
 
 
 
 
 
 
 
 
 
 
 

DLL Spoofing in Windows 
 

By Andreas Björklund, Johan Klövstedt and Sven Westergren 



What is spoofing? 

A program run under Windows gains the 

full capabilities of the user that runs it. If 

an attacker without certain capabilities 

creates a malicious program and coaxes a 

second user with these capabilities to run 

the program he can expand his capabilities 

to include those of the second user. This 

process is generally known as "spoofing".  

 

What is a DLL? 

Dynamic Link Libraries (DLL's) are 

software object modules, or libraries, 

linked into a program while it is running. 

DLL's are powerful features that allows for 

programs to share common code making 

them easier to develop and make them 

more efficient. They are used extensively 

in newer versions of Windows, including 

Windows NT. 

 

What is DLL spoofing? 

Since the DLL code runs in the context of 

its host program it inherits the full 

capabilities of the program's user as 

discussed earlier with spoofing in the 

general sense. The DLL spoof causes a 

legitimate program (in the worst case 

scenario run by an administrator) to load a 

DLL with a Trojan Horse instead of the 

legitimate DLL. Once it gains control it 

has the same capabilities as the user who 

ran the program. 

 

When a program loads DLL's, it searches 

through a sequence of directories looking 

for the DLL in question. The successful 

spoof occurs when an attacker succeeds in 

inserting the malicious DLL-file in one of 

those directories so that the program finds 

it before it finds the legitimate DLL of the 

same name. This means that the attack can 

still be successful even if the legitimate 

DLL is beyond the attackers reach (i.e. if 

the file is write-protected or the attacker 

doesn't have access to the directory which 

contains the legitimate DLL). 

 

The opportunities for DLL spoofing stem 

from the algorithm used by the DLL 

linking algorithm to find the file that holds 

the DLL (usually with ".DLL" as the file 

suffix). The linking algorithm usually 

searches through the following three 

categories: 

 

• Program directory: The directory that 

holds the program’s executable file. 

 

• System Directory: A well known 

system directory like 

%SYSTEMROOT% or its 

SYSTEM32 subdirectory. 

 

• Working directory: The current 

working directory of the process. 

 

The problematic case is when the 

algorithm checks the Working Directory 

for the DLL file. To spoof a user an 

attacker only need to insert a malicious 

DLL file in a directory that the users use as 

their working directory. If the DLL file 

inserted has the same name as the 

legitimate DLL the algorithm will link the 

fake DLL to the otherwise trusted program. 

The fake DLL can then create a new 

process, which will now run under the full 

capabilities of the user who ran the 

program, which can request the real DLL 

to make the program perform the required 

action so as to not arouse suspicion. 

Depending on what the fake DLL does, the 

attacker can now start to take over the 

system with his acquired capabilities. 

The Program Directory and System 

Directory are well-known and can thus be 

protected more easily. But in the case of 

the Working Directory its location can be 

unknown to the user since the program 

itself may set the directory. 

 

Targets 

The most obvious targets for DLL 

spoofing attacks are machines running 

versions of Windows NT/2000 where the 



registry has not been properly updated with 

a safe search-order for loading DLL's. 

Service packs updates have been issued 

that rectify the search order but for reasons 

of backwards compatibility it is disabled as 

per default. 

 

For machines running Windows XP the 

problem with the search-order is not an 

issue but there have been a few mal-

configured programs and registry entries 

which point to DLL's that do not exist. 

Such entries can also be exploited to make 

the system run malicious code by DLL 

spoofing. Obviously, simply having a mis-

configured registry/search path does not 

mean that the machine will start running 

malicious code; an adversary must also 

gain access to the file system and place the 

code there. This can be achieved in a 

number of different ways, including 

Trojans, email and web caches to just 

name a few. 

 

One can argue that this breach is in fact 

more serious than the DLL spoof but for 

NT/2000 machines an ordinary user could 

easily place malicious DLL's in for 

example the "Shared Documents" 

directory. When another user with higher 

privileges subsequently opens a document 

in the same directory this will be the 

"Current directory" and will be searched 

for DLL's before the system directories, 

allowing the ordinary user to run code with 

privileged rights.  

 

For machines running Windows XP or 

properly updated NT/2000 the argument 

holds more weight. Simply placing a DLL 

in the shared directory or a web cache will 

not allow it to be loaded. For the DLL's to 

be loaded they must either be placed in the 

system directory, the application directory 

or a place pointed to by an absolute path in 

the application that tries to load the DLL. 

Being able to write to system and 

application file space already implies 

administrator privileges so there would be 

no need for DLL spoofing which leaves the 

case with absolute paths in the application. 

This however is a question about auditing 

and securing the software being used on 

the system and must be considered 

paramount for security administrators in 

any case. 

 

Problems/Solutions 

 We all know that many operating systems, 

like Microsoft Windows, install auxiliary 

services that are not critical, such as FTP 

server, telnet and web server. If those 

services and all other services, defined by 

the administrator as not needed, are 

removed then the threat list is at once 

decreased. With DLL spoofing it is not all 

about shutting down and not installing, the 

countermeasure towards the actual 

spoofing would be the use signed DLL’s. 

For this purpose Microsoft (Who as 

already mentioned seems to have the 

greatest problem with DLL spoofing) tries 

to solve it by the use of their Microsoft 

Authenticode (Multi-Purpose) Certificates. 

These signings are also intended for code. 

First off we need to define what a manifest 

is to help the reader understand how 

Microsoft deals with the need for 

continuously updating their DLL’s as well. 

