

Fundamentals of Computer Programming with C#

(The Bulgarian C# Programming Book)

by Svetlin Nakov & Co.

http://www.introprogramming.info

ISBN: 978 -954 -400 -773 -7

ISBN -13 : 978 -954 -400 -773 -7 (9789544007737)

ISBN -10: 954 -400 -773 -3 (954400773 3)

Pages: 112 2

Language: English

Published: Sofia, 2013

Tags: book; free book; ebook; e -book; programming; computer programming; programming concepts; programming principles; tutorial;

C#; data structures; algorithms; Intro C#; C# book; book C#; CSharp; CSharp book; programming book; book programming; textboo k;

learn C#; study C#; learn programming; study programming; how to program; programmer; practical programming guide; software
engineer; software engineering; computer programming; software developer; software technologies; programming techniques; logi cal

thinking ; algorithmic thinking; developer; software development; programming knowledge; programming skills; programming language;

basics of programming; presentations; presentation slides; coding; coder; source code; compiler; development tools; code deco mpiler;

JustDecompile; debugging code; debugger; Visual Studio; IDE; development environment; bug fixing; class library; API; C#; .NET ; .NET
Framework; types; variables; operators; expressions; statements; value types; reference types; type conversion; console; con sole input;

console output; console application; conditional statements; if; if -else; switch -case; loops; whole; do -while; for loops; foreach; nested

loops; arrays; matrices; multidimensional arrays; numeral systems; binary numbers; decimal numbers; hexade cimal numbers;

representations of numbers; methods; method invocation; parameters; recursion; iteration; recursive algorithms; classes; obje cts; fields;

constructors; properties; static fields; static methods; static constructor; static members; namespaces ; exceptions; exception handling;
stack trace; catch exception; throw exception; try -catch; try - finally; using statement; strings; text processing; StringBuilder; escaping;

System.String; regular expressions; string formatting; OOP; object -oriented program ming; access modifiers; public; private; protected;

internal; this keyword; const fields; readonly fields; default constructor; implicit constructor; overloading; method overloa ding; constructor

overloading; automatic properties; read -only properties; cons tants; enumerations; inner classes; nested classes; generics; generic types;
generic methods; text files; streams; files; StreamReader; StreamWriter; data structures; ADT; abstract data structure; linea r data

structures; list; linked list; static list; dou bly - linked list; array list; stack; queue; deque; trees; graphs; binary tree; binary search tree;

balanced tree; balanced search tree; B - tree; red -black tree; tree traversal; ordered balanced search tree; graph representation; list of

edges; list of succes sors; adjacency matrix; depth - first search; DFS; breadth - first search; BFS; dictionary; hash table; associative array;
hash function; collision resolution; set; multi set; bag; multi bag; multi dictionary; algorithm complexity; asymptotic notat ion; time

complexity; memory complexity; execution time; performance; collection classes; .NET collections; Wintellect Power Collections; OOP;

principles; abstraction; encapsulation; polymorphism; abstract class; interface; operation contract; virtual method; method o verriding;

cohesion; strong cohesion; coupling; loose coupling; spaghetti code; object -oriented modeling; UML; use -case diagram; sequence diagram;

statechart diagram; activity diagram; design patterns; singleton; factory method; code quality; high -quality code; code conventions; naming
identifiers; variable names; method names; naming classes; code formatting; high -quality classes; high -quality methods; variable scope;

variable span; variable lifetime; control - flow statements; defensive programming; asserti ons; code documentation; documentation; self -

documenting code; code refactoring; lambda expressions; LINQ; extension methods; anonymous types; LINQ queries; data filterin g; data

searching; data sorting; data grouping; problem solving; problem solving metho dology; problems and solutions; generating ideas; task
decomposition; algorithm efficiency; writing code; code testing; border cases testing; borderline cases; performance testing; regression

testing; exercises; problems; solutions; programming guidelines; programming problems; programming exercises; good programmer;

efficient programmer; pragmatic programmer; Nakov; Svetlin Nakov; Software Academy; Bulgaria; Bulgarian book; BG book; Bulgar ian C#

book; Kolev; Vesselin Kolev; Dilyan Dimitrov; Hristo Germanov ; Iliyan Murdanliev; Mihail Stoynov; Mihail Valkov; Mira Bivas; Nikolay
Kostov; Nikolay Nedyalkov; Nikolay Vassilev; Pavel Donchev; Pavlina Hadjieva; Radoslav Ivanov; Radoslav Kirilov; Radoslav Tod orov;

Stanislav Zlatinov; Stefan Staev; Teodor Bozhikov; Te odor Stoev; Tsvyatko Konov; Vesselin Georgiev; Yordan Pavlov; Yosif Yosifov, ISBN

9789544007737, ISBN 9544007733, ISBN 978 -954 -400 -773 -7, ISBN 954 -400 -773 -3

Book Front Cover

http://www.introprogramming.info/
http://www.introprogramming.info

Contents

Contents 2

Detailed Table of Contents 5

Preface 13

Chapter 1. Introduct ion to Programming 69

Chapter 2. Primitive Types and Variables 111

Chapter 3. Operators and Expressions 139

Chapter 4. Console Input and Output 165

Chapter 5. Conditional Statements 195

Chapter 6. Loops 211

Chapter 7. Arrays 235

Chapter 8. Numeral Systems 2 65

Chapter 9. Methods 293

Chapter 10. Recursion 351

Chapter 11. Creating and Using Objects 385

Chapter 12. Exception Handling 415

Chapter 13. Strings and Text Processing 457

Chapter 14. Defining Classes 499

Chapter 15. Text Files 615

Chap ter 16. Linear Data Structures 641

Chapter 17. Trees and Graphs 681

Chapter 18. Dictionaries, Hash - Tables and Sets 727

Chapter 19. Data Structures and Algorithm Complexity 769

Chapter 20. Object - Oriented Programming Principles 807

Chapter 21. High - Quality Programming Code 853

Chapter 22. Lambda Expressions and LINQ 915

Chapter 23. Methodology of Problem Solving 935

Chapter 24. Sample Programming Exam ï Topic #1 985

Chapter 25. Sample Programming Exam ï Topic #2 1041

Chapter 26. Sample Programming Exam ï Topic #3 1071

Conclusion 1119

FUNDAMENTALS OF

COMPUTER PROGRAMMING

WITH C#

(The Bulgarian C# Programming Book)

Svetlin Nakov & Co.

Dilyan Dimitrov

Hristo Germanov

Iliyan Murdanliev

Mihail Stoynov

Mihail Valkov

Mira Bivas

Nikolay Kostov

Nikolay Nedyalkov

Nikolay Vasilev

Pavel Donchev

Pavlina Hadjieva

Radoslav Ivanov

Radoslav Kirilov

Radoslav Todorov

Stanislav Zlatinov

Stefan Staev

Svetlin Nakov

Teodor Bozhikov

Teodor Stoev

Tsvyatko Konov

Vesselin Georgiev

Veselin Kolev

Yordan Pavlov

Yosif Yosifov

Sofia, 2013

FUNDAMENTALS OF COMPUTER

PROGRAMMING WITH C#

(The Bulgarian C# Programming Book)

É Svetlin Nakov & Co., 2013

The book is distributed freely under the following license conditions:

1. Book readers (users) may :

- distribute free of charge unaltered copies of the book in electronic or

paper format;

- use portions of the book and the source code examples or their

modifications, for all intents and purposes, including educational and

commercial projects, provided they clearly specify the original source,

the original author(s) of the corresponding text o r source code, this

license and the website www.introprogramming.info ;

- distribute free of charge portions of the book or modified copies of it

(including translating the book into other languages or adapting it to

other programming languages and platforms), but only by explicitly

mentioning the original source and the authors of the corresponding

text, source code or other material, this license and the official website

of the project: www.introprogramming.info .

2. Book readers (users) may NOT :

- distribute for profit the book or portions of it, with the exception of the

source code;

- remove this license from the book when modifying it for own needs.

All trademarks referenced in this book are the property of their respective

owners.

