
cause system wide confusion with additional temporal coupling and
corner cases so obscure they can only be found one time in a million.
This sounds fine to some developers, but if you’re expecting to sell
five to fifty million copies of your game, that’s five to fifty people
who can take a video of your game, post it on the internet, and call
your company rubbish because they hadn’t fixed an obvious bug.

Big iron developers had these same concerns back in the 1970’s.
Their software had to be built to high standards because their pro-
grams would frequently be working on data that was concerned with
real money transactions. They needed to write business logic that
operated on the data, but most important of all, they had to make
sure the data was updated through a provably careful set of oper-
ations in order to maintain its integrity. Database technology grew
from the need to process stored data, to do complex analysis on it,
to store and update it, and be able to guarantee that it was valid
at all times. To do this, the ACID test was used to ensured atomic-
ity, consistency, isolation, and durability. Atomicity was the test to
ensure that all transactions would either complete, or do nothing.
It could be very bad for a database to update only one account in
a financial transaction. There could be money lost, or created if a
transaction was not atomic. Consistency was added to ensure that
all the resultant state changes that should happen during a transac-
tion do happen, that is, all triggers that should fire, do, even if the

1.6. THE FRAMEWORK 13

triggers cause triggers, with no limit. This would be highly impor-
tant if an account should be blocked after it has triggered a form of
fraud detection. If a trigger has not fired, then the company using
the database could risk being liable for even more than if they had
stopped the account when they first detected fraud. Isolation is con-
cerned with ensuring that all transactions that occur cannot cause
any other transactions to differ in behaviour. Normally this means
that if two transactions appear to work on the same data, they have
to queue up and not try to operate at the same time. Although
this is generally good, it does cause concurrency problems. Finally,
durability. This was the second most important element of the four,
as it has always been important to ensure that once a transaction
has completed, it remains so. In database terminology, durability
meant that the transaction would be guaranteed to have been stored
in such a way that it would survive server crashes or power outages.
This was important for networked computers where it would be im-
portant to know what transactions had definitely happened when a
server crashed or a connection dropped.

Modern network games also have to worry about highly impor-
tant data like this, especially with non-free downloadable content,
and even more so with consumable downloadable content. To pro-
vide much of the functionality required of the database ACID test,
games developers have gone back to looking at how databases were
designed to cope with these strict requirements and found reference
to staged commits, idempotent functions, techniques for concurrent
development and a vast literature base on how to design tables for
a database.

Databases provide a way to store highly complex data in a struc-
tured way while providing a simple to learn language for transform-
ing and generating reports based on that data. The language, SQL,
invented in the 1970’s by Donald D. Chamberlin and Raymond F.
Boyce at IBM, provides a method by which it is possible to store
computable data while also maintaining data relationships. But,
games don’t have simple computable data, they have classes and
objects. Database technology doesn’t work for the Object-oriented

14 CHAPTER 1. DATA-ORIENTED DESIGN

approach that games developers use.
The data in games can be highly complex, it doesn’t neatly fit

into database rows. Not all objects can fit into rows of columns. Try
to find the right table columns to describe a level file. Try to find
the right columns to describe a car in a racing game, do you have
a column for each wheel? Do you have a column for each collision
primitive, or just a column for the collision mesh?

The obvious answer is that game data just doesn’t fit into the
database way of thinking. However, that’s only because we’ve not
normalised the data. We’ll stick with a level file for a while as we
find out how years old techniques can provide a very useful insight
into what game data is really doing. There are some types of data
where it doesn’t make sense to move into databases, such as the raw
assets (sounds, textures, vertex buffers etc.) but these can be seen
as primitives, much like the integers, floating point numbers, strings
and boolean values we shall be working with.

What we shall discover is that everything we did was already in
a database, but it wasn’t obvious to us because of how we store our
data. The structure of our data is a trade-off against performance,
readability, maintenance, future proofing, extendibility and reuse.
The most flexible database in common use is the file-system. It has
one table with two columns. A primary key of the file path, and
a string for the data. This simplest database system is the perfect
fit for a completely future proof system. The more complex the
tables get, the less future proof, and the less maintainable, but the
higher the performance and readability. For example, a file has no
documentation of its own, but the schema of a database could be all
that is required to understand a sufficiently well designed database.
That’s how games don’t even appear to have databases. They are so
complex for the sake of performance that they have forgotten that
they are merely a data transform.

Chapter 2

Existence Based
Processing

If you saw that there weren’t any apples in stock, would you still
haggle over their price?

2.1 Why use an if

When studying software engineering you may find reference to cy-
clomatic complexity or conditional complexity. This is a complexity
metric providing a numeric representation of the complexity of code,
and is used in analysing large scale software projects. Cyclomatic
complexity concerns itself only with flow control. The formula, sum-
marised for our purposes, is one (1) plus the number of conditionals
present in the system being analysed. That means for any system
it starts at one, and for each if, while, for, and do-while, we add
one. We also add one per path in a switch statement excluding the
default case if present (this is because whether or not the default
case is included, it is part of the possible routes through the code,
so counts like the else case of an if, as in, it isn’t counted, only the

15

16 CHAPTER 2. EXISTENCE BASED PROCESSING

met conditions are counted.) under the hood, if we consider how a
virtual call works, that is, a lookup in a function pointer table fol-
lowed by a branch into the class member function, we can see that
a virtual call is effectively just as complex as a switch statement.
Counting the flow control statements is more difficult in a virtual
call because to know the complexity value, you have to know the
number of possible classes member functions that can fulfil that re-
quest. In the case of a virtual call, you have to count the number
of overrides to a base virtual call. If the base is pure-virtual, then
you may subtract one from the complexity. However, if you don’t
have access to all the code that is running, which can be possible in
the case of dynamically loaded libraries, then the number of differ-
ent code paths that the process can take increases by an unknown
amount. This hidden or obscured complexity is necessary to allow
third party libraries to interface with the core process, but requires
a level of trust that implies that no single part of the process is ever
going to be thoroughly tested.

Analysing the complexity of a system helps us understand how
difficult it is to test, and in turn, how hard it is to debug. Sometimes,
the difficulty we have in debugging comes from not fully observing all
the flow control points, at which point the program will have entered
into a state we had not expected or prepared for. With virtual calls,
the likelihood of that happening can dramatically increase as we can
not be sure that we know all the different ways the code can branch
until we either litter the code with logging, or step through in a
debugger to see where it goes at run-time.

Returning to complexity in general, we must submit that we use
flow control to change what is executed in our programs. In most
cases these flow controls are put in for one of two reasons: design,
and implementation necessity. The first is when we need to imple-
ment the design, a gameplay feature that has to only happen when
some conditions are met, such as jumping when the jump button
is pressed, or autosaving at a save checkpoint when the savedata is
dirty. The second form of flow control is structural, or defensive pro-
gramming techniques where the function operating on the data isn’t

2.1. WHY USE AN IF 17

sure that the data exists, or is making sure bounds are observed.
In real world cases, the most common use of an explicit flow con-

trol statement is in defensive programming. Most of our flow con-
trol statements are just to stop crashes, to check bounds, pointers
being null, or any other exceptional cases that would bring the pro-
gram to a halt. The second most common is loop control, though
these are numerous, most CPUs have hardware optimisations for
these, and most compilers do a very good job of removing condition
checks that aren’t necessary. The third most common flow control
comes from polymorphic calls, which can be helpful in implement-
ing some of the gameplay logic, but mostly are there to entertain
the do-more-with-less-code development model partially enforced in
the object-oriented approach to writing games. Actual visible game
design originating flow control comes a distant fourth place in these
causes of branching, leading to an under-appreciation of the effect
each conditional has on the performance of the software. That is,
when the rest of your code-base is slow, it’s hard to validate writing
fast code for any one task.

If we try to keep our working set of data as a collections of arrays,
we can guarantee that all our data is not null. That one step alone
will eliminate most of our flow control statements. The third most
common set of flow control statements were the inherent flow control
in a virtual call, they are covered later in section 2.5, but simply put,
if you don’t have an explicit type, you don’t need to switch on it,
so those flow control statements go away as well. Finally, we get
to gameplay logic, which there is no simple way to eradicate. We
can get most of the way there with condition tables which will be
covered in chapter 5, but for now we will assume they are allowed
to stay.

Reducing the amount of conditions, and thus reducing the cyclo-
matic complexity on such a scale is an amazing benefit that cannot
be overlooked, but it is one that comes with a cost. The reason we
are able to get rid of the check for null is that we now have our data
in a format that doesn’t allow for null. This inflexibility will prove
to be a benefit, but it requires a new way of processing our entities.

18 CHAPTER 2. EXISTENCE BASED PROCESSING

Where we once had rooms, and we looked in the rooms to find out
if there were any doors on the walls we bumped into (in order to
either pass through, or instead do a collision response,) we now look
in the table of doors to see if there are any that match our roomid.
This reversal of ownership can be a massive benefit in debugging,
but sometimes can appear backwards when all you want to do is find
out what doors you can use to get out of a room.

If you’ve ever worked with shopping lists, or todo lists, you’ll
know how much more efficient you are when you have a definite list
of things to get or get done. It’s very easy to make a list, and easy to
add to it too. If you’re going shopping, it’s very hard to think what
might be missing from your house in order to get what you need.
If you’re the type that tries to plan meals, then a list is nigh on
essential as you figure out ingredients and then tally up the number
of tins of tomatoes, or how many different meats or vegetables you
need to last through all the meals you have planned. If you have a
todo list and a calendar, you know who is coming and what needs to
be done to prepare for them, how many extra mouths need feeding,
how many extra bottles of beer to buy, or how much washing you
need to do to make enough beds for the visitors. Todo lists are
great because you can set an end goal and then add in sub tasks
that make a large and long distant goal seem more doable, and also
provide a little urgency that is usually missing when the deadline is
so far away.

When your program is running, if you don’t give it lists to work
with, and instead let it do whatever comes up next, it will be ineffi-
cient, slow, and probably have irregular frame timings. Inefficiency
comes from not knowing what kind of processing is coming up next.
In the case of large arrays of pointers to heterogeneous classes all be-
ing called with an update() function, you can get very high counts
of cache misses both in data and instruction cache. If the code tries
to do a lot with this pointer, which it usually does because one of
the major beliefs of object-oriented programmers is that virtual calls
are only for higher level operations, not small, low level ones, then
you can virtually guarantee that not only will the instruction and

2.1. WHY USE AN IF 19

data cache be thrashed by each call, but most branch predictor slots
could be too dirty to offer any benefit when the next update() runs.
Assuming that virtual calls don’t add up because they are called on
high level code is fine until they become the go to programming style
and you stop thinking about how they affect your application when
there are millions of virtual calls per second. All those inefficient
calls are going to add up somewhere, but luckily for the object ori-
ented zealot, they never appear on any profiles. They always appear
somewhere in the code that is being called. Slowness also comes
from not being able to see how much work needs to be done, and
therefore not being able to scale the work to fit what is possible in
the time-frame given. Without a todo list, and an ability to estimate
the amount of time that each task will take, it is impossible to decide
the best course of action to take in order to reduce overhead while
maintaining feedback to the user. Irregular frame timings also can
be blamed on not being able to act on distant goals ahead of time.
If you know you have to load an area because a player has ventured
into a position where it is possible they will soon be entering an un-
loaded area, the streaming system can be told to drag in any data
necessary. In most games this happens with explicit triggers, but
there is no such system for many other game elements. It’s unheard
of for an AI to pathfind to some goal because there might soon be a
need to head that way. It’s not commonplace to find a physics sys-
tem doing look ahead to see if a collision has happened in the future
in order to start doing a more complex breakup simulation. But, if
you let your game generate todo lists, shopping lists, distant goals,
and allow for preventative measures by forward thinking, then you
can simplify your task as a coder into prioritising goals and effects,
or writing code that generates priorities at runtime.

In addition to the obvious lists, metrics on your game are highly
important. If you find that you’ve been optimising your game for
a silky smooth frame rate and you think you have a really steady
30fps or 60fps, and yet your customers and testers keep coming back
with comments about nasty frame spikes and dropout, then you’re
not profiling the right thing. Sometimes you have to profile a game

20 CHAPTER 2. EXISTENCE BASED PROCESSING

while it is being played. Get yourself a profiler that runs all the time,
and can report the state of the game when the frame time goes over
budget. Sometimes you need the data from a number of frames
around when it happened to really figure out what is going on, but
in all cases, unless you’re letting real testers run your profiler, you’re
never going to get real world profiling data.

Existence-based-processing is when you process every element in
a homogeneous set of data. You run the same instructions for every
element in that set. There is no definite requirement for the output
in this specification, however, usually it is one of three types of
operation: filter, mutation, or emission. A mutation is a one to one
manipulation of the data, it takes incoming data and some constants
that are setup before the transform, and produces one element for
each input element. A filter takes incoming data, again with some
constants set up before the transform, and produces one element or
zero elements for each input element. An emission is a manipulation
on the incoming data that can produce multiple output elements.
Just like the other two transforms, an emission can use constants,
but there is no guaranteed size of the output table; it can produce
anywhere between zero and infinity elements.

Every CPU can efficiently handle running processing kernels over
homogeneous sets of data, that is, doing the same operation over
and over again over contiguous data. When there is no global state,
no accumulator, it is proven to be parallelisable. Examples can
be given from existing technologies such as mapreduce and opencl
as to how to go about building real work applications within these
restrictions. Stateless transforms also commit no crimes that prevent
them from being used within distributed processing technologies.
Erlang relies on these as language features to enable not just thread
safe processing, not just inter process safe processing, but distributed
computing safe processing. Stateless transforms of stateful data is
highly robust, and deeply parallelisable.

Within the processing of each element, that is for each datum
operated on by the transform kernel, it is fair to use control flow.
Almost all compilers should be able to reduce simple local value

2.1. WHY USE AN IF 21

branch instructions into a platform’s preferred branchless represen-
tation. When considering branches inside transforms, it’s best to
compare to existing implementations of stream processing such as
graphics card shaders or OpenCL kernels.

In predication, flow control statements are not nearly ignored,
they are used instead as an indicator of how to merge two results.
When the flow control is not based on a constant, a predicated if
will generate code that will run both sides of the branch at the same
time and discard one result based on the value of the condition.
It manages this by selecting one result based on the condition, in
some CPUs there is an fsel intrinsic, other CPUs may have a cmov
instruction, but all CPUs can use masking to effect this trick.

There are other solutions in the form of SIMD and MIMD. SIMD
or single-instruction-multiple-data allows the parallel processing of
data when the instructions are the same. If there are any condition-
als, then as long as the result of the condition is the same across the
data, the function returns quickly. If the condition result is different
across the different data, the function stalls for one branch remem-
bering which of the data had chosen which path, completes for one
side, then goes back and continues for the other side. This costs
time, but is not as expensive as predication as it does not always
run both branches. In other systems, the condition can lead to new
micro jobs handed off to different cores, converging back to the main
thread only once all branches have completed.

In MIMD, that is multiple instruction, multiple data, every piece
of data can be operated on by a different set of instructions. Each
piece of data can take a different path. This is the simplest to
code for because it’s how most parallel programming is currently
done. We add a thread and process some more data with a sepa-
rate thread of execution. MIMD includes multi-core general purpose
CPUs. MIMD often allows shared memory access and all the syn-
chronisation issues that come with it. MIMD is by far the easiest to
get up and running, but it is also the most prone to the kind of rare
fatal error that costs a lot of time to debug.

22 CHAPTER 2. EXISTENCE BASED PROCESSING

2.2 Don’t use booleans

When you study compression technology, one of the most important
aspects you have to understand is the different between data and
information. There are many ways to store information in systems,
from literal strings that can be parsed to declare that something ex-
ists, right down to something simple like a single bit flag to show that
a thing might have an attributes. Examples include the text that de-
clares the existence of a local variable in a scripting language, or the
bit field that contains all the different collision types a physics mesh
will respond to. Sometimes we can store even less information than a
bit by using advanced algorithms such as arithmetic encoding, or by
utilising domain knowledge. Domain knowledge normalisation ap-
plies in most games development, but it is very infrequently applied.
As information is encoded in data, and the amount of information
encoded can be amplified by domain knowledge, it’s important that
we begin to see the advice offered by compression techniques is that:
all we are really encoding is probabilities.

If we take an example, a game where the entities have health,
regenerate after a while of not taking damage, can die, can shoot
each other, then lets see what domain knowledge can do to reduce
processing.

We assume this domain knowledge: if you have full health, then
you don’t need to regenerate. Once you have been shot, it takes
some time until you begin regenerating. Once you are dead, you
cannot regenerate. Once you are dead you have zero health.

If we have a table for the entity thus:

1 struct entity {
2 // information about the entity position
3 // ...
4 // now health data in the middle of the entity
5 float timeoflastdamage;
6 float health;
7 // ...
8 // other entity information
9 };

10 list <entity > entities;

2.2. DON’T USE BOOLEANS 23

Listing 2.1: naive entity table

Then we can run an update function over the table that might
look like this:

1 void updatehealth(entity *e) {
2 timetype timesincelastshot = e->timeoflastdamage - currenttime;
3 bool ishurt = e->health < max_health && e->health > 0;
4 bool regencanstart = timesincelastshot >

time_before_regenerating;
5 if(ishurt && regencanstart) {
6 e->health = min(max_health , e->health + ticktime * regenrate);
7 }
8 }

Listing 2.2: every entity health regen

Which will run for every entity in the game, every update.
We can make this better by looking at the flow control statement.

The function only needs to run if the health is less than full health,
and more than zero. The regenerate function only needs to run if it
has been long enough since the last damage dealt.

Let’s change the structures:

1 struct entity {
2 // information about the entity position
3 // ...
4 // other entity information
5 };
6 struct entitydamage {
7 float timeoflastdamage;
8 float health;
9 }

10 list <entity > entities;
11 map <entityref ,entitydamage > entitydamages;

Listing 2.3: existence based processing style health

We can now run the update function over the health table rather
than the entities.

1 void updatehealth () {
2 foreach(eh in entitydamages) {
3 entityref entity = eh->first;

24 CHAPTER 2. EXISTENCE BASED PROCESSING

4 entitydamage &ed = eh ->second;
5 if(ed.health < 0) {
6 deadentities.insert(entity);
7 discard(eh);
8 } else {
9 timetype timesincelastshot = eh->timeoflastshot -

currenttime;
10 bool regencanstart = timesincelastshot >

time_before_regenerating;
11 if(regencanstart)
12 eh->health =eh->health + ticktime * regenrate;
13 if(eh->health > max_health)
14 discard(eh);
15 }
16 }
17 }

Listing 2.4: every entity health regen

We only add a new entityhealth element when an entity takes
damage. If an entity takes damage when it already has an entity-
health element, then it can update the health rather than create a
new row, also updating the time damage was last dealt. If you want
to find out someone’s health, then you only need to look and see if
they have an entityhealth row, or if they have a row in deadenti-
ties table. The reason this works is that an entity has an implicit
boolean hidden in the row existing in the table. For the entityhealth
table, that implicit boolean was ishurt from the first function. For
the deadentities table, the implicit boolean of isdead, also implies a
health value of 0, which can reduce processing for many other sys-
tems. If you don’t have to load a float and check that it is less than
0, then you’re saving a floating point comparison or conversion to
boolean.

Other similar cases include weapon reloading, oxygen levels when
swimming, anything that has a value that runs out, has a maximum,
or has a minimum. Even things like driving speeds of cars. If they
are traffic, then they will spend most of their time driving at traffic
speed not some speed that they need to calculate. If you have a group
of people all heading in the same direction, then someone joining the
group can be intercepting until they manage to, at which point they
can give up their self and become controlled by the group.

2.2. DON’T USE BOOLEANS 25

As an aside, we use a map and a list here for simplicity of reading,
and though they are not the most optimal containers in that they are
trees, or pointers to elements, rather than a nice contiguous array of
some sort, they’re not going to adversely affect the profile as much
as the problem being overcome here, namely the mixing of hot1 data
into the middle of the entity class.

Another example is with AI. If you have all your entities maintain
a team index, then you have to check each entity before reacting to
them. If you want to avoid all the entities from team x, and head
towards the closest member of team y, then if each team is in a
different table you can just operate on all the entities in those tables.
If you want to produce an avoidance vector from team x, you create
a mapreduce function that maps team x members to an avoidance
vector, then reduce by summing.

1 vector mapavoidance(entity *e) {
2 vector difference = e->pos - currentpos;
3 float oneoversqr = 1.0f / difference.getsquaredlength ();
4 return difference * oneoversqr;
5 }
6 vector reduceavoidance(const vector l, const vector r) {
7 return l + r;
8 }
9 pair <float ,entity*> mapnearest(entity *e) {

10 vector difference = e->pos - currentpos;
11 float squaredistance = difference.getsquaredlength ();
12 return pair <float ,entity*>(squaredistance , e);
13 }
14 pair <float ,entity*> reducenearest(pair <float ,entity*> l, pair <

float ,entity*> r) {
15 if(l.left < r.left) return l; return r;
16 }

Listing 2.5: map and reduce

The implicit boolean in these tables is that they are worth avoid-
ing, and that they are worth aiming towards. If nothing maps, then
the seeding value to the reduce is returned.

Another use is in state management. If an AI hears gunfire, then
they can add a row to a table for when they last heard gunfire, and

1hot data is the member or members of a class that are accessed with high
frequency, and there can even be multiple per class.

26 CHAPTER 2. EXISTENCE BASED PROCESSING

that can be used to determine whether they are in a heightened
state of awareness. If an AI has been involved in a transaction with
the player, it is important that they remember what has happened
as long as the player is likely to remember it. If the player has
just sold an AI their +5 longsword, it’s very important that the
shopkeeper AI still have it in stock if the player just pops out of the
shop for a moment. Some games don’t even keep inventory between
transactions, and that can become a sore point if they accidentally
sell something they need and then save their progress.

The general concept of tacking on data, or patching loaded data
with dynamic additional attributes, has been around for quite a
while. Save games often encode the state of a dynamic world as a
delta from the base state, and one of the first major uses was in
fully dynamic environments, where a world is loaded, but can be
destroyed or altered afterwards. Some world generators took a pro-
cedural landscape and allowed their content creators to add patches
of extra information, villages, forts, outposts, or even break out land-
scaping tools to drastically adjust the generated data. Taking that
patching and applying it to in-game runtime information adds a level
of control not normally available without using intrusive techniques.

2.3 Don’t use enums

Enumerations are used to define sets of states. We could have had a
state variable for the regenerating entity, one that had infullhealth,
ishurt, isdead as its three states. We could have had a team index
variable for the avoidance entity enumerating all the available teams.
Instead we used tables to provide all the information we needed. Any
enum can be emulated with a variety of tables. All you need is one
table per enumerable value. Setting the enumeration is an insert
into a table.

When using tables to replace enums, some things become more
difficult: finding out the value of an enum in an entity is difficult as
it requires checking all the tables that represent that state for the

2.4. PRELUDE TO POLYMORPHISM 27

entity. However, this is mostly disallowed and unnecessary, as the
main reason for getting the value is either to do an operation based
on the state, or to find out if an entity is in the right state to be
considered for an operation.

If the enum is a state or type enum previously handled by a switch
or virtual call, then we don’t need to look up the value, instead we
change the way we think about the problem. The solution is to run
transforms taking the content of each of the switch cases or virtual
methods as the operation to apply to the appropriate table, the table
corresponding to the original enumeration value.

If the enum is instead used to determine whether or not an entity
can be operated upon, then you can operate on all the entities in
the appropriate table. Transforming the whole table or the join of
that table with some other condition. If you’re thinking about the
case where you have an entity as the result of a query and need to
know if it is in a certain state before deciding commit some change,
consider that the table you need access to could have been one of
the initial mappings, meaning that no entity would be found that
didn’t match the enum replacing table in the way you needed it to.

2.4 Prelude to polymorphism

Let’s consider now how we implement polymorphism. We know we
don’t have to use a virtual table pointer; we could use an enum
as a type variable. That variable, the member of the structure that
defines at runtime what that structure should be capable of and how
it is meant to react. That variable could be used to direct the choice
of functions called when methods are called on the object.

When your type is defined by a member type variable, it’s usual
to implement virtual functions as switches based on that type, or
as an array of functions. If we want to allow for runtime loaded
libraries, then we would need a system to update which functions
are called. The humble switch is unable to accommodate this, but
the array of functions could be modified at runtime.

28 CHAPTER 2. EXISTENCE BASED PROCESSING

We have a solution, but it’s not elegant, or efficient. The data
is still in charge of the instructions, and we suffer the same instruc-
tion cache hit whenever a virtual function is unexpected. However,
when we don’t really use enums, but instead tables that represent
each possible value of an enum, it is still possible to keep compatible
with dynamic library loading the same as with pointer based poly-
morphism, but we also gain the efficiency of a data-flow processing
approach to processing heterogeneous types.

For each class, instead of a class declaration, we have a factory
that produces the correct selection of table insert calls. Instead of
a polymorphic method call, we utilise existence based processing.
Our elements in a tables allow the characteristics of the class to be
implicit. Creating your classes with factories can easily be extended
by runtime loaded libraries. Registering a new factory should be
simple as long as there is a data driven factory method. The pro-
cessing tables and their update() functions would also be added to
the main loop.

2.5 Dynamic runtime polymorphism

If you create your classes by composition, and you allow the state to
change by inserting and removing from tables, then you also allow
yourself access to dynamic runtime polymorphism.

Polymorphism is the ability for an instance in a program to react
to a common entry point in different ways due only to the nature
of the instance. In C++, compile time polymorphism can be imple-
mented through templates and overloading. Runtime polymorphism
is the ability for a class to provide a different implementation for a
common base operation with the class type unknown at compile
time. C++ handles this through virtual tables, calling the right
function at runtime based on the type hidden in the virtual table
pointer at the start of the memory pointed to by the this pointer.
Dynamic runtime polymorphism is when a class can react differently
to a common call signature in different ways based on both it’s type

2.5. DYNAMIC RUNTIME POLYMORPHISM 29

and any other internal state. C++ doesn’t implement this explicitly,
but if a class allows the use of an internal state variable or variables,
it can provide differing reactions based on that state as well as the
core language runtime virtual table lookup. Consider the following
code:

1 class shape {
2 public:
3 shape() {}
4 virtual ~shape() {}
5 virtual float getarea () const = 0;
6 };
7 class circle : public shape {
8 public:
9 circle(float diameter) : d(diameter) {}

10 ~circle () {}
11 float getarea () const { return d*d*pi/4; }
12 float d;
13 };
14 class square : public shape {
15 public:
16 square(float across) : width(across) {}
17 ~square () {}
18 float getarea () const { return width*width; }
19 float width;
20 };
21 void test() {
22 circle circle(2.5f);
23 square square(5.0f);
24 shape *shape1 = &circle , *shape2 = □
25 printf("areas are %f and %f\n", shape1 ->getarea (), shape2 ->

getarea ());
26 }

Listing 2.6: simple object-oriented shape code

Allowing the objects to change shape during their lifetime re-
quires some compromise in C++ one way is to keep a type variable
inside the class.

1 enum shapetype { circletype , squaretype };
2 class mutableshape {
3 public:
4 mutableshape(shapetype type , float argument)
5 : m_type(type), distanceacross(argument)
6 {}
7 ~mutableshape () {}
8 float getarea () const {

30 CHAPTER 2. EXISTENCE BASED PROCESSING

9 switch(m_type) {
10 case circletype: return distanceacross*distanceacross*pi/4;
11 case squaretype: return distanceacross*distanceacross;
12 }
13 }
14 void setnewtype(shapetype type) {
15 m_type = type;
16 }
17 shapetype m_type;
18 float distanceacross;
19 };
20 void testinternaltype () {
21 mutableshape shape1(circletype , 5.0f);
22 mutableshape shape2(circletype , 5.0f);
23 shape2.setnewtype(squaretype);
24 printf("areas are %f and %f\n", shape1.getarea (), shape2.

getarea ());
25 }

Listing 2.7: ugly internal type code

A better way is to have a conversion function to handle each
case.

1 square squarethecircle(const circle &circle) {
2 return square(circle.d);
3 }
4 void testconvertintype () {
5 circle circle(5.0f);
6 square square = squarethecircle(circle);
7 }

Listing 2.8: convert existing class to new class

Though this works, all the pointers to the old class are now
invalid. Using handles would mitigate these worries, but add another
layer of indirection in most cases, dragging down performance even
more.

If you use existence-based-processing techniques, your classes de-
fined by the tables they belong to, then you can switch between ta-
bles at runtime. This allows you to change behaviour without any
tricks, without any overhead of a union to carry all the differing data
around for all the states that you need. If you compose your class
from different attributes and abilities then need to change them post
creation, you can. Looking at it from a hardware point of view, in

2.6. EVENT HANDLING 31

order to implement this form of polymorphism you need a little extra
space for the reference to the entity in each of the class attributes
or abilities, but you don’t need a virtual table pointer to find which
function to call. You can run through all entities of the same type
increasing cache effectiveness, even though it provides a safe way to
change type at runtime.

As another potential benefit, the implicit nature of having classes
defined by the tables they belong to, there is an opportunity to
register a single entity with more than one table. This means that
not only can a class be dynamically runtime polymorphic, but it
can also be multimorphic in the sense that it can be more than one
class at a time. A single entity might react in two different ways
to the same trigger call because that might be appropriate for that
current state for that class. This kind of multidimensional classing
doesn’t come up much in gameplay code, but in rendering, there are
usually a few different axes of variation such as the material, what
blend mode, what kind of skinning or other vertex adjustments are
going to take place on a given instance. Maybe we don’t see this
flexibility in gameplay code because it’s not available through the
natural tools of the language.

2.6 Event handling

When you wanted to listen for events in a system in the old days,
you’d attach yourself to an interrupt. Sometimes you might get
to poke at code that still does this, but it’s normally reserved for
old or microcontroller scale hardware. The idea was simple, the
processor wasn’t really fast enough to poll all the possible sources
of information and do something about the data, but it was fast
enough to be told about events and process the information as and
when it arrived. Event handling in games has often been like this,
register yourself as interested in an event, then get told about it
when it happens. The publish and subscribe model has been around
for many years, but there’s not been a standard interface built for it

32 CHAPTER 2. EXISTENCE BASED PROCESSING

as it often requires from problem domain knowledge to implement
effectively. Some systems want to be told about every event in the
system and decide for themselves, such as windows event handling.
Some systems subscribe to very particular events but want to react
to them as soon as they happen, such as handlers for the BIOS
events like the keyboard interrupt.

Using your existence in a table as the registration technique
makes this simpler than before and lets you register and de-register
with great pace. You can register an entity as being interested in
events, and choose to fire off the transform immediately, or queue up
new events until the next loop round. As the model becomes simpler
and more usable, the opportunity for more common use leads us to
new ways of implementing code traditionally done via polling.

For example: unless the player character is within the distance to
activate a door, the event handler for the player’s action button wont
be attached to anything door related. When the character comes
within range, the character registers into the has pressed action event
table with the open door (X) event result. This reduces the amount
of time the CPU wastes figuring out what thing the player was try-
ing to activate, and also helps provide state information such as
on-screen displays saying that pressing Green will Open the door. It
may even do this by hooking into low level tables generated by de-
fault such as a character registers into the has pressed action event
table event.

This coding style is somewhat reminiscent of aspect oriented pro-
gramming where it is easy to allow for cross-cutting concerns in the
code. In aspect oriented programming, the core code for any ac-
tivities is kept clean, and any side effects or vetoes of actions are
handled by other concerns hooking into the activity from outside.
This keeps the core code clean at the expense of not knowing what
is really going to be called when you write a line of code. How using
registration tables differs is in where the reactions come from and
how they are determined. As we shall see in chapter 5, when you use
conditions for logical reactions, debugging can become significantly
simpler as the barriers between cause and effect normally implicit

2.6. EVENT HANDLING 33

in aspect oriented programming are significantly diminished or re-
moved, and the hard to adjust nature of object oriented decision
making can be softened to allow your code to become more dynamic
without the normal associated cost of data driven control flow.

34 CHAPTER 2. EXISTENCE BASED PROCESSING

Chapter 3

Component Based
Objects

Component oriented design is a good head start for high level data-
oriented design. Components put your mind in the right frame for
not linking together concepts when they don’t need to be, and com-
ponent based objects can easily be processed by type, not by in-
stance, which leads to a smoother processing profile. Component
based entity systems are found in games development as a way to
provide a data-driven functionality system for entities, which can al-
low for designer control over what would normally be the realm of a
programmer. Not only are component based entities better for rapid
design changes, but they also stymie the chances of the components
getting bogged down into monolithic objects as most game designers
would demand more components with new features over extending
the scope of existing components. Most new designs need iterating,
and extending an existing component by code doesn’t allow design
to change back and forth, trying different things.

When people talk about how to create compound objects, some-
times they talk about using components to make up an object.

35

36 CHAPTER 3. COMPONENT BASED OBJECTS

Though this is better than a monolithic class, it is not component
based approach, it merely uses components to make the object more
readable, and potentially more reusable. Component based turns
the idea of how you define an object on its head. The normal ap-
proach to defining an object in object oriented design is to name it,
then fill out the details as and when they become necessary. For ex-
ample, your car object is defined as a Car, if not extending Vehicle,
then at least including some data about what physics and meshes
are needed, with construction arguments for wheels and body shell
model assets etc, possibly changing class dependent on whether it’s
an AI or player car. In component oriented design, component based
objects aren’t so rigidly defined, and don’t so much become defined
after they are named, as much as a definition is selected or compiled,
and then tagged with a name if necessary. For example, instancing
a physics component with four wheel physics, instancing a render-
able for each part (wheels, shell, suspension) adding an AI or player
component to control the inputs for the physics component, all adds
up to something which we can tag as a Car, or leave as is and it
becomes something implicit rather than explicit and immutable.