To let every DLL to become outdated 

could be dangerous in this world of 

hackers. A manifest is a descriptive file 

with a .mcf extension. This file consists of 

the GUID for the use of the file, the 

module list which could be explained as 

the requirement list for the file (which 

modules needed, and if they need hashing 

or not) and also a policy list of what should 

be included and excluded. By designating 

the DLL’s as NOHASH in the 

MODULELIST section, while including 

the Microsoft code-signing root public key 

into the inclusion, one could specify 

Microsoft Authenticode-signed modules in 

a manifest. Where a NOHASH value is 

applied to the DLL in the case Microsoft 

releases a new version of the DLL, you 

don’t have to create a new manifest. It is 

enough to just update the old one. 



 

 The question as to how we know which 

DLL’s that are up-to-date, Microsoft 

solved with Windows 2000, by digitally 

sign the drivers that pass the Windows 

Hardware Quality Lab (WHQL) tests. The 

drivers that passed were given a Microsoft 

digital signature. Such devices covered 

then were: Video adapter, Keyboard, 

Monitor, Printer, etc. To do the actual 

signing of the drivers, the existing digital-

signature cryptographic technology was 

used. A hash of the driver binary and 

relevant information was stored in a 

catalogue file (CAT file), and that file was 

signed with the Microsoft signature. Since 

the actual driver binary is left untouched, 

the reference between the driver package 

and the CAT file that would be needed was 

solved using a third file to do the 

referencing. That file is called the driver’s 

INF file and is maintained by the system 

after the driver has been installed.  

 

But as mentioned, in the present time this 

signing is done with Microsoft 

Authenticode (Multi-Purpose) Certificates. 

These signings could be done by an 

authorized signer such as Thawte. Thawte 

can help out with the authentication that is 

needed for the third-party Authenticode-

signed modules. As Microsoft states 

themselves “The Rights Management 

client (uses the Windows Rights 

Management Service, RMS) supports 

Authenticode module signing using both 

SHA1 and MD5, however SHA1 results in 

better performance”. However they do not 

provide any tools for extracting or 

producing third-party keys for use in the 

inclusion/exclusion list (in the policy list). 

In the mid-nineties when the approach with 

the RMS, sometimes referred to as the 

Digital Rights Management (DRM), was 

explored designers came up with a variety 

of tamper resistance. Often, however, they 

concluded that even though a particular 

approach may seem effective, only 

Microsoft would have the resources, scope 

and platform control to make it practical. 

 

Now, ten years later, details are coming out 

about Microsoft's plans for DRM 

protection in the upcoming Windows Vista 

OS, which indeed contain a lot of tamper 

resistance mechanisms. Then it would 

seem they were right ten years ago. 

 

 Here are two concepts that stand out, 

which contain some handling of drivers: 

 

• Protected Path: More specifically 

known as Protected Video Path (PVP) 

and Protected User Mode Audio 

(PUMA). These are mechanisms to 

support DRM rules about safe content 

presentation. Many of the protected 

path mechanisms are implemented in 

kernel-mode device drivers. 

 

• Protected Environment: This is a 

kernel mechanism to ensure that 

kernel-mode drivers are safe for 

protected content. Drivers that handle 

protected content must be digitally 

signed and authorized by Microsoft, 

and must implement specific security 

functions. Other kernel-mode drivers 

must also be signed, to ensure that 

they have a known origin and have not 

been tampered with. Unless all these 

signature and authorization checks 

pass, protected content cannot be 

played. Some Output Content 

Protection (OCP) mechanisms are 

planned for Windows Vista in 2006 

(the basic video and audio protections, 

and the protected environment). 

 

At a higher level, OCP's Protected Path 

and Protected Environment ideas seems to 

make sense. In implementation, however, 

there is a great deal of software 

complexity, management process, and 

supporting infrastructure. One software 

complexity regarding drivers then becomes 

that the Protected Environment requires 

that drivers be both authentic and sound. 

This again puts Microsoft in the business 

of analyzing, testing, and authorizing new 



driver versions--not just determining that 

they appear not to break Windows or cause 

incompatibility problems (which are the 

main goals of WHQL testing today), but 

that they provide a secure implementation 

of required protection features. Also to 

implement OCP would mean that device 

drivers get numerous new security 

responsibilities. The drivers must ensure 

that the hardware they control is authentic 

and isn’t tampered with. (E.g. the tilt-bits 

which are used like tilt on a pinball 

machine.) 

 

But to go back to DLL’s (device drivers), 

another complexity is revocation. 

Authorization is not particularly useful 

unless it can be revoked when a 

compromise is discovered.  

For making sure that revocation would 

work, Microsoft plans to run a revocation 

infrastructure that distributes a Microsoft 

Global Revocation List to identify no-

longer-authorized driver software.  This 

feature is supposed to be implemented in 

the Windows Update mechanism. Drivers 

will be added to the list if they are 

discovered to contain exploitable security 

flaws, and DRM rules can be written to 

require that the list is appropriately fresh 

(actually DRM already contains this type 

of capability). Software revocation is 

problematic because of the potential effect 

on customers who may suddenly be unable 

to play content through no fault of their 

own, so revocation will likely only occur 

well after updates are distributed, leaving a 

long window of content vulnerability. 

  

References: 

Authenticode Signing a DLL: 

http://msdn.microsoft.com/library/default.a

sp?url=/library/en-

us/rms_sdk/rm/authenticode_signing_a_D

LL.asp 

 

Code Signing for Authenticode, 
Netscape and Sun Java: 

http://www.jensign.com/JavaScience/Thaw

te/ 

 

Microsoft moves forward on 
DRM: 

http://news.com.com/2100-1012_3-

5071342.html 

 

Microsoft Previews DRM 
Directions for Windows Vista: 

http://www.drmwatch.com/special/article.p

hp/3529586 

 

Windows NT Security Guidelines: 

http://www.trustedsystems.com/download/

NSAGuideV2.PDF 