Official Web Site :

http://www.introprogramming.info

ISBN 978 - 954 - 400 - 773 - 7

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Detailed Table of Contents

Contents 2

Detailed Table of Contents 5

Preface 13

About the Book 13

C# and .NET Framework 17

How ȸɔ Read This Book? 22

Why Are Data Structures and Algorithms Emphasized? 25

Do You Really Want to Become a Programmer? 26

A Look at the Bookôs Contents 29

History: How Did This Book Come to Be? 38

Authors and Contributors 40

The Book Is Free of Charge! 53

Reviews 53

License 63

Resources Coming with the Book 65

Chapter 1. Introduction to Programming 69

In This Chapter 69

What Does It Mean "To Program"? 69

Stages in Software Development 71

Our First C# Program 75

The C# Language and the .NET Platform 79

Visual Studio IDE 93

Alternatives to Visual Studio 104

Decompiling Code 104

C# in Linux, iOS and Android 107

Other .NET Languages 107

Exercises 108

Solutions and Guidelines 108

Chapter 2. Primitive Types and Variables 111

In This Chapter 111

What Is a Variable? 111

Data Types 111

Variables 123

Value and Referenc e Types 128

Literals 131

6 Fundamentals of Compute r Programming with C#

Exercises 135

Solutions and Guidelines 136

Chapter 3. Operators and Expressions 139

In This Chapter 139

Operators 139

Type Conversion and Casting 152

Expressions 158

Exercises 160

Solutions and Guidelines 161

Chapter 4. Console Input and Output 165

In This Chapter 165

What Is the Console? 165

Standard Input -Output 169

Printing to the Console 169

Console Input 183

Console Input and Output ï Examples 190

Exercises 192

Solutions and Guidelines 193

Chapter 5. Conditional Statements 195

In This Chapter 195

Comparison O perators and Boolean Expressions 195

Conditional Statements "if" and "if -else" 200

Conditional Statement "switch -case" 206

Exercises 208

Solutions and Guidelines 209

Chapter 6. Loops 211

In This Chapter 211

What Is a "Loop"? 211

While Loops 211

Do-While Loops 216

For Loops 221

Foreach Loops 225

Nested Loops 226

Exercises 231

Solutions and Guid elines 233

Chapter 7. Arrays 235

In This Chapter 235

What Is an "Array"? 23 5

Declaration and Allocation of Memory for Arrays 235

Access to the Elements of an Array 238

Reading an Array from the Console 241

Detailed Table of Contents 7

Printing an Array to the Console 243

Iteration through Elements of an Array 244

Multidimensional Arrays 246

Arrays of Arrays 253

Exercises 257

Solutions and Guidelines 259

Chapter 8. Numeral Systems 265

In This Chapter 265

History in a Nutshell 265

Numeral Systems 266

Representation of Numbers 276

Exercises 289

Solutions and Guidelines 290

Chapter 9. Methods 293

In This Chapter 293

Subroutines in Programming 293

What Is a "Method"? 293

Why to Use Methods? 294

How to Declare, Implement and Invoke a Method? 295

Declaring Our Own Method 295

Implementation (Creation) of Own Method 300

Invoking a Method 301

Parameters in Methods 303

Returning a Result from a Method 328

Best Practices when Using Methods 345

Exercises 347

Solutions and Guidelines 348

Chapter 10. Recursion 351

In This Chapter 351

What Is Recu rsion? 351

Example of Recursion 351

Direct and Indirect Recursion 352

Bottom of Recursion 352

Creating Recursive Methods 352

Recursive Calculation of Factorial 353

Recursion or Iteration? 355

Simulation of N Nested Loops 356

Which is Better: Recursion or Iteration? 362

Using Recursion ï Conclusions 378

Exercises 378

Solutions and Guidelines 380

Chapter 11. Creating and Using Objects 385

8 Fundamentals of Compute r Programming with C#

In This Chapter 385

Classes and Objects 385

Classes in C# 387

Creating and Using Objects 390

Namespaces 405

Exercises 410

Solutions and Guid elines 412

Chapter 12. Exception Handling 415

In This Chapter 415

What Is an Exception? 415

Except ions Hierarchy 424

Throwing and Catching Exceptions 426

The try - finally Construct 432

IDisposable and the "using" Statement 437

Advantages of Using Exceptions 439

Best Practices when Using Exceptions 445

Exercises 453

Solutions and Guidelines 454

Chapter 13. Strings and Text Processing 457

In This Chapter 457

Strings 457

Strings Operations 462

Constructing Strings: the StringBuilder Class 480

String Formatting 488

Exercises 491

Solutions and Guidelines 496

Chapter 14. Defining Classes 499

In This Chapter 499

Custom Classes 499

Usage of Class and Objects 502

Organizing Classes in Files and Namespaces 505

Modifiers and Access Levels (Visibility) 508

Declaring Classes 509

The Reserv ed Word "this" 511

Fields 512

Methods 518

Accessing Non -Static Data of the Class 519

Hiding Fields with Local Variables 522

Visibility of Fields and Methods 524

Constructors 531

Properties 549

Static Classes and Static Members 559

Detailed Table of Contents 9

Structures 580

Enumerations 584

Inner Classes (Nested Classes) 590

Generics 594

Exercises 610

Solutions and Guidelines 613

Ch apter 15. Text Files 615

In This Chapter 615

Streams 615

Reading from a Text File 620

Wr iting to a Text File 628

Input / Output Exception Handling 630

Text Files ï More Examples 631

Exercises 636

Solutions and Guidelines 638

Chapter 16. Linear Data Structures 641

In This Chapter 641

Abstract Data Structures 641

List Data Structures 642

Exerci ses 676

Solutions and Guidelines 678

Chapter 17. Trees and Graphs 681

In This Chapter 681

Tree Data Structures 681

Trees 681

Graphs 714

Exercises 722

Solutions and Guidelines 723

Ch apter 18. Dictionaries, Hash - Tables and Sets 727

In This Chapter 727

Dictionary Data Structure 727

Hash -Tables 735

The "Set" Data S tructure 760

Exercises 765

Solutions and Guidelines 767

Chapter 19. Data Structures and Algorithm Complexity 769

In This Chapter 769

Why Are Data Structures So Important? 769

Algorithm Complexity 770

Comparison between Basic Data Structures 779

When to Use a Particular Data Structure? 779

10 Fundamentals of Compute r Programming with C#

Choosing a Data Structure ï Examples 786

External Libraries with .NET Collections 801

Exercises 803

Solutions and Guidelines 804

Chapter 20. Object - Oriented Programming Principles 807

In This Chapter 807

Letôs Review: Classes and Objects 807

Object -Oriented Programming (OOP) 807

Fundamental Principles of OOP 808

Inheritance 809

Abstraction 824

Encapsulation 828

Polymorphism 830

Cohesion and Coupling 836

Object -Oriented Modeling (OOM) 842

UML Notation 844

Design Patterns 847

Exercises 851

Solutions and Guidelines 852

Ch apter 21. High - Quality Programming Code 853

In This Chapter 853

Why Is Code Quality Important? 853

What Does Quality Programming Code Mean? 854

Why Should We Write Quality Code? 854

Identifier Naming 857

Code Formatting 866

High -Quality Classes 874

High -Quality Methods 878

Proper Use of Variables 883

Proper Use of Expressions 890

Use of Constants 891

Proper Use of Control Flow Statements 894

Defensive Programming 898

Code Documentation 900

Code Refactoring 904

Unit Testing 905

Additional Resources 912

Exercises 912

Solutions and Guidelines 913

Chapter 22. Lambda Expressions and LINQ 915

In This Chapter 915

Extension Methods 915

Detailed Table of Contents 11

Anonymous Types 918

Lambda Expressions 920

LINQ Queries 924

Nested LINQ Queries 930

LINQ Performance 930

Exercises 933

Solutions and Guidelines 933

Chapter 23. Methodology of Problem Solving 935

In This Chapter 935

Basic Principles of Solving Computer Programming Problems 935

Use Pen and Paper 936

Generate Ideas and Give Them a Try! 937

Decompose the Task into Smaller Subtasks 938

Verify Your Ideas! 941

If a Pro blem Occurs, Invent a New Idea! 943

Choose Appropriate Data Structures! 946

Think about the Efficiency! 950

Implement Your Algorithm! 953

Write the Code Step by Step! 954

Test Your Solution! 967

General Conclusions 979

Exercises 980

Solutions and Guidelines 983

Chapter 24. Sample Programming Exam ï Topic #1 985

In This Chapter 985

Problem 1: Extract Text from HTML Document 985

Problem 2: Escape from Labyrinth 1012

Problem 3: Store for Car Parts 1026

Exercises 1038

Solutions and Gu idelines 1040

Chapter 25. Sample Programming Exam ï Topic #2 1041

In This Chapter 1041

Problem 1: Counting the Uppercase / Lowercase Words in a Text 1041

Problem 2: A Matrix of Prime Numbers 1054

Problem 3: Evaluate an Arithmetic Expression 1060

Exercises 1069

Solutions and Guidelines 1069

Chapter 26. Sample Programming Exam ï Topic #3 1071

In Thi s Chapter 1071

Problem 1: Spiral Matrix 1071

Problem 2: Counting Words in a Text File 1078

Problem 3: School 1099

12 Fundamentals of Compute r Programming with C#

Exercises 1117

Solutions and Guidelines 1118

Conclusion 1119

Did You Solve All Problems? 1119

Have You Encountered Difficulties with the Exercises? 1119

How Do You Proceed After Reading the Book? 1120

Free Courses at Telerik Software Academy 1121

Good Luck to Everyone! 1121

Preface

If you want to take up programming seriously, youôve come across the

right book . For real! This is the book with which you can make your first

steps in programming. It will give a flying start to your long journey into

learning modern programming languages and software development

technologies. This book teaches the fundamental principles and concepts

of programming , which have not changed significantly in the past 15 years.

Do not hesitate to read this book even if C# is not the language you would

like to pursue. Whatever language you move on to, the knowledge we will

give you here will stick, because this book will teach you to think like

programmers. We will show you and teach you how to write programs for

solving practical algorithmic problems , form the skills in you to come up

with (and implement) algorithms, and use various data structures.

As improbable as it m ight seem to you, the basic principles of writing

computer programs have not changed all that much in the past 15 years.

Programming languages change, technologies get modernized, integrated

development environments get more and more advanced but the

funda mental principles of programming remain the same . When

beginners learn to think algorithmically, and then learn to divide a problem

instinctively into a series of steps to solve it, as well as when they learn to

select the appropriate data structures and w rite high -quality programming

code that is when they become programmers. Once you acquire these skills,

you can easily learn new languages and various technologies ï like Web

programming, HTML5 and JavaScript, mobile development, databases and

SQL, XML, RE ST, ASP.NET, Java EE, Python, Ruby and hundreds more.