A component based object is nothing more than the sum of its
parts. This means that the definition of a component based object
is also nothing more than an inventory with some construction argu-
ments. This object or definition agnostic approach makes refactoring
and redesigning a completely trivial exercise.

3.1 Components in the wild

Component based approaches to development have been tried and
tested. Many high profile studios have used component driven entity
systems to great success1, and this was in part due to their devel-
oper’s unspoken understanding that objects aren’t a good place to
store all your data and traits. Gas Powered Games’ Dungeon Siege

1Gas Powered Games, Looking Glass Studios, Insomniac, Neversoft all used
component based objects

3.1. COMPONENTS IN THE WILD 37

Architecture is probably the earliest published document about a
game company using a component based approach. If you get a
chance, you should read the article2. In the article it explains that
using components means that the entity type3 doesn’t need to have
the ability to do anything. Instead, all the attributes and function-
ality come from the components of which the entity is made.

In this section we’ll show how we can take an existing class and
rewrite it in a component based fashion. We’re going to tackle a
fairly typical complex object, the player class. Normally these classes
get messy and out of hand quite quickly, and we’re going to assume
it’s a player class designed for a generic 3rd person action game, and
take a typically messy class as our starting point.

1 class Player {
2 public:
3 Player ();
4 ~Player ();
5 Vec GetPos (); // the root node position
6 void SetPos(Vec); // for spawning
7 Vec GetSpeed (); // current velocity
8 float GetHealth ();
9 bool IsDead ();

10 int GetPadIndex (); // the player pad controlling me
11 float GetAngle (); // the direction the player is pointing
12 void SetAnimGoal(...); // push state to anim -tree
13 void Shoot(Vec target); // fire the player ’s weapon
14 void TakeDamage(...); // take some health off , maybe animate

for the damage reaction
15 void Speak(...); // cause the player to start audio/anim
16 void SetControllable(bool); // no control in cut -scene
17 void SetVisible(bool); // hide when loading / streaming
18 void SetModel(...); // init streaming the meshes etc
19 bool IsReadyForRender ();
20 void Render (); // put this in the render queue
21 bool IsControllable (); // player can move about?
22 bool IsAiming (); // in normal move -mode , or aim -mode
23 bool IsClimbing ();
24 bool InWater (); // if the root bone is underwater
25 bool IsFalling ();
26 void SetBulletCount(int); // reload is -1
27 void AddItem(...); // inventory items

2Gas Powered Games released a web article about their component based
architecture back in 2004, read it at http://garage.gaspowered.com/?q=su 301

3GPG:DG uses GO or Game-Objects, but we stick with the term entity
because it has become the standard term.

38 CHAPTER 3. COMPONENT BASED OBJECTS

28 void UseItem(...);
29 bool HaveItem(...);
30 void AddXP(int); // not really XP, but used to indicate when

we let the player power -up
31 int GetLevel (); // not really level , power -up count
32 int GetNumPowerups (); // how many we’ve used
33 float GetPlayerSpeed (); // how fast the player can go
34 float GetJumpHeight ();
35 float GetStrength (); // for melee attacks and climb speed
36 float GetDodge (); // avoiding bullets
37 bool IsInBounds(Bound); // in trigger zone?
38 void SetGodMode(bool); // cheater
39 private:
40 Vec pos , up, forward , right;
41 Vec velocity;
42 Array <ItemType > inventory;
43 float health;
44 int controller;
45 AnimID currentAnimGoal;
46 AnimID currentAnim;
47 int bulletCount;
48 SoundHandle playingSoundHandle; // null most of the time
49 bool controllable;
50 bool visible;
51 AssetID playerModel;
52 LocomotionType currentLocomotiveModel;
53 int xp;
54 int usedPowerups;
55 int SPEED , JUMP , STRENGTH , DODGE;
56 bool cheating;
57 };

Listing 3.1: Player class

3.2 Away from the hierarchy

A recurring theme in articles and post-mortems from people moving
from Object-Oriented hierarchies of gameplay classes to a compo-
nent based approach is the transitional states of turning their classes
into containers of smaller objects, an approach often called compo-
sition. This transitional form takes an existing class and finds the
boundaries between the concepts internal to the class and refactors
them out into new classes that can be pointed to by the original
class.

3.2. AWAY FROM THE HIERARCHY 39

First, we move the data out into separate structures so they can
be more easily combined into new classes.

1 struct PlayerPhysical {
2 Vec pos , up , forward , right;
3 Vec velocity;
4 };
5 struct PlayerGameplay {
6 float health;
7 int xp;
8 int usedPowerups;
9 int SPEED , JUMP , STRENGTH , DODGE;

10 bool cheating;
11 };
12 struct EntityAnim {
13 AnimID currentAnimGoal;
14 AnimID currentAnim;
15 SoundHandle playingSoundHandle; // null most of the time
16 };
17 struct PlayerControl {
18 int controller;
19 bool controllable;
20 };
21 struct EntityRender {
22 bool visible;
23 AssetID playerModel;
24 };
25 struct EntityInWorld {
26 LocomotionType currentLocomotiveModel;
27 };
28 struct Inventory {
29 Array <ItemType > inventory;
30 int bulletCount;
31 };
32

33 SparseArray <PlayerPhysical > phsyicalArray;
34 SparseArray <PlayerGameplay > gameplayArray;
35 SparseArray <EntityAnim > animArray;
36 SparseArray <PlayerControl > controlArray;
37 SparseArray <EntityRender > renderArray;
38 SparseArray <EntityInWorld > inWorldArray;
39 SparseArray <Inventory > inventoryArray;
40

41 class Player {
42 public:
43 Player ();
44 ~Player ();
45 // ...
46 // ... the member functions
47 // ...
48 private:

40 CHAPTER 3. COMPONENT BASED OBJECTS

49 int EntityID;
50 };

When we do this, we see how a first pass of building a class out
of smaller classes can help organise the data into distinct purpose
oriented collections, but we can also see the reason why a class ends
up being a tangled mess. The rendering functions need access to
the player’s position as well as the model, and the gameplay func-
tions such as Shoot need access to the inventory as well as setting
animations and dealing damage. Take damage will need access to
the animations, health. Things are already seeming more difficult
to handle than expected. But what’s really happening here is that
you can see that code needs to cut across different pieces of data.
With this first pass, we can start to see that functionality and data
don’t belong together.

We move away from the class being a container for the classes
immediately as we can quickly see the benefit of cache locality when
we’re iterating over multiple entities doing related tasks. If we were
iterating over the entities checking for whether they were out of
bullets, and if so setting their animation to reloading, we would
only need to check the EntityID to find the element for each involved
entity.

Functionality of a class, or an object, comes from how facts are
manipulated. The relations between the facts are part of the prob-
lem domain, but the facts are only raw data. This separation of
fact from meaning is not possible with an object oriented approach,
which is why every time a fact acquires a new meaning, the meaning
has to be implemented as part of the class containing the fact. Re-
moving the facts from the class and instead keeping them as separate
components has given us the chance to move away from classes that
have meaning, but at the expense of having to look up facts from
different sources.

3.3. TOWARDS MANAGERS 41

3.3 Towards Managers

After splitting your classes up into components, you might find that
your classes look more awkward now they are accessing variables
hidden away in new structures. But it’s not your classes that should
be looking up variables, but instead transforms on the classes. A
common operation such as rendering requires the position and the
model information, but it also requires access to the renderer. Such
global access is seen as a common compromise during most game
development, but here it can be seen as the method by which we
move away from a class centric approach to transforming our data
into render requests that affect the graphics pipeline without refer-
ring to data unimportant to the renderer, and how we don’t need a
controller to fire a shot.

1 class RenderManager {
2 void Update () {
3 foreach({index ,pos} in positionArray) {
4 if(index in renderArray) {
5 ModelID mid = renderArray[index]. playerModel;
6 gRenderer.AddModel(mid , pos);
7 }
8 }
9 }

10 }
11 class PhysicsManager {
12 void Update () {
13 foreach({index ,pos} in positionArray) {
14 if(index in renderArray) {
15 ModelID mid = renderArray[index]. playerModel;
16 ApplyCollisionAndResponse(pos.position , pos.velocity
17 }
18 }
19 }
20 }
21 class PlayerControl {
22 void Update () {
23 foreach({index ,control} in controlArray) {
24 if(control.controllable) {
25 Pad pad = GetPad(control.controller);
26 if(pad.IsPressed(SHOOT)) {
27 if(index in inventoryArray) {
28 if(inventoryArray[index]. bulletCount > 0) {
29 if(index in animArray) {
30 animArray[index]. currentAnimGoal = SHOOT_ONCE;
31 }

42 CHAPTER 3. COMPONENT BASED OBJECTS

32 }
33 }
34 }
35 }
36 }
37 foreach({index ,inv} in inventoryArray) {
38 if(inv.bulletCount > 0) {
39 if(index in animArray) {
40 anim = animArray[index];
41 if(anim.currentAnim == SHOOT_ONCE) {
42 anim.currentAnim = SHOT;
43 inventoryArray[index]. bulletCount -= 1;
44 anim.playingSoundHandle = PlaySound(GUNFIRE);
45 }
46 }
47 }
48 }
49 }
50 }

What happens when we let more than just the player use these
arrays? Normally we’d have some separate logic for handling player
fire until we refactored the weapons to be generic weapons with
NPCs using the same code for weapons proably by having a new
weapon class that can be pointed to by the player or an NPC, but
instead what we have here is a way to split off the weapon firing
code in such a way as to allow the player and the NPC to share
firing code without inventing a new class to hold the firing. In fact,
what we’ve done is split the firing up into the different tasks that it
really contains.

Tasks are good for parallel processing, and with component based
objects we open up the opportunity to make most of our previously
class oriented processes into more generic tasks that can be dished
out to whatever CPU or co-processor can handle them.

3.4 There is no Entity

What happens when we completely remove the player class? If we
consider that an entity may be not only represented by it’s collection

3.4. THERE IS NO ENTITY 43

of components, but also might only be it’s current configuration of
components, then there is the possibility of removing the core class
of Player. Removing this class can mean we no longer think of the
player as being the centre of the game, but also the class no longer
existing means that any code is no longer tied to itself.

1 struct Orientation { Vec pos , up , forward , right; };
2 SparseArray <Orientation > orientationArray;
3 SparseArray <Vec > velocityArray;
4 SparseArray <float > healthArray;
5 SparseArray <int > xpArray , usedPowerupsArray , controllerID ,

bulletCount;
6 struct Attributes { int SPEED , JUMP , STRENGTH , DODGE; };
7 SparseArray <Attributes > attributeArray;
8 SparseArray <bool > godmodeArray , controllable , isVisible;
9 SparseArray <AnimID > currentAnim , animGoal;

10 SparseArray <SoundHandle > playingSound;
11 SparseArray <AssetID > modelArray;
12 SparseArray <LocomotionType > locoModelArray;
13 SparseArray <Array <ItemType > > inventoryArray;
14

15 void RenderUpdate () {
16 foreach({index ,assetID} in modelArray) {
17 if(index in isVisible) {
18 gRenderer.AddModel(assetID , orientationArray[index]);
19 }
20 }
21 }
22 void PhysicsUpdate {
23 foreach({index ,vel} in velocityArray) {
24 if(index in modelArray) {
25 ApplyCollisionAndResponse(orientationArray[index], vel ,

modelArray[index]);
26 }
27 }
28 }
29 void ControlUpdate () {
30 foreach({index ,control} in controllerID) {
31 if(controllable[index]) {
32 Pad pad = GetPad(control.controller);
33 if(pad.IsPressed(SHOOT)) {
34 if(inventoryArray[index]. bulletCount > 0) {
35 animArray[index]. currentAnimGoal = SHOOT_ONCE;
36 }
37 }
38 }
39 }
40 }
41 void UpdateAnims () {
42 foreach({index , anim} in currentAnim) {

44 CHAPTER 3. COMPONENT BASED OBJECTS

43 if(anim == SHOOT_ONCE) {
44 anim = SHOT;
45 inventoryArray[index]. bulletCount -= 1;
46 playingSound = PlaySound(GUNFIRE);
47 }
48 }
49 }
50 int NewPlayer(int padID , Vec startPoint) {
51 int ID = newID();
52 controllerID[ID] padID;
53 GetAsset("PlayerModel", ID); // adds a request to put the

player model into modelArray[ID]
54 orientationArray[ID] = Orientation(startPoint);
55 velocityArray[ID] = VecZero ();
56 return ID;
57 }

Moving away from a player class means that many other classes
can be invented without adding much code. Allowing script to gen-
erate new classes by composition increases the power of script to
dramatically increase the apparent complexity of the game without
adding more code. What is also of major benefit is that all the dif-
ferent entities in the game now run the same code at the same time.
everyone’s physics is updated before they are rendered4 and every-
one’s controls (whether they be player or AI) are updated before
they are animated. Having the managers control when the code is
executed is a large part of the leap towards fully parallelisable code.

4or is updated while the rendering is happening on another thread

Chapter 4

Hierarchical
Level-of-Detail and
Implicit-state

Consoles and graphics cards are not generally bottlenecked at the
polygon rendering stage in the pipeline. Usually they are fill rate
bound if there are large polygons on screen, or there is a lot of alpha
blending, and for the most part, graphics chips spend a lot of their
time reading textures. Because of this, the old way of doing level of
detail with multiple meshes with decreasing numbers of polygons is
never going to be as good as a technique that takes into account the
actual data required of the level of detail used in each renderable.
Hierarchical level of detail fixes the problem of high primitive count
and mistargetted art optimisations by grouping and merging many
low level of detail meshes into one low level of detail mesh, thus
reducing the time spent in the setup of render calls, and enforcing
a better perspective on the artist producing the lower resolution as-
set. In a typical very large scale environment, a hierarchical level of
detail implementation can reduce the workload on a game engine by

45

46 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL

an order of magnitude as the number of entities in the scene consid-
ered for rendering drops significantly. Even though the number of
polygons rendered might be exactly the same, or maybe even more,
the fact that the engine usually only has to handle a static number
of entities at once increases stability and allows for more accurately
targeted optimisations of both art and code.

4.1 Existence from Null to Infinity

Going back to our entities being implicit on their attributes, we
can utilise the theory of hierarchical level of detail to offer up some
optimisations for our code. If we have high level low fidelity coarse
grain game logic for distant or currently unimportant game entities,
and only drill down to highly tuned code when an entity becomes
more apparent to the player, then we can save a lot of cycles on
things the player is not interested in, or possibly even able to see.

Consider a game where you are defending a base from incoming
attacks. The attackers come in squadons of ships, you can see them
all coming at once, over a thousand ships in all and up to twenty
at once in each squadron. You have to shoot them down, or be
inundated with gunfire and bombs, taking out both you and the
base you are defending.

Running full AI, with swarming for motion and avoidance for
your slower moving weapons might be too much if it was run on
all thousand ships every tick, but you don’t need to. The basic
assumption made by most AI programmers is that unless they are
within attacking range, then they don’t need to be running AI. This
is true, and does offer an immediate speed up compared to the naive
approach. Hierarchical LOD provides another way to think about
this, through changing the number of entities based on how they are
perceived by the player. For want of a better term, count-lodding is
a name that describes what is happening behind the scenes a little
better, because sometimes there is no hierarchy and yet there can
still be a change in count between the levels of detail.

4.1. EXISTENCE 47

In the count-lodding version of the base defender game, there is
a few Wave entities that project a few Squadron blips on the radar.
The squadrons don’t exist as their own entities until they get close
enough. Once a wave’s squadron is within range, the Wave can de-
crease its squadron count, and pop out a new Squadron entity. The
Squadron entity shows blips on the radar for each of its component
ships. The ships don’t exist, but they are implicit in the Squadron.
The Wave continues to pop Squadrons as they come into range, and
once it’s internal count has dropped to zero, it deletes itself as it
now represents no entities. As a Squadron comes into even closer
range, it pops out its ships into their own entities, and deletes itself.
As the ships get closer, their renderables are allowed to switch to
higher resolution and their AI is allowed to run at a higher intelli-
gence setting.

When the ships are shot at, they switch to a taken damage type
much like the health system earlier. They are full health unless
they take damage. If an AI reacts to damage with fear, they may
eject, adding another entity to the world. If the wing of the plane
is shot off, then that also becomes a new entity in the world. Once
a plane has crashed, it can delete its entity and replace it with a
smoking wreck entity that will be much simpler to process than an
aerodynamic simulation.

If the player can’t keep the ships at bay and their numbers in-
crease in size so much that any normal level of detailing can’t kick
in, count lodding can still help by returning ships to squadrons and
flying them around the base attacking as a group rather than as
invididual ships. The level of detail heuristic can be tuned so that
the nearest and front-most squadron are always the highest level of
detail, and the ones behind the player maintain a very simplistic
representation.

This is game development smoke and mirrors as a basic game en-
gine element. In the past we have reduced the number of concurrent
attacking AI1, reduced the number of cars on screen by staggering

1I beleive this was half-life

48 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL

the lineup over the whole race track2, and we’ve literally combined
people together into one person instead of having loads of people on
screen at once3. This kind of reduction of processing is common-
place. Now use it everywhere appropriate, not just when a player is
not looking.

4.2 Mementos

Reducing detail introduces an old problme, though. Changing level
of detail in game logic systems, AI and such, brings with it the loss
of high detail history. In this case we need a way to store what is
needed to maintain a highly cohesive player experience. If a high
detail squadron in front of the player goes out of sight and another
squadron takes their place, we still want any damage done to the
first group to reappear when they come into sight again. Imagine
if you had shot out the glass on all the ships and when they came
round again, it was all back the way it was when they first arrived.
A cosmetic effect, but one that is jarring and makes it harder to
suspend disbelief.

When a high detail entity drops to a lower level of detail, it
should store a memento, a small, well compressed nugget of data that
contains all the necessary information in order to rebuild the higher
detail entity from the lower detail one. When the squadron drops
out of sight, it stores a memento containing compressed information
about the amount of damage, where it was damaged, and rough
positions of all the ships in the squadron. When the squadron comes
into view once more, it can read this data and generate the high
detail entities back in the state they were before. Lossy compression
is fine for most things, it doesn’t matter precisely which windows, or
how they were cracked, maybe just that about 2/3 of the windows
were broken.

2Ridge Racer was one of the worst for this
3Populous did this

4.3. JIT DATA GENERATION 49

Another good example is in a city based free-roaming game. If
AIs are allowed to enter vehicles and get out of them, then there is a
good possibility that you can reduce processing time by removing the
AIs from world when they enter a vehicle. If they are a passenger,
then they only need enough information to rebuild them and nothing
else. If they are the driver, then you might want to create a new
driver type based on some attributes of the pedestrian before making
the memento for when they exit the vehicle.

If a vehicle reaches a certain distance away from the player, then
you can delete it. To keep performance high, you can change the
priorities of vehicles that have mementos so that they try to lose
sight of the player thus allowing for earlier removal from the game.
Optimisations like this are hard to coordinate in Object-oriented
systems as internal inspection of types isn’t encouraged.

4.3 JIT Data Generation

If a vehicle that has been created as part of the ambient popula-
tion is suddenly required to take on a more important role, such as
the car being involved in a fire fight. It is important to generate
new entities that don’t seem overly generic or unlikely given what
the player knows about the game so far. Generating data can be
thought of as providing a memento to read from just in time. JIT
mementos are faked mementos that provide a false sense of conti-
nuity by allowing pseudo random generators or hash functions the
opportunity to replace non-zero memory usage mementos when the
data is unlikely to change, or be needed for more than a short while.

JIT mementos can also be the basis of a highly textured envi-
ronment with memento style sheets or style guides that can direct a
feel bias for any mementos generated in those virtual spaces. Imag-
ine a city style guide that specifies rules for occupants of cars, that
businessmen might share, but are less likely to, families have chil-
dren in the back seats with mum or dad driving, young adults tend
to drive around in pairs. These style guides help add believability

50 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL

to any generated data. Add in local changes such as having types
of car linked to their drivers, convertibles driven by well dressed
types or kids, low riders driven almost exclusively by ghetto resi-
dents, imports driven by young adults. In a space game, dirty hairy
pilots of cargo ships, well turned out officers commanding yachts,
rough and ready mercenaries in everything from a single seater to a
dreadnought.

JIT mementos are a good way to keep variety up, and style guides
bias that so it comes without the impression that everyone is dif-
ferent so everyone is the same. When these biases are played out
without being striclty adhered to, you can build a more textured
environment. If your environment is heavily populated with a com-
pletely different people all the time, there is nothing to hold onto,
not patterns to recognise. When there are no patterns, the mind
tends to see noise, or mark it as samey. Even the most varied vir-
tual worlds look bland when there is too much content all in the
same place.

4.4 Alternative Axes

As with all things, take away an assumption and you can find other
uses for a tool. Whenever you read about or work with a level of
detail system, you will be aware that the constraint on what level
of detail is shown has always been some distance function in space.
It’s now time to take that assumption, discard it, and analyse what
is really happening.

First, we find that if we take away the assumption of distance,
we can infer the conditional as some kind of linear measure. This
value normally comes from a function that takes the camera position
and finds the relative distance to the entity under consideration.
What we may also realise when discarding the distance assumption
is a more fundamental understanding of that what we are trying
to do. We are using a runtime variable to control the presentation
state of an entity. We use runtime variables to control the state of

4.4. ALTERNATIVE AXES 51

many parts of our game already, but in this case, there is a passive
presentation response to the variable, or axis being monitored. The
presentation is usually some graphical, or logical level of detail, but
it could be something as important to the entity as its own existence.

How long until a player forgets about something that might oth-
erwise be important? This information can help reduce memory
usage as much as distance. If you have ever played Grand Theft
Auto IV, you might have noticed that the cars can dissappear just
by not looking at them. As you turn around a few times you might
notice that the cars seem to be different each time you face their
way. This is a stunning use of temporal level of detail. Cars that
have been bumped into or driven and parked by the player remain
where they were, because, in essence, the player put them there.
Because the player has interacted with them, they are likely to re-
member that they are there. However, ambient vehicles, whether
they are police cruisers, or civilian vehicles, are less important and
don’t normally get to keep any special status so can vanish when
the player looks away.

In adition to time-since-seen, some elements may base their level
of detail on how far a player has progressed in the game, or how
many of something a player has, or how many times they have done
it. For example, a typical bartering animation might be cut shorter
and shorter as the game uses the axis of how many recent barters
to draw back the length of any non-interactive sections that could
be caused by the event. This can be done simply, and the player
will be thankful. It may even be possible to allow for multi-item
transactions after a certain number of transactions have happened.
In effect, you could set up gameplay elements, reactions to situations,
triggers for tutorials or extensions to gameplay options all through
these abstracted level of detail style axes.

This way of manipulating the present state of the game is safer
from transition errors. Errors that happen because going from one
state to another may have set something to true when transitioning
one direction, but not back to false when transitioning the other way.
You can think of the states as being implicit on the axis, not explicit,

52 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL

calculated purely as a triggered event that manipulates state.
An example of where transition errors occur is in menu systems

where though all transitions should be reversible, sometimes you
may find that going down two levels of menu, but back only one
level, takes you back to where you started. For example, entering
the options menu, then entering an adjust volume slider, but back-
ing out of the slider might take you out of the options menu all
together. These bugs are common in UI code as there are large
numbers of different layers of interaction. Player input is often cap-
tured in obscure ways compared to gameplay input response. A
common problem with menus is one of ownership of the input for
a particular frame. For example, if a player hits both the forward
and backward button at the same time, a state machine UI might
choose to enter whichever transition response comes first. Another
might manage to accept the forward event, only to have the next
menu accept the back event, but worst of all might be the unlikely
but seen in the wild, menu transitioning to two different menus at
the same time. Sometimes the menu may transition due to external
forces, and if there is player input captured in a different thread
of execution, the game state can become disjoint and unresponsive.
Consider a network game’s lobby, where if everyone is ready to play,
but the host of the game disconnects while you are entering into the
options screen prior to game launch, in a traditional state machine
like approach to menus, where should the player return to once they
exit the options screen? The lobby would normally have dropped
you back to a server search screen, but in this case, the lobby has
gone away to be replaced with nothing. This is where having simple
axes instead of state machines can prove to be simpler to the point
of being less buggy and more responsive.

Chapter 5

Condition Tables

Condition tables are a data-oriented approach to Decision tables.
Decision tables are a method by which you can generate flow control
with a table, mapping a vector of predicates to a set of outcomes or
destinations. In decision tables, each row has a predicate – a logical
statement, such as isTrue, isFalse, null, or some boolean returning
function on the data present in the column, such as > 0 for numbers,
or contains("win") for strings. Decision tables aren’t entirely
like standard flow control statements, as they can lead to multiple
outcomes. We will see that a condition table query can also end up
being true for multiple outcomes, or even have no matching rows.

5.1 Building Questions

Condition tables are similar to Decision tables, except they have
some restrictions that allow for easier optimisation. All the input
columns in a condition table query are boolean. If you are famil-
iar with decision tables, this might seem like a limiting constraint,
however if you need to check that X < 20, then you can do that
before it enters the query. Also, unlike decision tables, each row in

53

54 CHAPTER 5. CONDITION TABLES

a condition table doesn’t have a function to call, but instead a table
reference to output to if there is a match on the conditions. These
simple constraints allow for existence-based-processing of the result
tables, thus reducing the instruction cache misses of the more tra-
ditional database oriented decision table approach, and also allows
the driving of event tables so that conditions can trigger events on
subscribed entities.

For each component involved in the condition table operation,
you generate the boolean values into the condition table input. Gen-
erating each boolean value from the data in this fashion can utilise
the struct-of-arrays format much better, as the predicate can run
as a tiny kernel over the streaming data. In a traditional array-
of-structs format, this technique wouldn’t improve performance or
increase cache-line utilisation, so unless you’re testing your code on
well oriented data, this whole preprocessing step might be worse
than pointless. If your data is organised by concept, such as in an
object oriented class, then you might end up loading in the same
data multiple times to prepare the input table. As each kernel may
be accessing only a few bytes of a structure at a time, this will waste
memory bandwidth.

Once the condition input is prepared, we then prepare the trans-
form. The transform consists of a set of query arrays and an output.
The output will be multiple tables, each query array can point to
any of the output tables, which means that an entry can end up in
more than one table, and can be put into a table more than one
time based on how the output table is organised. Sometimes, an en-
tity will want to only act on the first matching decision point (this
would be a way to implement behaviour trees), sometimes a compo-
nent will want to include multiple matches (this would be a way to
implement scoring points).

The condition table is made up of rows, each row has a query
array that consists of one or more tri-state columns with possible
values of { isTrue, isFalse, null }. To match with an input, all query
array columns must match. In effect, an and over all the element
queries. The null entry will always return true. With this, it is

5.2. FLIP IT ON ITS HEAD 55

possible to build up any query you would normally do on your data.

5.2 Flip it on its head

The decision table approach is another form of taking what is nor-
mally a singular entity approach and flipping it on its head. Now
we are aware of the idea of a structure of arrays, we can start to
see other areas of code that previously were being driven by a mul-
tiple individual entities entering into update functions and calling
things based on their own data, and causing the processor to change
direction and try to keep up with the winding trail set by all the
selfish entities. If every entity needs to do an update, then effec-
tively no individual entity needs to do an update. Components need
to update, and if instead of running an update over each and every
entity in your application, you run a component update over every
component manager, then you’re moving from a data driven mess
to a stream processing or flow based programming paradigm. Each
of these approaches has benefits, but the difficulty in using them in
the past has been how to begin to do it when starting with an object
oriented data layout. If your data is already organised as structures
of arrays (or indeed component managers of arrays of transform re-
lated data), then the flow based techniques for transforming data
don’t need to be shoe-horned in.

Because we have moved the decisions out of the instances, we are
in a position to do more at the same time. A wary object-oriented
programmer might assume that each decision table applies to only
one set of entities, or one set of queries, but the truth is far more
parallel. Once you have moved away from entities being a type, and
instead let them be implicit on their components, you find that you
can process a very large number of apparently disparate entities at
the same time. As you build your application’s update function,
you find that you need to make decisions for components, update
components based on those decisions, and sometimes iterate over
that sequence a few times. At no point are you limited to one entity

56 CHAPTER 5. CONDITION TABLES

at a time, or even one component at a time unless you build in
dependencies into your transform chain.

Moving away from single entity processing is also good if you
want to offload your core application code onto a compute shader.
As long as you maintain your data in simple arrays inside the com-
ponents, then there will likely be very little currying of data into a
shader ready format. If you make sure your processing is stateless, as
in it does not accumulate or modify global state, or reference other
elements in the stream in a random access fashion, then it’s very
likely you will be able to convert your code to a compute kernel. At
this point, you will have left the general purpose CPU to scheduling
the operations, and joining tables. These are the only jobs still not
easily handled by a stateless streaming approach.

5.3 Logging decisions for debug: Making
answers talk for themselves

With all this raw data moving around, some may think that it would
be harder to debug than a human friendly object-oriented code lay-
out. Indeed, some developers think that you need to understand the
data in a problem centric way in order to figure out what is causing
a bug, however, normally a bug is where the implementation did
what was written, not what was meant, and that can usually be
found through understanding what is going on inside the software,
and not the problem that was being solved by it. Most bug slaying
involves understanding what the computer was doing before it did
the unexpected. It is hardly ever about understanding the design,
or the concepts represented by the classes. It is very unlikely that
your bug exists in something as high level as the fact that a house
is not a car.

For example, if you have a bug where a specific mesh is being
culled, you might think that you need to see the data about the
entity that renders that mesh all in one place. You may think that
otherwise you could spend a lot of time traversing data structures

5.3. LOGGING DECISIONS FOR DEBUG 57

in a watch window just to find out in what state an object was,
that caused it to flip its visible bit to false. This human view of the
data may seem important to many seasoned developers, but it’s false
reasoning based on how difficult it is to debug and reason about data
structures inside an object-oriented program. We’re used to thinking
about our data as objects, but our data is not objects, it’s data.

If your code is data-oriented, with checkpoints between each
transform, it becomes very easy to log any changes and their rea-
son why. It even becomes simpler to rerun transforms in order to
find out what conditions caused them to change. If you are using
condition tables, you can run the condition check multiple times to
figure out what caused them to emit or not emit output rows. If
you keep the development stream-oriented, that is, no mutable state
or in-place modification, then you can even allow for rolling back a
lot of your program in order to find the original cause of any bad
state. We can roll back when we don’t have global state mutation
because any previous data implies a state. As long as you don’t
modify the stream, but instead generate a new one as you make
your way through your updates, you can always look back and see
what caused the change, or at least see where the data didn’t match
expectation.

If you think about things like meshes as being objects that have
state, then you are going to worry about how data got into a par-
ticular state. Most object oriented developers fear that without the
problem domain borders, then states may get lost in one of the myr-
iad anonymous transforms that affect the data streaming through
the system, however, this is only because Object-oriented design al-
lows or even enforces the dangerous practice of hidden data and
mutable state. As it is relatively easy to hook an event handler to
any table insert, adding logging for bad state changes is very easy,
and if you keep your transforms deterministic, it becomes highly re-
peatable. In some languages there are virtual machines that allow
for complete rollback of the program. There is a JVM that main-
tains historic state, and Microsoft’s CLR provides the ability to go
back in time for some of its languages. If you program your game

58 CHAPTER 5. CONDITION TABLES

with condition tables, thorough logging, and a deterministic set of
transforms, you can have game state rollback in a high performance
language such as C++.

With this information at hand, it can be safe to assume that
for the normal practice of debugging, which is figuring out how an
object got into a particularly bad state, working within a well formed
data oriented code base would make debugging easier, not harder.

5.4 Branching without branching

Due to the restrictions imposed on their use, condition tables have
the opportunity to be realised in branch free or heavily optimised
code. Depending on the number of rows in the decision table, it
might be possible to optimise the query by output, but normally the
query can be optimised by input. We will see more of this choice of
rows vs columns in chapter ref:example.

The first thing we do is generate a truth value from the conditions
and the query array. Remember the query array is made up of
isTrue, isFalse, and null values. We need to generate, from an array
of booleans, a single boolean result. Logically, we can produce this
by xoring the inputs with the isFalse elements, and then oring in the
null entries. Once we have this final array, we only need to check
that all elements are true to find the entire query to be true.

If we allow for our pre-processor to produce bitmasks of input
values, then we can produce a pair of bit masks that generate the
kind of result we need. First, we prepare the ignore mask, this mask
contains a high bit wherever we don’t care about the input value.
Naturally, all null fields can be converted to 1s, and so can any
bits higher than the maximum query entry. The second mask is the
falsity masks, and is true if the query array tri-state is isFalse. These
masks are now the xor and ignore masks.

1 unsigned int xorMask = 0;
2 unsigned int ignoreMask = 0;
3 for(int i = 0; i < tableColumns; ++i) {
4 if(column[i]. condition == isFalse)

5.4. BRANCHING WITHOUT BRANCHING 59

5 xorMask |= BIT(i);
6 if(column[i]. condition == null)
7 ignoreMask |= BIT(i);
8 }
9 for(int i = tableColumns; i < MAX_BITS; ++i) {

10 ignoreMask |= BIT(i);
11 }

Next, prepare the input as a list of boolean values. If we have
well formed data, we can assume that we have already built our
inputs as bit fields, but if our data is still object oriented, or at least
still arrays of structures, then we will probably do this step inline
with reading each structure from the array of structures.