About the Book

This book is designed specifically to teach you to think like a programmer and

the C# language is just a tool that can be replaced by any other modern

programming languages, such as Java, C++, PHP or Python. This is a book

on programming, not a book on C#!

Please Excuse Us for the Bugs in the Translation!

This book was originally written in Bulgarian language by a large team of

volunteer software engineers and later translated into English . None of the

authors, translators, editors and the other contributors is a native English

speaker so you might find many mistakes and imprecise translation. Please ,

excuse us! Over 70 people have participated in this project (mostly

Bulgarians): authors, editors, translators, correctors, bug submitters, etc. and

14 Fundamentals of Computer Programming wi th C#

still the quality could be improved. The entire team congratulates you on your

choice to read this book and we believe the content in it i s more important

that the small mistakes and inaccuracies you might find. Enjoy!

Who Is This Book Aimed At?

This book is best suited for beginners . It is intended for anyone who so far

has not engaged seriously in programming and would like to begin doing it.

This book starts from scratch and introduces you step by step into the

fundamentals of programming. It wonôt teach you absolutely everything you

might need for becoming a software engineer and working at a software

company, but it will lay the groundwo rk on which you can build up

technological knowledge and skills, and through them you will be able to turn

programming into your profession.

If youôve never written a computer program, donôt worry. There is always a

first time. In this book we will teach y ou how to program from scratch .

We do not expect any previous knowledge or abilities. All you need is some

basic computer literacy and a desire to take up programming. The rest you

will learn from the book.

If you can already write simple programs or if yo u have studied programming

at school or in college, or youôve coded with friends, do not assume you

know everything ! Read this book and youôll become aware of how many

things youôve missed. This book is indeed for beginners, but it teaches

concepts and ski lls that even experienced professional programmers lack.

Software companies are riddled with a shocking amount of self - taught

amateurs who, despite having programmed on a salary for years, have no

grasp of the fundamentals of programming and have no idea w hat a hash

table is, how polymorphism works and how to work with bitwise operations.

Donôt be like them! Learn the basics of programming first and then the

technologies. Otherwise you risk having your programming skills crippled,

more or less, for years, i f not for life.

If, on the other hand, you have programming experience, examine this book

in details and see if you are familiar with all subjects we have covered, in

order to decide whether it is for you or not. Take a close look especially at the

chapter s " Data Structures and Algorithms Complexity ", " Object -Oriented

Programming Principles ", " Methodology of Problem Solving " and " High -Quality

Programming Code ". It is very likely that, even if you have several years of

experience, you might not be able to work well with data st ructures ; you

might not be able to evaluate the complexity of an algorithm ; you might

not have mastered in depth the concepts of object - oriented programming

(including UML and design patterns); and you might not be acquainted with

the best practices for wr iting high - quality programming code . These are

very important topics that are not covered in all books on programming, so

donôt skip them!

Preface 15

Previous Knowledge Is Not Required!

In this book we do not expect any previous programming knowledge

from the readers . It is not necessary for you to have studied information

technology or computer science, in order to read and comprehend the book

content. The book starts from scratch and gradually gets you involved in

programming. All technical terms you will come acros s will have been

explained beforehand and it is not necessary for you to know them from other

sources. If you donôt know what a compiler, debugger, integrated develop-

ment environment, variable, array, loop, console, string, data structure,

algorithm, algo rithm complexity, class or object are, donôt be alarmed. From

this book , you will learn all these terms and many more and gradually get

accustomed to using them constantly in your everyday work. Just read the

book consistently and do the exercises.

Certain ly, if , after all , you do have prior knowledge in computer science and

information technologies, they will by all means be of use to you. If, at

university, you major in the field of computer science or if you study

information technology at school, this w ill only help you, but it is not a must.

If you major in tourism, law or other discipline that has little in common with

computer technology, you could still become a good programmer , as long

as you have the desire. The software industry is full of good de velopers

without a computer science or related degree.

It is expected for you to have basic computer literacy , since we would not

be explaining what a file, hard disk and network adapter is, nor how to move

the mouse or how to write on a keyboard. We expec t you to know how to

work with a computer and how to use the Internet.

It is recommended that the readers have at least some basic knowledge of

English . The entire documentation you will be using every day and almost all

of the websites on programming you would be reading at all times are in

English. In the profession of a programmer, English is absolutely

essential . The sooner you learn it, the better. We hope that you already

speak English; otherwise how do you read this text?

Make no illusion you can become a programmer without

learning even a little English! This is simply a naive

expectation. If you donôt speak English, complete a course of

some so rt and then start reading technical literature, make

note of any unfamiliar words and learn them. You will see for

yourselves that Technical English is easy to learn and it

doesnôt take much time.

What Is the Scope of This Book?

This book covers the fundamentals of programming . It will teach you how

to define and use variables, how to work with primitive data structures (such

as numbers), how to organize logical statements, conditional statements and

16 Fundamentals of Computer Programming wi th C#

loops, how to print on the console, how to use arra ys, how to work with

numeral systems, how to define and use methods, and how to create and use

objects. Along with the basic programming knowledge , this book will help

you understand more complicated concepts such as string processing,

exception handling, using complex data structures (like trees and hash

tables), working with text files, defining custom classes and working with

LINQ queries. The concepts of object -oriented programming (OOP) ï an

established approach in modern software development ï will be covered in

depth. Finally, youôll be faced with the practices for writing high - quality

programs and solving real -world programming problems. This book presents

a complete methodology for solving programming problems, as well as

algorithmic problems in gen eral, and shows how to implement it with a few

sample subjects and programming exams. This is something you will not find

in any other book on programming!

What Will This Book Not Teach You?

This book will not award you the profession "software engineer" ! This

book wonôt teach you how to use the entire .NET platform, how to work with

databases, how to create dynamic web sites and develop mobile applications,

how to create window -based graphical user interface (GUI) and rich Internet

applications (RIA). You wonôt learn how to develop complex software

applications and systems like Skype, Firefox, MS Word or social networks like

Facebook and retail sites like Amazon.com. And no other single book will.

These kinds of projects require many, many years of work and experience

and the knowledge in this book is just a wonderful beginning for the future

programmer geek.

From this book , you wonôt learn software engineering, team work and you

wonôt be able to prepare for working on real projects in a software company.

In order to learn all of this, you will need a few more books and extra courses,

but do not regret the time you will spend on this book. You are making the

right choice by starting with the fundamentals of programming rather

than directly with Web developmen t, mobile applications and databases. This

gives you the opportunity to become a master programmer who has in -

depth knowledge of programming and technology. After you acquire the

fundamentals of programming , it will become much easier for you to read and

learn databases and web applications, and you will understand what you read

much easier and in greater depth rather than if you directly begin learning

SQL, ASP.NET, AJAX, XAML or WinRT .

Some of your colleagues directly begin programming with Web or mobile

applications and databases without knowing what an array, a list or hash

table is. Do not envy them! They have set out to do it the hard way,

backwards. They will learn to make low -quality websites with PHP and MySQL,

but they will find it infinitely diffi cult to become real professionals . You,

too, will learn web technologies and databases, but before you take them up,

learn how to program! This is much more important. Learning one

Preface 17

technology or another is very easy once you know the basics, when you can

think algorithmically and you know how to tackle programming problems.

Starting to program with web applications or/and databases

is just as incorrect as studying up a foreign language from

some classical novel rather than from the alphabet and a

textbook for beginners. It is not impossible, but if you lack

the basics, it is much more difficult. It i s highly - probable that

you would end up lacking vital fundamental knowledge and

being the laughing - stock of your colleagues/peers.

How Is the Information Pres ented?

Despite the large number of authors, co -authors and editors, we have done

our best to make the style of the book similar in all chapters and highly

comprehensible. The content is presented in a well - structured manner; it is

broken up into many title s and subtitles, which make its reception easy and

looking up information in the text quick.

The present book is written by programmers for programmers . The

authors are active software developers, colleagues with genuine experience in

both software develop ment and training future programmers. Due to this, the

quality of the content presentation is at a very good level, as you will see for

yourself.

All authors are distinctly aware that the sample source code is one of the

most important things in a book on programming. Due to this very reason,

the text is accompanied with many, many examples, illustrations and figures.

When every chapter is written by a different author, there is no way to

completely avoid differences in the style of speech and the quality of

chapters. Some authors put a lot of work (for months) and a lot of efforts to

make their chapters perfect . Others could not invest too much effort and

that is why some chapters are not as good as the best ones. Last but not

least, the experience of the authors varies ï some have been programming

professionally for 2 -3 years, while others ï for 15 years. This affects the

quality, no doubt, but we assure you that every chapter has been

reviewed and meets the quality standards of Svetlin Nakov and his team.

C# and .NET Framework

This book is about programming . It is intended to teach you to think as a

programmer, to write code, to think in data structures and algorithms and to

solve problems.

We use C# and Microsoft .NET Framework (the platform behind C#) only

as means for writing programming code and we do not scrutinize the

languageôs specifics. This same book can be found in versions for other

languages like Java and C++, but the differences are not very significant.

http://www.nakov.com/

18 Fundamentals of Computer Programming wi th C#

Nevertheless, letôs give a short account of C# (pronounced "see sharp").

C# is a modern programming language for development of

software applications.