1 foreach(row in table) {
2 unsigned int values = 0;
3 for(int i = 0; i < tableColumns; ++i) {
4 if(row[i])
5 values |= BIT(i);
6 }
7 }

Once you have your inputs transformed into the array of bit
fields, you can run them through the condition table. If they are
an array of structures, then it’s likely that caching the inputs into
a separate table isn’t going to make things faster, so this decision
pass can be run on the bit field directly. In this snippet we run one
bit field through one set of condition masks.

1 unsigned int conditionsMet = (value ^ xorMask) | ignoreMask;
2 unsigned int unmet = ~conditionsMet;
3 if(!unmet) {
4 addToTable(t);
5 }

The code first XORs the values so the false values become true
for all the cases where we want the value to be false. Then we OR
with the ignore so that any entries we don’t care about become true

60 CHAPTER 5. CONDITION TABLES

and don’t falsely break the condition. Once we have this final value,
we can be certain that it will be all ones in case of a match, and
will have some zeros if it is a miss. An if using the binary-not of
the final value will suffice to prove the system works, but we can do
better.

Using the conditionsMet value, we can generate a final mask onto
an arbitrary value.

1 unsigned int czero = (cvalue + 1); // one more than all the ones
is zero.

2 unsigned int cmask = ~(czero | -czero) >> 31; // only zero returns
-1 from this.

3 ID valueIn = valueOut & cmask; // if true , return the key , else
return zero.

Now, we can use this value in many ways. We can use it on the
primary key, and add this key to the output table, and providing a
list table that can be reduced by ignoring nulls, we have, in effect, a
dead bucket. If we use it on the increment counter, then we can just
add an entry to the end of the output table, but not increase the size
of the output table. Either way, we can assume this is a branchless
implementation of an entry being added to a table. If this was
an event, then a multi-variable condition check is now branchlessly
putting out an event. If you let these loops unroll, then depending
on your platform, you are going to process a lot more data than a
branching model will.

Chapter 6

Finite State Machines

Finite state machines are a solid solution to many game logic prob-
lems. They are the building block of most medium level AI code, and
provide testable frameworks for user interfaces. Notoriously convo-
luted finite state machines rule the world of memory card operations
and network lobbies, while simple ones hold domain over point and
click adventure puzzle logic. Finite state machines are highly data
driven in that they react to an alphabet of signals, and change state
based on both the signal received, and their current state.

6.1 Tables as States

If we wish to implement finite state machines without objects to
contain them, and without state variables to instruct their flow,
we can call on the runtime dynamic polymorphism inherent in the
data oriented approach to provide these characteristics based only
on the existence of rows in tables. We do not need an instruction
cache trashing state variable that would divert the flow according
to internal state. We don’t need an object to contain any state
dependent data for analysis of the alphabet.

61

62 CHAPTER 6. FINITE STATE MACHINES

At the fundamental level, a finite state machine requires a reac-
tion to an alphabet. If we replace the alphabet handling code with
condition tables, then we can produce output tables of transitions
to commit. If each state is represented by a condition table, and
any entity in that state represented by a row in a state table, then
we can run each state in turn, collecting any transitions in buffers,
then committing these changes after everything has finished a single
update step.

Finite state machines can be difficult to debug due to their data-
driven nature, so being able to move to a easier to debug framework
should reduce development time. In my experience, being able to log
all the transitions over time has reduced some AI problems down to
merely looking through some logs before fixing an errant condition
based only on an unexpected transion logged with its cause data.

Keeping the state as a table entry can also let the FSM do some
more advanced work, such as managing level of detail or culling. If
your renderables have a state of potentially visible, then you can run
the culling checks on just these entities rather than those not even
up for consideration this frame. Using count lodding with FSMs
allows for game flow logic as allowing the triggering of a game state
change to emit the state’s linked entities could provide a good point
for debugging any problems. Also, using condition tables makes it
very easy to change the reactions and add new alphabet without
having to change a lot of code.

6.2 Implementing Transitions

Finite state machines normally have an input stream that modifies
the internal state as fast as new signals arrive. This can lead to very
fast state switching, but to maintain the parallelism, transform ori-
ented finite state machines only run one update based on all signals
available at the time of the tick. There is no ambiguity however, as
if there are more than one conditional responses matching the input
state, then it is fine to go to more than one state at once as a result.

6.3. CONDITION TABLES AS TRIGGERS 63

Consider the finite state machine in a point and click adventure,
where the character has to find three objects. In most games, the
logic would be defined as a state waiting for all objects to be found.
In a condition table finite state machine, there could be three dif-
ferent tables representing each of the objects, and while any table is
populated, the game will not progress.

In a transform oriented finite state machine, the transitions are
generated by the condition tables transforming the input signals into
table insertions and deletions. Whenever a condition is matched, it
emits an entity ID and a bool into a transition table (or a null if you
intend to reduce the table in a separate process) ready for processing
in the commit stage. This means that a finite state machine can react
to multiple signals in a deterministic way because the state will not
change before it has finished processing all the possible condition
matches. There is no inherent temporal coupling in this design.
Traditional finite state machines don’t allow for multiple reactions at
once as they transition from one state to another, naturally reacting
on the order of signals, which is perfect for a finite state machine
built for a lexer or parser, but possibly not for a generic gameplay
state machine.

6.3 Condition tables as Triggers

Sometimes a finite state machine transition has side effects. Some
finite state machines allow you to add callbacks on transitions, so
you can attach onEnter, onExit, and onTransition effects. Because
the transform oriented approach has a natural rhythm of state trans-
forms to transition request transforms to new state, it’s simple to
hook into any state transition request table and add a little process-
ing before the state table row modifications are committed.

You can use hooks for logging, telemetry, or game logic that
is watching certain states. If you have a finite state machine for
mapping input to player movement, it’s important to have it react
to a player state that adjusts the control method. For example, if

64 CHAPTER 6. FINITE STATE MACHINES

the player has different controls when under water, the onEnter of
the inWater state table could change the player input mapping to
allow for floating up or sinking down. It would also be a good idea
to attach any oxygen-level gauge hooks here to. If there is meant
to be a renderable for the oxygen-level, it should be created by the
player entering the inWater state. It should also be hooked into the
inWater onExit transition table, as it will probably want to reset or
begin regenerating at that point.

One of the greatest benefits of being able to hook into transitions,
is being able to keep track of changes in game state for syncing. If
you are trying to keep a network game sycnronised, knowing exactly
what happened and why can be the difference between a 5 minute
and 5 day debugging session.

6.4 Conditions as Events

The entries in a condition table represent the events that are inter-
esting, the ones that affect the flow of the game and the way in which
the data is transformed. This means that the condition tables drive
the flow, but they themselves are tables that can be manipulated,
so they can self modify, which means we can use this technique to
provide high perfomance data-driven, yet data-oriented development
practices.

Condition tables are tables that can have rows inserted or deleted
just like any other table. If the rows are added, modified, or removed
based on the same rules as everything else, then you have a data-
driven general purpose development model. One that doesn’t even
sacrifice performance for flexibility.

Chapter 7

Searching

When looking for specific data, it’s very important to remember
why you’re doing it. If the search is not necessary, then that’s your
biggest possible saving. Finding if a row exists in a table will be slow
if approached naively. You can manually add searching helpers such
as binary trees, hash tables, or just keep your table sorted by using
ordered insertion whenever you add to the table. If you’re looking to
do the latter, this could slow things down, as ordered inserts aren’t
normally concurrent, and adding extra helpers is normally a manual
task. In this section we find ways to combat all these problems.

7.1 Indexes

Database management systems have long held the concept of in-
dexes. They are traditionally automatically added when a database
management system notices that a particular query has been run a
large number of times. We can use this idea and implement a just-
in-time indexing system in our games to provide the same kinds of
performance improvement. Every time you want to find out if an
element exists, or even just generate a subset, like when you need

65

66 CHAPTER 7. SEARCHING

to find all the entities in a certain range, you will have to build it
as a pocess to generate a row or table, but the process that causes
the row or table generation can be thought of as an object that
can transform itself dependent on the situation. Starting out as
a simple linear search query (if the data is not already sorted), the
process can find out that it’s being used quite often through internal
telemetry, and proably be able to discover that it’s generally returns
a simply tunable set of results, such as the first N items in a sorted
list, and can hook itself into the tables that it references. Hooking
into the insertion, modification, and deletion would allow the query
to update itself rather than run the full query again. This can be a
significant saving, but it can also be useful as it is optional. As it’s
optional, it can be garbage collected.

If we build generalised back ends to handle building queries into
these tables, they can provide multiple benefits. Not only can we
provide garbage collection of indexes that aren’t in use, but they
can also make the programs in some way self documenting and self
profiling. If we study the logs of what tables had pushed for building
indexes for their queries, then we can quickly see data hotspots and
where there is room for improvement. The holy grail here is self
optimising code.

7.2 data-oriented Lookup

The first step in any data-oriented approach to searching is to under-
stand the difference between the key, and the data that is dependent
on the key. Object-oriented solutions to searching often ask the ob-
ject whether or not it satisfies some criteria. Because the object is
asked a question, there is often a large amount of code called, mem-
ory indirectly accessed, and cache-lines filled but hardly used. Even
in a non-Object-oriented approach, there is frequently still a lot of
cache abuse. Following is a listing for a simple binary search for a
key in a naive implementation of an animation container. This kind
of data access pattern is common in animation, hash lookups, and

7.2. DATA-ORIENTED LOOKUP 67

other spatial searches.

1 struct AnimKey {
2 float time;
3 float x,y,z;
4 };
5 struct Anim {
6 int numKeys;
7 AnimKey *keys;
8 AnimKey *GetKeyAtTime(float t) {
9 int l = 0, h = numKeys -1;

10 int m = (l+h) / 2;
11 while(l < h) {
12 if(keys[m].time > t)
13 h = m;
14 else
15 l = m;
16 m = (l+h) / 2;
17 }
18 return keys[i];
19 }
20 };

Listing 7.1: Binary search for a given time value

We can improve on this very quickly by moving to a structure of
arrays. What follows is a quick rewrite that saves us a lot of memory
access.

1 struct AnimKey {
2 float x,y,z;
3 };
4 struct Anim {
5 int numKeys;
6 float *keyTime;
7 AnimKey *keys;
8 AnimKey *GetKeyAtTime(float t) {
9 int l = 0, h = numKeys -1;

10 int m = (l+h) / 2;
11 while(l < h) {
12 if(keyTime[m] > t)
13 h = m;
14 else
15 l = m;
16 m = (l+h) / 2;
17 }
18 return keys[i];
19 }
20 };

68 CHAPTER 7. SEARCHING

Listing 7.2: Binary search for a given time value

Using the data-oriented SoA, we speed this up, but why is it
faster? The first impression most people get is that we’ve moved
from a nice solid 16byte structure to a horrible or padded 12byte
structure for the animation keys. Sometimes it pays to think a bit
further than what looks right as first glance. Primarily, we are now
finding the key by hunting for a value in a list of values. Not looking
for a whole struct by one of its members in an array of structs.
This is faster because the cache will be filled with mostly pertinent
data. There are ways to organise the data better still, but any more
optimisation requires a complexity or space time trade off. A basic
binary search will home in on the correct data quite quickly, but each
of the first steps will cause a new cache-line to be read in. If you
know how big your cache-line is, then you can check all the values
that have been loaded for free while you wait for the next cache-line
to load in. Once you have got near the destination, most of the
memory you need is in memory and all you’re doing from then on
is making sure you have found the right key. In a good SoA engine,
all this can be done behind the scenes with a well optimised search
algorithm usable all over the game code. It is worth mentioning
again, that every time you break out into larger data structures,
you deny your proven code the chance to be reused.

If the reason for a search is simpler, such as checking for exis-
tence, then there are even faster alternatives. Bloom filters offer a
constant time lookup that even though it produces some false pos-
itives, can be tweaked to generate a reasonable answer hit rate for
very large sets. In particular, if you are checking for which table an
row exists in, then bloom filters work very well, by providing data
about which tables to look in, usually only returning the correct
table, but sometimes more than one.

In relational databases, indexes are added to tables at runtime
when there are multiple queries that could benefit in their presence.
For our data-oriented approach, there will always be some way to

7.2. DATA-ORIENTED LOOKUP 69

speed up a search but only by looking at the data. If the data is not
already sorted, then an index is a simple way to find the specific item
we need. If the data is already sorted, but needs even faster access,
then a search tree optimised for the cache-line size would help.

A binary search is one of the best search algorithms for using
the smallest number of instructions to find a key value. But if you
want the fastest algorithm, you must look at what takes time, and
a lot of the time, it’s not instructions. Loading a whole cache-line
or information and doing as much as you can with that would be
a lot more helpful than using the smallest number of instructions.
Consider these two different data layouts for a animation key finding
system:

1 struct Anim {
2 float keys[num];
3 VALUE_TYPE values[num];
4 };
5

6 struct KeyClump { float startTimes [32]; } // 128 bytes
7 keyClump root;
8 keyClump subs [32];
9 // implicit first element that has the same value as root.

startTimes[n],
10 // but last element is the same as root.startTimes[n+1]
11 VALUE_TYPE Values [32*32];

Listing 7.3: Anim key formats

A binary search is quick, but if you know you are going to be
doing completely random access of your data, but your data is of
a certain size, you can make even more optimisations. In the key
clumps version, the search loads the root (which has the times of
every 32nd key,) then after finding which subroot to load loads that
subroot. Once these two pieces of data are memory, there is enough
information to generate a lookup index for the two values stored in
Values, and the sub key interval interpolation value.

1 VALUE_TYPE GetAtT(t)
2 int rootIndex = binaryFind(t, root);
3 KeyClump &theSub = subs[rootIndex];
4 int subIndex = binaryFind(t, theSub);
5 int keyIndex = rootIndex * 32 + subIndex;

70 CHAPTER 7. SEARCHING

6 float *keyTimes = &theSub;
7 const float t1 = keyTimes[subIndex];
8 const float t2 = keyTimes[subIndex +1];
9 float blend = (t-t1) / (t2-t1);

10 return Interp(Values[keyIndex], Values[keyIndex +1], blend);
11 }

Listing 7.4: Finding in the clump

But most data isn’t this simple to optimise. A lot of the time, we
have to work with spatial data, but because we use objects, it’s hard
to strap on an efficient spatial reference container after the fact. It’s
virtually impossible to add one at runtime to an externally defined
class of objects.

Adding spatial partitioning when your data is in a simple data
format like rows allows us to generate spatial containers or lookup
systems that will be easy to maintain and optimise for each partic-
ular situation. Because of the inherent reusability in data-oriented
transforms, we can write some very highly optimised routines for the
high level programmers.

7.3 Finding lowest or highest is a sorting
problem

In some circumstances you don’t even really need to search. If the
reason for searching is to find something within a range, such as
finding the closest food, or shelter, or cover, then the problem isn’t
really one of searching, but one of sorting. In the first few runs of a
query, the search might literally do a real search to find the results,
but if it’s run often enough, there is no reason not to promote the
query to a runtime updating sorted subset of some other tables’ data.
If you need the nearest three elements, then you keep a sorted list
of the nearest three elements, and when an element has an update,
insertion or deletion, you can update the sorted three with that
information. For insertions or modifications that bring elements that
are not in the set closer, you can check that the element is closer and

7.4. FINDING RANDOM 71

pop the lowest before adding the new element to the sorted best. If
there is a deletion, or a modification that makes one in the sorted set
a contender for elimination, a quick check of the rest of the elements
to find a new best set might be necessary. If you keep a larger than
necessary set of best values, however, then you might find that this
never happens.

1 Array <int > bigArray;
2 Array <int > bestValue;
3 const int LIMIT = 3;
4

5 void AddValue(int newValue) {
6 bigArray.push(newValue);
7 bestValue.sortedinsert(newValue);
8 if(bestValue.size() > LIMIT)
9 bestValue.erase(bestValue.begin());

10 }
11 void RemoveValue(int deletedValue) {
12 bigArray.remove(deletedValue);
13 bestValue.remove(deletedValue);
14 }
15 int GetBestValue () {
16 if(bestValue.size()) {
17 return bestValue.top();
18 } else {
19 int best = bigArray.findbest ();
20 bestvalue.push(best);
21 return best;
22 }
23 }

Listing 7.5: keeping more than you need

The trick is to find, at runtime, the best value to use that covers
the solution requirement. The only way to do that is to check the
data at runtime. For this, either keep logs, or run the tests with
dynamic resizing based on feedback from the table’s query optimiser.

7.4 Finding random is a hash/tree issue

For some tables, the values change very often. For a tree representa-
tion to be high performance, it’s best not to have a high number of
modifications as each one could trigger the need for a rebalance. Of

72 CHAPTER 7. SEARCHING

course, if you do all your modifications in one stage of processing,
then rebalance, and then all your reads in another, then you’re prob-
ably going to be okay still using a tree. If you have many different
queries on some data, you can end up with multiple different in-
dexes. How frequently the entries are changed should influence how
you store your index data. Keeping a tree around for each query
could become expensive, but would be cheaper than a hash table
in most implementations. Hash tables become cheaper where there
are many modifications interspersed with lookups, trees are cheaper
where the data is mostly static, or at least hangs around for a while.
When the data becomes constant, a perfect hash can trump a tree.
Trees can be quickly made from data, faster than hash tables which
need you to run a hash function per entry being inserted. Hash ta-
bles can be quickly updated and can take up only marginally more
space than trees if implemented with care. Perfect hash tables use
precalculated hash functions to generate an index, and don’t require
any space other than is used to store the constants and the array of
pointers or offsets into the original table. If you have the time, then
you might find a perfect hash that returns the actual indexes. I’m
not sure we have that long though.

For example, if we need to find the position of someone given
their gamertag, the players won’t be sorted by gamertag normally,
so we need a gamertag to player lookup. This data is mostly constant
during game so would be better suited to a tree or perfect hash if we
could generate one fast enough. Generally, people leave games and
join them, so a tree is probably as static a container as is sensible
to use. Given the number of players isn’t likely to go over a ten
thousand at any point, a trie based off the gamertag hash value
should provide very quick lookup.

A hash can be more useful when the table is more chaotic, for
example, messages have senders and recipients. If we need to do
something with all the messages from or to one sender or recipient,
then at least one of those is not going to be the normal sorted order
of the table. Because the table is in constant flux, keeping a tree
is virtually useless, also the hash table variant can handle multiple

7.4. FINDING RANDOM 73

entries with the same key a lot easier than a tree implementation
as it can use the standard linked list of entries in a hash bucket to
collect all the messages with a certain sender/recipient.

74 CHAPTER 7. SEARCHING

Chapter 8

Sorting

For some subsystems, sorting is a highly important function. Sorting
the primitive render calls so that they render front to back for opaque
objects can have a massive impact on GPU performance, so it’s
worth doing. Sorting the primitive render calls so they render back
to front for alpha blended objects is usually a necessity. Sorting
sound channels by their amplitude over their sample position is a
good indicator of priority.

Whatever you need to sort for, make sure you need to sort first,
as usually, sorting is a highly memory intense business.

8.1 Do you need to?

There are some algorithms that seem to require sorted data, but
don’t, and some that require sorted data but don’t seem to. Be sure
you know whether you need to before you make any false moves.

One common use of sorting in games is in the render pass where
some engine programmers recommend having all your render calls
sorted by a high bit count key generated from a combination of
depth, mesh, material, shader, and other flags such as whether the

75

76 CHAPTER 8. SORTING

call is alpha blended. This then allows the renderer to adjust the sort
at runtime to get the most out of the bandwidth available. In the
case of the rendering list sort, you could run the whole list through a
general sorting algorithm, but in reality, there’s no reason to sort the
alpha blended objects with the opaque objects, so in many cases you
can take a first step of putting the list into two separate buckets,
and save some n for your O. Also, choose your sorting algorithm
wisely. With opaque objects, the most important part is usually
sorting by textures then by depth, but that can change with how
much your fill rate is being trashed by overwriting the same pixel
multiple times. If your overdraw doesn’t matter too much but your
texture uploads do, then you probably want to radix sort your calls.
With alpha blended calls, you just have to sort by depth, so choose
an algorithm that handles that case best, usually a quick sort or a
merge sort bring about very low but guaranteed accurate sorting.

8.2 Maintain by insertion sort or parallel
merge sort

Depending on what you need the list sorted for, you could sort while
modifying. If the sort is for some AI function that cares about pri-
ority, then you may as well insertion sort as the base heuristic com-
monly has completely orthogonal inputs. If the inputs are related,
then a post insertion table wide sort might be in order, but there’s
little call for a full scale sort.

If you really do need a full sort, then use an algorithm that likes
being parallel. Merge sort and quick sort are somewhat serial in
that they end or start with a single thread doing all the work, but
there are variants that work well with multiple processing threads,
and for small data sets there are special sorting network techniques
that can be faster than better algorithms just because they fit the
hardware so well1.

1Tony Albrecht proves this point in his article on sorting networks

8.3. SORTING FOR YOUR PLATFOM 77

8.3 Sorting for your platfom

Always remembering that in data-oriented development you must
look to the data before deciding which way you’re going to write the
code. What does the data look like? For rendering, there is a large
amount of data with different axes for sorting. If your renderer is
sorting by mesh and material, to reduce vertex and texture uploads,
then the data will show that there are a number of render calls that
share texture data, and a number of render calls that share vertex
data. Finding out which way to sort first could be figured out by
calculating the time it takes to upload a texture, how long it takes
to upload a mesh, how many extra uploads are required for each,
then calculating the total scene time, but mostly, profiling is the
only way to be sure. If you want to be able to profile, or allow for
runtime changes in case your game has such varying asset profiles
that there is no one solution to fit all, having a flexible sorting criteria
is extremely useful, and sometimes necessary. Fortunately, it can be
made just as quick as any inflexible sorting technique, bar a small
set up cost.

Radix sort is the fastest serial sort. If you can do it, radix sort
is very fast because it generates a list of starting points for data of
different values. This allows the sorter to drop their contents into
containers based on a translation table, a table that returns an offset
for a given data value. If you build a list from a known small value
space, then radix sort can operate very fast to give a coarse first
pass. The reason radix sort is serial, is that it has to modify the
table it is reading from in order to update the offsets for the next
element that will be put in the same bucket.

It is possible to make this last stage of the process parallel by
having each sorter ignore any values that it reads that are outside
its working set, meaning that each worker reads through the entire
set of values gathering for their bucket, but there is still a small
chance of non-linear performance due to having to write to nearby

http://seven-degrees-of-freedom.blogspot.co.uk/2010/07/question-of-sorts.html

78 CHAPTER 8. SORTING

memory on different threads. During the time the worker collects
the elements for its bucket, it could be generating the counts for the
next radix in the sequence, only requiring a summing before use in
the next pass of the data, mitigating the cost of iterating over the
whole set with every worker.

If your data is not simple enough to radix sort, you might be
better off using a merge sort or a quick sort, but there are other
sorts that work very well if you know the length of your sortable
buffer at compile time, such as sorting networks. Through merge-
sort is not itself a concurrent algorithm, the many early merges
can be run in parallel, only the final merge is serial, and with a
quick pre-parse of the to-be-merged data, you can finalise with two
threads rather than one by starting from both ends (you need to
make sure that the mergers don’t run out of data). Though quick
sort is not a concurrent algorithm each of the sub stages can be run
in parallel. These algorithms are inherently serial, but can be turned
into partially parallelisable algorithms with O(log n) latency.

When your n is small enough, a traditionally good technique is
to write an in place bubble sort. The algorithm is so simple, it
is hard to write wrong, and because of the small number of swaps
required, the time taken to set up a better sort could be better spent
elsewhere. Another argument for rewriting such trivial code is that
inline implementations can be small enough for the whole of the data
and the algorithm to fit in cache2. As the negative impact of the
inefficiency of the bubble sort is negligible over such a small n, it is
hardly ever frowned upon to do this.

If you’ve been developing data-oriented, you’ll have a transform
that takes a table of n and produces the sorted version of it. The
algorithm doesn’t have to be great to be better than bubble sort,
but notice that it doesn’t cost any time to use a better algorithm
as the data is usually in the right shape already. Data-oriented
development naturally leads us to reuse good algorithms.

2It might be wise to have some templated inline sort functions in your own
utility header so you can utilise the benefits of miniaturistion, but don’t drop in
a bloated std::sort

8.3. SORTING FOR YOUR PLATFOM 79

Sorting networks work by implementing the sort in a static man-
ner. They have input data and run swap if necessary functions on
pairs of values of that input data before outputting the final. The
simplest sorting network is two inputs.

A // //

��

// A′

B // //

BB

// B′

If the values entering are in order, the sorting crossover does
nothing. If the values are out of order, then the sorting cross over
causes the values to swap. This can be implemented as branchless
writes:

a’ <= MAX(a,b)

b’ <= MIN(a,b)

This is fast on any hardware. The MAX and MIN functions will
need different implementations for each platform and data type, but
in general, branch free code executes faster than code that includes
branches.

Introducing more elements:

A // //

��

// //

��

// A′

B //

��

// // //

BB

// //

��

// B′

C // //

II

// //

��

// //

BB

// C ′

D //

II

// // //

BB

// D′

80 CHAPTER 8. SORTING

What you notice here is that the critical path is not long (just
three stages in total), and as these are all branch free functions,
the performance is regular over all data permutations. With such a
regular performance profile, we can use the sort in ways where the
variability of sorting time length gets in the way, such as just-in-
time sorting for sub sections of rendering. If we had radix sorted
our renderables, we can network sort any final required ordering as
we can guarantee a consistent timing.

Sorting networks are somewhat like predication, the branch free
way of handling conditional calculations. Because sorting networks
use a min / max function, rather than a conditional swap, they
gain the same benefits when it comes to the actual sorting of in-
dividual elements. Given that sorting networks can be faster than
radix sort for certain implementations, it goes without saying that
for some types of calculation, predication, even long chains of it, will
be faster than code that branches to save processing time. Just such
an example exists in the Pitfalls of Object Oriented Design presen-
tation, concluding that lazy evaluation costs more than the job it
tried to avoid. I have no hard evidence for it yet, but I believe a lot
of AI code could benefit the same, in that it would be wise to gather
information even when you are not sure you need it, as gathering it
might be quicker than deciding not to. For example, seeing if some-
one is in your field of vision, and is close enough, might be small
enough that it can be done for all AI rather than just the ones that
require it, or those that require it occasionally.

Chapter 9

Relational Databases

We now examine how it is possible to put game data into a database:
First we must give ourselves a level file to work with. We’re not
going to go into the details of the lowest level of how we utilise large
data primitives such as meshes, textures, sounds and such. For now,
think of assets as being the same kind of data as strings1.

We’re going to define a level file for a game where you hunt for
keys to unlock doors in order to get to the exit room. The level
file will be a list of different game objects that exist in the game,
and the relationships between the objects. First, we’ll assume that
it contains a list of rooms (some trapped, some not), with doors
leading to other rooms which can be locked. It will also contain
a set of pickups, some that let the player unlock doors, some that
affect the player’s stats (like health potions), and all the rooms have
lovely textured meshes, as do all the pickups. One of the rooms is
marked as the exit, and one has a player start point.

1There are existing APIs that present strings in various ways dependent on
how they are used, for example the difference between human readable strings
(usually UTF-8) and ascii strings for debugging. Adding sounds, textures, and
meshes to this seems quite natural once you realise that all these things are
resources for human consumption

81

82 CHAPTER 9. RELATIONAL DATABASES

1 // create rooms , pickups , and other things.
2 m1 = mesh("filename")
3 m2 = mesh("filename2")
4 t1 = texture("textureFile")
5 t2 = texture("textureFile2")
6 k1 = pickup(TYPE_KEY , m5,t5 , TintColourGold)
7 k2 = pickup(TYPE_POTION , m4 ,t4, null)
8 r1 = room(worldPos (0,0), m1 , t1 , hasPickup(k1)+hasTrap(true ,10hp)

+hasDoorTo(r2))
9 r2 = room(worldPos (20 ,5), m2 ,t2, hasDoorTo(r3 ,lockedWith(k1)+

isStart(worldPos (22,7))
10 r3 = room(worldPos (30,-5), m3,t3 , isExit ())

Listing 9.1: A setup script

In the first step, you take all the data from the object creation
script, and fit it into rows in your table. To start with, we create a
table for each type of object, and a row for each instance of those
obejcts. We need to invent columns as necessary, and use NULL
everywhere that an instance doesn’t have that attribute/column.

Once we have taken the construction script and generated ta-
bles, we find that these tables contain a lot of nulls. The nulls in
the rows replace the optional content of the objects. If an object
instance doesn’t have a certain attributes then we replace those fea-
tures with nulls. When we plug this into a database, it will handle
it just fine, but storing all the nulls seems unnecessary and looks
like it’s wasting space. Present day database technology has moved
towards keeping nulls to the point that a lot of large, sparse table
databases have many more null entries than they have data. They
operate on these sparsely filled tables with functional programming
techniques. We, however should first see how it worked in the past
with relational databases. Back when SQL was first invented there
were three known stages of data normalisation (there currently are
six recognised numbered normal forms, plus BoyceCodd (which is a
stricter variant of third normal form), and Domain Key (which, for
the most part defines a normalisation which requires using domain
knowledge instead of storing data).

9.1. NORMALISATION 83

Meshes
MeshID MeshName
m1 ”filename”
m2 ”filename2”

Textures
TextureID TextureName
t1 ”texturefile”
t2 ”texturefile2”

Pickups
MeshID TextureID PickupType ColourTint PickupID
m5 t5 KEY Gold k1
m6 t6 POTION (null) k2

Rooms
RoomID MeshID TextureID WorldPos Pickup1 Pickup2 ...
r1 m1 t1 0,0 k1 k2 ...
r2 m2 t2 20,5 (null) (null) ...
r3 m3 t3 30,-5 (null) (null) ...

... Trapped DoorTo Locked Start Exit

... 10hp r2 (null) (null) false

... (null) r3 k1 22,7 false

... (null) (null) (null) (null) true

Table 9.1: Initial tables created by converting constructors

9.1 Normalisation

First normal form requires that every row be distinct and rely on
the key. We haven’t got any keys yet, so first we must find out what
these are.

In any table, there is a set of columns that when compared to any
other row, are unique. Databases guarantee that this is possible by
not allowing complete duplicate rows to exist, there is always some
differentiation. Because of this rule, every table has a key because
every table can use all the columns at once as its primary key. For
example, in the mesh table, the combination of meshID and filename
is guaranteed to be unique. The same can be said for the textureID
and filename in the textures table. In fact, if you use all the columns
of the room table, you will find that it can be used to uniquely define
that room (obviously really, as if it had the same key, it would in

84 CHAPTER 9. RELATIONAL DATABASES

fact be literaly describing the same room, but twice).

Going back to the mesh table, because we can guarantee that
each meshID is unique in our system, we can reduce the key down
to just one or the other or meshID or filename. We’ll choose the
meshID as it seems sensible, but we could have chosen the filename2.

If we choose textureID, pickupID, and roomID as the primary
keys for the other tables, we can then look at continuing on to first
normal form.

Meshes
MeshID MeshName
m1 ”filename”
m2 ”filename2”

Textures

TextureID TextureName
t1 ”texturefile”
t2 ”texturefile2”

Pickups

PickupID MeshID TextureID PickupType ColourTint
k1 m5 t5 KEY Gold
k2 m6 t6 POTION (null)

Rooms

RoomID MeshID TextureID WorldPos Pickup1 Pickup2 ...
r1 m1 t1 0,0 k1 k2 ...
r2 m2 t2 20,5 (null) (null) ...
r3 m3 t3 30,-5 (null) (null) ...

... Trapped DoorTo Locked Start Exit

... 10hp r2 (null) (null) false

... (null) r3 k1 22,7 false

... (null) (null) (null) (null) true

Table 9.2: primary keys in bold

9.1.1 1st Normal Form

First normal form can be described as making sure the tables are
not sparse. We require that there be no null pointers and that there
be no arrays of data in each element of data. This can be performed

2in fact, the filename is the primary key of the filedata on the storage media,
filesystems are simple key-value databases with very large complex/large values

9.1. NORMALISATION 85

as a process of moving the repeats and all the optional content to
other tables. Anywhere there is a null, it implies optional content.
Our first fix is going to be the Pickups table, it has an optional
ColourTint element. We invent a new table PickupTint, and use
the primary key of the Pickup as the primary key of the new table.

Pickups
PickupID MeshID TextureID PickupType
k1 m5 t5 KEY
k2 m6 t6 POTION

PickupTint
PickupID ColourTint
k1 Gold

Table 9.3: splitting out the pickup tint

two things become evident at this point, firstly that normalisa-
tion appears to create more tables and less columns in each table,
secondly that there are only rows for things that matter. The lat-
ter is very interesting as when using Object-oriented approaches, we
assume that objects can have attributes, so check that they are not
NULL before continuing, however, if we store data like this, then
we know everything is not NULL. Let’s move onto the Rooms table:
make a new table for the optional Pickups, Doors, Traps, and Start.

We’re not done yet, the RoomDoors table has a null in it, so we
add a new table that looks the same as the existing RoomDoorTable,
but remove the row with a null. We can now remove the Locked
column from the RoomDoor table.

All done. But, first normal form also mentions no repeating
groups of columns, meaning that the PickupTable is invalid as it
has a pickup1 and pickup2 column. To get rid of these, we just need
to move the data around like this:

Notice that now we don’t have a unique primary key. This is
an error in databases as they just have to have something to index
with, something to identify a row against any other row. We are
allowed to combine keys, and for this case we used the all column
trivial key. Now, let’s look at the final set of tables in 1NF:

86 CHAPTER 9. RELATIONAL DATABASES

Rooms
RoomID MeshID TextureID WorldPos Exit
r1 m1 t1 0,0 false
r2 m2 t2 20,5 false
r3 m3 t3 30,-5 true

Room Pickup
RoomID Pickup1 Pickup2
r1 k1 k2

Rooms Doors
RoomID DoorTo Locked
r1 r2 (null)
r2 r3 k1

Rooms Traps
RoomID Trapped
r1 10hp

Start Point
RoomID Start
r2 22,7

Table 9.4: adding more tables to remove nulls

Rooms Doors
RoomID DoorTo
r1 r2
r2 r3

Rooms Doors Locks
RoomID DoorTo Locked
r2 r3 k1

Table 9.5: locked doors as separate table

The data, in this format takes much less space in larger projects
as the number of NULL entries would have only increased with in-
creased complexity of the level file. Also, by laying out the data this
way, we can add new features without having to revisit the original
objects. For example, if we wanted to add monsters, normally we
would not only have to add a new object for the monsters, but also
add them to the room objects. In this format, all we need to do is
add a new table:

And now we have information about the monster and what room
it starts in without touching any of the original level data.

9.1. NORMALISATION 87

Room Pickup
RoomID Pickup
r1 k1
r1 k2

Table 9.6: add more rows to reduce repeating columns

9.1.2 Reflections

What we see here as we normalise our data is a tendency to add
information when it becomes necessary, but at a cost of the keys
that associate the data with the entity. Looking at many third
party engines and APIs, you can see parallels with the results of
these normalisations. It’s unlikely that the people involved in the
design and evolution of these engines took their data and applied
database normalisation techniques, but sometimes the separations
between object and componets of objects can be obvious enough
that you don’t need a formal technique in order to realise some
positive structural changes.

In some games the entity object is not just an object that can
be anything, but is instead a specific subset of the types of entity
involved in the game. For example, in one game there might be an
object type for the player character, and one for each major type
of enemy character, and another for vehicles. This object oriented
approach puts a line, invisilbe to the player, but intrusive to the
developer, between classes of object and instances. It is intrusive
because every time a class definition is used instead of a differing
data, the amount of code required to utilise that specific entity type
in a given circumstance increases. In many codebases there is the
concept of the player, and the player has different attributes to other
entities, such as lacking AI controls, or having player controls, or
having regenerating health, or having ammo. All these different
traits can be inferred from data decisions, but sometimes they are
made literal through code in classes. When these differences are
put in code, interfacing between different classes becomes a game of
adapting, a known design pattern that should be seen as a symptom

88 CHAPTER 9. RELATIONAL DATABASES

Rooms
RoomID MeshID TextureID WorldPos Exit
r1 m1 t1 0,0 false
r2 m2 t2 20,5 false
r3 m3 t3 30,-5 true

Room Pickup
RoomID Pickup
r1 k1
r1 k2

Rooms Doors
RoomID DoorTo
r1 r2
r2 r3

Rooms Doors Locks
RoomID DoorTo Locked
r2 r3 k1

Rooms Traps
RoomID Trapped
r1 10hp

Start Point
RoomID Start
r2 22,7

Table 9.7: final 1st normal form

Monster
MonsterID Attack HitPoints StartRoom
M1 2 5 r1
M2 2 5 r3

Table 9.8: monster table

of mixed levels of specialisation in a set of classes. When developing
a game, this ususally manifests as time spent writing out templated
code that can operate on multiple classes rather than refactoring
the classes involved into more discrete components. This could be
considered wasted time as the likelyhood of other operations needing
to operate on all the objects is greater than zero, and the effort to
refactor into components is usually no greater than the effort to
create a working templated operation.

9.1. NORMALISATION 89

9.1.3 Domain Key / Knowledge

Whereas first normal form is almost a mechanical process, 2nd Nor-
mal form and beyond become a little more investigative. It is re-
quired that the person doing the normalisation understand the data
in order to determine whether parts of the data are dependent on
the key and whether or not they would be better suited in a new
table, or written out as a form of procedural result due to domain
knowledge.

Domain key normal form is normally thought of as the last nor-
mal form, but for developing efficient data structures, it’s one of the
things that is best studied early and often. The term domain knowl-
edge is preferrable when writing code as it makes more immediate
sense and encourages use outside of keys and tables. Domain knowl-
edge is the idea that data depends on other data, given information
about the domain in which it resides. Domain knowledge can be as
simple as knowing the collowquialism for something, such as know-
ing that a certain number of degrees Celsius or Fahrenheit is hot, or
whether some SI unit relates to a man-made concept such as 100m/s
being rather quick. These procedural solutions are present in some
operating systems or applications: the progress dialogue that may
say ”about a minute” rather than an innaccurate and erratic seconds
countdown. Hoever, domain knowledge isn’t just about human in-
terpretation of data. For example things such as boiling point, the
speed of sound, of light, speed limits and average speed of traffic on
a given road network, psychoacoustic properties, the boiling point
of water, and how long it takes a human to react to any given visual
input. All these facts may be useful in some way, but can only be
put into an application if the programmer adds it specifically as pro-
cedural domain knowledge or as an attribute of a specific instance.

Domain knowledge is useful because it allows us to lose some oth-
erwise unnecessarily stored data. It is a compiler’s job to analyse the
produced output of code (the abstract syntax tree) to then provide
itself with data upon which it can infer and use domain knowledge
about what operations can be omitted, reordered, or transformed

90 CHAPTER 9. RELATIONAL DATABASES

to produce faster or cheaper assembly. Profile guided optimisation
is another way of using domain knowledge, the domain being the
runtime, the knowledge being the statistics of instructino coverage
and order of calling. PGO is used to tune the location of instruc-
tions and hint branch predictors so that they produce even better
performance based on a real world use case.

9.1.4 All Normal Forms

First normal form: remove repeating columns and nulls by adding
new tables for optional values or one to may relationships. That is,
ensure that any potentially null columns in your table are moved
to their own table and use the primary table’s key as their primary
key. Move any repeating columns (such as item1, item2, item3)
to a separate single table (item) and again use the original table’s
primary key as the primary key for this new table.

Second, Third, and BC (Boyce-Codd) normal form: split tables
such that changes to values only affect the minimum amount of
tables. Make sure that columns rely on only the table key, and also
all of the table key. Look at all the columns and be sure that each
one relies on all of the key and not on any other column.

Fourth normal form: ensure that your tables columns are truly
dependent on each other. An example might be keeping a table of
potential colours and sizes of clothing, with an entry for each colour
and size combination. Most clothes come in a set of sizes, and a set
of colours, and don’t restrict certain colours based on size so there
would be no omissions from a matrix of all the known sizes and all
the known colours, instead the table should be two tables, both with
the garment as primary key, with size or colour as the data. This
holds for specifications, but doesn’t hold for the case where an item
needs to be checked for whether or not it is in stock. Not all sizes
and colour combinations may be in stock, so an ”in-stock” cache
table would be right to have all three columns.

Fifth normal form: if the values in multiple columns are related
by possibility, then remove the columns out into the separate ta-

9.1. NORMALISATION 91

bles of possible combinations. For example, an Ork can use simple
weapons or orcish weapons, a human can use simple weapons or hu-
man weapons, if we say that Human Arthur is using a stick, then the
stick doesn’t need the column specifying that it is an simple weapon,
but equally, if we say the Ork KruelGut is using a sword, we don’t
need a column specifying that he is using an orcish sword, as he
cannot use a human sword and that is the only other form of sword
available. In this case then we have a table that tells us what each
entity is using for a weapon (we know what race each entity is in
another table), and we have a table for what weapon types are avail-
able per race, and the weapon table can still have both weapontype
and actual weapon. The benefit of this is that the entities only need
to maintain a lower range ”weapon” and not also the weapontype
as the weapontype can be inferred from the weapontypes available
for the race. This reduction in memory useage may come at a cost
of performance, or may increase performance depending on how the
data is accessed.

Sixth normal form: This is an uncommon normal form because it
is one that is normally only important for keeping track of changing
states and can cause an explosion in the number of tables. However,
it can be useful in reducing memory usage when tracking rapidly
changing independent columns of an otherwise fully normalised ta-
ble. For example, if a character is otherwise fully normalised, but
they need to keep track of how much money, XP, and spell points
they have over time, it might be better to split out the money, XP,
and spell points columns into character/time/value tables that can
be separately updated without causing a whole new character record
to be written purely for the sake of time stamping.

Domain/Key normal form: using domain knowledge remove columns
or parts of column data because it depends on some other colum
through some intrinsic quality of the domain in which the table re-
sides. Information provided by the data may already be available in
other data. For eaxmple the colloquialism of old-man is dependent
on having data on the gender column and age colum, and can be
inferred. Thus it doesn’t need to be in a column and instead can

92 CHAPTER 9. RELATIONAL DATABASES

live as a process. Equally, foreshadowing existence based processing
here, a dead ork has zero health and a unhurt ork has zero damage.
If we maintain a table for partially damaged orks health values then
we don’t need storage space undamaged ork health. This minor sav-
ing can add up to large savings when operating on multiple entities
with multiple stats that can vary from a known default.

9.1.5 Sum up

At this point we can see it is perfectly reasonable to store any highly
complex data structures in a database format, even game data with
its high interconnectedness and rapid design changing criteria. What
is still of concern is the less logical and more binary forms of data
such as material data, mesh data, audio clips and runtime integra-
tion with scripting systems and control flow.

Platform specific resources such as audio, texture, vertex or video
formats are opaque to most developers, and moving towards a ta-
ble oriented approach isn’t going to change that. In databases, it’s
common to find column types of boolean, number, and string, and
when building a database that can handle all the natural atomic
elements of our engine, it’s reasonable to assume that we can add
new column types for these platform or engine intrinsics. The tex-
tureID and meshID column used in room examples could be smart
pointers to resources. Creating new meshes and textures may be as
simple as inserting a new row with the asset URL and keeping track
of whether or not an entry has arrived in the fulfilled streaming re-
quest table or the URL to assetID table that could be populated by
a behind the scenes task scheduler.

As for integration with scripting systems and using tables for
logic and control flow, chapters on finite state machines, existence
based processing, condition tables and hierarchical level of detail
show how tables don’t complicate, but instead provide opportunity
to do more with fewer resources as results flow without constraint
normally associated with object or entity linked data structures.

9.2. IMPLICIT ENTITIES 93

9.2 Implicit Entities

Getting your data out of a database and into your objects can ap-
pear quite daunting, but a database approach to data storage does
provide a way to allow old executables to run off new data, it also
allows new executables to run off old data, which is can be vital
when working with other people who might need to run an earlier or
later version. We saw that sometimes adding new features required
nothing more than adding a new table. That’s a non-intrusive modi-
fication if you are using a database, but a significant change if you’re
adding a new member to a class. If you’re trying to keep your in-
ternal code object-oriented, then loading up tables to generate your
objects isn’t as easy as having your instances generated from script
calls, or loading them in a binary file and doing some pointer fixup.
Saving can be even more of a nightmare as when going from objects
back to rows, it’s hard to tell if the database needs rows added,
deleted, or just modified. This is the same set of issues we normally
come across when using source control. The problem with figuring
out what was moved, deleted, or added when doing a three way
merge.

But again, this is only true if you convert your database for-
matted files into explicit objects. These denormalised objects are
troublesome because they are in some sense, self aware. They are
aware of what their type is, and what to a large degree, what their
type could be. A problem seen many times in development is where
a base type needs to change because a new requirement does not
fit with the original vision. Explicit objects act like the original ta-
bles before normalisation: they have a lot of nulls when features are
not used. If you have a reasonable amount of object instances, this
wasted space can cause problems.

You can see how an originally small object can grow to a dispro-
portionate size, how a Car class can gain 8 wheel pointers in case
it is a truck, how it can gain up to 15 passengers, optionally hav-
ing lights, doors, sunroof, collision mesh, different engine, a driver
base class pointer, 2 trailers, and maybe a physics model base class

94 CHAPTER 9. RELATIONAL DATABASES

pointer so you can switch to different physics models when level
collision is or isn’t present. All these are small additions, not con-
sidered bad in themselves, but every time you check a pointer for
null it can turn out either way. If you guess wrong, or the branch
predictor guesses wrong, the best you can hope for is an instruction
cache miss or pipeline flush before doing an action. Pipeline flushes
may not be very expensive on out-of-order CPUs, but the PS3 and
Xbox360 have in-order CPUs and suffer a stall when this happens.

It is generally assumed that if you bind your type into an explicit
object, you also allow for runtime polymorphism. This is seen as a
good thing, in that you can keep the over arching game code smaller
and easier to understand. You can have a main loop that runs
over all of your objects, calling: ”Think”, ”Update”, ”Render”, and
then you loop forever. But runtime polymorphism is not only made
possible by using explicit types in an Object-oriented system. In
the set of tables we just normalised, the Pickups were optionally
coloured. In traditional Object-oriented C++ games development
we generally define the Pickups, and then either have an optional
component for tinting or derive from the Pickup type and add more
information to the GetColour member function. In either case it
can be necessary to override the base class in some fashion. You can
either add the optional tint explicitly or make a new class and change
the Pickup factory to accept that some Pickups can have colour
tinting. In our database normalisation, adding tinting required only
adding a new table and populating it with only the Pickups that
were tinted.

The more commonly seen as a bad approach (littering with point-
ers to optional things) is problematic in that it leads to a lot of cases
where you cannot quickly find out whether an object needs special
care unless you check this extended type info. For example, when
rendering the Pickups, for each one in every frame, we might need
to find out whether to render it in the alpha blend pass or in the
solid pass. This can be an important question, and because it is
asked every frame in most cases, it can add some dark matter to our
profile, some cold code ineffciency.

9.2. IMPLICIT ENTITIES 95

The more commonly seen as correct approach (that is create a
new type and adjust the factory), has a limitation that you cannot
change a Pickup from non-tinted to tinted at runtime without some
major changes to how you use Pickups in the code. This means that
if an object is tinted, it remains tinted unless you have the ability
to clone and swap in the new object. This seems quite strict in
comparison to the pointer littering technique. You may find that
you end up making all pickups tinted in the end, just because they
might be tinted at some time in the future. This would mean that
you would have the old code for handling the untinted pickup rotting
while you assume it still works. This has been the kind of code that
causes one in a thousand errors that are very hard to debug unless
you get lucky.

The database approach maintains the runtime dynamicity of the
pointer littering approach by allowing for the creation of tint rows
at runtime post creation. It also maintains the non-littering aspect
of the derived type approach because we didn’t add anything to
any base type to add new functionality. It’s quicker than both for
iterating, which in our example was binning into alpha blend render
pass and solid render pass. By only iterating over the table of tints
picking out which have alpha values that cause it to be binned in
alpha blended, we save memory accesses as we’re only traversing
the list of potentially alpha blended rather than running over all the
objects. All objects not in the TintedPickup set but in the Pickup
set can be assumed to be solid rendered, no checking of anything
required. We have one more benefit with the separation of data in
that it is easier to prefetch rows for analysis when they are much
simpler in layout, and we could likely have more rows in the cache
at once than in either of the other methods.

The fundamental difference between the database style approach
and the object-oriented approach is how the type of a Pickup is de-
fined. Traditionally, we derive new explicit types to allow new func-
tionality or behaviours. With databases, we add new tables and into
them insert rows referencing existing entities to show new informa-
tion about old information. We imply new functionality while not

96 CHAPTER 9. RELATIONAL DATABASES

explicitly adding anything to the original form.
In an explicit entity system, the noun is central, the entity has

to be extended with data and functions. In an implicit entity sys-
tem, the adjectives are central, they refer to an entity, implying its
existence by recognising it as being their operand. The entity only
exists when there is something to say about it. By contrast, in an
explicit entity system, you can only say something about an entity
that already exists and caters for that describability.

9.3 Components imply entities

If we go back to our level file, we see that the room table is quite
explicit about itself. What we have is a simple list of rooms with all
the attributes that are connected to the room written out along the
columns. Although adding new features is simple enough, modifica-
tion or reusing any of these separately would prove tricky.

If we change the room table into multiple adjective tables, we can
see how it is possible to build it out of components without having
a literal core room. We will add tables for renderable, position, and
exit

Room Renderable
RoomID MeshID TextureID
r1 m1 t1
r2 m2 t2
r3 m3 t3

Room Position
RoomID WorldPos
r1 0,0
r2 20,5
r3 30,-5

Exit Room
RoomID
r3

Table 9.9: new room tables

With the new layout there is no core room. It is only implied

9.3. COMPONENTS IMPLY ENTITIES 97

through the fact that it is being rendered, and that it has a position.
In fact, the last table has taken advantage of the fact that the room
is now implicit, and changed from a bool representing whether the
room is an exit room or not into a one column table. The entry in
that table implies the room is the exit room. This will give us an
immediate memory usage balance of one bool per room compared to
one row per exit room. Also, it becomes slightly easier to calculate
if the player is in an exit room, they simply check for that room’s
existence in the ExitRoom table and nothing more.

Another benefit of implicit entities is the non-intrusive linking of
existing entities. In our data file, there is no space for multiple doors
per room. With the pointer littering technique, having multiple
doors would require an array of doors, or maybe a linked list of
doors, but with the database style table of doors, we can add more
rows whenever a room needs a new door.

Doors
RoomID bfRoomID
r1 r2
r2 r3

Locked Doors
RoomID bfRoomID Locked
r2 r3 k1

Table 9.10: Doors between rooms

Notice that we have to make the primary key the combination
of the two rooms. If we had kept the single room ID as a primary
key, then we could only have one row per room. In this case we
have allowed for only one door per combination of rooms. We can
guarantee in our game that a room will only have one door that leads
to another room; no double doors into other rooms. Because of that,
the locks also have to switch to a compound key to reference locked
doors. All this is good because it means the system is extending,
but by changing very little. If we decided that we did need multiple
doors from one room to another we could extend it thus:

There is one sticking point here, first normal form dictates that

98 CHAPTER 9. RELATIONAL DATABASES

Doors
DoorID RoomID RoomID
d1 r1 r2
d2 r2 r3

Locked Doors
DoorID Locked
d2 k1

Table 9.11: Multiple doors between rooms

we should build the table of Doors differently, where we have two
columns of doors, it requires that we have one, but multiple rows
per door.

Doors
DoorID RoomID
d1 r1
d1 r2
d2 r2
d2 r3

Locked Doors
DoorID Locked
d2 k1

Table 9.12: 1st normal form doors

we can choose to use this or ignore it, but only because we know
that doors have two and only two rooms. A good reason to ignore
it could be that we assume the door opens into the first door. Thus
these two room IDs actually need to be given slightly different names,
such as DoorInto, and DoorFrom.

Sometimes, like with RoomPickups, the rows in a table can be
thought of as instances of objects. In RoomPickups, the rows rep-
resent an instance of a PickupType in a particular Room. This is a
many to many relationship, and it can be useful in various places,
even when the two types are the same, such as in the RoomDoors
table.

When most programmers begin building an entity system they

9.4. COSMIC HIERARCHIES 99

start by creating an entity type and an entity manager. The entity
type contains information on what components are connected to it,
and this implies a core entity that exists beyond what the compo-
nents say about it. Adding information about what components an
entity has directly into the core entity might help debugging for a
little while, while the components are all still centred about enti-
ties, but it becomes cumbersome when we realise the potential of
splitting and merging entities and have to move away from using
an explicit entity inspector. Entities as a replacement for classes,
have their place, and they can simplify the move from class central
thinking to a more data-oriented approach.

9.4 Cosmic Hierarchies

Whatever you call them, be it Cosmic Base Class, Root of all Evil,
Gotcha #97, or CObject, having a base class that everything derives
from has pretty much been a universal failure point in large C++
projects. The language does not naturally support introspection or
duck typing, so it has difficultly utilising CObjects effectively. If
we have a database driven approach, the idea of a cosmic base class
might make a subtle entrance right at the beginning by appearing as
the entity to which all other components are adjectives about, thus
not letting anything be anything other than an entity. Although
component–based engines can often be found sporting an EntityID
as their owner, not all require owners. Not all have only one owner.
When you normalise databases, you find that you have a collection
of different entity types. In our level file example we saw how the
objects we started with turned into a MeshID, TextureID, RoomID,
and a PickupID. We even saw the emergence through necessity of a
DoorID. If we pile all these Ids into a central EntityID, the system
should work fine, but it’s not a necessary step. A lot of entity systems
do take this approach, but as is the case with most movements,
the first swing away swings too far. The balance is to be found in
practical examples of data normalisation provided by the database

100 CHAPTER 9. RELATIONAL DATABASES

industry.

9.5 Structs of Arrays

In addition to all the other benefits of keeping your runtime data in
a database style format, there is the opportunity to take advantage
of structures of arrays rather than arrays of structures. SoA has
been coined as a term to describe an access pattern for object data.
It is okay to keep hot and cold data side by side in an SoA object as
data is pulled into the cache by necessity rather than by accidental
physical location.

If your animation timekey/value class resembles this:

1 struct Keyframe
2 {
3 float time , x,y,z;
4 };
5 struct Stream
6 {
7 Keyframe *keyframes;
8 };

Listing 9.2: animation timekey/value class

then when you iterate over a large collection of them, all the data
has to be pulled into the cache at once. If we assume that a cacheline
is 128 bytes, and the size of floats is 4 bytes, the Keyframe struct is
16 bytes. This means that every time you look up a key time, you
accidentally pull in four keys and all the associated keyframe data.
If you are doing a binary search of a 128 key stream, that could
mean you end up loading 128bytes of data and only using 4 bytes
of it in up to 6 chops. If you change the data layout so that the
searching takes place in one array, and the data is stored separately,
then you get structures that look like this:

1 struct KeyData
2 {
3 float x,y,z;
4 };
5 struct stream

9.6. STREAM PROCESSING 101

6 {
7 float *times;
8 KeyData *values;
9 };

Listing 9.3: struct of arrays

Doing this means that for a 128 key stream, a binary search is
going to pull in at most three out of four cachelines, and the data
lookup is guaranteed to only require one.

Database technology also saw this, it’s called column oriented
databases and the provide better throughput for data processing
over traditional row oriented relational databases simply because
irrelevant data is not loaded when doing column aggregations or
filtering.

9.6 Stream Processing

Now we realise that all the game data and game runtime can be
implemented in a database oriented approach, there’s one more in-
teresting side effect: data as streams. Our persistent storage is a
database, our runtime data is in the same format as it was on disk,
what do we benefit from this? Databases can be thought of as col-
lections of rows, or collections of columns, but there is one more
way to think about the tables, they are sets. The set is the set of all
possible permutations of the attributes. For example, in the case of
RoomPickups, the table is defined as the set of all possible combi-
nations of Rooms and Pickups. If a room has a Pickup, then the bit
is set for that room,pickup combination. If you know that there are
only N rooms and M types of Pickup, then the set can be defined as
a bit field as that is N*M bits long. For most applications, using a
bitfield to represent a table would be wasteful, as the set size quickly
grows out of scope of any hardware, but it can be interesting to note
what this means from a processing point of view. Processing a set,
transforming it into another set, can be thought of as traversing
the set and producing the output set, but the interesting attribute

102 CHAPTER 9. RELATIONAL DATABASES

of a set is that it is unordered. An unordered list can be trivially
parallel processed. There are massive benefits to be had by taking
advantage of this trivialisation of parallelism wherever possible, and
we normally cannot get near this because of the data layout of the
object-oriented approaches.

Coming at this from another angle, graphics cards vendors have
been pushing in this direction for many years, and we now need
to think in this way for game logic too. We can process lots of
data quickly as long as we utilise about stream processing as much
as possible and use random access processing as little as possible.
Stream processing in this case means to process data without having
variables that are external to the current datum., thus ensuring the
processes or transforms are trivially parallelisable.

When you prepare a primitive render for a graphics card, you set
up constants such as the transform matrix, the texture binding, any
lighting values, or which shader you want to run. When you come
to run the shader, each vertex and pixel may have its own scratch
pad of local variables, but they never write to globals or refer to
a global scratchpad. Enforcing this, we can guarantee parallelism
because the order of operations are ensured to be irrelevant. If a
shader was allowed to write to globals, there would be locking, or it
would become an inherently serial operation. Neither of these are
good for massive core count devices like graphics cards, so that has
been a self imposed limit and an important factor in their design.

Doing all processing this way, without globals / global scratch-
pads, gives you the rigidity of intention to highly parallelise your
processing and make it easier to think about the system, inspect it,
debug it, and extend it or interrupt it to hook in new features. If
you know the order doesn’t matter, it’s very easy to rerun any tests
or transforms that have caused bad state.

9.7. BEAUTIFUL HOMOGENEITY 103

9.7 Beautiful Homogeneity

Apart from all the speed increases and the simplicity of extension,
there is also an implicit tendency to turn out accidentally reusable
solutions to problems. This is caused by the data being formatted
much more rigidly, and therefore when it fits, can almost be seen as
a type of duck-typing. If the data can fit a transform, a transform
can act on it. Some would argue that just because the types match,
doesn’t mean the function will create the expected outcome, but
this is simply avoidable by not reusing code you don’t understand.
Because the code becomes much more penetrable, it takes less time
to look at what a transform is doing before committing to reusing
it in your own code.

Another benefit that comes from the data being built in the same
way each time, handled with transforms and always being held in
the same types of container is that there is a very good chance
that there are multiple intention agnostic optimisations that can be
applied to every part of the code. General purpose sorting, counting,
searches and spatial awareness systems can be attached to new data
without calling for OOP adapters or implementing interfaces so that
Strategies can run over them.

A final reason to work with data in an immutable way comes
in the form of preparations for optimisation. C++, as a language,
provides a lot of ways for the programmer to shoot themselves in
the foot, and one of the best is that pointers to memory can cause
unexpected side effects when used without caution. Consider this
piece of code:

1 char buffer[100];
2 buffer [0] = ’X’;
3 memcpy(buffer+1, buffer , 98);
4 buffer[99] = ’\0’;

Listing 9.4: byte copying

this is perfectly correct code if you just want to get a string with
99 ’X’s in it. However, because this is possible, memcpy has to copy
one byte at a time. To speed up copying, you normally load in a

104 CHAPTER 9. RELATIONAL DATABASES

lot of memory locations at once, then save them out once they are
all in the cache. If your input data can be modified by your output
buffer, then you have to tread very carefully. Now consider this:

1 int q=10;
2 int p[10];
3 for(int i = 0; i < q; ++i)
4 p[i] = i;

Listing 9.5: trivially parallelisable code

The compiler can figure out that q is unaffected, and can happily
unroll this loop or replace the check against q with a register value.
However, looking at this code instead:

1 void foo(int* p, const int &q)
2 {
3 for(int i = 0; i < q; ++i)
4 p[i] = i;
5 }
6

7 int q=10;
8 int p[10];
9 foo(p, q);

Listing 9.6: potentially aliased int

The compiler cannot tell that q is unaffected by operations on
p, so it has to store p and reload q every time it checks the end of
the loop. This is called aliasing, where the address of two variables
that are in use are not known to be different, so to ensure correctly
functioning code, the variables have to be handled as if they might
be at the same address.

Chapter 10

Optimisations and
Implementations

When optimising software, you have to know what is causing the
software to run slower than you need it to run. We find in most cases,
data movement is what really costs us the most. In the GPU, we find
it labelled under fill rate, and when on CPU, we call it cache-misses.
Data movement is where most of the energy goes when processing
data, not in calculating solutions to functions, or from running an
algorithm on the data, but actually the fulfillment of the request for
the data in the first place. As this is most definitely true about our
current architectures, we find that implicit or calculable information
is much more useful than cached values or explicit state data.

If we start our game development by organising our data in nor-
malised tables, we have many opportunities for optimisation. Start-
ing with such a problem agnostic layout, we can pick and choose
from tools we’ve created for other tasks, at worst elevating the solu-
tion to a template or a strategy, before applying it to both the old
and new use cases.

105

106 CHAPTER 10. OPTIMISATIONS

10.1 Tables

To keep things simple, advice from multiple sources indicates that
keeping your data as vectors has a lot of positive benefits. There
are reasons to not use STL, including extended compile and link
times, as well as issues with memory allocations. Whether you use
std::vector, or roll your own dynamicly sized array, it is a good
starting place for any future optimisations. Most of the processing
you will do will be transforming one array into another, or modifying
a table in place. In both these cases, a simple array will suffice for
most tasks.

For the benefit of your cache, structs of arrays can be more cache
friendly if the data is not related. It’s important to remember that
this is only true when the data is not meant to be accessed all at once,
as one advocate of the data-oriented design movement assumed that
structures of arrays were intrinsically cache friendly, then put the
x,y, and z coordinates in separate arrays of floats. The reason that
this is not cache friendly should be relatively easy to spot. If you
need to access the x,y, or z of an element in an array, then you more
than likely need to access the other two axes as well. This means
that for every element he would have been loading three cache-lines
of float data, not one. This is why it is important to think about
where the data is coming from, how it is related, and how it will
be used. Data-oriented design is not just a set of simple rules to
convert from one style to another.

If you use dynamic arrays, and you need to delete elements from
them, and these tables refer to each other through some IDs, then
you may need a way to splice the tables together in order to process
them. If the tables are sorted by the same value, then it can be
written out as a simple merge operation, such as in Listing 10.1.

This works as long as the == operator knows about the table
types and can find the specific column to check against, and as
long as the tables are sorted based on this same column. But what
about the case where the tables are zipped together without being
the sorted by the same columns? For example, if you have a lot of

10.1. TABLES 107

1 Table <Type1 > t1Table;
2 Table <Type2 > t2Table;
3 Table <Type3 > t3Table;
4

5 ProcessJoin(Func functionToCall) {
6 TableIterator A = t1Table.begin ();
7 TableIterator B = t2Table.begin ();
8 TableIterator C = t3Table.begin ();
9 while(!A.finished && !B.finished && !C.finished) {

10 if(A == B && B == C) {
11 functionToCall(A, B, C);
12 ++A; ++B; ++C;
13 } else {
14 if(A < B || A < C) ++A;
15 if(B < A || B < C) ++B;
16 if(C < A || C < B) ++C;
17 }
18 }
19 }

Listing 10.1: Zipping together multiple tables by merging

entities that refer to a modelID, and you have a lot of mesh-texture
combinations that refer to the same modelID, then you will likely
need to zip together the matching rows for the orientation of the
entity, the modelID in the entity render data, and the mesh and
texture combinations in the models. The simplest way to program
a solution to this is to loop through each table in turn looking for
matches such as in Listing 10.2.

Another thing you have to learn about when working with data
that is joined on different columns is the use of join strategies. In
databases, a join strategy is used to reduce the total number of op-
erations when querying across multiple tables. When joining tables
on a column (or key made up of multiple columns), you have a num-
ber of choices about how you approach the problem. In our trivial
coded attempt you can see we simply iterate over the whole table
for each table involved in the join, which ends up being O(nmo) or
O(n3) for rougly same size tables. This is no good for large tables,
but for small ones it’s fine. You have to know your data to decide

108 CHAPTER 10. OPTIMISATIONS

1 Table <Orientation > oTable;
2 Table <EntityRenderable > erTable;
3 Table <MeshAndTexture > modelAssets;
4

5 ProcessJoin(Func functionToCall) {
6 TableIterator A = oTable.begin ();
7 while(!A.finished ()) {
8 TableIterator B = erTable.begin ();
9 while(!B.finished ()) {

10 TableIterator C = modelAssets.begin ();
11 while(!C.finished ()) {
12 if(A == B && B == C) {
13 functionToCall(A, B, C);
14 }
15 ++C;
16 }
17 ++B;
18 }
19 ++A;
20 }
21 }

Listing 10.2: Join by looping through all tables

whether your tables are big1 or not. If your tables are too big to use
such a trivial join, then you will need an alternative strategy.

You can join by iteration, or you can join by lookup2, or you can
even join once and keep a join cache around.

The first thing could do is use the ability to have tables sorted in
multiple ways at the same time. Though this seems impossible, it’s
perfectly feasible to add auxilary data that will allow for traversal of
a table in a different order. We do this the same way databases allow
for any number of indexes into a table. Each index is created and
kept up to date as the table is modified. In our case, we implement
each index the way we need to. Maybe some tables are written to
in bursts, and an insertion sort would be slow, it might be better to

1dependent on the target hardware, how many rows and columns, and
whether you want the process to run without trashing too much cache

2often a lookup join is called a join by hash, but as we know our data, we
can use better row search algorithms than a hash when they are available

10.1. TABLES 109

sort on first read. In other cases, the sorting might be better done
on write, as the writes are infrequent, or always interleaved with
reads.

Concatenation trees provide a quick way to traverse a list. Conc-
trees usually are only minimally slower than a linear array due to
the nature of the structure. A conc-tree is a high level structure
that points to a low level structure, and many elements can pass
through a process before the next leaf needs to be loaded. The code
for a conc-tree doesn’t remain in memory all the time like other list
handling code, as the list offloads to an array iteration whenever it
is able. This alone means that sparse conc-trees end up spending
little time in their own code, and offer the benefit of not having to
rebuild when an element goes missing from the middle of the array.

In addition to using concatenation trees to provide a standard
iterator for a constantly modified data store, it can also be used as a
way of storing multiple views into data. For example, perhaps there
is a set of tables that are all the same data, and they all need to be
processed, but they are stored as different tables for some reason,
such as what team they are on. Using the same conc-tree code,
they can be iterated as a full collection with any code that accepts
a conc-tree instead of an array iterator.