If the words "C#" and ".NET Framework" are unknown to you, youôll learn in

details about them and their connection in the next chapter . Now let ôs explain

briefly what C#, .NET, .NET Framework, CLR a nd the other technologies

related to C# are.

The C# Programming Language

C# is a modern object - oriented, general - purpose programming

language , created and developed by Microsoft together with the .NET

platform. There is highly diverse software developed wi th C# and on the .NET

platform: office applications, web applications, websites, desktop applications,

mobile applications, games and many others.

C# is a high - level language that is similar to Java and C++ and, to some

extent, languages like Delphi, VB.NE T and C. All C# programs are object -

oriented. They consist of a set of definitions in classes that contain methods

and the methods contain the program logic ï the instructions which the

computer executes. You will find out more details on what a class, a m ethod

and C# programs are in the next chapter .

Nowadays C# is one of the most popular programming languages . It is

used by millions of developers worldwide. Because C# is developed by

Microsoft as p art of their modern platform for development and execution of

applications, the .NET Framework, the language is widely spread among

Microsoft -oriented companies, organizations and individual developers. For

better or for worse, as of this book writing, the C# language and the .NET

platform are maintained and managed entirely by Microsoft and are not

open to third parties. Because of this, all other large software corporations

like IBM, Oracle and SAP base their solutions on the Java platform and use

Java as their primary language for developing their own software products.

Unlike C# and the .NET Framework, the Java language and platform are

open - source projects that an entire community of software companies,

organizations and individual developers take part in. The standards, the

specifications and all the new features in the world of Java are developed by

workgroups formed out of the entire Java commun ity, rather than a single

company (as the case of C# and .NET Framework).

The C# language is distributed together with a special environment on which

it is executed, called the Common Language Runtime (CLR) . This

environment is part of the platform .NET Fr amework, which includes CLR, a

bundle of standard libraries providing basic functionality, compilers,

debuggers and other development tools. Thanks to the framework CLR

programs are portable and, once written they can function with little or no

changes on various hardware platforms and operating systems. C# programs

Preface 19

are most commonly run on MS Windows, but the .NET Framework and CLR

also support mobile phones and other portable devices based on Windows

Mobile, Windows Phone and Windows 8. C# programs can st ill be run under

Linux, FreeBSD, iOS, Android, MacOS X and other operating systems through

the free .NET Framework implementation Mono , which, however, is not

officially supported by Microsoft.

The Microsoft .NET Framework

The C# language is not distribute d as a standalone product ï it is a part of

the Microsoft .NET Framework platform (pronounced "Microsoft dot net

framework"). .NET Framework generally consists of an environment for the

development and execution of programs, written in C# or some other

lan guage, compatible with .NET (like VB.NET, Managed C++, J# or F#). It

consists of:

- the .NET programming languages (C#, VB.NET and others);

- an environment for the execution of managed code (CLR), which

executes C# programs in a controlled manner;

- a set of de velopment tools , such as the csc compiler, which turns C#

programs into intermediate code (called MSIL) that the CLR can

understand;

- a set of standard libraries , like ADO.NET , which allow access to

databases (such as MS SQL Server or MySQL) and WCF which c onnects

applications through standard communication frameworks and protocols

like HTTP, REST, JSON, SOAP and TCP sockets.

The .NET Framework is part of every modern Windows distribution and is

available in different versions. The latest version can be down loaded and

installed from Microsoftôs website. As of this bookôs publishing, the latest

version of the .NET Framework is 4.5 . Windows Vista includes out -of - the -

box .NET Framework 2.0, Windows 7 ï .NET 3.5 and Windows 8 ï .NET 4.5.

Why C#?

There are many re asons why we chose C# for our book. It is a modern

programming language, widely spread, used by millions of programmers

around the entire world. At the same time C# is a very simple and easy to

learn (unlike C and C++). It is natural to start with a langua ge that is

suitable for beginners while still widely used in the industry by many large

companies, making it one of the most popular programming languages

nowadays.

C# or Java?

Although this can be extensively discussed, it is commonly acknowledged that

Ja va is the most serious competitor to C# . We will not make a

comparison between Java and C#, because C# is undisputedly the better,

20 Fundamentals of Computer Programming wi th C#

more powerful, richer and just better engineered. But, for the purposes of this

book, we have to emphasize that any modern pr ogramming language will be

sufficient to learn programming and algorithms. We chose C#, because it is

easier to learn and is distributed with highly convenient, free integrated

development environment (e.g. Visual C# Express Edition). Those who prefer

Java can prefer to use the Java version of this book, which can be found here:

www.introprogramming.info .

Why Not PHP?

With regards to programing languages popularity, besides C# and Java,

another widely used language is PHP . It is suitable for developing small web

sites and web applications, but it gives rise to serious difficulties when

implementing large and complicated software systems. In the software

industry PHP is used first and foremost for small projects , because it can

easily lead developers into writing code that is bad, disorganized and hard to

maintain, making it inconvenient for more substantial projects. Thi s subject is

also debatable, but it is commonly accepted that, because of its antiquated

concepts and origins it is built on and because of various evolutionary

reasons, PHP is a language that tends towards low - quality

programming , writing bad code and cre ating hard to maintain software. PHP

is a procedural language in concept and although it supports the paradigms of

modern object - oriented programming, most PHP programmers write

procedurally. PHP is known as the language of "code monkeys" in the

software e ngineering profession, because most PHP programmers write

terrifyingly low - quality code . Because of the tendency to write low -quality,

badly structured and badly organized programming code, the entire concept

of the PHP language and platform is considered wrong and serious companies

(like Microsoft, Google, SAP, Oracle and their partners) avoid it. Due to this

reason, if you want to become a serious software engineer, start with C# or

Java and avoid PHP (as much as possible).

Certainly, PHP has its uses in the world of programming (for example

creating a blog with WordPress, a small web site with Joomla or Drupal, or a

discussion board with PhpBB), but the entire PHP platform is not well -

organized and engineered for large systems like .NET and Java. When it

comes to non -web -based applications and large industrial projects, PHP is not

by a long shot among the available options. Lots and lots of experience is

necessary to use PHP correctly and to develop high -quality professional

projects with it. PHP developer s usually learn from tutorials, articles and low -

quality books and pick up bad practices and habits, which then are hard to

eradicate. Therefore, do not learn PHP as your first development

language . Start with C# or Java .

Based on the large experience of t he authors' collective we advise you to

begin programming with C# and ignore languages such as C, C++ and PHP

until the moment you have to use them.

http://www.introprogramming.info/

Preface 21

Why Not C or C++?

Although this is also debatable, the C and C++ languages are considered

complex and requi res deep understanding of hardware . They still have their

uses and are suitable for low - level programming (e.g. programming for

specialized hardware devices), but we do not advise you to use C / C++ when

you are beginner who wants to learn programming .

You can program in pure C, if you have to write an operating system, a

hardware device driver or if you want to program an embedded device,

because of the lack of alternatives and the need to control the hardware very

carefully. The C language is very low - lev el and in no way do we advise

you to begin programming with it. A programmerôs productivity under pure C

is many times lower compared to their productivity under modern general -

purpose programming languages like C# and Java. A variant of C is used

among Ap ple / iPhone developers, but not because it is a good language, but

because there is no decent alternative. Most Apple -oriented programmers do

not like Objective -C, but they have no choice in writing in something else. In

2014 Apple promoted their new lang uage Swift , which is of higher level and

aims to replace Objective -C for the iOS platform.

C++ is good when you have to program applications that require very close

work with the hardware or that have special performance requirements

(like 3D games). For a ll other purposes (like Web applications development or

business software) C++ is inadequate. We do not advise you to pursue it, if

you are starting with programming just now. One reason it is still being

studied in some schools and universities is heredit ary, because these

institutions are very conservative. For example, the International Olympiad in

Informatics (IOI) continues to promote C++ as the only language permitted

to use at programming contests, although C++ is rarely used in the

industry . If you donôt believe this, look through some job search site and

count the percentage of job advertisements with C++.

The C++ language lost its popularity mainly because of the inability to quickly

write quality software with it. In order to write high -quality so ftware in C++,

you have to be an incredibly smart and experienced programmer, whereas

the same is not strictly required for C# and Java. Learning C++ takes

much more time and very few programmers know it really well. The

productivity of C++ programmers is many times lower than C#ôs and that is

why C++ is losing ground. Because of all these reasons, the C++ language

is slowly fading away and therefore we do not advise you to learn it.

Advantages of C#

C# is an object - oriented programming language. Such are a ll modern

programming languages used for serious software systems (like Java and

C++). The advantages of object -oriented programming are brought up in

many passages throughout the book, but, for the moment, you can think of

object - oriented languages as lan guages that allow working with objects from

the real world (for example student, school, textbook, book and others).

22 Fundamentals of Computer Programming wi th C#

Objects have properties (e.g. name, color, etc.) and can perform actions (e.g.

move, speak, etc.).

By starting to program with C# and the . NET Framework platform, you are on

a very perspective track . If you open a website with job offers for

programmers, youôll see for yourself that the demand for C# and .NET

specialists is huge and is close to the demand for Java programmers. At the

same time, the demand for PHP, C++ and other technology specialists is far

lower than the demand for C# and Java engineers.

For the good programmer , the language they use is of no significant meaning,

because they know how to program . Whatever language and technology

they might need, they will master it quickly. Our goal is not to teach you

C#, but rather teach you programming! After you master the

fundamentals of programming and learn to think algorithmically, when you

acquain t with other programming languages , you will see for yourself how

much in common they have with C# and how easy it will be to learn them.

Programming is built upon principles that change very slowly over the years

and this book teaches you these very prin ciples.

Examples Are Given in C# 5 and Visual Studio 201 2

All examples in this book are with regard to version 5. 0 of the C# language

and the .NET Framework 4.5 platform, which is the latest as of this bookôs

publishing. All examples on using the Visual St udio integrated development

environment are with regard to version 2012 of the product, which were also

the latest at the time of writing this book.

The Microsoft Visual Studio 201 2 integrated development environment

(IDE) has a free version, suitable for beginner C# programmers, called

Microsoft Visual Studio Express 2012 for Windows Desktop . The difference

between the free and the full version of Visual Studio (which is a commercial

software product) lies in the availability of some functionalit ies, which we will

not need in this book.

Although we use C# 5 and Visual Studio 201 2, most examples in this book

will work flawlessly under .NET Framework 2.0 / 3.5 / 4.0 and C# 2.0 / 3.5 /

4.0 and can be compiled under Visual Studio 2005 / 2008 / 2010 .

It is of no great significance which version of C# and Visual Studio youôll use

while you learn programming. What matters is that you learn the principles

of programming and algorithmic thinking ! The C# language, the .NET

Framework platform and the Visual Studio inte grated development

environment are just tools and you can exchange them for others at any time.

If you read this book and VS2012 is not currently the latest, be sure almost

all of this bookôs content will still be the same due to backward compatibility.

Ho w ȸɔ Read This Book?

Reading this book has to be accompanied with lots and lots of practice . You

wonôt learn programming, if you donôt practice! It would be like trying to learn

Preface 23

how to swim from a book without actually trying it. There is no other way!

The more you work on the problems after every chapter, the more you will

learn from the book.

Everything you read here , you would have to try for yourself on a computer.

Otherwise you wonôt learn anything. For example, once you read about Visual

Studio and ho w to write your first simple program, you must by all means

download and install Microsoft Visual Studio (or Visual C# Express) and try to

write a program. Otherwise you wonôt learn! In theory, everything seems

easy, but programming means practice . Remembe r this and try to solve

the problems from this book. They are carefully selected ï they are neither

too hard to discourage you, nor too easy, so youôll be motivated to perceive

solving them as a challenge. If you encounter difficulties, look for help at th e

discussion group for the "C# Programming Fundamentals" training course

at Telerik Software Academy: http://forums.academy.telerik.com (the forum

is intended for Bulgarian developers but the people "living " in it speak English

and will answer your questions regarding this book, donôt worry). Thousands

students solve the exercises from this book every year so you will find many

solutions to each problem from the book. We will also publish official solutions

+ tests for every exercise in the book at its web site.

Reading this book without practicing is meaningless! You

must spend much more time on writing programs than

reading the text itself. It is just like learning to drive: no one

can learn driving by reading books. To learn driving , you

need to drive many times in different situations, roads, cars,

etc. To learn programming , you need to program!

Everybody has studied math in school and knows that learning how to solve

math problems requires lots of pr actice. No matter how much they watch and

listen to their teacher s, without actually sitting down and solving

problems, they wonôt learn. The same goes for programming. You need

lots of practice. You need to write a lot, to solve problems, to experiment, t o

endeavor in and to struggle with problems, to make mistakes and correct

them, to try and fail , to try anew and experience the moments when things

finally work out. You need lots and lots of practice. This is the only way you

will make progress.

So people say that to become a developer you might need to write at least

50,000 ï 100,000 lines of code, but the correct number can vary a lot . Some

people are fast learners or just have problem -solving experience. Others may

need more practice, but in al l cases practicing programming is very

important ! You need to solve problems and to write code to become a

developer. There is no other way!

Do Not Skip the Exercises!

At the end of each chapter there is a considerable list of exercises . Do not

skip them! Without exercises , you will not learn a thing. After you read a

http://forums.academy.telerik.com/

24 Fundamentals of Computer Programming wi th C#

chapter, you should sit in front of the computer and play with the examples

you have seen in the book. Then you should set about solving all problems. If

you cannot solve them all, you should at least try. If you donôt have all the

time necessary, you must at least attempt solving the first few problems from

each chapter. Do not carry on without solving problems after every

chapter , it would just be meaningless! The problems are small feasible

situations where you apply the stuff you have read. In practice, once you

have become programmers, you would solve similar problems every day, but

on a larger and more complex scale.

You must at all cost strive to solve the exercise problems

after every chapter from the book! Otherwise you risk not

learning anything and simply wasting your time.

How Much Time Will We Need for This Book?

Mastering the fundamentals of programming is a crucial task and takes a lot

of time . Even if youôre incredibly good at it, there is no way that you will

learn programming on a good level for a week or two. To learn any human

skill, you need to read, see or be shown how it is done and then try doing it

yourselves and practice a lot. The same goes for programming ï you must

either read, see or listen how it is done, then try doing it yourself . Then you

would succeed or you would not and you would try again, until you finally

realize you have learned it. Learning is done step by step, consecutively, in

series, with a lot of ef fort and consistency.

If you want to read, understand, learn and acquire thoroughly and in -depth

the subject matter in this book, you have to invest at least 2 months for

daylong activity or at least 4 -5 months, if you read and exercise a little

every day. This is the minimum amount of time it would take you to be able

to grasp in depth the fundamentals of programming.

The necessity of such an amount of lessons is confirmed by the free trainings

at Telerik Software Academy (http://academy.telerik.com), which follow this

very book. The hundreds of students, who have participated in training s

based on the lectures from this book, usually learn all subjects from this book

within 3 - 4 months of full - time work . Thousands of students every year

solve all exercise problems from this book and successfully sit on

programming exams covering the bookôs content. Statistics shows that

anyone without prior exposure to programming, who has spent less than the

equivalent of 3 -4 month s daylong activity on this book and the corresponding

course s at Telerik Academy, fails the exams.

The main subject matter in the book is presented in more than 1100 pages ,

which will take you a month (daylong) just to read them carefully and test the

samp le programs. Of course, you have to spend enough time on the exercises

(few more months); without them you would hardly learn programming.

http://academy.telerik.com/

Preface 25

Exercises: Complex or Easy?

The exercises in the book consist of about 350 problems with varying

difficulty. For some of them you will need a few minutes, for others several

hours (if you can solve them at all without help). This means you would need

a month or two of daylong exercising or several months, if you do it little by

little.

The exercises at each chapter are ordered in increasing level of difficulty .

The first few exercises are easy, similar to the examples in the chapter. The

last few exercises are usually complex. You might need to use external

resources (like information fro m Wikipedia) to solve them. Intentionally , the

last few exercises in each chapter require skills outside of the chapter . We

want to push you to perform a search in your favorite search engine. You

need to learn searching on the Internet! This is an essenti al skill for any

programmer. You need to learn how to learn. Programming is about learning

every day. Technologies constantly change and you canôt know everything. To

be a programmer means to learn new APIs, frameworks, technologies

and tools every day . Th is cannot be avoided, just prepare yourself. You will

find many problems in the exercises, which require searching on the Internet.

Sometime s you will need the skills from the next chapter, sometimes some

well - known algorithm, sometimes something else, but in all cases searching

on the Internet is an essential skill you need to acquire.

Solving the exercises in the book takes a few months , really. If you donôt

have that much time at your disposal, ask yourselves if you really want to

pursue programming. This is a very serious initiative in which you must invest

a really great deal of efforts. If you really want to learn programming on a

good level, schedule enough time and follow the book or the video lectures

based on it.

Why Are Data Structures and Algo rithms
Emphasized?

This book teaches you, in addition to the basic knowledge in programming,

proper algorithmic thinking and using basic data structures in

programming. Data structures and algorithms are a programmerôs most

important fundamental skills! If you have a good grasp of them, you will not

have any trouble becoming proficient in a ny software technology,

development tool, framework or API. That is what the most serious software

companies rely on when hiring employees. Proof of this are job intervie ws at

large companies like Google and Microsoft that rely exclusively on

algorithmic thinking and knowledge of all basic data structures and

algorithms .

The information below comes from Svetlin Nakov , the leading author of this

book, who passed software en gineering interviews at Microsoft and Google in

2007 -2008 and shares his own experience.

26 Fundamentals of Computer Programming wi th C#

Job Interviews at Google

100% of the questions at job interviews for software engineers at Google,

Zurich, are about data structures, algorithms and algorithmic thinki ng .

At such an interview you may have to implement on a white board a linked

list (see the chapter " Linear Data Structures ") or come up with an algorithm

for filling a raster polygon (given in the form o f a GIF image) with some sort

of color (see Breadth - first search in the chapter " Trees and Graphs "). It

seems like Google are interested in hiring people who can think

algorithmically and who have a grasp of b asic data structures and computer

algorithms. Any technology that candidates would afterwards use in their line

of work can be quickly learned. Needless to say, do not assume this book will

give you all the knowledge and skills to pass a job interview at G oogle. The

knowledge in the book is absolutely a necessary minimum, but not completely

sufficient. It only marks the first steps.

Job Interviews at Microsoft

A lot of questions at job interviews for software engineers at Microsoft,

Dublin, focus on data st ructures , algorithms and algorithmic thinking .