Modifying a class can be difficult, especially at runtime when
you can’t affect the offsets in running code without at least stopping
the process and updating the executable. Adding new elements to
a class can be very useful, and in languages that allow it, such as
Ruby and Python, and even Javascript, it can be used as a sub-
stitute for virtual functions and compositing. In other languages
we can add new functions, new data, and use them at runtime. In
C++, we cannot change existing classes, unless they are defined by
some other mechanism than the compile time structure syntax. We
can add elements if we define a class by its schema, a data driven
representation of the elements in the class. The benefit of this is
that schema can include more, or less, than normal given a new con-
text. For example, in the case of some merging where the merging
happens on two different axes, there could be two different schema

110 CHAPTER 10. OPTIMISATIONS

representing the same class. The indexes would be different. One
schema could include both indexes, with which it would build up an
combination table that included the first two tables merged, by the
first index, but maintaining the same ordering so that when merg-
ing the merged table with the third table to be merged, the second
index can be used to maintain efficient combination.

A, B, C

B has index(AB), and index(BC)

merge A,B (by index(AB))

AB, C

merge AB, C (by index(BC))

ABC

10.2 Transforms

Taking the concept of schemas another step, a static schema defini-
tion can allow for a different approach to iterators. Instead of iterat-
ing over a container, giving access to an element, a schema iterator
can become an accessor for a set of tables, meaning the merging work
can be done during iteration, generating a context upon which the
transform operates. This would benefit large, complex merges that
do little with the data, as there would be less memory usage creat-
ing temporary tables. It would not benefit complex transforms as it
would reduce the likelihood that the next set of data is in memory
ready for the next cycle.

For large jobs, a smarter iterator will help in task stealing, the
concept of taking work away from a process that is already running
in order to finish the job faster. A scheduler, or job management
system, built for such situations, would monitor how tasks were
progressing and split remaining work amongst any idle processors.
Sometimes this will happen because other processes took less time
to finish than expected, sometimes because a single task just takes
longer than expected. Whatever the reason, a transform based de-
sign makes task stealing much simpler than the standard sequential

10.2. TRANSFORMS 111

model, and provides a mechanism by which many tasks can be made
significantly more parallel.

Another aspect of transforms is the separation of what from how,
the separation of the loading of data to transform from the code that
performs the operations on the data. In some languages, introducing
map and reduce is part of the basic syllabus, in c++, not so much.
This is probably because lists aren’t part of the base language, and
without that, it’s hard to introduce powerful tools that require an
understanding of them. These tools, map and reduce, can be the
basis of a purely transform and flow driven program. Turning a large
set of data into a single result sounds eminently serial, however, as
long as one of the steps, the reduce step, is either associative, or
commutative, then you can reduce in parallel for a significant portion
of the reduction.

A simple reduce, one made to create a final total from a mapping
that produces values of zero or one for all matching elements, can
be processed as a less and less parallel tree of reductions. In the
first step, all reductions produce the total of all odd-even pairs of
elements, and produce a new list that goes through the same pro-
cess. This list reduction continues until there is only one item left
remaining. Of course this particular reduction is of very little use,
as each reduction is so trivial, you’d be better off assigning an Nth
of the workload to each of the N cores and doing one final sum-
ming. A more complex, but equally useful reduction would be the
concatenation of a chain of matrices. Matrices are associative even
if they are not commutative, and as such, the chain can be reduced
in parallel the same way building the total worked. By maintain-
ing the order during reduction you can apply parallel processing to
many things that would normally seem serial as long as they are
associative in the reduce step. Not only matrix concatenation, but
also products of floating point values such as colour modulation by
multiple causes such as light, diffuse, or gameplay related tinting.
Building text strings can be associative, as can be building lists and
of course conc-trees themselves.

112 CHAPTER 10. OPTIMISATIONS

10.3 Spatial sets for collisions

In collision detection, there is often a broad-phase step which can
massively reduce the number of potential collisions we check against.
When ray casting, it’s often useful to find the potential intersection
via an octree, bsp, or other single query accelerator. When running
path finding, sometimes it’s useful to look up local nodes to help
choose a starting node for your journey.

All spatial data-stores accelerate queries by letting them do less.
They are based on some spatial criteria and return a reduced set
that is shorter and thus less expensive to transform into new data.

Existing libraries that support spatial partitioning have to try to
work with arbitrary structures, but because all our data is already
organised by table, writing adaptors for any possible table layout is
simple. Writing generic algorithms becomes very easy without any
of the side effects normally associated with writing code that is used
in multiple places. Using the table based approach, because of its
intention agnosticism (that is, the spatial system has no idea it’s
being used on data that doesn’t technically belong in space), we can
use spatial partitioning algorithms in unexpected places, such as as-
signing audio channels by not only their distance from the listener,
but also their volume and importance. Making a 5 dimensional spa-
tial partitioning system, or an N dimensional one, would only have
to be written once, have unit tests written once, before it could be
used and trusted to do some very strange things. Spatially parti-
tioning by the quest progress for tasks to do seems a little overkill,
but getting the set of all nearby interesting entities by their loca-
tion, threat, and reward, seems like something an AI might consider
useful.

10.4 Lazy Evaluation for the masses

When optimising Objectoriented code, it’s quite common to find lo-
cal caches of calculations done hidden in mutable member variables.

10.5. NOT GETTING WHAT YOU DIDN’T ASK FOR 113

One trick found in most updating hierarchies is the dirty bit, the
flag that says whether the child or parent members of a tree imply
that this object needs updating. When traversing the hierarchy, this
dirty bit causes branching based on data that has only just loaded,
usually meaning there is no chance to guess the outcome and thus
in most cases, causes a pipeline flush and an instruction lookup.

If your calculation is expensive, then you might not want to go
the route that renderer engines now use. In render engines, it’s
cheaper to do every scene matrix concatenation every frame than it
is only doing the ones necessary and figuring out if they are.

For example, in the /emphGCAP 2009 - Pitfalls of Object Ori-
ented Programming presentation by Tony Albrecht in the early slides
he declares that checking a dirty flag is less useful than not check-
ing it as if it does fail (the case where the object is not dirty) the
calculation that would have taken 12 cycles is dwarfed by the cost
of a branch misprediction (23-24 cycles).

If your calculation is expensive, you don’t want to bog down the
game with a large number of checks to see if the value needs up-
dating. This is the point at which existence-based-processing comes
into its own again as existence the dirty table implies that it needs
updating, and as a dirty element is updated it can be pushing new
dirty elements onto the end of the table, even prefetching if it can
improve bandwidth.

10.5 Not getting what you didn’t ask for

When you normalise your data you reduce the chance of another
multifaceted problem of object-oriented development. C++’s im-
plementation of objects forces unrelated data to share cache-lines.

Objects collect their data by the class, but many objects, by
design, contain more than one role’s worth of data. This is par-
tially because object-oriented development doesn’t naturally allow
for objects to be recomposed based on their role in a transaction,
and partially because C++ needed to provide a method by which

114 CHAPTER 10. OPTIMISATIONS

you could have object-oriented programming while keeping the sys-
tem level memory allocations overloadable in a simple way. Most
classes contain more than just the bare minimum, partially because
of inheritance, and partially because of the many contexts in which
an object can play a part. Unless you have very carefully laid out a
class, many operations that require only a small amount of informa-
tion from the class, will load a lot of unnecessary data into the cache
in order to do so. Only using a very small amount of the loaded data
is one of the most common sins of the object-oriented programmer.

Every virtual call loads in the cache-line that contains the virtual-
table pointer of the instance. If the function doesn’t use any of the
class’s early data, then that will be cacheline usage in the region
of only 4%. That’s a memory throughput waste, and cannot be
recovered without rethinking how you dispatch your functions. After
the function has loaded, the program has to load the data it wants
to work on, which can be scattered across the memory allocated
for the class too. Sometimes you might organise the data so that
the function is accessing contiguous blocks of useful information,
but someone going in and adding new data at the top of the class
can shift all the data that was previously on one cache-line, into a
position where it is split over two, or worse, make the whole class
unaligned causing virtually random timing properties on every call.
This could be even worse if what they have added is a precondition
that loads data from an unrelated area of memory, in which case it
would require that the load finished before it even got to the pipeline
flush if it failed the branch into loading the function body and the
definitely necessary transformable data.

A general approach with the table formatted data is to preparse
the table to produce a job list. There would be one job list per
transform type identified by the data if it was to emulate a virtual
call. Then, once built, transform using these new job tables to drive
the process. For each transform type , run the transform over all the
jobs in the job queue built for this transform. This is much faster
as the function used to transform the data is no longer coming from
a virtual lookup, but instead is implied by which table is being

10.6. VARYING LENGTH SETS 115

processed, meaning no instruction cache misses after the first call to
the transform function, and not loading the transform if there are
zero entries.

Another benefit is that the required data can be reorganised now
that it’s obvious what data is necessary. This leads to simple to op-
timise data structures compared to an opaque class that to some
extent, pretends that the underlying memory configuration is unim-
portant and encapsulated. This can help with pre-fetching and write
combining to give near optimal performance without any low level
coding.

10.6 Varying Length Sets

Throughout the techniques so far, there’s been an implied table
structure to the data. Each row being a struct, or each table being
a row of columns of data, depending on the need of the transforms.
When we normally do stream processing, for example, with shaders,
we normally use fixed size buffers. Most work done with stream
processing has this same limitation, we tend to have a fixed number
of elements for both sides. However, we saw that conc-trees solve
the problem of mapping from one size input to another size output,
and that it works by concatenating the output data into a cache-
oblivious structure. This structure is very general purpose and could
be a basis for preliminary work with map-reduce programming for
your game, but there are cases where much better structures exist.

For filtering, that is where the input is known to be superset
of the output, then there can be a strong case for an annealing
structure. Like the conc-trees, each transform thread has its own
output, but instead of concatenating, the reduce step would first
generate a total and a start position for each reduce entry and then
process the list of reduces onto the final contiguous memory.

If the filtering was a stage in a radix sort or something that uses
a similar histogram for generating offsets, then a parallel prefix sum
would reduce the time to generate the offsets. A prefix sum is the

116 CHAPTER 10. OPTIMISATIONS

running total of a list of values. The radix sort output histogram
is a great example because the bucket counts indicate the starting
points through the sum of all histogram buckets that come prior.
on =

∑n−1
i=0 bi. This is easy to generate in serial form, but in parallel

we have to consider the minimum required operations to produce the
final result. In this case we can remember that the longest chain will
be the value of the last offset, which is a sum of all the elements. This
is normally optimised by summing in a binary tree fashion. Dividing
and conquering: first summing all odd numbered slots with all even
numbered slots, then doing the same, but for only the outputs of
the previous stage.

A

��

B

��

C

�� ""

D

��
a

��

ab

�� ((

c

��

cd

��
a ab abc abcd

Then once you have the last element, backfill all the other el-
ements you didn’t finish on your way to making the last element.
When you come to write this in code, you will find that these back
filled values can be done in parallel while making the longest chain.
They have no dependency on the final value so can be given over to
another process, or managed by some clever use of SIMD.

a

��

ab

�� !!

c

��

abcd

��
a ab abc abcd

Also, for cases where the entity count can rise and fall, you need
a way of adding and deleting without causing any hiccups. For this,
if you intend to transform your data in place, you need to handle
the case where one thread can be reading and using the data that

10.7. BIT TWIDDLING DECISION TABLES 117

you’re deleting. To do this in a system where objects’ existence
was based on their memory being allocated, it would be very hard
to delete objects that were being referenced by other transforms.
You could use smart pointers, but in a multi-threaded environment,
smart pointers cost a mutex to be thread safe for every reference
and dereference. This is a high cost to pay, so how do we avoid it?

Don’t ever delete.

Deletion is for wimps. If you are deleting in a system that is
constantly changing, then you would normally use pools anyway. By
explicitly not deleting, but doing something else instead, you change
the way all code accesses data. You change what the data represents.
If you need an entity to exist, such as a CarDriverAI, then it can
stack up on your table of CarDriverAIs while it’s in use, but the
moment it’s not in use, it won’t get deleted, but instead marked as
not used. This is not the same as deleting, because you’re saying
that the entity is still valid, won’t crash your transform, but can be
skipped as if it were not there until you get around to overwriting
it with the latest request for a CarDriverAI. Keeping dead entities
around is as cheap as keeping pools for your components.

10.7 Bit twiddling decision tables

Condition tables normally operate as arrays of condition flag bit
fields. The flags are the collected results of conditions on the data.
But, if the bit fields are organised by decision rather than by row,
then you can call in only the necessary conditions into different de-
cision transforms.

If the bits are organised by condition, then you can run a short
transform on the whole collection of condition bits to create a new,
simpler list of whether or nots. For example, you may have con-
ditions for decisions that you can map to an alphabet of a-m, but
only need some for making a decision. Imagine you need to be
sure that a,d,f,g are all false, but e,j,k need to all be true. Given
this logic, you can build a new condition, let’s say q, that equals

118 CHAPTER 10. OPTIMISATIONS

(a∧ d∧ f ∧ g)∧¬(e∨ j ∨ k) which can then be used immediately as
a job list.

Organising the bits this way could be easier to parallelize as a
transform that produces a condition stream would be in contention
with other processes if they shared memory3. The benefit to row
based conditions comes when the conditions change infrequently,
and the number of things looking at the conditions to make decisions
is small enough that they all fit in a single platform specific type,
such as a 32bit or 64bit unsigned int. In that case, there would be
no benefit in reducing the original contention when generating the
condition bits, and because the number of views, or contexts about
the conditions is low, then there is little to no benefit from splitting
the processing so much.

If you have an entity that needs to reload when their ammo drops
to zero, and they need to consider reloading their weapon if there
is a lull in the action, then, even though both those conditions are
based on ammo, the decision transforms are not based on the same
condition. If the condition table has been generated as arrays of
condition bitfields with each bit representing one row’s state with
respect to that condition, then you can halve the bandwidth to the
check for definite-reload transform, and halve the bandwidth for the
reload-consideration check. There will be one stream of bits for the
condition of ammo equal to zero, and another stream for ammo less
than max. There’s no reason to read both, so we don’t.

What we have here is another case of deciding whether to go with
structures of arrays, or sticking with an array of structures. If we
access the data from a few different contexts, then a structure of ar-
rays trumps it. If we only have one context for using the conditions,
then the array of structures, or in this case, array of masks, wins
out. But remember to profile as any advice is only advice and only
measuring can really provide proof, or evidence that assumptions
are wrong.

3This would be from false sharing, or even real sharing in the case of different
bits in the same byte

10.8. JOINS AS INTERSECTIONS 119

10.8 Joins as intersections

Sometimes, normalisation can mean you need to join tables together
to create the right situation for a query. Unlike RDBMS queries, we
can organise our queries much more carefully and use the algorithm
from merge sort to help us zip together two tables. As an alternative,
we don’t have to output to a table, it could be a pass through trans-
form that takes more than one table and generates a new stream
into another transform. For example, per entityRenderable, join
with entityPosition by entityID, to transform with AddRenderCall(
Renderable, Position)

10.9 Data driven techniques

Apart from finite state machines there are some other common forms
of data driven coding practices, some of which are not very obvious,
such as callbacks, and some of which are very much so, such as
scripting. In both these cases, data causing the flow of code to
change will cause the same kind of cache and pipe-line problems as
seen in virtual calls and finite state machines.

Callbacks can be made safer by using triggers from event sub-
scription tables. Rather than have a callback that fires off when a
job is done, have an event table for done jobs so that callbacks can be
called once the whole run is finished. For example, if a scoring sys-
tem has a callback from ”badGuyDies”, then in an Object-oriented
message watcher you would have the scorer increment its internal
score whenever it received the message that a badGuyDies. Instead
run each of the callbacks in the callback table once the whole set
of badguys has been checked for death. If you do that, and execute
every time all the badGuys have had their tick, then you can add
points once for all badGuys killed. That means one read for the
internal state, and one write. Much better than multiple reads and
writes accumulating a final score.

For scripting, if you have scripts that run over multiple entities,

120 CHAPTER 10. OPTIMISATIONS

consider how the graphics kernels operate with branches, sometimes
using predication and doing both sides of a branch before selecting
a solution. This would allow you to reduce the number of branches
caused merely by interpreting the script on demand. If you go one
step further an actually build SIMD into the scripting core, then
you might find that you can run script for a very large number of
entities compared to traditional per entity serial scripting. If your
SIMD operations operate over the whole collection of entities, then
you will pay almost no price for script interpretation4.

4Take a look at the section headed The Massively Vectorized Virtual Machine
on the bitsquid blog http://bitsquid.blogspot.co.uk/2012/10/a-data-oriented-
data-driven-system-for.html

Chapter 11

Concurrency

Any book on games development practices for contemporary and
future hardware must cover the issues of concurrency. There will
come a time when we have more cores in our computers than we
have pixels on screen, and when that happens, it would be best if we
were already coding for it, coding in a style that allows for maximal
throughput with the smallest latency. Thinking about how to solve
problems for five, ten or even one hundred cores isn’t going to keep
you safe. You must think about how your algorithms would work
when you have an infinite number of cores. Can you make your
algorithms work for N cores?

Writing concurrent software has been seen as a hard task in the
past because most people think they understand threading and can’t
get their heads around all the different corner cases that are intro-
duced when you share the same memory as another thread. Fixing
these with mutexs and critical sections can become a minefield of
badly written code that works only 99% of the time. For any real
concurrent development we have to start thinking about our code
transforming data. Every time you get a deadlock or a race condi-
tion in threaded code, it’s because there’s some ownership issue. If
you code from a data transform point of view, then there are some

121

122 CHAPTER 11. CONCURRENCY

simple ground rules that provide very stable tools for developing
truly concurrent software.

11.1 What it means to be thread-safe

Academics consistently focus on what is possible and correct, rather
than what is practical and usable, which is why we’ve been inun-
dated with multi-threaded techniques that work, but cause a lot of
unnecessary pain when used in a high performance system such as
a game. The idea that something is thread-safe implies more than
just that it is safe to use in a multi-threaded environment. There
are lots of thread safe functions that aren’t mentioned becuase they
seem trivial, but it’s a useful distinction to make when you are track-
ing down what could be causing a strange thread issue. There are
functions without side-effects, such as the intrinsics for sin, sqrt,
that return a value given a value. There is no way they can cause
any other code to change behaviour, and no other code can change
its behaviour either1. In addition to these very simple functions,
there are the simple functions that change things in an idempotent
fashion, such as memset.

Thread safe implies that it doesn’t just access its own data, but
accesses some shared data without causing the system to enter into
an inconsistent state. Inconsistent state is a natural side effect of
multiple processes accessing and writing to shared memory. It is
these side effects that are the cause of many bugs in multi-threaded
code, which is why the develpers of the Erlang language chose to
limit the programmer to code that doesn’t have side-effects. Any
code that relies on reading from a shared memory before writing
back an adjusted value can cause inconsistent state as there is no
way to guarantee that the writing will take place before anyone else
reads it before they modify it.

1If you discount the possibility of other code changing the floating point
operation mode

11.1. THREAD-SAFE 123

int shared = 0;

void foo() {

int a = shared;

a += RunSomeCalculation();

shared = a;

}

Making this work in practice is hard and expensive. The stan-
dard technique used to ensure the state is consistent is to make the
value update atomic. How this is achieved depends on the hardware
and the compiler. Most hardware has an atomic instruction that can
be used to create thread-safety through mutual exclusions. On most
hardware the atomic instruction is a compare and swap, or CAS.
Building larger tools for thread-safety from this has been the main-
stay of multi-threaded programmers and operating system develop-
ers for decades, but with the advent of multi-core consoles, program-
mers not well versed in the potential pitfalls of multi-threaded devel-
opment are suffering because of the learning cliff involved in making
all their code work perfectly over six or more hardware threads.

Using mutual exclusions, it’s possible to rewrite the previous
example:

int shared = 0;

Mutex sharedMutex;

void foo() {

sharedMutex.acquire();

int a = shared;

a += RunSomeCalculation();

shared = a;

sharedMutex.release();

}

And now it works. No matter what, this function will now always
finish its task without some other process damaging its data. Every
time one of the hardware threads encounters this code, it stops all
processing until the mutex is acquired. Once it’s acquired, no other

124 CHAPTER 11. CONCURRENCY

hardware thread can enter into these instructions until the current
thread releases the mutex at the far end.

Every time a thread-safe function uses a mutex section, the whole
machine stops to do just one thing. Every time you do stuff inside
a mutex, you make the code thread-safe by making it serial. Every
time you use a mutex, you make your code run bad on infinite core
machines.

Thread-safe, therefore, is another way of saying: not concurrent,
but won’t break anything. Concurrency is when multiple threads are
doing their thing without any mutex calls, semaphores, or other form
of serialisation of task. Concurrent means at the same time. A lot
of the problems that are solved by academics using thread-safety to
develop their multi-threaded applications needn’t be mutex bound.
There are many ways to skin a cat, and many ways to avoid a mutex.
Mutex are only necessary when more than one thread shares write
privileges on a piece of memory. If you can redesign your algorithms
so they only ever require one thread to be given write privilege, then
you can work towards a fully concurrent system.

Ownership is key to developing most concurrent algorithms. Con-
currency only happens when the code cannot be in a bad state, not
because it checks before doing work, but because the design is such
that no process can interfere with another in any way.

11.2 Inherently concurrent operations

When working with tables of data, many operations are inherently
concurrent. Simple transforms that take one table and generate the
next step, such as those of physics systems or AI state / finite state
machines, are inherently concurrent. You could provide a core per
row / element and there would be no issues at all. Setting up the
local bone transforms from a skeletal animation data stream, ticking
timers, producing condition values for later use in condition tables.
All these are completely concurrent tasks. Anything that could be
implemented as a pixel or vertex shader is inherently concurrent,

11.2. INHERENTLY CONCURRENT OPERATIONS 125

which is why parallel processing languages such as shader models,
do not cheaply allow for random write to memory, and don’t allow
accumulators across elements.

Seeing that these operations are inherently concurrent, we can
start to see that it’s possible to restructure our game from an end
result perspective. We can use the idea of a structured query to
help us find our critical path back to the game state. Many table
transforms can be split up into much smaller pieces, possibly think-
ing along the lines of map reduce, bringing some previously serial
operations into the concurrent solution set.

Any N to N transform is perfectly concurrent. Any N to ¡=N
is perfectly concurrent, but depending on how you handle output
NULLs, you could end up wasting memory. A reduce stage is neces-
sary, but that could be managed by a gathering task after the main
task has finished, or at least, after the first results have started com-
ing in.

Any uncoupled transforms can be run concurrently. Ticking all
the finite state machines can happen at the same time as updating
the phsyics model, can happen at the same time as the graphics
culling system building the next frame’s render list. As long as
all your different game state transforms are independent from each
other’s current output, they can be dependent on each other’s orig-
inal state and still maintain concurrency.

For example, the physics system can update while the renderer
and the AI rely on the positions and velocities of the current frame.
The AI can update while the animation system can rely on the
previous set of states.

Multi stage transforms, such as physics engine broadphase, de-
tection, reaction and resolution, will traditionally be run in series
while the transforms inside each stage run concurrently. Standard
solutions to these stages require that all data be finished processing
from each previous stage, but if you can find some splitting planes
for the elements during the first stage, you can then remove tem-
poral cohesion from the processing because you can know what is
necessary for the next step and hand out jobs from finished subsets

126 CHAPTER 11. CONCURRENCY

of each stage’s results.
Concurrent operation assumes that each core operating on the

data is free to access that data without interfering, but there is a
way that seemingly unconnected processes can end up getting in
each other’s way. Most systems have multiple layers of cache, and
this is where the accident can happen. False sharing is when data,
though actually unrelated, is connected by the physical layout of the
hardware. For example, the cachelines of a CPU might be 16 to 128
bytes long. If two different CPUs try to write to neighbouring bytes,
or words, at best the cores will lock up as the memory is shunted
around trying to keep memory consistent, but worse, could end up
losing data if the cache is not coherent2. To reduce the chance of
this happening, processing of small element tables should consider
this and split any cooperation into cacheline size jobs.

11.3 Queues as gateways, and ”Now”

When you don’t know how many items you are going to get out
of a transform, such as when you filter a table to find only the
X that are Y, you need run a reduce on the output to make the
table non-sparse. Doing this can be log(N) latent, that is pairing up
rows takes serial time based on log(N). But, if you are generating
more data than your input data, then you need to handle it very
differently. Mapping a table out onto a larger set can be managed
by generating into gateways, which once the whole map operation
is over, can provide input to the reduce stage. The gateways are
queues that are only ever written to by the Mapping functions, and
only ever read by the gathering tasks such as Reduce. there is always
one gateway per Map runtime. That way, there can be no sharing
across threads. A Map can write that it has put up more data, and
can set the content of that data, but it cannot delete it or mark any
written data as having been read. The gateway manages a read head,

2cache coherency is the system by which changed data is propagated to other
caches so that consistent state is achieved.

11.3. GATEWAYS 127

that can be compared with the write head to find out if there is any
waiting elements. Given this, a gathering gateway or reduce gateway
can be made by cycling through all known gateways and popping
any data from the gateway read heads. This is a fully concurrent
technique and would be just as at home in variable CPU timing
solutions as it is in standard programming practices as it implies a
consistent state through ownership of their respective parts. A write
will stall until the read has allowed space in the queue. A read will
either return ”no data” or stall until the write head shows that there
is something more to read.

When it comes to combining all the data into a final output,
sometimes it’s not worth recombining it into a different shape, in
which case we can use conc-trees, a technique that allows for cache-
friendly transforming while maintaining most of the efficiency of
contiguous arrays. Conc-trees are a tree representation of data that
almost singlehandedly allows for cache oblivious efficient storage of
arbitrary lists of data. Cache oblivious algorithms don’t need to
know the size of the cache in order to fully utilise them and normally
consist of some kind of divide and conquer core algorithm, and conc-
trees do this by either representing the null set, a concatenation, or
some data. If we use conc trees with output from transforms, we
can optimise the data that is being concatenated so it fits well in
cache lines, and we can also do the same with conc tree concatenate
nodes, making them concatenate more than just two nodes, thus
saving space and memory access. We can tune these structures per
platform or by data type.

Given that we have a friendly structure for storing data, and that
these can be built as concatenations rather than some data soup, we
have basis for a nicely concurrent yet associative transform system.
If we don’t need to keep the associative nature of the transform,
then we can optimise further, but as it comes at little to no cost,
and most reduce operations rely on associativity, then it’s good that
we have that option.

Moving away from transforms, there is the issue of now that
crops up whenever we talk about concurrent hardware. Sometimes,

128 CHAPTER 11. CONCURRENCY

when you are continually updating data in real time, not per frame,
but actual real time, there is no safe time to get the data, or process
it. Truly concurrent data analysis has to handle reading data that
has literally only just arrived, or is in the process of being retired.
data-oriented development helps us find a solution to this by not
having a concept of now but a concept only of the data. If you are
writing a network game, and you have a lot of messages coming in
about a player, and their killers and victims, then to get accurate
information about their state, you have to wait until they are already
dead. With a data-oriented approach, you only try to generate the
information that is needed, when it’s needed. This saves trying to
analyse packets to build some predicted state when the player is
definitely not interesting, and gives more up to date information as
it doesn’t have to wait until the object representing the data has
been updated before any of the most recent data can be seen or
acted on.

The idea of now is present only in systems that are serial. There
are multiple program counters when you have multiple cores, and
when you have thousands of cores, there are thousands of different
nows. Humans think of things happening at a certain time, but
sometimes you can take so long doing something that more data has
arrived by the time you’re finished that you should probably go back
and try again.

Take for example the idea of a game that tries to get the lowest
possible latency between player control pad and avatar reaction. In
a lot of games, you have to put up with the code reading the pad
state, the pad state being used to adjust animations, the animations
adjusting the renderables, the rendering system rastering and the
raster system swapping buffers. In most games it takes at least
three frames

read the player pad.
respond in logic to new pad state.
animate the character.
queueForRender the new bone positions.

11.3. GATEWAYS 129

FRAME happens, moves the render requests into the
procesing list while calling:
renderToBackBuffer on the old lists.
FRAME happens again which starts to render our re-
action to the pad state.
swapBuffers then shows our change as
VISIBLE

and many games have triple buffering and animation systems
that don’t update instantly.

In this case, the player could potentially be left until the last
minute before checking pad status, and apply an emergency patchup
to the in flight renderQueue. If you allowed a pad read to adjust the
animation system’s history rather than it’s current state, you could
request that it update it’s historical commits to the render system,
and potentially affect the next frame rather than the frame three
buffer swaps from now. Alternatively, have some of the game run
all potential player initiated events in parallel, then choose from the
outcomes based on what really happened, then you can have the
same response time but with less patching of data.

130 CHAPTER 11. CONCURRENCY

Chapter 12

In Practice

Data-oriented development is not rooted in theory, but practice.
Because of this, it’s hard to describe the methodology without some
practical examples. In this chapter I will document some experiences
with the data-oriented approach.

12.1 Data-manipulation

12.1.1 The Cube

In 22cans first experiment, there was call to handle a large amount
of traffic from a large number of clients, potentially completely frag-
mented, and yet also completely syncronised. The plan was to de-
velop a service capable of handling a large number of incoming pack-
ets of update data while also compiling it into compressed output
data that could be send to the client all with a minimal turnaround
time.

The system was developed in C++11 on Linux, and followed the
basic tenets of data-oriented design from day one. The data was
loaded, but not given true context. Manipulations on the data were
procedures that operated on the data given other data. This was

131

132 CHAPTER 12. IN PRACTICE

a massive time saver when the servers needed a complete redesign.
The speed of data processing was sufficient to allow us to run all the
services in debug1.

When the server went live, it wasn’t the services that died, it was
the front end. Nginx is amazing, but under that amount of load on
a single server, with so many of the requests requiring a lock on an
SQL db backend, the machine reached it’s limit very quickly. For
once, we think PHP itself wasn’t to blame. We had to redesign all the
services so they could work in three different situations so as to allow
the server to become a distributed service. By not locking down
data into contexts, it was relatively easy to change the way the data
was processed, to reconfigure the single service that previously did
all the data consumption, collation, and serving, into three different
services that handled incoming data, merging the multiple instances,
and serving the data on the instances. In part this was due to a very
procedural approach, but it was also down to not linking together
data that was separate by binding into an object context. The lack
of binding allows for simpler recombination of procedures, simpler
rewriting of procedures, and simpler repurposing of procedures from
related services. This is something that object oriented approach
makes harder because you can be easily tempted to start adding base
classes and inheriting to gain common functionality or algorithms.
As soon as you do that you start tying things together by what they
mean rather than what they are, and then you lose the ability to
reuse code.

12.1.2 Rendering order

While working on the in-house engine at Broadsword, we came up
with an idea for how to reimplement the renderer that should have

1anyone remembering developing on a PS2 will likely attest to the minimal
benefit you get from optimisations when your main bottleneck is the VU and GS.
The same was true here, we had a simple bottleneck of the size of the data and
the operations to run on it. Optimisations had minimal impact on processing
speed, but they did impact our ability to debug the service when it did crash.

12.1. DATA-MANIPULATION 133

been much more efficient, not just saving CPU cycles, but also al-
lowing for platform specific optimisations at run time by having
the renderer analyse the current set of renderables and organise the
whole list of jobs by what caused the least program changes, texture
changes, constant changes and primitive render calls. The system
seemed too good to be true, and though we tried to write the system,
Broadsword never finished it. After Broadsword dissolved, when I
did finish it, I didn’t have access to a console2, so I was only able
to test out the performance on a PC. As expected the new system
was faster, but only marginally. With hindsight, I now see that the
engine was only marginally more efficient because the tests were be-
ing run on a system that would only see marginal improvements, but
even the x86 architecture saw improvements, which can be explained
away as slightly better control flow and generally better cache utili-
sation.

First let me explain the old system.
All renderables came from a scene graph. There could be mul-

tiple scene graph renders per frame, which is how the 2D and 3D
layers of the game were composited, and each of them could use
any viewport, but most of them just used the fullscreen viewport as
the engine hadn’t been used for a split screen game, and thus the
code was probably not working for viewports anyway. Each scene
graph render to viewport would walk the scene3 collecting trans-
forms, materials, colour tints, and meshes, to render, at which point
the node that contained the mesh would push a render element onto
the queue for rendering into that viewport. This queueing up of
elements to render seemed simple and elegant at the time. It meant
that programmers could quickly build up a scene and render it, most
of the time using helpers that loaded up the assets and generated the
right nodes for setting textures, transforms, shader constants, and
meshes. These rendering queues were then sorted before rendering.

2The target platforms of the engine included the Playstation 2 and the Nin-
tendo Wii along with Win32.

3sometimes multiple cameras belonged to the same scene to the scene graph
would be walked multiple times

134 CHAPTER 12. IN PRACTICE

Sorted by material only for solid textures, and sorted back to front
for alpha blended materials. This was the old days of fixed function
pipelines and only minimal shader support on our target platforms.
Once the rendering was done, all the calculated combinations were
thrown away. This meant that for everything that was rendered,
there was definitely a complete walk of the scene graph.

The new system, which was born before we were aware of data-
oriented design, but was definitely born of looking at the data, was
different in that it no longer required walking the scene graph. We
wanted to maintain the same programmer friendly front edge API, so
maintained the facade of a scene graph walk, but instead of walking
the graph, we only added a new element to the rendering when the
node was added, and only removed it when it was removed from the
scene graph. This meant we had a lot of special code that looked for
multiple elements registered in multiple view port lists, but, other
than that, a render merely looked up into the particular node it
cared about, gathered the latest data, and processed it pulling when
it required it rather than being pushed things it didn’t even care
about.