For example, you could be asked to reverse the words in a string (see the

chapter " Strings and Text Processing " or to implement topological sorting in

an undirected graph (see the chapter " Trees and Graphs "). Unlike Google,

Microsoft asks a lot of engineering questions related to software architectures,

multithreading, writing secure code, working with large amounts of data and

software testing. This book is far from sufficient for applying at Microsoft, but

the knowledge in it will surely be of use to you for the majority of questions.

About the LINQ Technology

The book includes a chapter on the popular .NET technology LINQ

(Language Integrated Query), which allows execution of various queries

(such as searching, sorting, summation and other group operations) on

arrays, lists and other objects. It is p laced towards the end on purpose, after

the chapters on data structures and algorithms complexity . The reason

behind this is that the good programmer must know what happens when they

sort a list or search in an array according to criteria and how many oper ations

these actions take. If LINQ is used, it is not obvious how a given query works

and how much time it takes. LINQ is a very powerful and widely - used

technology , but it has to be mastered at a later stage (at the end of the

book), after you are well fa miliar with the basics of programming, the main

algorithms and data structures. Otherwise you risk learning how to write

inefficient code without realizing how it works and how many operations it

performs in the background.

Do You Really Want to Become a P rogrammer?

If you want to become a programmer , you have to be aware that true

programmers are serious, persevering, thinking and questioning people who

Preface 27

handle all kinds of problems. It is important for them to master quickly all

modern or legacy platforms, technologies, libraries, APIs, programming tools,

programming languages and development tools necessary for their job and to

feel programming as a part of their life.

Good programmers spend an extraordinary amount of time on

advancing their engineering sk ills , on learning new technologies, new

programming languages and paradigms, new ways to do their job, new

platforms and new development tools every day. They are capable of logical

thinking ; reasoning on problems and coming up with algorithms for solving

them; imagining solutions as a series of steps; modeling the surrounding

world using technological means; implementing their ideas as programs or

program components; testing their algorithms and programs; seeing issues;

foreseeing the exceptional circumsta nces that can come about and handling

them properly; listening to the advi ce of more experienced people; adapt ing

their applicationsô user interface to the userôs needs; adapting their algorithms

to the capabilities of the machines and the environment they will be executed

on and interact ed with.

Good programmers constantly read books, articles or blogs on

programming and are interested in new technologies; they constantly enrich

their knowledge and constantly improve the way they work and the quality of

software they write. Some of them become obsessed to such an extent that

they even forget to eat or sleep when confronted with a serious problem or

simply inspired by some interesting lecture or presentation. If you have the

tendency to get motivated to such an extent to do something (like playing

video games incessantly), you can learn programming very quickly by getting

into the mindset that programming is the most interesting thing in this world

for you, in this period of your life.

Good programmers have o ne or more computers, an Internet connection and

live in constant reach with technologies . They regularly visit websites and

blogs related to new technologies, communicate everyday with their

colleagues, visit technology lectures, seminars and other events , even if they

have no use for them at the moment. They experiment with or research the

new means and new ways for making a piece of software or a part of their

work. They examine new libraries, learn new languages, try new frameworks

and play with new dev elopment tools. That way they develop their skills

and maintain their level of awareness, competence and professionalism.

True programmers know that they can never master their profession to its full

extent, because it constantly changes. They live with th e firm belief that they

have to learn their entire lives ; they enjoy this and it satisfies them. True

programmers are curious and questioning people that want to know how

everything works ï from a simple analog clock to a GPS system, Internet

technology, p rogramming languages, operation systems, compilers, computer

graphics, games, hardware, artificial intelligence and everything else related

to computers and technologies. The more they learn, the more knowledge and

skills they crave after. Their life is ti ed to technologies and they change

28 Fundamentals of Computer Programming wi th C#

with them, enjoying the development of computer science, technologies and

the software industry.

Everything we tell you about true programmers, we know firsthand. We are

convinced that programmer is a profession that requ ires your full

devotion and complete attention, in order to be a really good specialist ï

experienced, competent, informed, thinking, reasoning, knowing, capable and

able to deal with non -standard situations. Anyone who takes up programming

"among other th ings" is fated to being a mediocre programmer. Programming

requires complete devotion for years . If you are ready for all of this,

continue reading and take into account that the next few months you will

spend on this book on programming are just a small s tart. And then you will

learn for years until you turn programming into your profession. Once that

happens , you would still learn something every day and compete with

technologies, so that you can maintain your level, until one day programming

develops you r thinking and skills enough, so that you may take up another

profession , because few programmers reach retirement; but there are quite

a lot of successful people who have begun their careers with programming.

Motivate Yourself to Become a Programmer or Fi nd

Another Job!

If you still havenôt given up on becoming a good programmer and if you

have already come to the understanding deep down that the next months and

years will be tied every day to constant diligent work on mastering the secrets

of programming, software development, computer science and software

technologies, you may use an old technique for self - motivation and

confident achievement of goals that can be found in many books and ancient

teachings under one form or another. Keep imagining that you are

programmers and that you have succeeded in becoming ones; you engage

ev ery day in programming ; it is your profession; you can write all the

software in the world (provided you have enough time); you can solve any

problem that experienced programmers can solve. Keep thinking constantly

and incessantly of your goal. Keep tellin g yourself, sometimes even out loud:

" I want to become a good programmer and I have to work hard for this, I

have to read a lot and learn a lot, I have to solve a lot of problems, every

day, constantly and diligently". Put programming books everywhere arou nd

you, even stick a sign that says " Iôll become a good programmer" by your

bed, so that you can see it every evening when you go to bed and every

morning when you wake up. Program every day (no exceptions!), solve

problems, have fun, learn new technologie s, experiment; try writing a game,

making a website, writing a compiler, a database and hundreds of other

programs you may come up with original ideas for. In order to become good

programmers, program every day and think about programming every day

and kee p imagining the future moment when you are an excellent

programmer. You can, as long as you deeply believe that you can! Everybody

can, as long as they believe that they can and pursue their goals constantly

Preface 29

without giving up. No -one would motivate you bet ter than yourselves.

Everything depends on you and this book is your first step.

A great way to really learn programming is to program every

day for a year. If you program every day (without exception)

and you do it for a long time (e.g. year or two) the re is no

way to not become a programmer. Anyone who practices

programming every day for years will become good someday.

This is valid for any other skill: if you want to learn it, just

practice every day for a long time.

A Look at the Bookôs Contents

Now letôs take a glance at what we are about to encounter in the next

chapters of the book . We will give an account of each of them with a few

sentences, so that you know what you are about to learn.

Chapter 0: Preface

The preface (the current chapter) int roduces the readers to the book, its

content, what the reader will learn and what will not, how to read the

book, why we use the C# language, why we focus on data structures and

algorithms, etc. The preface also describes the history of the book, the

conte nt of its chapter one by one, the team of authors, editors and translators

from Bulgarian to English. In contains the full reviews written by famous

software engineers from Microsoft, Google, SAP, VMware, Telerik and other

leading software companies from a ll over the world.

Author of the preface is Svetlin Nakov (with little contribution from Veselin

Kolev and Mihail Stoynov). Translation to English: by Ivan Nenchovski (edited

by Mihail Stoynov, Veselina Raykova , Yoan Krumov and Hristo Radkov).

Chapter 1: I ntroduction to Programming

In the chapter " Introduction to Programming ", we will take a look at the basic

terminology in programming and write our first program . We will

familiarize ourselves with w hat programming is and what connection to

computers and programming languages it has. We will briefly review the main

stages in software development, introduce the C# language , the .NET

platform and the different Microsoft technologies used in software

dev elopment. We will examine what auxiliary tools we need to program in C#

and use the C# language to write our first computer program , compile it

and run it using the command line, as well as Microsoft Visual Studio

integrated development environment. We wil l familiarize ourselves with the

MSDN Library ï the documentation for the .NET Framework, which will help us

in our study of the languageôs capabilities.

Author of the chapter is Pavel Donchev ; editors are Teodor Bozhikov and

Svetlin Nakov. The content of the chapter is somewhat based on the work of

30 Fundamentals of Computer Programming wi th C#

Luchesar Cekov from the book "Introduction to Programming with Java".

Translation to English: by Atanas Valchev (edited by Vladimir Tsenev and

Hristo Radkov).

Chapter 2: Primit ive Types and Variables

In the chapter " Primitive Types and Variables ", we will examine primitive

types and variables in C# ï what they are and how to work with them.

First , we will focus on data types ï integer types, real floating -point types,

Boolean, character types, strings and object types. We will continue with

variables , what they and their characteristics are, how to declare them, how

they are assigned a value and what variable initializat ion is. We will familiarize

ourselves with the main categories of data types in C# ï value and reference

types. Finally, we will focus on literals , what they are and what kinds of

literals there are.

Authors of the chapter are Veselin Georgiev and Svetlin Nakov ; editor is

Nikolay Vasilev . The content of the entire chapter is based on the work of

Hristo Todorov and Svetlin Nakov from the book "Introduction to

Programming with Java". Translation to English: by Lora Borisova (edited by

Angel Angelov and Hristo Radkov).

Chapter 3: Operators and Expressions

In the chapter " Operators and Expressions ", we will familiarize ourselves with

the operators in C# and the operations they perform on the various data

ty pes. We will clarify the priorities of operators and familiarize ourselves with

the types of operators, according to the count of the arguments they take and

the operations they perform. Then, we will examine typecasting , why it is

necessary and how to wor k with it. Finally, we will describe and illustrate

expressions and how they are utilized.

Authors of the chapter are Dilyan Dimitrov and Svetlin Nakov ; editor is

Marin Georgiev. The content of the entire chapter is based on the work of

Lachezar Bozhkov fr om the book "Introduction to Programming with Java".

Translation to English: by Angel Angelov (edited by Martin Yankov and Hristo

Radkov).

Chapter 4: Console Input and Output

In the chapter " Console Input and Output " , we will get familiar with the

console as a means for data input and output . We will explain what it is,

when and how it is used, what the concepts of most programming languages

for accessing the console are. We will familiarize ourselves with some of the

features in C# for user interaction and will examine the main streams for

input -output operations Console.In , Console.Out and Console.Error , the

class Console and the utilization of format strings for printing data in

various formats. We will see how to convert text into a number (parsing),

since this is the way to enter numbers in C#.

Preface 31

Author of the chapter is Iliyan Murdanliev and editor is Svetlin Nakov. The

content of the entire chapter is largely based on the work of Boris Valkov from

the book "Introduction to Programming with Java". Translation to English: by

Lora Borisova (edited by Dyanko Petkov).

Chapter 5: Conditional Statements

In the chapter " Conditional Statements " we will cover the conditional

statements in C# , which we can use to execute different actions depending

on some condition. We will explain the syntax of the conditional operators :

if and if -else with suitable examples and explain the practical applicatio ns

of the selection control operator switch . We will focus on the best practices

that must be followed, in order to achieve a better style of programming when

utilizing nested or other types of conditional statements.

Author of the chapter is Svetlin Nakov and editor is Marin Georgiev. The

content of the entire chapter is based on the work of Marin Georgiev from the

book "Introduction to Programming with Java". Translation to English: by

George Vaklinov (edited by Momchil Rogelov).

Chapter 6: Loops

In the c hapter " Loops " , we will examine the loop mechanisms , through

which we can execute a snippet of code repeatedly. We will discuss how

conditional repetitions (while and do- while loops) are implemented and how

to work with for loops. We will give examples of the various means for

defining a loop, the way they are constructed and some of their key

applications. Finally, we will see how we can use multiple loops within each

other (nested loops).

Author of the chapter is Stanis lav Zlatinov and editor is Svetlin Nakov. The

content of the entire chapter is based on the work of Rumyana Topalska from

the book "Introduction to Programming with Java". Translation to English: by

Angel Angelov (edited by Lora Borisova).

Chapter 7: Array s

In the chapter " Arrays " , we will familiarize ourselves with arrays as a means

for working with a sequence of elements of the same type. We will

explain what they are, how we can declare, create and instantiate arrays and

how to provide access to their elements. We will examine one - dimensional

and multidimensional arrays . We will learn the various ways for iterating

through an array, reading from the standard input and writing to the standard

output. We will give many e xercises as examples, which can be solved using

arrays , and show you how useful they are.

Author of the chapter is Hristo Germanov and editor is Radoslav Todorov.

The content of the chapter is based on the work of Mariyan Nenchev from the

book "Introductio n to Programming with Java". Translation to English: by

Boyan Dimitrov (edited by Radoslav Todorov and Zhelyazko Dimitrov).

32 Fundamentals of Computer Programming wi th C#

Chapter 8: Numeral Systems

In the chapter " Numeral Systems " , we will take a look at th e means for

working with various numeral systems and the representation of

numbers in them. We will pay special attention to the way numbers are

represented in decimal , binary and hexadecimal numeral systems, because

they are widely used in computers, comm unications and programming. We

will also explain the methods for encoding numeral data in a computer and

the types of encodings, namely signed magnitude, oneôs complement, twoôs

complement and binary -coded decimals.

Author of the chapter is Teodor Bozhikov and editor is Mihail Stoynov. The

content of the entire chapter is based on the work of Petar Velev and Svetlin

Nakov from the book "Introduction to Programming with Java". Translation to

English: by Atanas Valchev (edited by Veselina Raykova).

Chapter 9: Methods

In the chapter " Methods ", we will get to know in details the subroutines in

programming , which are called methods in C#. We will explain when and

why methods are used; will show how methods are declared and what a

method signature is. We will learn how to create a custom method and how

to use (invoke) it subsequently, and will demonstrate how we can use

parameters in methods and how to return a result from a method. Finally, we

will discuss some established practices when working with methods. All of this

will be backed up with examples explained in details and with extra exercises.

Author of the chapter is Yordan Pav lov ; editors are Radoslav Todorov and

Nikolay Vasilev . The content of the entire chapter is based on the work of

Nikolay Vasilev from the book "Introduction to Programming with Java".

Translation to English: by Ivaylo Dyankov (edited by Vladimir Amiorkov and

Franz Fischbach).

Chapter 10: Recursion

In the chapter " Recursion ", we will familiarize ourselves with recursion and

its applications . Recursion is a powerful programming technique where a

method invokes itself . B y means of recursion we can solve complicated

combinatorial problems where we can easily exhaust different

combinatorial configurations. We will demonstrate many examples of correct

and incorrect recursion usage and we will convince you how useful it can b e.

Author of the chapter is Radoslav Ivanov and editor is Svetlin Nakov. The

content of the entire chapter is based on the work of Radoslav Ivanov and

Svetlin Nakov from the book "Introduction to Programming with Java".

Translation to English: by Vasya Sta nkova (edited by Yoan Krumov).

Preface 33

Chapter 11: Creating and Using Objects

In the chapter " Creating and Using Objects " , we will get to know the basic

concepts of object - oriented programming ï classes and objects ï and we

will explain how to use classes from the standard libraries of the .NET

Framework. We will focus on some commonly used system classes and will

show how to create and use their instances (objects). We will discuss how to

access properties of an object, how to call constructors and how to work

with static fields in classes. Finally, we will focus on the term "namespaces" ï

how they help us, how to include and use them.

Author of the chapter is Teodor Stoev and editor is Stefan Staev . The

content of the entire chapter is based on the work of Teodor Stoev and Stefan

Staev from the book "Introduction to Programming with Java". Translation to

English: by Vasya Stankova (edited by Todor Mitev).

Chapter 12: Exception Handling

In the chapter " Exception Handling ", we will get to know exceptions in

object - oriented programming and in C# in particular. We will learn how to

catch exceptions using the try - catch clause, how to pass them to the

calling method s and how to throw standard, custom or caught exceptions

using the throw statement. We will give a number of examples of their

utilization and will look at the types of exceptions and the exceptions

hierarchy they form in the .NET Framework. Finally, we wi ll look at the

advantages of using exceptions and how to apply them in specific situations.

Author of the chapter is Mihail Stoynov and editor is Radoslav Kirilov. The

content of the entire chapter is based on the work of Luchesar Cekov , Mihail

Stoynov and Svetlin Nakov from the book "Introduction to Programming with

Java". Translation to English: by Dimitar Bonev and George Todorov (edited

by Doroteya Agayna).

Chapter 13: Strings and Text Processing

In the chapter " Strings and Text Processing ", we will familiarize ourselves with

strings : how they are implemented in C# and how we can process text

content. We will go through different methods for manipulating text ; and

learn how to extract substrings according to passed parameters, how to

search for keywords as well as how to split a string by separator

characters. We will provide useful information on regular expressions and

we will learn how to extract data matching a specific pattern. Finally, we wil l

take a look at the methods and classes for achieving more elegant and strict

formatting of text content on the console, with various ways for printing

numbers and dates.

Author of the chapter is Veselin Georgiev and editor is Radoslav Todorov.

The conten t of the entire chapter is based on the work of Mario Peshev from

the book "Introduction to Programming with Java". Translation to English: by

Vesselin Georgiev (edited by Todor Mitev and Vladimir Amiorkov).

34 Fundamentals of Computer Programming wi th C#

Chapter 14: Defining Classes

In the chapter " Defining Classes ", we will show how we can define custom

classes and what the elements of a class are. We will learn to declare

fields , constructors and properties in classes and will again recall what a

method is but will broaden our knowledge on methods and their access

modifiers. We will focus on the characteristics of constructors and we will

explain in details how program objects exist in the heap (dynamic memory)

and how their fields are initialized. Finall y, will explain what class static

elements ï fields (including constants), properties and methods ï are and

how to utilize them. In this chapter , we will also introduce generic types

(generics), enumerated types (enumerations) and nested classes.

Authors o f the chapter are Nikolay Vasilev , Svetlin Nakov , Mira Bivas and

Pavlina Hadjieva . The content of the entire chapter is based on the work of

Nikolay Vasilev from the book "Introduction to Programming with Java".

Translation to English: by Radoslav Todorov, Yoan Krumov , Teodor Rusev and

Stanislav Vladimirov (edited by Vladimir Amiorkov , Pavel Benov and Nencho

Nenchev). This is the largest chapter in the book, so lots of contributors

worked on it to prepare it to a high quality standard for you.

Chapter 15: T ext Files

In the chapter " Text Files ", we will familiarize ourselves with working with

text files in the .NET Framework. We will explain what a stream is, what its

purpose is and how it is used. We will describe what a text file is and how to

read and write data in text files and will present and elaborate on the best

practices for catching and handling exceptions when working with text files.

Naturally , we will visualize and demonstrate in practice all of this with a lot of

examples.

Author of the chapter is Radoslav Kirilov and editor is Stanislav Zlatinov .