The new system benefited from being a simple list of pointers
from which to fetch data (the concept of a dirty transform was re-
moved, all transforms were considered to be dirty every frame), and
the computation was simplified for sorting as all the elements that
were solid were already sorted from the previous render, and all the
alpha blended elements were sorted because they belonged to the set
of alpha blended elements. This lack of options accounted for some
saved time, but the biggest saving probably came from the way the
data was being gathered per frame rather than being generated from
a incoherent tree. A tree that, to traverse, requried many pointer
lookups into virtual tables as all the nodes were base classed to a
base node type and all update and render calls were virtual causing
many misses all the way through each of the tree walks.

In the end the engine was completely abandoned as Broadsword
dissolved, but that was the first time we had taken an existing code-
base and (though inadvertantly) converted it to data-oriented.

12.1. DATA-MANIPULATION 135

12.1.3 Keeping track of damage

During the development of the multiplayer code for Max Payne 3
there came a point where it became more and more important that
we kept track of damage dealt to every player from every player.
Sometimes this would be because we want to estimate more accu-
rately how much health a player had. Sometimes this would be
because we needed to know who saved who and thus who got a
teammate saved bonus, or who got the assist. We kept a tight ship
on Max Payne 3, we tried to keep the awards precise as far as we
could go, no overcompensating for potential lost packets, no faking
because we wanted a fair and competition grade experience where
players could make all the difference through skill, and not through
luck. To do this, we needed to have a system that kept track of all
the bullets fired, but not fail when we missed some, or they arrived
out of order. What we needed was a system that could be interro-
gated, but could receive data about things that had happened back
in time. It needed to be able to heal itself in case of oddities, and
last but not least, it needed to be really quick so we can interrogate
it many times per frame.

The solution was a simple list of things that happened and at
what time. Initially the data was organised as a list of structures
with a sorted list of pointers to the data for quick queries about
events over time, but after profiling the queries with and without
the sorted list, the benefits of the lack of maintaining a sorted list
outweighed the benefits of doing a one time sort on just the data
needed to satisfy the query. There were only two queries, which
were not frequently called, that benefitted from the sorted data, and
when they were called they didn’t need to be extremely fast as they
were called as the result of player death, which not only happened
less often than once a frame, but also regularly resulted in there
being less to update as the player cared a lot less about visibility
checks and handling network traffic4. This simple design allowed for

4dead men don’t care about bullets and don’t really care that much about
what other players are doing

136 CHAPTER 12. IN PRACTICE

many different queries to run over the core data, and allowed for
anyone to add another new query easily because there was no data-
hiding getting in the way of any new kind of access. Object-oriented
approaches to this kind of data handling often provide a gateway
to the data but marshall it so that the queries become heavyweight
and consistently targetted for optimisation. With a very simple data
structure and open access to the data in any form, any new query
could be as easily optimised as any existing one.

12.2 Game entities

12.2.1 Converting an object oriented player

While I was at Frontier Developments, I was working on a little space
game that ended up being a boat game in caverns5 and that was the
first time I intentionally changed a game from object-oriented to
component-oriented. The ships all had their rendering positions,
their health, speed, momentum, ammo recharge timers etc, and
these were all part of a base ship class that was extended to be
a player class, and inherited from a basic element that was extended
to also include the loot drops and the dangerous ice blocks. All
this is pretty standard practice, and from the number of codebases
I have seen, it’s pretty light on the scale of inheritance with which
games normally end up. Still, I had this new tool in my bag, the
component-oriented approach specifically existence based process-
ing. I wanted to try it out, see if it really did impact the profile of
the game in any significant way. I started with the health values.
I made a new component for health, and anyone that was at full
health, or was dead, was not given an instance of the component.
The player ship and the enemy ships all had no health values until
they were shot and found wanting.

5due to concerns that a 2D space game might be misinterpretted as the next
elite I imagine

12.2. GAME ENTITIES 137

Transitioning to the component based health took a while. Trans-
lating any game from one programming paradigm to another is not
a task to be taken lightly, even when your game code is small and
you’ve only spent sixty hours developing the game so far. Once the
game was back up though, the profile spoke loud and clear of the
benefits. I had previously spent some time in health code every
frame, this was because the ships had health regenerators that ran
and updated the health every time they got an update poll. They
needed to do an update because they were updated, not because
they needed to, and they didn’t have any way to opt out before
the componentisation, as the update to health was part of the ship
update. Now the health update only ran over the active health in-
stances, and removed itself once it reached max health rather than
bounce of the max health.

This relatively small change allowed me to massively increase the
number of small delicate ships in the game (ships that would beat
the player ship by overrunning it rather than being able to withstand
the player’s fire and get close in to do some damage), and also lead to
another optimisation: componentising the weapon recharge timer.

If the first change was a success, then the second was a major
success. Instead of keeping track of when a weapon was ready to
fire again, the time that it would be available was inserted into a
sorted list of recharge times. Only the head of the list was checked
every global update, meaning that a large number of weapons could
be recharging at once and none of them caused any data access until
they were very nearly or actually ready.

This immediate success lead me to believe the data-oriented
design movement was really important and needed to be spread
around, and probably caused my sudden hatred of object-oriented
programming. From that point on, all I could see was cache-misses
and pointless update checks.

138 CHAPTER 12. IN PRACTICE

12.2.2 People don’t really exist.

A Mathematician, a Biologist and a Physicist are sitting in
a street cafe watching people going in and coming out of the
house on the other side of the street.

First they see two people going into the house. Time passes.
After a while they notice three persons coming out of the
house.

The Physicist: ”The measurement wasn’t accurate.”.
The Biologists conclusion: ”They have reproduced”.
The Mathematician: ”If now exactly 1 person enters the house
then it will be empty again.”

The followers in the GODUS prototype are little objects when
they are running around, and though the code has changed quite a
bit from the initial lists of pointers to people structures, and has thus
become unweildy, there was one element that was a perfect example
of hierarchical level of detail in the game logic. The followers, once
they had started to build a building, dissappeared. They were no
longer required in any way, so they were reduced to a mere increment
of the number of people in a building. An object-oriented program-
mer disputed this being a good way to go, ”but what if the person
has a special weapon, or is a special character?”. Logic prevailed.
If there was a special weapon, then there would have been a count
of those in the house, or the weapon would have become owned by
the house, and as for a special character, the same kind of excep-
tion could be made, but in reality, which is where we firmly plant
ourselves when developing in the data-oriented paradigm, these po-
tential changes had not so far been requested, and by the end of the
development, they still hadn’t.

Another example from the GODUS prototype was the use of
duck-typing. Instead of adding a base class for people and houses,
just to see if they were meant to be under control of the local player,
we used a templated function to extract a boolean value. Duck
typing doesn’t require anything more than certain member functions

12.2. GAME ENTITIES 139

or variables being available. They don’t have to be in the same place,
or come bundled into a base class: they just have to be present.

When teaching data-oriented design, I find the biggest hurdle
is convincing programmers that data-oriented design is possible for
some areas of development. It’s very easy to accidentally assume
that you need to bundle things into objects, especially after years of
training and teaching object-oriented developlment. It won’t come
naturally and you will keep catching yourself building things as ob-
jects first then making them more relational afterwards. It will take
time to fully remove the muscle memory of putting related things
in the same class, but worry not, I’m sure all data-oriented develop-
ers go through this transition where they know they’re not coding
data-oriented, but they don’t quite know how to do it yet.

12.2.3 Lazy evaluation molasses

The idea of lazy evaluation makes so much sense, and yet it’s pre-
cisely that kind of sense that makes no sense for a computer. I
remember there was a dirty bit check before an update in some of
the global update code on Outsider, something I would have done
a hundred times over before I started to get a better feel for what
the computer was doing, and found one of the best lines-of-code to
time-saved ratio fixes I ever found in a triple A game. The dirty
bit check was just before the code that actually did the work of up-
dating the instance. This meant that the CPU had to preload the
fixup code while it was checking the dirty bit, and because the fixup
code was virtual functions based, it meant that the code was load-
ing the virtual table value and the function was preloaded all the
while the dirty bit was about to say it wasn’t necessary to do any
of it. To make matters worse, the code was inside an if, implying
to most compilers that it would be the more likely taken branch6.
The fix was simple. Build up a local array of objects to actually

6profile guided optimisation might have saved a lot of time here, but the best
solution is to give the profiler and optimiser a better chance by leaving them
less to do

140 CHAPTER 12. IN PRACTICE

do an update of, then do them all at once. Because the code to do
the update wasn’t preloaded, the whole update took a lot less time.
You can have your lazy evaluation, but don’t preload the evaluation
if you don’t have to.

12.2.4 Component oriented design

While at Broadsword, I found an article about dungeon seige pro-
claiming the benefit of components when developing a game. The
GOs or Game Objects that were used were components that could
be stitched together to create new compound objects.

Taking that as inspiration, I looked at all our different scene-
graph nodes, gameplay helper classes and functions we commonly
used, and tried to distill them into their elements. I started by
just making components such as PlayerCharacter and AICharacter,
adding a Prop element before realising where I was going wrong. The
object oriented mindset had told me to look at the compounds, not
the elements, so I went back to the drawing board and started dis-
secting the objects again. Component oriented development works
out best when you completely explode all your compounds, then
recombine when you find the combinations are consistent, or when
combining makes more sense to computation.

After I was done fully dissecting our basic game classes I had a
long list of separate, elements that by themselves did very little7.
At this point, I added the bootstrap code to generate the scene.
Some components required other components at runtime, so I added
a requires trait to the components, much like #include, except to
make this work for teardown, I also added a count so components
went away much like reference counted smart pointers folded away.
The initial demo was a simple animated character running around
a 3D environment, colliding with props via the collision Handler.

7Position, Velocity, PlayerInputMapper, VelocityFromInput, MeshRender,
SkinnedMeshRender, MatrixPalette, AnimPlayer, AnimFromInput, and Colli-
sionHandler

12.2. GAME ENTITIES 141

In the beginning, I had a container entity that maintained a
list of components. Once I had a first working version, I stepped
back and thought about the system. I started to see that the core
entity wasn’t really necessary. As long as any update components
were updated, then the game would tick on. As long as the entity’s
components could find their requirement components, then the game
would work. I shifted to having an implicit entity based on the UID
I generate on entity creation. This meant that all entities were really
only the components that were linked to that ID, as the ID didn’t
index into an array of entity objects, or point to an allocated entity,
it was merely an ID off which to hang all the components.

Adding features to a class at runtime was now possible. I could
inject an additional property into the existing entities because I had
centred the entities around a key, and not any kind of central class.
The next step from here was to add components via a scripting
language so it would be possible to develop new gameplay code while
running the game. Unfortunately this never happened, but some
MMO engine developers have done precisely this.

The success of this demo convinced me that components would
play a major role in our continuing game development, but alas, we
only used the engine for one more product and the time to bring
the new component based system up to speed for the size of the last
project was estimated to be counter productive. Mick West released
an article about how when he was at Neversoft, he did manage to
convert the Tony Hawks code-base to components8 which means it’s
not impossible to migrate, it’s just not easy. If we were to start
component oriented... well that’s a different story, normally told by
Scott Bilas.

8http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

142 CHAPTER 12. IN PRACTICE

Chapter 13

Maintenance and reuse

When object-oriented design was first promoted, it advertised that
it was easier to modify and extend existing code bases than the more
traditional procedural approach. Though this is not true in practice,
partially due to the language used by games developers and partially
because there is an inherent coupling between objects with respect
to their interfaces, it still remains a consideration of anyone who uses
it when entering into another programming paradigm. Regardless
of their level of expertise, an object-oriented programmer will cite
the extensible, encapsulating nature of object-oriented development
as a boon when it comes to working on larger projects.

Highly experienced but more objective developers have admitted
or even written about how C++ is not highly suited to large scale
development, but can be used in it as long as you follow strict guide-
lines. [LargeScaleC++] But for those that cannot immediately see
the benefit of the data-oriented development paradigm with respect
to maintenance, and evolutionary development, this chapter covers
why it is easier than working with objects.

143

144 CHAPTER 13. MAINTENANCE AND REUSE

13.1 Debugging

The prime causes of bugs are the unexpected side effects of a trans-
form, or an unexpected corner case where a conditional didn’t return
the correct value. In object-oriented programming, this can manifest
in many ways, from an exception caused by de-referencing a null, to
ignoring the interactions of the player because the game logic hadn’t
noticed it was meant to be interactive.

13.1.1 Lifetimes

One of the most common causes of the null dereference is when an
object’s lifetime is handled by a separate object to the one manipu-
lating it. For example, if you are playing a game where the badguys
can die, you have to be careful to update all the objects that are
using them whenever the badguy gets deleted, otherwise you can
end up dereferencing invalid memory which can lead to dereferenc-
ing null pointers because the class has destructed. data-oriented
development tends towards this being impossible as the existence of
an entity in a table implies its processability, and if you leave part
of an entity around in a table, you haven’t deleted the entity fully.
This is a different kind of bug, but it’s not a crash bug, and it’s
easier to find and kill as it’s just making sure that when an entity is
destroyed, all the tables it can be part of also destroy their elements
too.

13.1.2 Avoiding pointers

When looking for data-oriented solutions to programming problems,
we often find that pointers aren’t required, and often make the so-
lution harder to scale. Using pointers where null values are possible
implies that each pointer doesn’t only have the value of the object
being pointed at, but also implies a boolean value for whether or not
that instance exists. Removing this unnecessary extra feature can
remove bugs, save time, and reduce complexity.

13.2. REUSABILITY 145

13.1.3 Bad State

Sometimes a bug is more to do with a game not being in the right
state. Debugging then becomes a case of finding out how the game
got into its current, broken state.

When you encapsulate your state, you hide internal changes.
This quickly leads to adding lots of debugging logs. Instead of hiding,
data-oriented suggests keeping data in simple forms, and potentially
leaving it around longer than required can lead to highly simplified
transform inspection. If you have a transform that appears to work,
but for one odd case it doesn’t, the simplicity of adding an assert
and not deleting the input data reducing the amount of guesswork
and toil required to generate the bug fix. If you keep most of your
transforms as one-way, that is to say they take from one source, and
produce or update another, but even if you run the code multiple
times it will still produce the same results as it would the first time.
The transform is idempotent. This useful property allows you to find
a bug, then rewind and trace through without having to attempt to
rebuild the initial state.

One way of keeping your code idempotent is to write your trans-
forms in a single assignment style. If you operate with multiple
transforms but all leading to predicated join points, you can guar-
antee yourself some timings, and you can look back at what caused
the final state to turn out like it did without even rewinding. If your
conditions are condition tables, just leave the inputs around until
validity checks have been completed then you have the ability to go
into any live system and check how it arrived at that state. This
alone should reduce any investigation time to a minimum.

13.2 Reusability

A feature commonly cited by the object-oriented developers that
seems to be missing from data-oriented development is reusability.
The idea that you won’t be able to take already written libraries

146 CHAPTER 13. MAINTENANCE AND REUSE

of code and use them again, or on multiple projects, because the
design is partially within the implementation. To be sure, once you
start optimising your code to the particular features of a software
project, you do end up with unreusable code. While developing data-
oriented projects, the assumed inability to reuse source code would
be significant, but it is also highly unlikely. The truth is found when
considering the true meaning of reusability.

Reusability is not fundamentally concerned in reusing source files
or libraries. Reusability is the ability to maintain an investment in
information. A wealth of knowledge for the entity that owns the
development IP.

Copyright law has made it hard to see what resources have value
in reuse, as it maintains the source as the object of it’s discussion
rather than the intellectual property represented by the source. The
reason for this is that ideas cannot be copyrighted, so by maintaining
this stance, the copyrighter keeps hold of this tenuous link to a right
to withhold information. Reusability comes from being aware of the
information contained within the medium it is stored. In our case,
it is normally stored as source code, but the information is not the
source code. With Object-Oriented development, the source can be
adapted (adapter pattern) to any project we wish to venture. How-
ever, the source is not the information. The information is the order
and existence of tasks that can and will be performed on the data.
Viewing the information this way leads to an understanding that any
reusability that a programming technique can provide comes down
to it’s mutability of inputs and outputs. It’s willingness to adapt a
set of temporally coupled tasks into a new usage framework is how
you can find out how well it functions reusably.

In object-oriented development, you apply the information in-
herent in the code by adapting a class that does the job, or wrapper
it, or use an agent. In data-oriented development, you copy the
functions and schema and transform into and out of the input and
output data structures around the time you apply the information
contained in the data-oriented transform.

Even though, at first sight, data-oriented code doesn’t appear as

13.3. UNIT TESTING 147

resuable on the outside, the fact is that it maintains the same amount
of information in a simpler form, so it’s more reusable as it doesn’t
carry the baggage of related data or functions like object-oriented
programming, and doesn’t require complex transforms to generate
the input and extract from the output like procedural progamming
tends to generate due to the normalising.

Duck typing, not normally available in object-oriented program-
ming due to a stricter set of rules on how to interface between data,
can be implemented with templates to great effect, turning code that
might not be obviously reusable into a simple strategy, or a sequence
of transforms that can be applied to data or structures of any type,
as long as they maintain a naming convention.

The object-oriented C++ idea of reusability is a mixture of in-
formation and architecture. Developing from a data-oriented trans-
form centric viewpoint, architecture just seems like a lot of fluff code.
The only good architecture that’s worth saving is the actualisation
of data-flow and transform. There are situations where an object-
oriented module can be used again, but they are few and far between
because of the inherent difficulty interfacing object-oriented projects
with each other.

The most reusable object-oriented code appears as interfaces to
agents into a much more complex system. The best example of an
object-oriented approach that made everything easier to handle, was
highly reusable, and was fully encapsulated was the FILE type from
stdio.h that is used as an agent into whatever the platform and
OS would need to open, access, write, and read to and from a file
on the system.

13.3 Unit Testing

Unit testing can be very helpful when developing games, but because
of the object-oriented paradigm making programmers think about
code as representations of objects, and not as data transforms, it’s
hard to see what can be tested. Linking together unrelated concepts

148 CHAPTER 13. MAINTENANCE AND REUSE

into the same object and requiring complex setup state before a
test can be carried out, has given unit testing a stunted start in
games as object-oriented programming caused simple tests to be
hard to write. Making tests is further complicated by the addition
of the non-obvious nature of how objects are transformed when they
represent entities in a game world. It can be very hard to write
unit tests unless you’ve been working with them for a while, and
the main point of unit tests is that someone that doesn’t fully grok
the system can make changes without falling foul of making things
worse.

Unit testing is mostly useful during refactorings, taking a game
or engine from one code and data layout into another one, ready
for future changes. Usually this is done because the data is in the
wrong shape, which in itself is harder to do if you normalise your
data as you’re more likely to have left the data in an unconfigured
form. There will obviously be times when even normalised data is
not sufficient, such as when the design of the game changes sufficient
to render the original data-analysis incorrect, or at the very least,
ineffective or inefficient.

Unit testing is simple with data-oriented technique because you
are already concentrating on the transform. Generating tables of
test data would be part of your development, so leaving some in as
unit tests would be simple, if not part of the process of developing the
game. Using unit tests to help guide the code could be considered to
be partial following the test-driven development technique, a proven
good way to generate efficient and clear code.

Remember, when you’re doing data-oriented development your
game is entirely driven by stateful data and stateless transforms. It
is very simple to produce unit tests for your transforms. You don’t
even need a framework, just an input and output table and then a
comparison function to check that the transform produced the right
data.

13.4. REFACTORING 149

13.4 Refactoring

During refactoring, it’s always important to know that you’ve not
broken anything by changing the code. Allowing for such simple unit
testing gets you halfway there. Another advantage of data-orieted
development is that, at every turn, it peels away the unnecessary
elements, so you might find that refactoring is more a case of switch-
ing out the order of transforms more than changing how things are
represented. Refactoring normally involves some new data represen-
tation, but as long as you normalise your data, there’s going to be
little need of that. When it is needed, tools for converting from one
schema to another can be written once and used many times.

150 CHAPTER 13. MAINTENANCE AND REUSE

Chapter 14

Design Patterns

14.1 What caused design patterns

Design patterns came about as a way of writing down and trans-
ferring the knowledge gained from experience, originally in archi-
tectural design with the term coined as Patterns by Christopher
Alexander. Software design patterns came about from experience
developing object-oriented software. The new prefixed name was
used in the title of the book Design Patterns: elements of Reusable
Object-Oriented Software released in 1994, and has stuck ever since.

Using design patterns, it was found that the strategies and so-
lutions to common activities and problems could be expressed as a
pattern language of requirement and designs for structuring and the
strategies for actions taken on them. This reusable design would
be too complex to write as a templated function or a library of
reusable code as it describes a solution that would normally require
interfacing with and thinking about how it applies to your partic-
ular situation and code base. The reason why the solution is too
complex to write is not because the problem being solved is complex
in itself, but that the solution is normally rooted in the problem

151

152 CHAPTER 14. DESIGN PATTERNS

domain rather than any specific programming language. However,
the solution is only complex because it roots itself in the represen-
tation provided by the object-oriented language that was used to
bring the design, in this case the problem domain itself, into the
code in order for it to be solved. If the problem was not represented
by objects but instead left as a technical design, then many design
patterns would not be required. This is why when people talk about
software design patterns they have to reference them as elements
of reusable object-oriented design rather than elements of reusable
software engineering.

14.2 Data-Oriented Design Patterns

Even though the original design patterns were elements of reusable
Object-Oriented Design, there is scope for some pattern language
for development given the Data-Oriented approach. Many of the
sections so far have had an air of design pattern about them as
they tend to solve generic problems with one or more generic so-
lutions. This is where we gather and explain all the core patterns
of development that are seen when working with a data-oriented
code base, but always remember, a design pattern is a solution look-
ing for a problem, and that alone is enough reason to be wary. In
data-oriented design, we prefer to use design patterns as they were
initially intended, as a way of communicating between engineers
without needing to describe all the reasoning behind it. These ar-
chitectural design patterns were a kind of written down common
sense, which means in some sense, the data-oriented design patterns
cannot be like these as common sense is often trumped by profiling
or invention. Regardless, the ability to speak a common tongue is
enough to merit trying to define some of the patterns present.

14.2. DATA-ORIENTED DESIGN PATTERNS 153

14.2.1 A to B transform

A stateless function that takes elements from one container and pro-
duces outputs into another container. All variables are constant over
the lifetime of the transform.

The normal way of working and the best way to guarantee that
your output and input tables don’t clash, is to create a new table
and transform into it. The A to B transform is also the basis of dou-
ble buffered state and provides a powerful mechanism for enabling
concurrent processing as you can ensure that A is read only, and
B is write only for the whole time slice. The A to B transform is
the transform performed by shaders and other compute kernels, and
the same conditions apply: constants do not change, local variables
only, globals are considered to be constants, data can be processed
in any order and without any communication to any other element
in the transform.

A to B transforms aren’t expensive unless the row counts change,
and even then you can mitigate those more expensive transforms
with conc-trees and other in place transforms that reduce in the
case of filtering transforms. There are two things to consider when
transforming from one table to another:

Is this a transform to create new, or an updated state? Is this
transform going to significantly change the values before they hit
the output table?

The simplest transform is an update. This allows for concur-
rent state updates across multiple associated systems without cou-
pling. The condition table transform is generally used to signif-
icantly change the values, putting them into a new table with a
different schema, ready for decision transforms. Sometimes a trans-
form will do more than one of these, such as when an update also
emits rows into an event table ready for subscribing entities to react
to a state change on the data.

An important requirement of the transform is that it is stateless.
Transforms operate on data, use constants to adjust how they trans-
form that data, and output in a standardised manner. Some amount

154 CHAPTER 14. DESIGN PATTERNS

of restriction needs to be set up for the transforms to be worth do-
ing, however, and one of those restraints is that the transform must
be stateless. The data has state, but the transforms must not. If
you look at how the design pattern works for existing streaming
transform engines such as GPU shader models, you will see that the
shader constants are uniform across all the elements in one render
call, this allows for easy distribution of work across many different
workers, even on different machines. You can have local working
variables, but you cannot store out to some common location as
that would introduce some coupling, potentially making one part
of a kernel serial in an otherwise completely parallel process. Even
accumulation over successive elements would mean that the input to
one element depended on the output of another, which would imme-
diately cause the whole process to become serial in nature. If you do
this, you are going to break the fundamental parallelisable nature of
the transform process, and with it, doom your code to running only
as fast as one of your workers can handle the data.

14.2.2 In place transform

A stateless function that changes the data in a container based on
constants alone.

There are times when that’s not necessary to create a new table
with a transform. In update calls for many tables, the update can
in place modify rather than run as a double buffered state. The best
way to in place modify can change depending on the layout of the
data and what needs to be done with the data. Always consider how
the data gets into the transform, and how it gets out.

For inputs, make sure you find the optimal way to organise the
pre-fetching so that the transform is never starved of data, for out-
puts, make sure that you write as much as you can in tightly packed
consecutive memory to offer opportunity for write combining. The
majority of cases have the same restrictions and benefits as A to B
transform.

If you are doing in place transforms, always remember to write

14.2. DATA-ORIENTED DESIGN PATTERNS 155

back once at most for each transform, otherwise aliasing rules can
bite, for example, writing to a local accumulator when the type of
the accumulator is the same as a type being read from, then aliasing
may require your accumulator to be re-read every time it is updated.
One way around this is to mark all your elements as restricted,
thus ensuring that the compiler will assume it’s safe to use the last
value without reloading, but this might be vendor specific so test by
looking at the assembly produced before declaring that the restrict
will fix the problems inherent in accumulators or other load-modify-
store values that may be used in in-place transforms.

Another thing to mention is that for both the in-place transform
and the A to B transform, using a structure’s static member is just
as invalid as a global variable.

14.2.3 Generative transform

A function that generates data into an output container based on
an algorithm rather than input data.

Sometimes all you need is some constants and only one small
piece of data to generate a whole new table. If you’ve got to build a
world from scratch, you can generate your map with procedural gen-
erators, but you have to seed a procedural generator and the small
inputs or constants. These are what drives these types of transform.
You don’t need a large input set to drive a file loader, and that
can be considered a generative transform. If you put filenames into
a load-me-please table, and register a reaction transform into the
file-has-loaded event table, then you have a generative function as
your streaming engine. You can write your bootstrap as a genera-
tive transform that introduces elements into multiple tables. If this
transform is a script, then you have the basis for a completely data-
driven development. If instead of a filename you provide a seed and
expect to get back a chunk of terrain, whether by pure procedural
generation, or loading, or some combination, then you have the ba-
sis for a distributed processing landscape system. In the chapter on
hierarchical level of detail, the just-in-time memento that provides

156 CHAPTER 14. DESIGN PATTERNS

some style for a previously non-existent entity can be considered a
generative transform. Taking an ID and generating a coherent col-
lection of attributes that conforms to other constraints that might
be present such as district, time of day, difficulty setting, or level of
player.

14.2.4 Sorted Table

A container that keeps itself sorted, tunable for different circum-
stances including only sorting a small subset.

A table that is only ever read after sorting can attempt to keep
track of changes rather than sort before use. If the table needs
to stay sorted no matter what, it can generate indexes with which
it reorders the table on transform. There is hardly ever a good
reason to explicitly sort a table, and usually there are better ways
to organise data than sorted. Binary searches don’t work as well in
practice as b-trees due to the cache-friendly operations.

14.2.5 Multi sorted table

A container that keeps multiple sorted representations of itself avail-
able, tunable for circumstances including sorting different subsets
based on different criteria.

Much like the sorted table, but when a table has multiple queries
all requiring different sorting algorithms, then it’s better to give up
and only use indirection via indexes according to what order each
query requires. This is similar to how databases add indexes for
each column that requests it.

14.2.6 Gatherer

A method by which large tasks can be split off into multiple parallel
tasks and can then be reduced back into one container for further
processing.

14.2. DATA-ORIENTED DESIGN PATTERNS 157

When you run concurrent processes, but you require the output
to be presented in one table, there is a final stage of any transform
that turns all the different outputs into one final output. You can
reduce the amount of work and memory taken up by using the con-
catenate function and generate a table that is a conc-tree, or you
can use a gather transform. A gather transform has as many inputs
as you have parallel tasks leading into the final output table, and
each input is a queue of data waiting to enter the final transform.
As long as the data is not meant to be sorted, then the gatherer
can run while the concurrent transforms are running, peeling the
transformed rows out of the processes independent output queues,
and dropping them into the final output table. This allows for com-
pletely lockless parallelism of many tasks that don’t require the data
to be in any particular order at the final stage.

If the gatherer is meant to produce the final table in the same
order as the input table then you will need to pre-parse the data or
have the gatherer use a more complex collating technique. When
you pre-parse the data you can produce a count that can be used
to initialise the output positions making the output table secure for
the processing transforms to write directly into it, but if there is no
way to pre-parse the data, then gatherer might need to co-operate
with the task scheduler so that the processes are biased to return
ealier work faster, making final collation a just in time process for
the transfer to the next transform.

14.2.7 Tasker

When a container is very large, break off pieces and run transforms
as concurrent tasks.

When you have a single large table, you can transform it with
one transform, or many. Using a tasker to fake multiple independent
tables allows for concurrent transforming as each transform can han-
dle their specific part of the input table without having to consider
any of the other parts in any way.

158 CHAPTER 14. DESIGN PATTERNS

14.2.8 Dispatcher

Rather than switch which instructions to run based on data in the
stream, prefer producing new tables that can each be transformed
more precisely.

When operating on data, sometimes the transform is dependent
on the data. Normally any enumerable types or booleans that imply
a state that can change what transform is meant to run are hidden
behind existence based processing tables, but sometimes it’s good
to store the bool or enum explicitly for size sake. When that is the
case, it can be beneficial to pre-process a table and generate a job
table, a table with a row for each transform that is meant to be run
on the data.

A dispatcher takes on input table and emits into multiple tables
based on the data. This allows for rapid execution of the tasks
without the overhead of instruction cache misses due to changing
what instructions are going to be run based on the data as all the
instructions are collected into each of the job tables.

14.3 Existing design patterns

Most of the Object-oriented design patterns aren’t necessary in data-
oriented development, but explaining why can be useful for migrat-
ing from the object-oriented way of working. Even though design
patterns are founded in the world of object-oriented development,
some design patterns have mirrors in the data-oriented world. Some-
times this is because the functionality is incredibly simple (such as
with the factory), or because the design pattern is emulated by basic
functionality of the data-oriented technique (such as flyweight).

14.3.1 Abstract Factories

The requirement for abstract factories comes from needing to gen-
erate new objects based on an overall scheme. This means creation
can now be dependent on two data values: the first is the scheme,

14.3. EXISTING DESIGN PATTERNS 159

the second is the type requested for creation. This inherently object-
oriented design problem stems from the desire to reuse code to drive
object creation, but as C++ stops you from using objects by their
features unless already declared in some way, it is hard to retroac-
tively apply old creation techniques to new types. Normally we set
up our classes by inheriting from an abstract base class so we can
later provide new classes under new creation objects. The abstract
factory is the eventual extension of allowing the creation function to
be chosen at runtime based on the type of object required (which
is statically checked) and the scheme or style of the object (which
is dynamically calculated by the abstract factory), so choosing the
right concrete factory object to create your new object.

When writing component entity systems, this is the equivalent
of having components being inserted into an entity based on two
dimensional data. The fact that a component of a certain type needs
creating (the create call) is emulated by the row in the component
create table, and the abstract factory calling into a concrete factory
is emulated by the value causing the create call to be dispatched to an
appropriate final factory table. Only once it has been dispatched to
the right table does it get inserted into the final concrete component
table.

This pattern is useful for multi-platform object-oriented devel-
opment where you might have to otherwise refactor the internals
of your object creators, but with a component driven approach, you
can switch your output tables, transforms, or complete tree of trans-
forms without losing consistency where it is necessary.

14.3.2 Builder

The builder pattern is all about wrapping up collections of reusable
low-level parts of a complex transform in order to provide a tool kit
for macro scale programming within a problem domain. The builder
pattern is used when you want to be able to switch which tool-kits
are used, thus providing a way of giving a high level program the
ability to direct the creation of objects through the interface of a

160 CHAPTER 14. DESIGN PATTERNS

collection of tools.

This can be seen to parallel the tool-kit of transforms you tend
to build when developing with tables. With a data-oriented func-
tional programming approach, we don’t immediately call builders,
but instead generate the necessary build instructions that can then
dispatched to the correct parallel processes where possible before
being reduced into the final data. Usually the builders are state-
less transforms that convert the request to build into data outputs,
or take a small amount of input data and build it into larger or
translated output.

Once you work out that the builder pattern is mostly a rewording
of procedural reuse with the addition of switching which procedures
are called based on a state in a larger scope, it is easy to see why
the pattern is applicable in all programming paradigms.

14.3.3 Factory Method

The factory method allows for data controlled choice of what is cre-
ated. This is mirrored well in the component driven programming
model, as all components are created via predictably called func-
tions, but whether they are called is down to the data. Rather than
a method, we use creation tables. Instances of entities and compo-
nents are created when the system gets around to updating those
tables. The creation request table contains the same arguments as
the factory method, so the type and its arguments are used in that
table update to cause an insert into the component or entity table.
There is never any in-place creation, as there is never any need of
it. Anything too complex to create as part of the output from a
single transform deserves the attention of an explicit creation, and
also will find it hard to mitigate the cost of creation out of the order
of normal object creation, so will be less tempted to trash the in-
struction cache or derail the flow of the game for a special case like
we find frequently in object-oriented development.

14.3. EXISTING DESIGN PATTERNS 161

14.3.4 Prototype

The prototype pattern makes a lot of sense in an object-oriented code
base, as the ability to generate more class instances from another
class, only to modify it slightly before releasing it as finished almost
gives you the flexibility to generate new classes at run-time, but any
flexibility still has to be built into the classes before they can be used
as the classes can only inherit from types existing at compile time.
Some Object-oriented languages do let you generate new features at
run-time but C++ doesn’t allow for it without considerable coercion.

The existence-based-processing way of working stops you from
creating a prototype as its existence would imply that it is in the
game. There is no place to hide a prototype. But, there is also
little call for it as creating a prototype is about creating from a plan
of sorts, and because all the component creation can be controlled
via read-only or just-in-time mementos, its very easy to make new
classes with their components defined and specialised without re-
sorting to hacks like keeping in memory a runtime template for a
class you might need later. Unlike the object-oriented prototype,
the component system memento does not have all the feature of the
final component set, it only has the features of a creation data-type
and thus fit’s its purpose more purely. It cannot accidentally be
used and damaged in the way prototypes can, for example, proto-
types can be damaged by global update functions that accidentally
modified the state. Because the only difference between a prototype
and the runtime instance is whether the program knows that they
are prototypes, it’s hard to secure them against unwanted messages.

14.3.5 Singleton

There is no reason to think that a single instance of a piece of data
has any place in a data-oriented development. If the data is definitely
unique, then it deserves to be exposed as a system wide global. It
is only when globals are used for temporary store that they become
dangerous. Singletons are an inherently object-oriented solution to

162 CHAPTER 14. DESIGN PATTERNS

a problem that only persists if you truly want to write platform igno-
rant code. Initialising and deinitialising managers in specific order
for component managers, or for hardware or dependency sake can
just as easily be managed explicitly, and is less prone to surprising
someone. When you change the initialisation order accidentally by
referencing a singleton, that reference won’t be seen as changing the
order of initialisation and it has been seen to cause quite difficult to
debug when the effect of the change in order is subtle enough to not
crash immediately.

14.3.6 Adapter

An adapter provides an API wrapper around an otherwise incom-
patible class. Classes have their APIs locked down after they are
created. If two classes that need to work with each other come from
third party software libraries, the likelihood of them being naturally
compatible is low to non-existent. An adapter wraps the callee class
in a caller friendly API. The adapter turns the caller class friendly
API calls into callee class friendly API calls.

When writing programs data-oriented, most data is structs of
arrays or tables. In data-oriented development there is no reason for
an adapter, as in the first case, a transform can easily be made to
take arguments of the specific arrays used, and in the second case,
the transform would normally take two or more schema iterators that
traversed the table providing arguments to and capturing outputs
from the transform. In a sense, every table transform iterator is an
adapter because it converts the explicit form of the table into the
explicit form accepted by the transform.

Finally, data itself has no API, and thus the idea of an adapter is
not appropriate as there is nothing to adapt from, so this relegates
the idea to the concept of transforming the data so it can be provided
to third party libraries. Preparing data for external processes is part
of working with other code, and is one of the prices you pay for not
having full control of the source code. The adapter pattern doesn’t
help this in any way, only provides a way of describing the inevitable.

14.3. EXISTING DESIGN PATTERNS 163

14.3.7 Bridge

The bridge pattern is an object-oriented technique for providing en-
capsulation from implementation when the class’s implementation
is the functionality that derived classes use to get by in their world.
For example, the platform specific code for an object can be privately
owned by the parent class, and the concrete class can derive from
that class. Then, it can use the implementation of it’s parent class,
but the implementation of the parent class member functions can be
indirectly implemented differently depending on the platform. This
way, the child class can call its parent’s functions to do what it needs
to do, while the parent class can call the implementation’s functions
which can be defined at runtime or compile time depending on what
level of polymorphism is required.

Because all platform specific functionality is defined inside trans-
forms and the way in which they are called, there is no reason to
consider this pattern for platform independent reasons. All that is
needed to benefit from the side effect of using this pattern is to recog-
nise the boundary between platform specific transforms and platform
independent transforms. For situations where the parent class imple-
mentation differs from instance to instance, you only need to notice
that components can be different, yet still register with the same
events. This means, any differing implementations required can be
added as additional components which register into the same event
tables as the existing components and replace those on creation as
part of the different creation sequence.

Also, transforms that take data and do with it something plat-
form specific would be written statically for each platform. This
kind of object-oriented approach to everything can be what gives
object-oriented development such a bad name when it comes to per-
formance. There’s not really any benefit to making your choice of
implementation a runtime polymorphic call when the call can only
ever be to one concrete method per platform as, at least in C++,
there is not such thing as platform independent builds. For C#, it
can be different, but the benefit of doing it is just the same, you

164 CHAPTER 14. DESIGN PATTERNS

only benefit very slightly when it comes to readability in the code,
but you lose on every call at runtime.

14.3.8 Composite

Unlike it’s programming namesake, the composite pattern is not
about an object being made out of multiple other classes by owning
them in the implementation. The composite pattern is the idea
that an object that is part of a system can be identified as a single
object, or as a group of objects. Usually, a game entity references one
renderable unit with a single AI instance, which is why this pattern
can be useful. If an enemy unit class can represent a single unit, or
a squad of units, then it becomes easier to manage commands in a
real time strategy game, or organise AI path finding.

When you don’t use objects, the level of detail of individual parts
of entities are not so hard tied to each other as the entities are not
objects. When you design your software around objects you get
caught up thinking about each object as being indivisible, and thus
the composite pattern lets you at least handle objects in groups. If
you don’t limit your data by tying it to objects, then the pattern is
less useful as you can already manipulate the data by group in any
way you require.

14.3.9 Decorator

The decorator acts much like adding more components to an entity.
Their effect comes online when their existence marks their necessity.
Decorators add features, which is exactly like the entity components
with their ability to add attributes and functionality to a referenced
entity.

14.3.10 Façade

Even though there are no tangled messes of interacting objects in
the data-oriented approach, sometimes it might be better to channel

14.3. EXISTING DESIGN PATTERNS 165

data through a simpler set of streams. This could be considered to
offer the same smaller surface area that the façade offers.

14.3.11 Flyweight

The flyweight pattern offers a way to use very fine grain elements in
the same way it uses larger constructs. In data-oriented development
there is no need to differentiate between the two, as there is no
inherent overhead in interfacing data in a data-oriented manner. The
reason for a flyweight is similar to the reason for the bridge pattern,
once you start thinking object-oriented and want to keep your whole
codebase working like that, you can end up painting yourself into a
corner about it and start adding objects to everything, even things
that are too small or fragile for such a heavy handed, human centric
way of seeing and manipulating the data.

14.3.12 Proxy

In a sense, the proxy pattern is much like the level of detail system
in most games. You don’t load final assets until you are near enough
to need them. This topic was fully covered in chapter 4.

14.3.13 Chain Of Responsibility

The only problem with the chain of responsibility is that in most
implementations it is inherently serial for all the possible recipients
interested in responding to it. If we remove the possibility of the
event being marked as handled, then the pattern is better handled
through existence based processing than through object-oriented de-
sign, as existence-based-processing offers a way to subscribe at mul-
tiple points in the same entity with different components wanting
to respond to different parts of a new event. If you want to enable
such things as marking as handled, then it might be better to have a
responsibility table for each message or event type with a dispatcher
heading off the message before it hits the general message queue.

166 CHAPTER 14. DESIGN PATTERNS

14.3.14 Command

This is realised fully when using tables to initiate your actions. All
actions have to exist as a row in a table at some point, usually as a
condition table row in the first place.

14.3.15 Interpreter

This design pattern doesn’t seem very well suited to Object-oriented
programming at all, though it is rooted in data driven flow control.
The problem with the interpreter is it seems to be the design pattern
for parsers, but doesn’t add anything in itself.

14.3.16 Iterator

Although the table iterators that convert table schema into trans-
form arguments are iterators, they don’t fit into the design pattern
because they are a concrete solution to iterating over tables. There
is no scope for using them for arguments to functions or using them
to erase elements and continue, they are stateful, but restricted to
their one job. However, because there are no containers in table
oriented solutions other than the tables, we can safely ignore true
iterators as a design. In a stream based development, iterators are
so common and pure, they don’t really exist in the design pattern
sense.

14.3.17 Mediator

The mediator can be thought of as a set up involving attaching
event transforms to table updates. When a table entry updates,
the callback can then inform the other related tables that they need
to consider some new information. However, this data hiding and
decoupling is not as necessary in data-oriented development as most
solutions are considering all the data and thus don’t need to be
decoupled at this level.

14.3. EXISTING DESIGN PATTERNS 167

14.3.18 Memento

Stashing a compressed state in a table is very useful when changing
level of detail. Much was made of this in count lodding. Mementos
also provide a mechanism for undoing changes, which can be essen-
tial to low memory usage network state prediction systems, so they
can rollback update, and fast forward to the new predicted state.

14.3.19 Null Object

A null object is a pattern to stop unnecessary branching and checking
when a fetch operation returns a class instance. If the instance
was null, then returning the null object allows the calling code to
continue on as if it had received a valid object. This is unnecessary
in table driven processing scenarios as the transforms run over data.
There is no chance for a transform to run into a null pointer as
pointers are banned in general.

14.3.20 Observer

The publish and subscribe model presented in the table based event
system is an observer pattern and should be used whenever data
relies on some other data. The observer patter is high latency, but
provides for callbacks, event handling, and job starting. In most
games there will be an observer registry for the frame sync, the
physics tick, the AI tick and for any IO completion. User defined
callback tables will be everywhere, including how many finite state
machines are implemented.

14.3.21 State

Data controlling the flow of the program is considered an anti-
pattern in data-oriented development, so this design pattern is to
be understood, and never used in the way it is presented. Instead,
have your state be implicitly defined by the table in which your

168 CHAPTER 14. DESIGN PATTERNS

entity resides. Using table existince to drive the transform that is
called is the basis of finite state machine update, if not the alphabet
response.

This design pattern is highly dangerous for any game that wants
to run at high speed with a high entity count.

14.3.22 Strategy

14.3.23 Template Method

The template method can still be used but overriding the calls by
removing the template callbacks and adding the specific new call-
backs would be how you organise the equivalent of overriding the
virtual calls.

14.3.24 Visitor

The visitor pattern would be fine if it were not for the implicit al-
lowance for it to be stateful. If the visitor was not allowed to accu-
mulate during it’s structure traversal, then it would be an in-place
transform. By not defining it as a stateless entity, but a stateful ob-
ject that walks the container, it becomes an inherently serial, cache
unfriendly container analyser. This pattern in particular is quoted
by people who don’t understand the fundamental requirements of a
transform function. If you talk to an Object-Oriented programmer
about taking a list of data and doing a transform on it, they will
tend to mention it as the visitor patter because there is a tendency
to fit solutions to problems with design patterns. The best way to
define a visitor pattern is an object that changes state based on the
incoming data. The final state is dependent on the order in which
the data is given to the visitor, thus it is a serial operation. The
best analogy to a transform is not compatible with a visitor because
a transform pattern denies the possibility of accumulation.

14.4. LOCKING OUT ANTI-PATTERNS 169

14.4 Locking out anti-patterns

In addition to the design patterns, the elements of reusable object-
oriented software, there are also the anti-patterns, the elements of
miserable software. Sometimes a particularly bad way of doing some-
thing turns up way more often than it should, and when it does, it
begins to get a name for itself. data-oriented development helps re-
duce these by both not being as complex to begin with because the
problem domain is not dragged into a new language of objects, nor
does it have objects themelves, which can cause multiple problems
due to their sometimes coarse and sometimes too fine nature.

14.4.1 Abstraction Inversion

Abstraction inversion is when some internal functions of a class are
kept hidden, but they are useful, so an external developer has to
reinvent those internal functions as external functions by using only
the public interface, which itself will probably be using the internal
functions these new external functions are trying to replicate. Do
this enough times with even the simplest of classes and you can
explode the amount of work required to do a simple job.

As there is no inherent data or function hiding during data-
oriented development, there can be no barrier to using the functions
or the transforms that you want to use.

14.4.2 Acme Pattern / God Class

One giant class that runs the show. One very large data clump that
is almost certainly a mess when it comes to organising the data by
when it is accessed. Because there are no objects and we normalise
our data, this anti-patterns becomes relatively difficult to experience.
There is still the chance that someone might try to implement a nosql
version of data-oriented development, but even if they do, most of
the problems go away under struct of arrays. When it comes to the

170 CHAPTER 14. DESIGN PATTERNS

problem of all the methods in one class, then we know we’re fine as
there are no such boundaries.

14.4.3 CObject / Cosmic Hierarchy

Almost the pure opposite of the God Class, the CObject does noth-
ing, and is inherited whether directly or indirectly by everything.
Many game engines have a concept of an entity or an object, but
they generally don’t keep it pure out of good practice. The threat of
starting a cosmic hierarchy has reduced the chance of people mak-
ing another CObject. The idea that everything comes from a base
object class tends to encourage hard to read code. Code that di-
vines the type of object before use suffers from overly long preamble
in functions, and suffers from runtime type checking overhead. It’s
common knowledge that the preamble code - such things as ”if type
== foo” or checks for NULL - or the runtime type checking aren’t
overly expensive. This common knowledge has long outlived its lifes-
pan though, and is provably a lie.

At the root of a lot of object-oriented entity systems lies a core
class to which everything can be cast. This usually leads to lots
of problematic code that costs cycles and can cause bugs by not
correctly identifying itself.

In data-oriented development there is no Cosmic base class, even
entities in an entity system only refer to entities. Each component
will have a manager, and the idea of any component sharing some
common core with another component goes so far away from the
point of separating an entity into components that you should be
hard pressed to find something that commits this anti-pattern.

14.4.4 Hidden Requirements

Sometimes a basic design change is required by a long standing re-
quirement accidentally omitted from the original and all subsequent
design documents. In object-oriented development, making a refac-
tor at a late stage is very costly as object contracts can be hard to

14.5. GAME DEVELOPMENT PATTERNS 171

adjust without causing a very large amount of related changes to all
the code that touches the changed class.

Luckily, in data-oriented development, changing everything does
not get much harder the longer the project continues because there
are documented tools and techniques for making large scale schema
changes in database technologies, and table based development can
reap benefits there by literally implementing the same migrational
tool-chain that is used in those circumstances.

14.4.5 Stovepipe

The more that bugs are fixed and corner cases are added, the harder
it can be to refactor an existing Object-oriented codebase. This is
not as true in data-oriented as towards the end of a project the
difficultly in refactoring the design should be mitigated by the un-
derstanding and transparency of the whole program.

14.5 Game Development Patterns

The Game/Session/Level/Entity hierarchy still applies, and can be
gathered accurately as part of the data flow analysis done during the
early stages of design iteration. If you use tables for most of your
data, then you will find that each layer has a set of tables.

Tick or update scheduling is normally necessary in order to main-
tain data scheduling, but as the data flow is paramount in data-
oriented development, there is no need for a dedicated scheduler.
In fact, the sequences of transforms replace the scheduler normally
found in games by having a cascade of dependencies play out in the
instance of a new frame being rendered. A frame buffer swap is an
event that begins a new sequence of processes. In some games this
could be the gathering of controller updates followed by physics and
logic updates, finally culminating in an update of the renderable
scene.

172 CHAPTER 14. DESIGN PATTERNS

Double and Triple Buffering, which is normally the only way of
getting near a good framerate, by processing multiple stages over
multiple frames, may not need to happen so much as it does with
object-oriented code as data-oriented code is much more parallelis-
able, so doesn’t have the long critical path between input and render-
ing output. Removing multiple serial points can drastically reduce
your overall gameplay feedback latency.

Chapter 15

What’s wrong?

What’s wrong with Object-Oriented Design? Where’s the harm in
it?

Over the years, games developers have taught themselves to write
a style of C++ that is so unappealing to any current or future hard-
ware, that the managed languages don’t seem all that much slower
in comparison. The current pattern of usage of C++ in games de-
velopment is so appallingly mismatched to current console hardware
that it is no wonder that an interpreted language is only in the re-
gion of 50% slower under normal use and sometimes faster1 in their
specialist areas. What is this strange language that has embedded
itself into the minds of C++ games developers? What is it that
makes the fashionable way of coding games one of the worst ways of
making use of the machines we’re targeting? Where, in essence, is
the harm in game-development style object-oriented C++?

1http://keithlea.com/javabench/ tells the tale of the server JVM being faster
than C++. There’s some arguments against the results, but there’s others that
back it up. Read, make up your own mind.

173

174 CHAPTER 15. WHAT’S WRONG?

15.1 The Harm

Virtuals don’t cost much, but if you call them a lot it can add up.
aka - death by a thousand papercuts

The overhead of a virtual call is negligible under simple inspec-
tion. Compared to what you do inside a virtual call, the extra
dereference required seems petty and very likely not to have any
noticeable side effects other than dereference and the extra space
taken up by the virtual table pointer. The extra dereference before
getting the pointer to the function we want to call on this particular
instance seems to be a trivial addition, but lets have a closer look
at what is going on.

Firstly, we have a pointer to a class that has derived from a base
class with virtual methods. This instantly adds the virtual table
pointer as the implicit first data member of the class. Obviously,
there is no way around this, it’s in the language specification that the
data layout be partially up to the compiler so it can implement such
things as virtual methods by adding hidden members and generating
new arrays of function pointers behind the scenes. If we try to call
a virtual method on the class we have to read the first data member
in order to access the right virtual table for calling. This requires
loading from the address of the class into a register and adding an
offset to the loaded value. Every virtual method call is a lookup into
a table, so in the compiled code, all virtual calls are really function
pointer array dereferences, which is where the offset comes in. It’s
the offset into the array of function pointers. Once the address of
the real function pointer is generated, it is loaded into a register,
then used to chance the program counter, via a branch instruction.

For multiple inheritance it is slightly more convoluted.
So let’s count up the actual operations involved in this method

call: first we have a load, then an add, then another load, then a
branch. To almost all programmers this doesn’t seem like a heavy
cost to pay for runtime polymorphism. Four operations per call
so that you can throw all your game entities into one array and
loop through them updating, rendering, gathering collision state,

15.1. THE HARM 175

spawning off sound effects. This seems to be a good trade off, but
it was only a good trade off when these particular instructions were
cheap.

Two out of the four instructions are loads, which don’t seem like
they should cost much, but in actual fact, unless you hit the cache, a
load takes around 600 cycles on modern consoles. The add is cheap,
to modify the register value to address the correct function pointer,
but the branch is not always cheap as it doesn’t know where it’s going
until the second load completes. This could cause cache miss in the
instructions. All in all, it’s common to see around 1800 cycles wasted
due to a single virtual call in any significantly large scale game. In
1800 cycles, the floating point unit alone could have finished naively
calculating over fifty dot products, or up to 27 square roots. In the
best case, the virtual table pointer will already be in memory, the
object type the same as last time, so the function pointer address will
be the same, and therefore the function pointer will be in cache too,
and in that circumstance it’s likely that the unconditional branch
won’t stall as the instructions are probably still in the cache too.
But this best case is fairly uncommon.

The implementation of C++ doesn’t like how we iterate over
objects. The standard way of iterating over a set of heterogeneous
objects is to literally do that, grab an iterator and call the virtual
function on each object in turn. In normal game code, this will
involve loading the virtual table pointer for each and every object.
This causes a wait while loading the cache line, and cannot easily
be avoided. Once the virtual table pointer is loaded, it can be used,
with the constant offset (the index of the virtual method), to find the
function pointer to call, however due to the size of virtual functions
commonly found in games development, the table won’t be in the
cache. Naturally, this will cause another wait for load, and once this
load has finished, we can only hope that the object is actually the
same type as the previous element, otherwise we will have to wait
some more for the instructions to load.

The reason virtual functions in games are large is that games
developers have had it drilled into them that virtual functions are

176 CHAPTER 15. WHAT’S WRONG?

okay, as long as you don’t use them in tight loops, which invariably
leads to them being used for more architectural considerations such
as hierarchies of object types, or classes of solution helpers in tree
like problem solving systems (such as path finding, or behaviour
trees).

In C++, classes’ virtual tables store function pointers by their
class. The alternative is to have a virtual table for each function and
switch function pointer on the type of the calling class. This works
fine in practice and does save some of the overhead as the virtual
table would be the same for all the calls in a single iteration of a
group of objects. However, C++ was designed to allow for runtime
linking to other libraries, libraries with new classes that may inherit
from the existing codebase, and due to this, there had to be a way to
allow a runtime linked class to add new virtual methods, and have
them able to be called from the original running code. If C++ had
gone with function oriented virtual tables, the language would have
had to runtime patch the virtual tables whenever a new library was
linked whether at link time for statically compiled additions, or at
runtime for dynamically linked libraries. As it is, using a virtual
table per class offers the same functionality but doesn’t require any
link time or runtime modification to the virtual tables as the ta-
bles are oriented by the classes, which by the language design are
immutable during link time.

Combining the organisation of virtual tables and the order in
which games tend to call methods, even when running through lists
in a highly predictable manner, cache misses are commonplace. It’s
not just the implementation of classes that causes these cache misses,
it’s any time the instructions to run are controlled by data loaded.
Games commonly implement scripting languages, and these lan-
guages are often interpreted and run on a virtual machine. However
the virtual machine or JIT compiler is implemented, there is always
an aspect of data controlling which instructions will be called next,
and this causes branch misprediction. This is why, in general, inter-
preted languages are slower, they either run code based on loaded
data in the case of bytecode interpreters, or they compile code just

15.2. MAPPING THE PROBLEM 177

in time, which though it creates faster code, causes cache misses and
thrashing of its own.

When a developers implements and Object-oriented framework
without using the built-in virtual functions, virtual tables and this
pointers present in the C++ langauge, it doesn’t reduce the chance
of cache miss unless they use virtual tables by function rather than
by class. But even when the developer has been especially careful,
the very fact that they are doing Object-oriented programming with
games developer access patterns, that of calling single functions on
arrays of heterogeneous objects, they are still going to have the same
cache misses as found when the virtual table has survived the call
into the object. That is, the best they can hope for is one less cache
miss per virtual call. That still leaves the opportunity for two cache
misses, and an unconditional branch.

So, with all this apparent inefficiency, what makes games devel-
opers stick with Object-oriented coding practices? As games devel-
opers are frequently cited as a source of how the bleeding edge of
computer software development is progressing, why have they not
moved away wholesale from the problem and stopped using Object-
oriented development practices all together?

15.2 Mapping the problem

Objects provide a better mapping from the real world description of
the problem to the final code solution.

Object-oriented design when programming in games starts with
thinking about the game design in terms of entities. Each entity
in the game design is given a class, such as ship, player, bullet, or
score. Each object maintains its own state, communicates with other
objects through methods, and provides encapsulation so when the
implementation of a particular entity changes, the other objects that
use it or provide it with utility do not need to change. Games devel-
opers like abstraction as historically, they have had to write games

178 CHAPTER 15. WHAT’S WRONG?

for not just one target platform, but usually at least two. In the past
it was between console manufacturers, and now even games develop-
ers on the PC have to manage both Windows(tm) and MacOS(tm)
platforms. The abstractions in the past were mostly hardware ac-
cess abstractions, and naturally some gameplay abstractions as well,
but as the game development industry matured, we found common
forms of abstractions for areas such as physics, AI, and even player
control. Finding these common abstractions allowed for third party
libraries, and many of these use Object-oriented design as well. It’s
quite common for libraries to interact with the game through agents.
These agent objects contain their own state data, whether hidden or
publicly accessible, and provide functions by which they can be ma-
nipulated inside the constraints of the system that provided them.
The game design inspired objects (such as ship, player, level) keep
hold of agents and use them to find out what’s going on in their
world. A player object might use their physics agent to find out
where they are going to be, and what is possible given where they
are, and using their input agent, find out the player’s intention, and
in return providing some feedback to their physics agent about the
forces, and information to their animation agent about what ani-
mations they need to play. A non-player character could mediate
between the world physics agent and its AI agent. A car object
could contain references to physics data for keeping it on the road,
and also runtime modifiable rendering information can be chained
to the collision system to show scratches and worse.

The entities in Object-oriented design are containers for data and
a place to keep all the functions that manipulate that data. Don’t
confuse these entities with those of entity systems, as the entities
in Object-oriented design are immutable over their lifetime. An
Object-oriented entity does not change class during its lifetime in
C++ because there is no process by which to reconstruct a class
in place in the language. As can be expected, if you don’t have
the right tools for the job, a good workman works around it. Games
developers don’t change the type of their objects at runtime, instead
they create new and destroy old in the case of a game entity that

15.2. MAPPING THE PROBLEM 179

needs this functionality.
For example, in a first person shooter, an object will be declared

to represent the animating player mesh, but when the player dies,
a clone would be made to represent the dead body as a rag doll.
The animating player object is made invisible and moved to their
next spawn point while the dead body object with its different set of
virtual functions, and different data, remains where the player died
so as to let the player watch their dead body. To achieve this sleight
of hand, where the dead body object sits in as a replacement for
the player once they are dead, copy constructors need to be defined.
When the player is spawned back into the game, the player model
will be made visible again, and if they wish to, the player can go
and visit their dead clone. This works remarkably well, but it is a
trick that would be unnecessary if the player could become a dead
rag doll rather than spawn a clone of a different type. There is
inherent danger in this too, that the cloning could have bugs, and
cause other issues, and also that if the player dies but somehow is
allowed to resurrect, then they have to find a way to convert the rag
doll back into the animating player, and that is no simple feat.

Another example is in AI. The finite state machines that run
most game AI maintain all the data necessary for all their potential
states. If an AI has three states, { Idle, Making-a-stand, Fleeing-
in-terror } then it has the data for all three states. If the Making-
a-stand has a scared-points accumulator for accounting their fear,
so that they can fight, but only up until they are too scared to
continue, and the Fleeing-in-terror has a timer so that they will flee,
but only for a certain time, then Idle will have these two unnecessary
attributes as well. In this trivial example, the AI class has three data
entries, { state, how-scared, flee-time }, and only one of these data
entries is used by all three states. If the AI could change type when
it transitioned from state to state, then it wouldn’t even need the
state member, as that functionality would be covered by the virtual
table pointer. The AI would only allocate space for each of the state
tracking members when in the appropriate state. The best we can
do in C++ is to fake it by changing the virtual table pointer by

180 CHAPTER 15. WHAT’S WRONG?

hand, or setting up a copy constructor for each possible transition.
This implementation detail does not cost much, can be worked

around, but when it does, it bends if not breaks the standard way
of doing Object-oriented development in C++.

Apart from immutable type, Object-oriented development also
has a philosophical problem. Consider how humans perceive objects
in real life. There is always a context to every observation. The
humble table, when you look at it, you may see it to be a table with
four legs, made of wood and modestly polished. If so, you will see
it as being a brown colour, but you will also see the reflection of
the light. You will see the grain, but when you think about what
colour it is, you will think of it as being one colour. However, if you
have the training of an artist, you will know that what you see is
not what is actually there. There is no solid colour, and if you are
looking at the table, you cannot see its precise shape, but only infer
it. If you are inferring that it is brown by the average light colour
entering your eye, then does it cease to be brown if you turn off the
light? What about if there is too much light and all you can see is
the reflection off the polished surface? If you look at its rectangular
form from one of the long sides, then you will not see right angle
corners, but instead a trapezium. We automatically classify objects
when we see them, apply our prejudices to them and lock them down
to make reasoning about them easier. This is why Object-oriented
development is so appealing to us. However, what we find easy to
consume as humans, is not optimal for a computer. When we think
about game entities being objects, we think about them as wholes.
But a computer has no concept of objects, and only sees objects
as being badly organised data and functions organised for maximal
cache abuse.

If you take another example from the table, consider the table
to have legs about three feet long. That’s a standard table. If the
legs are only one foot long, it could be considered to be a coffee
table. Short, but still usable as a place to throw the magazines
and leave your cups. But when you get down to one inch long
legs, it’s no longer a table, but instead just a large piece of wood

15.2. MAPPING THE PROBLEM 181

with some stubs stuck on it. We can happily classify the same item
but with different dimensions into three distinct classes of object.
Table, coffee table, lump of wood with some little bits of wood on
it. But, at what point does the lump of wood become a coffee table?
Is it somewhere between 4 and 8 inch long legs? This is the same
problem as presented about sand, when does it transition from grains
of sand, to a pile of sand? How many grains are a pile, are a dune?
The answer must be that there is no answer. The answer is also
helpful in understanding how a computer thinks. It doesn’t know
the specific difference between our human classifications because to
a certain degree even humans don’t.

In most games engines, the Object-oriented approach leads to a
lot of objects in very deep hierarchies. A common ancestor chain for
an entity might be: PlayerEntity → CharacterEntity → MovingEn-
tity → PhysicalEntity → Entity → Serialisable → ReferenceCounted
→ Base.

These deep hierarchies virtually guarantee you’ll never have a
cache hit when calling virtual methods, but they also cause a lot
of pain when it comes to cross-cutting code, that is code that af-
fects or is affected by concerns that are unrelated, or incongruous
to the hierarchy. Consider a normal game with characters moving
around a scene. In the scene you will have characters, the world,
possibly some particle effects, lights, some static and some dynamic.
In this scene, all these things need to be rendered, or used for ren-
dering. The traditional approach is to use multiple inheritance or
to make sure that there is a Renderable base class somewhere in
every entity’s inheritance chain. But what about entities that make
noises? Do you add an audio emitter class as well? What about
entities that are serialised vs those that are explicitly managed by
the level? What about those that are so common that they need
a different memory manager (such as the particles), or those that
only optionally have to be rendered (like trash, flowers, or grass in
the distance). Traditionally this has been solved by putting all the
most common functionality into the core base class for everything
in the game, with special exceptions for special circumstances, such

182 CHAPTER 15. WHAT’S WRONG?

as when the level is animated, when a player character is in an intro
or death screen, or is a boss character (who is special and deserves
a little more code). These hacks are only necessary if you don’t
use multiple inheritance, but when you use multiple inheritance you
then start to weave a web that could ultimately end up with virtual
inheritance, and that can cause some serious performance overhead
as it has to figure out a lot more than just where the virtual table is.
The compromise almost always turns out to be some form of cosmic
base class anti-pattern.

Object-oriented development is good at providing a human ori-
ented representation of the problem in the source code, but bad at
providing a machine representation of the solution. It is bad at pro-
viding a framework for creating an optimal solution, so the question
remains: why are games developers still using Object-oriented tech-
niques to develop games? It’s possible its not about better design,
but instead about make it easier to change the code. It’s common
knowledge that games developers are constantly changing code to
match the natural evolution of the design of the game, right up un-
til launch. Does Object-oriented development provide a good way
of making maintenance and modification simpler or safer?

15.3 Internalised state

Encapsulation makes code more reusable. It’s easier to modify the
implementation without affecting the usage. Maintenance and refac-
toring become easy, quick, and safe.

The idea behind encapsulation is to provide a contract to the
person using the code rather than providing a raw implementation.
In theory, well written Object-oriented code that uses encapsulation
is immune to damage caused by changing how an object manipu-
lates its data. If all the code using the object complies with the
contract and never directly uses any of the data members without
going through accessor functions, then no matter what you change

15.3. INTERNALISED STATE 183

about how the class fulfils that contract, there won’t be any new
bugs introduced by change. In theory, the object implementation
can change in any way as long as the contract is not modified, but
only extended. This is the open closed principle. A class should be
open for extension, but closed for modification.

A contract is meant to provide some guarantees about how a
complex system works. In practice, only unit testing can provide
these guarantees.

Sometimes, programmers unwittingly rely on hidden features of
objects’ implementations. Sometimes the object they rely on has
a bug that just so happens to fit their use case. If that bug is
fixed, then the code using the object no longer works as expected.
The use of the contract, though it was kept intact, has not helped
the other piece of code to maintain working status across revisions.
Instead it provided false hope that the returned values would not
change. It doesn’t even have to be a bug. Temporal couplings inside
objects, or accidental or undocumented features that goes away in
later revisions can also damage the code using the contract without
breaking it.

One example would be the case where an object has a method
that returns a list. If the internal representation is such that it
always maintains a sorted list, and when the method is called it
returns some subset of that list, it would be natural to assume that
in most implementations of the method the subset would be sorted
also. A concrete example could be a pickup manager that kept a
list of pickups sorted by name. If the function returns all the pickup
types that match a filter, then the caller could iterate the returned
list until it found the pickup it wanted. To speed things up, it could
early-out if it found a pickup with a name later than the item it was
looking for, or it could do a binary search of the returned list. In
both those cases, if the internal representation changed to something
that wasn’t ordered by name, then the code would no longer work.
If the internal representation was changed so it was ordered by hash,
then the early-out and binary search would be completely broken.

Another example of the contract being too little information, in

184 CHAPTER 15. WHAT’S WRONG?

many linked list implementations, there is a decision made about
whether to store the length of the list or not. The choice to store
a count member will make multi-threaded access slower, but the
choice not to store it will make finding the length of the list an O(n)
operation. For situations where you only want to find out whether
the list if empty, if the object contract only supplies a get count()
function, you cannot know for sure whether it would be cheaper to
check if the count was greater than zero, or check if the being() and
end() are the same.

Encapsulation only provides a way to hide bugs and cause as-
sumptions in programmers. There is an old saying about assump-
tions, and encapsulation doesn’t let you confirm or deny them unless
you have access to the source code. If you have, and you need to look
at it to find out what went wrong, then all that the encapsulation
has done is add another layer to work around rather than add any
functionality of its own.

15.4 Hierarchical design

Inheritance allows reuse of code by extension. Adding new features
is simple.

Inheritance was seen as a major reason to use classes in C++ by
games programmers. The obvious benefit was being able to inherit
from multiple interfaces to gain attributes or agency in system ob-
jects such as physics, animation, and rendering. In the early days of
C++ adoption, the hierarchies were shallow, not usually going much
more than three layers deep, but later it became commonplace to
find more than nine levels of ancestors in central classes such as
that of the player, their vehicles, or the AI players. For example, in
UnrealTournament, the minigun ammo object had this:

Miniammo → TournamentAmmo → Ammo → Pickup → Inven-
tory → Actor → Object

Games developers use inheritance to provide a robust way to

15.4. HIERARCHICAL DESIGN 185

implement polymorphism in games, where many game entities can
be updated, rendered, or queried en-mass, without any hand coded
checking of type. They also appreciate the reduced copy pasting, be-
cause inheriting from a class also adds functionality to a class. This
early form of mix-ins was seen to reduce errors in coding as there
were often times where bugs only existed because a programmer had
fixed a bug in one place, but not all of them. Gradually, multiple
inheritance faded into interfaces only, the practice of only inheriting
from one real class, and any others had to be pure virtual interface
classes as per the Java definition.

Although it seems like inheriting from class to extend its func-
tionality is safe, there are many circumstances where classes don’t
quite behave as expected when methods are overridden. To extend
a class, it is often necessary to read the source, not just of the class
you’re inheriting, but also the classes it inherits too. If a base class
creates a pure virtual method, then it forces the child class to imple-
ment that method. If this was for a good reason, then that should
be enforced, but you cannot enforce that every inheriting class im-
plements this method, only the first instantiable class inheriting it.
This can lead to obscure bugs where a new class sometimes acts or
is treated like the class it is inheriting from.

Another pitfall of inheritance in C++ comes in the form of run-
time versus compile time linking. A good example is default ar-
guments on method calls, and badly understood overriding rules.
What would you expect the output of the following program to be?

1 class A {
2 virtual void foo(int bar = 5) { cout << bar; }
3 };
4 class B : public A {
5 void foo(int bar = 7) { cout << bar * 2; }
6 };
7 int main(int argc , char *argv[]) {
8 A *a = new B;
9 a->foo();

10 return 0;
11 }

186 CHAPTER 15. WHAT’S WRONG?

Would you be surprised to find out it reported a value of 10?
Some code relies on the compiled state, some on runtime. Adding
new functionality to a class by extending it can quickly become a
dangerous game as classes from two layers down can cause coupling
side effects, throw exceptions (or worse, not throw an exception and
quietly fail,) circumvent your changes, or possibly just make it im-
possible to implement your feature as they might already be tak-
ing up the namespace or have some other incompatibility with your
plans, such as requiring a certain alignment or need to be in a certain
bank of ram.

Inheritance does provide a clean way of implementing runtime
polymorphism, but it’s not the only way as we saw earlier. Adding
a new feature by inheritance requires revisiting the base class, pro-
viding a default implementation, or a pure virtual, then providing
implementations for all the classes that need to handle the new fea-
ture. Obviously this has required access to the base class, and pos-
sible touching of all child classes if the pure virtual route is taken,
so even though the compiler can help you find all the places where
the code needs to change, it has not made it significantly easier to
change the code.

Using a type member instead of a virtual table pointer can give
you the same runtime code linking, could be better for cache misses,
and could be easier to add new features and reason about because it
has less baggage when it comes to implementing those new features,
provides a very simple way to mix and match capabilities compared
to inheritance, and keeps the polymorphic code in one place. For
example, in the fake virtual function go-forward, the class Car will
step on the gas. In the class Person, it will set the direction vector. In
the class UFO, it will also just set the direction vector. This sounds
like a job for a switch statement fall through. In the fake virtual
function re-fuel, the class Car and UFO will start a re-fuel timer
and remain stationary while their fuelling up animatios play, whereas
the Person class could just reduce their stamina-potion count and
be instantly refuelled. Again, a switch statement with fall through
provides all the runtime polymorphism you need, but you don’t need

15.5. DIVIONS OF LABOUR 187

to multiple inherit in order to provide differing functionality on a per
class per function level. Being able to pick what each method does
in a class is not something that inheritance is good at, but it is
something desirable, and non inheritance based polymorphism does
allow it.

The original reason for using inheritance was that you would not
need to revisit the base class, or change any of the existing code
in order to extend and add functionality to the codebase, however,
it is highly likely that you will at least need to view the base class
implementation, and with changing specifications in games, it’s also
quite common to need changes at the base class level. Inheritance
also inhibits certain types of analysis by locking people into think-
ing of objects as having IS-A relationships with the other object
types in the game. A lot of flexibility is lost when a programmer is
locked out of conceptualising objects as being combinations of fea-
tures. Reducing multiple inheritance to interfaces, though helping
to reduce the code complexity, has drawn a veil over the one good
way of building up classes as compound objects. Although not a
good solution in itself as it still abuses the cache, a switch on type
seems to offer similar functionality to virtual tables without some of
the associated baggage. So why put things in classes?

15.5 Divions of labour

Modular architecture for reduced coupling and better testing

The object-oriented paradigm is seen as another tool in the kit
when it comes to ensuring quality of code. Strictly adhering to the
open closed principle of always using accessors, methods, and in-
heritance to use or extend objects, programmers write significantly
more modular code than they do if programming from a purely pro-
cedural perspective. This modularity separates each object’s code
into units. These units are collections of all the data and meth-
ods that act upon the data. It has been written about many times

188 CHAPTER 15. WHAT’S WRONG?

that testing objects is simpler because each object can be tested in
isolation.

However, Object-oriented design suffers from the problem of er-
rors in communication. Objects are not systems, and systems need
to be tested, and systems comprise of not only objects, but their in-
herent communication. The communication of objects is difficult to
test, because in practice, it is hard to isolate the interactions between
classes. Object-oriented development leads to an Object-oriented
view of the system which makes it hard to isolate non-objects such
as data transforms, communication, and temporal coupling.

Modular architecture is good because it limits the potential dam-
age caused by changes, but just like encapsulation before, the con-
tract to any module has to be unambiguous so as to reduce the
chance of external reliance on unintended side effects of the imple-
mentation.

The reason Object-oriented modular approach doesn’t work as
well, is that the modules are defined by object boundary, not by a
higher level concept. Good examples of modularity include stdio’s
FILE, the CRT’s malloc/free, The NvTriStrip library’s Generat-
eStrips. Each of these provide a solid, documented, narrow set of
functions to access functionality that could otherwise be overwhelm-
ing and difficult to reason about.

Modularity in Object-oriented development can offer protection
from other programmers who don’t understand the code. An ob-
ject’s methods are often the instruction manual for an object in
the eyes of a co-worker, so writing all the important manipulation
methods in one block can give clues to anyone using the class. The
modularity is important here because game development objects are
regularly large, offering a lot of functionality spread across their
many different aspects. Rather than find a way to address cross
cutting concerns, game objects tend to fulfil all requirements rather
than restrict themselves to their original design. Because of this
bloating, the modular approach, that is, collecting methods by their
concern in the source, can be beneficial to programmers coming at
the object fresh. The obvious way to fix this would be to use a

15.6. REUSABLE GENERIC CODE 189

paradigm that supports cross cutting concerns at a more fundamen-
tal level, but Object-oriented development is know to be inefficient
at representing this in code.

If Object-oriented development doesn’t increase modularity in
such a way as it provides better results than explicitly modularising
code, then what does it offer?

15.6 Reusable generic code

Faster development time through reuse of generic code

It is regarded as one of the holy grails of development to be able
to consistently reduce development overhead by reusing old code. In
order to stop wasting any of the investment in time and effort, it’s
been assumed that it will be possible to put together an application
from existing code and only have to write some minor new features.
The unfortunate truth is that any interesting new features you want
to add will probably be incompatible with your old code and old
way of laying out your data, and you will need to either rewrite the
old code to allow for the new feature, or rewrite the old code to al-
low for the new data layout. If a software project can be built from
existing solutions, objects that were invented to provide features for
an old project, then it’s probably not very complex. Any project
for significant complexity includes hundreds if not thousands of spe-
cial case objects that provide all particular needs of that project.
For example, the vast majority of games will have a player class,
but almost none share a common core set of attributes. Is there
a world position member in a game of poker? Is there a hit point
count member in the player of a racing game? Does the player have
a gamer tag in a purely offline game? Having a generic class that
can be reused doesn’t make the game easier to create, all it does
is move the specialisation into somewhere else. Some game toolkits
do this by allowing script to extend the basic classes. Some game
engines limit the gameplay to a certain genre and allow extension

190 CHAPTER 15. WHAT’S WRONG?

away from that through data driven means. No-one has so far cre-
ated a game API, because to do so, it would have to be so generic
that it wouldn’t provide anything more than what we already have
with our languages we use for development.

Reuse, being hankered after by production, and thought of so
highly by anyone without much experience in making games, has
become an end in itself for many games developers. The pitfall of
generics is a focus on keeping a class generic enough to be reused or
re-purposed without thought as to why, or how. The first, the why,
is a major stumbling block and needs to be taught out of developers
as quickly as possible. Making something generic, for the sake of
generality, is not a valid goal. It adds time to development without
adding value. Some developers would cite this as short sighted,
however, it is the how that deflates this argument. How do you
generalise a class if you only use it in one place? The implementation
of a class is testable only so far as it can be tested, and if you
only use a class in one place, you can only test that it works in
one situation. If you then generalise the class, yet don’t have any
other test cases than the first situation, then all you can test is that
you didn’t break the class when generalising it. So, if you cannot
guarantee that the class works for other types or situations, all you
have done by generalising the class is added more code for bugs to
hide in. The resultant bugs are now hidden in code that works,
possibly even tested, which means that any bugs introduced during
this generalising have been stamped and approved.

Test driven development implicitly denies generic coding until
the point where it is a good choice to do so. The only time when
it is a good choice to move code to a more generic state, is when it
reduces redundancy through reuse of common functionality.

Generic code has to fulfil more than just a basic set of features
if it is to be used in many situations. If you write a templated
array container, access to the array through the square bracket op-
erators would be considered a basic feature, but you will also want
to write iterators for it and possibly add an insert routine to take
the headache out of shuffling the array up in memory. Little bugs

15.6. REUSABLE GENERIC CODE 191

can creep in if you rewrite these functions whenever you need them,
and linked lists are notorious for having bugs in quick and dirty im-
plementations. To be fit for use by all users, any generic container
should provide a full set of methods for manipulation, and the STL
does that. There are hundreds of different functions to understand
before you can be considered an STL-expert, and you have to be an
STL-expert before you can be sure you’re writing efficient code with
the STL. There is a large amount of documentation available for
the various implementations of the STL. Most of the implementa-
tions of the STL are very similar if not functionally the same. Even
so, it can take some time for a programmer to become a valuable
STL programmer due to this need to learn another langauge. The
programmer has to learn a new language, the language of the STL,
with its own nouns verbs and adjectives. To limit this, many games
companies have a much reduced feature set reinterpretation of the
STL that optionally provides better memory handling (because of
the awkward hardware), more choice for the containers (so that you
may choose a hash map or trie, rather than just a map), or ex-
plicit implementations of simpler containers such as stack or singly
linked lists and their intrusive brethren. These libraries are normally
smaller in scope and are therefore easier to learn and hack than the
STL variants, but they still need to be learnt and that takes some
time. In the past this was a good compromise, but now the STL has
extensive online documentation, there is no excuse not to use the
STL except where memory or compilation time is concerned.

The takeaway from this however, is that generic code still needs
to be learnt in order for the coder to be efficient, or not cause ac-
cidental performance bottlenecks. If you go with the STL, then at
least you have a lot of documentation on your side. If your game
company implements an amazingly complex template library, don’t
expect any coders to use it until they’ve had enough time to learn it,
and that means that if you write generic code, expect people to not
use it unless they come across it accidentally, or have been explicitly
told to, as they won’t know it’s there, or won’t trust it. In other
words, starting out by writing generic code is a good way to write a

192 CHAPTER 15. WHAT’S WRONG?

lot of code quickly without adding any value to your development.

Chapter 16

Looking at hardware

The first thing a good software engineer does when starting work
on a new platform is read the contents listings in all the hardware
manuals. The second thing is usually try to get hello world up and
running. It’s uncommon for a games development software engineer
to decide it’s a good idea to read all the documentation available.
When they do, they will be reading them literally, and still probably
not getting all the necessary information. When it comes to under-
standing hardware, there is the theoretical restrictions implied by
the comments and data sheets in the manuals, but there is also the
practical restrictions that can only be found through working with
the hardware at an intimate level.

As most of the contemporary hardware is now API driven, with
hardware manuals only being presented to the engineers responsible
for graphics, audio, and media subsystems, it’s tempting to start
programming on a new piece of hardware without thinking about
the hardware at all. Most programmers working on big games in
big studios don’t really know what’s going on at the lower levels of
their game engines they’re working on, and to some extent that’s
probably good as it frees them up to write more gameplay code, but
there comes a point in every developer’s life when they have to bite

193

194 CHAPTER 16. HARDWARE

the bullet and find out why their code is slow. Some day, you’re
going to be five weeks from ship and need to claw back five frames
a second on one level of the game that has been optimised in every
other area other than yours. When that day comes, you’d better
know why your code is slow, and to do that, you have to know what
the hardware is doing when it’s executing your code.

Some of the issues surrounding code performance are relevant
to all hardware configurations. Some are only pertinent to config-
urations that have caches, or do write combining, or have branch
prediction, but some hardware configurations have very special re-
strictions that can cause odd, but simple to fix performance glitches
caused by decisions made during the chip’s design process. These
glitches are the gotchas of the hardware, and as such, need to be
learnt in order to be avoided.

When it comes to the overall design of console CPUs, The XBox360
and PS3 are RISC based, low memory speed, multi-core machines,
and these do have a set of considerations that remain somewhat mis-
understood by mainstream game developers. Understanding how
these machines differ from the desktop x86 machines that most pro-
grammers start their development life on, can be highly illuminating.
The coming generation of consoles and other devices will change the
hardware considerations again, but understanding that you do need
to consider the hardware can sometimes only be learned by looking
at historic data.

16.1 Sequential data

When you process your data in a sequence, you have a much higher
chance of cache hit on reading in the data. Making all your cal-
culations run from sequential data not only helps hardware with
caches for reading, but also when using hardware that does write
combining.

In theory, if you’re reading one byte at a time to do something,
then you can almost guarantee that the next byte will already be in

16.2. DEEP PIPES 195

memory the next 127 times you look. For a list of floats, that works
out as one memory load for 32 values. If you have an animation that
has less than 32 keys per bone, then you can guarantee that you will
only need to load as many cache-lines as you have bones in order to
find all the key indexes into your arrays of transforms.

In practice, you will find that this only applies if the process you
run doesn’t load in lots of other data to help process your stream.
That’s not to say that trying to organise your data sequentially isn’t
important, but that it’s just as important to ensure that the data
being accessed is being accessed in patterns that allow the processors
to leverage the benefits of that form. There is no point in making
data sequential if all you are going to do is use it so slowly that the
cache fills up between reads.

Sequential data is also easier to split among different processors
as there is little to no chance of cache sharing. When your data is
stored sequentially, rather than randomly, you know where in mem-
ory the data is, and so you can dispatch tasks to work on guaranteed
unshared cache-lines. When multiple CPUs compete to write to a
particular cache-line, they have to storing and loading to keep things
consistent. If the data is randomly placed, such as when you allocate
from a memory pool, or directly from the heap, you cannot be sure
what order the data is in and can’t even guarantee that you’re not
asking two different CPUs to work on the same cache-line of data.

The data-oriented approach, even when you don’t use structs
of arrays, still maintains that sequential data is better than ran-
dom allocations. Not only is it good for the hardware, it’s good for
simplicity of code as it generally promotes transforms rather than
object-oriented messaging.

16.2 Deep Pipes

CPUs perform instructions in pipelines. This is true of all processors,
however, the number of stages differs wildly. For games developers,
it’s important to remember that it affects all the CPUs they work

196 CHAPTER 16. HARDWARE

on, from the current generation of consoles such as Sony’s PS3 and
Microsoft’s Xbox360, but also to hand helds such as the Nintendo
DS, the iPhone, and other devices.

Pipelines provide a way for CPUs to trade gains in speed for
latency and branch penalties. A non-pipelined CPU finishes every
instruction before it begins the next, however a pipelined CPU starts
instructions and doesn’t necessarily finish them until many cycles
later. If you imagine a CPU as a factory, the idea is the equivalent
of the production line, where each worker has one job, rather than
each worker seeing and working on a product from start to finish. A
CPU is better able to process more data faster this way because by
increasing the latency, in well thought out programs, you only add
a few cycles to any processing during prologue or epilogue. During
the transform, latency can be mitigated by doing more work on non-
related data while waiting for any dependencies. Because the CPUs
have to do a lot less per cycle, the cycles take less time, which is
what allows CPUs to get faster. What’s happening is that it still
takes just as long for a CPU to do an operation as it always has (give
or take), but because the operation is split up into a lot of smaller
stages, it is possible to do a lot more operations per second as all
of the separate stages can operate in parallel, and any efficient code
concentrates on doing this after all other optimisations have been
made.

When pipelining, the CPU consists of a number of stages, firstly
the fetch and decode stages, which in some hardware are the same
stage, then an execute stage which does the actual calculation. This
stage can take multiple cycles, but as long as the CPU has all the
cycles covered by stages, it won’t affect throughput. The CPU then
finally stores the result in the last stage, dropping the value back
into the output register or memory location.

With instructions having many stages, it can take many cycles
for them to complete, but because only one part of the instruction
is in use at each stage, a new instruction can be loaded as soon as
the first instruction has got to the second stage. This pipe-lining
allows us issue many more instructions than we could otherwise,

16.3. MICROCODE 197

even though they might have high latency in themselves, and saves
on transistor count as more transistors are being used at any one
time. There is less waste. In the beginning, the main reason for this
was that the circuits would take a certain amount of time to stabilise.
Logic gates, in practice, don’t immediately switch from one logic
state to another. If you add in noise, resonance, and manufacturing
error, you can begin to see that CPUs would have to wait quite a
while between cycles, massively reducing the CPU frequency. This
is why FPGAs cannot easily run at GHz speeds, they are arrays of
flexible gate systems, which means that they suffer the most from
stability problems, but amplified by the gates being located a long
way from each other, in the sense that they are not right up next
to each other like logic circuits are inside an inflexible ASIC like a
production CPU.

Pipelines require that the instructions are ready. This can be
problematic if the data the instruction is waiting on is not ready,
or if the instruction is not loaded. If there is anything stopping the
instruction from being issued it can cause a stall, or in the case of
branching causing the instructions to be run, then trashed as the
pipe-line is flushed ready to begin processing the correct branch.
If the instruction pointer is determined by some data value, it can
mean a long wait while the next instruction is loaded from main
memory. If the next instruction is based on a conditional branch,
then the branch has to wait on the condition, thus causing a number
of instructions to begin processing when the branch could invalidate
all the work done so far. As well as instructions needing to be nearby,
the registers must already be populated, otherwise something will
have to wait.

16.3 Microcode: virtually function calls.

To get around the limitations implicit in trying to increase through-
put, some instructions on the RISC chips aren’t really there. In-
stead, these virtual instructions are like function calls, calls to macros

198 CHAPTER 16. HARDWARE

that run a sequence of instructions. These instructions are said to
be micro-coded, and in order to run, they often need to commandeer
the CPU for their entire duration to maintain atomicity. Some func-
tions are micro-coded due to their infrequent use or relative cost to
implement as an intrinsic instruction, some because of the spec, and
some because they don’t fit well with the pipe-lined model of execu-
tion. In all of these cases, a micro-coded instruction causes a gap,
called a bubble, in the pipeline, and that’s wasted execution time.
In almost all cases, these microcoded instructions can be avoided,
sometimes by changing command line parameters (ref Cell Perfor-
mance), sometimes by adjusting how you solve a problem (ref 1¡¡n
hack), and sometimes by changing the problem completely. (sqrt
considered harmful)

16.4 Single Instruction Multiple Data

There are no current generation consoles that don’t have SIMD of
some sort. All hardware now has some kind of vector unit, and to
some extent, as long as you work within your boundaries, even hard-
ware that doesn’t have SIMD instructions, such as embedded micro
controllers, can operate on multiple data. The idea behind SIMD
is simple: issue one command, and manipulate multiple pieces of
data in the same way at the same time. The most commonly ref-
erenced implementation of this is the vector units inherent in all
current generation hardware. The AlitVec instructions on PPC and
the SPU instruction set contain many instructions that operate on
multiple pieces of data at the same time, sometimes doing asymetric
operations such as rotating, splatting, or reconfiguring the vectors.
On older machines or simple machines, the explicit instructions may
not exist, but in the world of bitwise logic, we’ve always had some
SIMD instructions hanging around as all the bitwise ops run over
multiple elements in a bit field of whatever native word length. Con-
sider some of the winners of the quickest bit counting routines. My
favourite is the purely SIMD style bit counter given here:

16.5. PREDICTABLE INSTRUCTIONS 199

1 uint32_t CountBits(uint32_t in) {
2 v = v - ((v >> 1) & 0x55555555); // reuse

input as temporary
3 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
4 c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
5 return c;
6 }

So, look to your types, and see if you can add a bit of SIMD to
your development without even breaking out the vector instrinsics.

16.5 Predictable instructions

The biggest crime to commit in a deeply pipelined core is to tell it
to do loads of instructions, then once it’s almost done, change your
mind and start on something completely different. This heinous
crime is all too common, with control flow instructions doing just
that when they’re hard to predict, or impossible to predict in the
case of entirely random data, or where the data pattern is known,
but the architecture doesn’t support branch predictions.

200 CHAPTER 16. HARDWARE

Chapter 17

Future

The future of hardware is almost certainly increasingly parallel pro-
cessing with all the related problems that entails; from power con-
sumption, through deserialising our processing, to distribution of
jobs across more than just a few local cores.

Supercomputers have been vector machines for decades, and any
advances in graphics cards comes with an increase in the number
of cores that run transforms. Mobile phones have 4 cores and even
some microcontrollers have multi-core layouts1 Stream processing
hardware is showing to be more capable of increasing throughput
per generation than the general purpose computing architecture em-
ployed in the design of CPUs and micro-controllers. It’s shaping up
that the coming generations of hardware are going to be a battles
of the parallel processing beasts2, larger core counts and more nu-
merous pipes. Memory always seems to be at a premium, so again,
we’ll probably be trying to push next gen games out without having
enough space in which to work. One area that has not been pushed

1Parallax Propeller is a really interesting microcontroller that’s been out for
some time, but provides a unique perspective on parallel computing

2Parallela was a successful 2012 Kickstarter campaign for Adapteva, in which
their roadmap points to 1024 core boards being produced in 2014

201

202 CHAPTER 17. FUTURE

around much has been offloading processing outside the local ma-
chine. Even though there has been plenty of work done with very
high latency architectures such as Beowulf clusters or grid comput-
ing, the idea that they could be useful for games is still in its in-
fancy due to the virtually real-time nature of processing for games.
It could be a while off, but we may see it come one day, and it’s
better not to let it sneak up on us. Once we need it, we will need
a language that handles offloading to external processing like any
other threaded task. Erlang is one such language. Erlang is func-
tional (with a tendency for immutable state which helps very much
with concurrency) and is highly process oriented with a very sim-
ple migration path from single-machine multi-threaded to remote
processing or grid compute style distributed processing and a large
number of options for fault tolerance. Node-js offers some of the
same parallelism and a much shorter learning time as it is based
on Javascript. Functional languages would seem to dominate, but
OpenCL isn’t purely functional, and C++AMP only requires you
consider how to amplify your code with parallelism, which might not
be enough for how many cores we really end up. Whatever language
we do end up using to leverage the power of parallel processing, once
it’s ubiquitous, we’d better be sure we’re not still thinking serial.

But parallel processing isn’t the only thing on the horizon. Along
with many cores comes the beginnings of a new issue that we’re only
starting to see traces of outside supercomputing. The issue of power
per watt. In mobile gaming, though we’re striving to make a game
that works, one thing that developers aren’t regularly doing that will
affect sales in the years to come, is keeping the power consumption
down on purpose. The mobile device users will put up with us
eking out the last of the performance for only so long. There is a
bigger thing at stake than being the best graphical performance and
fastest AI code, there is also the need to have our applications be
small enough to be kept on the device, and also not eat up enough
battery that the users drop the application like a hot potato. Data-
oriented design can address this issue, but only if we add it to the
list of considerations when developing a game. As with parallelism,

17.1. PARALLEL PROCESSING 203

the language we use impacts the possibilities. If we continue to move
towards more high level languages such as C# and Java, then we will
need smarter compilers to reduce the overhead, but if we develop in
a language made to support tasking, such as the process kernels in
OpenCL or the lightweight threads of Erlang, then we may find new
hardware changes to match the language much the same way C++
and object-oriented design changed the way CPUs were designed.

17.1 Parallel processing

In short, parallel processing increases the number of things done at
the same time. Towards an infinite number of CPUs the amount
of processing available is infinite, but the amount of processing you
can use is limited by two factors.

The first limiting factor is the amount of work that needs to
be done. If you have a perfectly parallel algorithms, then you are
limited by the number of units of work you have to do.

For example, if a graphics card had an infinite number of cores
(and we’ll keep using infinite as it is the only good measure for future
values of N), then the maximum number of cores that it can use to
render a single polygon would be measured in how many tasks there
are to do. If the polygon was fully covering a standard 1080P HD
screen with 1920 x 1080 pixels, then the highest feasible number
of cores to throw at the task of pixel shading the poly to the back
buffer would be 2,073,600, and thus the highest throughput you can
possibly get from the machine would rely on how fast one single core
could transform the request to render, into a final change of value at
the pixel. This example is slightly broken because the time taken to
set up that many cores in a normal rendering setup would probably
cost more time than just splitting the task into larger chunks, and
if you use MSAA you can call on even more cores, but eventually
you’ll even run out of samples to do. The point being, if there are
not enough jobs, then the cores will be under utilised.

A lack of jobs is hard to find in a graphics card, which is part of

204 CHAPTER 17. FUTURE

the reason they have been growing in power so rapidly over the last
few years (2008-2013), and show no signs of significantly slowing
down in their GFLOPS growth. There are always more pixels to
render, always more vertices to transform, always more textures to
lookup. The bottleneck in a graphics card is still the number of
cores, and that’s why it’s relatively easy to increase the power of
them compared to general purpose chips like CPUs.

In addition to the amount of jobs the cores have to do, the relative
similarity of the jobs makes it easier to move towards a job-board
style approach to job dispatch. In every parallel architecture so far,
the instructions to run per compute core are decided specifically per
core. In the future, an implicit job system may make a difference by
instigating the concept of a public read-only job spec, and having set
up the compute cores to look out for jobs and apply their own variant
information on them. A good example might be that a graphics card
may set all the compute cores to run the same algorithm, but given
some constants about where they should get their data such as offsets
into the stream and different output rectangles of the display.

This second limiting factor is dependency. We touched on it with
the argument for pixel shaders, the set up time is a dependency. The
number of cores able to be utilised is serial up until the first step
of set up is finished, that is, the call to render primitive. Once the
render call is done, we can bifurcate our way to parallelism, but even
then, we’re wasting a lot of power because of dependence on previous
steps. One way to avoid this in hardware is have many cores wait
for tasks to do by assuming they will be in charge of some particular
part of the transform. We see it in SIMD processing where the CPU
issues one instruction to multiply a vector, and each sub core carries
out its own multiply, knowing that even though it was told that a
multiply for the whole vector was issued, it could be sure that it was
the core involved in multiplying element n of that vector. This is very
useful and possibly why future optimisations of hardware can work
towards a runtime configurable hardware layout that runs specified
computations on demand, but without explicit instruction. Instead,
as soon as any data enters into the transformation arena, it begins

17.2. DISTRIBUTED COMPUTING 205

the configured task without asking for, or needing information on
how to interpret the data. This type of stream processing may be
best suited to runtime configurable hardware.

Ahmdal’s Law is based on two constants, the time that a process
must be serial and the time that a process can be parallel. In the
world of infinite core computing we must continually strive for the
lowest possible serial latency in our development. That means we
must find out what is critical, what can be done without prior in-
formation, what can be done in preparation, what can be not done
until the very last moment. All these elements of processing add
up to a full product, and without considering what the output data
is and how we get there, we could continually return to the state
where we are optimising for code, and not for what is of ultimate
importance, the experience due to realisation of output data in a
timely fashion.

17.2 Distributed computing

When you think of distributed computing, normally you think of
farms of computers spread over multiple locations, running long life-
time processes on massive amounts of data. You think of on demand
load balancing systems providing more compute where necessary on
the grid. All this talk of large scale is just another step out from
our CPU cores. Another layer that we can move to when the pos-
sibility presents itself. One day, maybe, we will have invisible grid
computing for the consumer. The idea of spreading the compute
load out from the physical device was first presented commercially
with the CellBE, the idea that adding more compute to an existing
hardware instance could be done without explicitly linking hardware
through a proprietary interface. There were articles talking of how
your TV could increase the quality of your gaming experience by
allowing the console to offload some of the processing onto the TVs
processor. This has not come to pass, but the common core, the
idea of doing more work by adding more machines, that has not

206 CHAPTER 17. FUTURE

gone away and is in common use in most development companies,
whether by use of the free to use build accelerators such as the one
included in the Sony developer tools, or proprietary software such
as Xoreax’s IncrediBuild. Adding more compute to processes that
can safely be very high latency is definitely one way of using grid
engines, but another alternative is to use grid engine’s to provide
answers to questions not yet asked. If you know that a type of ques-
tion is common during your processing, then offloading the question
process so it processes all known variants of the question means you
can get back the answer to all the possible questions before it’s even
asked.

For example, If you know that your scene is going to animate, and
you want to do a ray cast from some entities to other entities, but
don’t know which, you can task the grid engine with advancing the
animation and doing all the ray casts. Then, once you are ready,
read from the ray casts that you decided that you did need after
whatever calculations you needed to do. That’s a lot of wasted pro-
cessing power, but it reduces latency. When you’re thinking about
the future, it is only sensible to think about latency as the future
contains an infinite number of processing cores.

Using this one example, you can ramp it back to current gen-
eration hardware by offloading processes to begin large scale ray
casting, and during the main thread calculation stages, cull tasks
from the thread that is managing the ray casts. This means that
you can get started on tasks, but only waste cycles when you don’t
know enough to not.

With very high speed network adapters, very high bandwidth
network connections to the internet, grid computing inside games
might become more commonplace than expected. What gameplay
elements this amount of processing power can open up is beyond our
vision, but once it is here, we can expect remote processing through
something akin to stored procedures to become a staple part of the
game developer tool-kit.

17.3. RUNTIME HARDWARE CONFIGURATION 207

17.3 Runtime hardware configuration

We cannot know what the future brings, and some assumptions we
have about CPUs might be broken. One such assumption might be
that our hardware is fixed in one form once it has been fabricated.
Both field programmable gate arrays and complex programmable
logic arrays allow for change during their lifetime, and some an-
nouncements have been made about mainstream hardware adding
FPGAs to their arsenal3 which may open the door to FPGA add-on
cards much the same way we saw the take-off of graphics cards once
they got a foot in the door.

FPGAs present a new and interesting problem to programmers,
specifically to the programmers that may be inventing new plans for
others to consume. One way this could pan out is by re-orienting
the mindset of the average programmer into that of a flow based
or stream processing developer. Being able to take game data and
manipulate it with highly efficient, and low latency modules dynam-
ically loaded onto FPGAs could be the final nail in the coffin for any
language that links code with data.

Approaches to development similar to that imposed on us by
the shader model and the process of getting data into the right
layout for the shaders might have been good training, readying us for
the coming days of compute power only really being available if we
order it for later. With dynamic partial reconfiguration, we would
have the same benefits seen in being able to switch shaders mid
render. That is, the ability to utilise an FPGA much smaller than
would be necessary if we were to attempt to cram all the potential
processing modules onto it at once. We’ve been here before. This
extremely high latency before being able to compute, followed by
very fast processing once the computational framework is ready, is
very similar to programming with shaders, so much so that we might
not take that long bringing our existing engines up to speed.

3One really good reason for an FPGA is to allow for future proofing of output
connectivity. FPGAs can be used to test out new standards such as a new HDMI
specification or a completely different encoding

208 CHAPTER 17. FUTURE

The CellBE was an attempt at this way of working, but was
overlooked by many as just a strange piece of hardware. The core,
an underpowered CPU that would look after feeding all the high
power SPUs was assumed to be a general purpose CPU. This was
an unfortunate side effect of too many years developing for out-of-
order CPUs, and a deep investment in random memory access pro-
gramming methods such as object-oriented design and interpreted
languages. We don’t know what other CPUs may come along in the
future, but we can attempt to use a data-oriented approach and not
try to make a CPU work the way we want to work, but work with
it to make the best out of what we have.

17.4 Data centric development in hard-
ware design

Once software solutions concentrate on transforming data, what
changes can we expect from hardware vendors? Is that a silly ques-
tion? Would a change of programming paradigm really affect the
people who create hardware?

What should we promote and demote in order to get the most
from our transistors?

move away from serial thinking more functional programming,
where there are no side-effects, leads to solutions for infinite numbers
of cores

Whatever the future brings with respect to hardware and pro-
cessing configurations, there are certain assumptions we can make.