The content of the entire chapter is based on the work of Danail Alexiev from

the book "Introduc tion to Programming with Java". Translation to English: by

Nikolay Angelov (edited by Martin Gebov).

Chapter 16: Linear Data Structures

In the chapter " Linear Data Structures ", we will familiarize oursel ves with

some of the basic representations of data in programming and with linear

data structures , because very often, in order to solve a given problem, we

need to work with a sequence of elements . For example, to read this book

we have to read consecutiv ely every single page, e.g. we have to traverse

consecutively every single element of its set of pages. We are going to see

how for a specific problem some data structure is more efficient and

convenient than another. Then we will examine the linear struct ures " list ",

"stack " and " queue " and their applications and will get to know in details

some implementations of these structures.

Preface 35

Author of the chapter is Tsvyatko Konov and editors are Dilyan Dimitrov and

Svetlin Nakov. The content of the entire chapter is largely based on the work

of Tsvyatko Konov and Svetlin Nakov from the book "Introduction to

Programming with Java". Translation to English: by Vasya Stankova (edited

by Ivaylo Gergov).

Chapter 17: Trees and Graphs

In the chapter " Trees and Graphs " , we will look at the so called tree - like

data structures , which are trees and graphs . Knowing the properties of

these structures is important for modern programming. Every one of these

structures is used for modeli ng real - life problems that can be efficiently solved

with their help. We will examine in details what tree - like data structures are

and show their primary advantages and disadvantages. Also , we will provide

sample implementations and exercises , demonstrati ng their practical utiliza -

tion. Further , we will scrutinize binary trees, binary search trees and

balanced trees and then examine the data structure "graph" , the types of

graphs and their usage. We will also show which parts of the .NET Framework

make use of binary search trees .

Author of the chapter is Veselin Kolev and editors are Iliyan Murdanliev and

Svetlin Nakov. The content of the entire chapter is based on the work of

Veselin Kolev from the book "Introduction to Programming with Java".

Translation to English: by Kristian Dimitrov and Todor Mitev (edited by

Nedjaty Mehmed and Dyanko Petkov).

Chapter 18: Dictionaries, Hash Tables and Sets

In the chapter "Dictionaries, Hash Tables and Sets " , we will analyze more

complex data structures like dictionaries and sets , and their implementa -

tions with hash tables and balanced trees . We will explain in de tails what

hashing and hash tables mean, and why they are such important parts of

programming. We will discuss the concept of " collisions " and how they can

occur when implementing hash tables. We will also suggest various

approaches for solving them. We wi ll look at the abstract data structure " set "

and explain how it can be implemented with a dictionary or a balanced

tree . We will provide examples that illustrate the applications of these data

structures in everyday practice.

Author of the chapter is Mihai l Valkov and editors are Tsvyatko Konov and

Svetlin Nakov. The content of the entire chapter is partially based on the work

of Vladimir Tsanev (Tsachev) from the book "Introduction to Programming

with Java". Translation to English: by George Mitev and Geor ge K. Georgiev

(edited by martin Gebov and Ivaylo Dyankov).

36 Fundamentals of Computer Programming wi th C#

Chapter 19: Data Structures and Algorithm

Complexity

In the chapter " Data Structures and Algorithm Complexity " , we will compare

the data structures we have learned so far based on their performance for

basic operations (addition, searching, deletion, etc.) . We will give

recommendations for the most appropriate data structures in certain cases.

We will explain when it is preferable to use a hash table , an array , a

dynamic array , a set implemented by a hash table or a balanced tree .

There is an implementation in the .NET Framework for every one of these

structures. We only have to learn how to decide when to use a particular data

structure, so that we can write efficient and reliable source code.

Authors of the chapter are Nikolay Nedyalkov and Svetlin Nakov ; editor is

Veselin Kolev. The content of the entire chapter is based on the work of

Svetlin Nakov and Nikolay Nedyalkov from the book "I ntroduction to

Programming with Java". Translation to English: by George Halachev and

Tihomir Iliev (edited by Martin Yankov).

Chapter 20: Object - Oriented Programming Principles

In the chapter " Obje ct -Oriented Programming Principles ", we will familiarize

ourselves with the principles of object - oriented programming (OOP) : class

inheritance , interfaces implementation, data and behavior abstraction ,

data encapsulation and hiding implementation details, polymorphism and

virtual methods. We will explain in detail the principles of cohesion and

coupling . We will also briefly outline object -oriented modeling and object

model creation based on a specific business problem and will get to know

UML and its role in object oriented modeling . Finally, we will briefly discuss

design patterns and provide examples for design patterns commonly used in

practice.

Author of the chapter is Mihail Stoynov and editor is Mihail Valkov . The

content of the entire chapter is base d on the work of Mihail Stoynov from the

book "Introduction to Programming with Java". Translation to English: by

Vasya Stankova and Momchil Rogelov (edited by Ivan Nenchovski).

Chapter 21: High - Quality Programming Code

In the chapter " High -Quality Programming Code ", we will take a look at the

basic rules for writing high - quality programming code . We will focus on

naming conventions for program elements (variables, methods, classes and

others), for matting and code layout guidelines, best practices for creating

high - quality classes and methods , and the principles of high -quality code

documentation. Many examples of high -quality and low -quality code will be

given. In the course of work , it will be exp lained how to use an integrated

development environment, in order to automate some operations like

formatting and refactoring existing code, when it is necessary. Unit

testing as an industrial method to automated testing will also be discussed.

Preface 37

Authors of the chapter are Mihail Stoynov and Svetlin Nakov . Editor is

Pavel Donchev . The content of the entire chapter is partially based on the

work of Mihail Stoynov, Svetlin Nakov and Nikolay Vasilev from the book

"Introduction to Programming with Java". Translation to English: by Blagovest

Buyukliev (edited by Dyanko Petkov, Mihail Stoynov and Martin Yankov).

Chapter 22: Lambda Expressions and LINQ

In the chapter " Lambda Expressions and LINQ ", we will introduce some of the

more sophisticated capabilities of C#. To be more specific, we will pay special

attention to clarifying how to make queries to collections using lambda

expressions and LINQ . We will explain how to add functionality to already

created classes, using extension methods . We will familiarize ourselves with

anonymous types and briefly describe their nature and usage. We will also

discuss lambda expressions and show in practice how m ost of the built - in

lambda functions work. Afterwards we will dive into the LINQôs syntax, which

is part of C#. We will learn what it is, how it works, and what queries we can

make using it. Finally, we will discuss the keywords in LINQ, their meaning

and we will demonstrate their capabilities with a lot of examples.

Author of the chapter is Nikolay Kostov and editor is Veselin Kolev.

Translation to English: by Nikolay Kostov (edited by Zhasmina Stoyanova and

Mihail Stoynov).

Chapter 23: Methodology of Prob lem Solving

In the chapter " Methodology of Problem Solving ", we will discuss an advisable

approach for solving programming problems and we will illustrate it with

concrete examples. We will discuss the engineering principles we should

follow when solving problems (that largely apply to problems in math, physics

and other disciplines) and we will show them in action. We will describe the

steps we must go through while we solve a few sample problems an d

demonstrate the mistakes that can be made, if we do not follow these steps.

We will consider some important steps of problem solving (such as

testing) that are usually skipped.

Author of the chapter is Svetlin Nakov and editor is Veselin Georgiev. The

content of the whole chapter is entirely based on the work of Svetlin Nakov

from the book "Introduction to Programming with Java". Translation to

English: by Ventsi Shterev and Martin Radev (edited by Tihomir Iliev and

Nedjaty Mehmed).

Chapters 24, 25, 26: Sample Programming Exam

In the chapters " Sample Programming Exam (Topic #1 , Topic #2 and Topic

#3)" , we will look at the problem descriptions of nine sample problems

from three sample programming exams and we will propose solutions to

them. In the course of solving them , we will put into practice the methodology

described in the chapter " Methodology of Problem Solving ".

38 Fundamentals of Computer Programming wi th C#

Authors of the chapters are Stefan Staev , Yosif Yosifov and Svetlin Nakov

respectively; their respective editors are Radoslav Todorov, Radoslav Ivanov

and Teodor Stoev . The contents of these chapters are largely based on the

work of Stefan Staev , Svetlin Nakov, Radoslav Ivanov and Teodor Stoev from

the book "Intro duction to Programming with Java". Translation to English: by

Stanislav Vladimirov , Ivaylo Gergov , Ivan Nenchovski and Ivaylo Gergov

(edited by Dyanko Petkov , Vladimir Tsenev and Veselina Raykova).

Chapters 28: Conclusion

In the conclusion we give further instruction how to proceed with your

development as a skillful software engineer after this book. We explain

the free courses at Telerik Software Academy ï the largest training center for

software development profes sionals in Bulgaria ï how to apply, what you will

learn, how to choose a career path and we mention few other resources.

Author of the chapter is Svetlin Nakov . Translation to English: by Ivan

Nenchovski (edited by Svetlin Nakov).

History: How Did This Boo k Come to Be?

Often in our teaching practice students ask us from which book to start

learning how to program . There are enthusiastic young people who want to

learn programming, but donôt know what to begin with . Unfortunately, itôs

hard to recommend a goo d book. We can come up with many books

concerning C#, but none of them teaches programming. Indeed there arenôt

many books that teach the concepts of computer programming,

algorithmic thinking and data structures. Certainly, there are books for

beginners that teach the C# programming language, but those rarely cover

the fundamentals of program ming. There are some good books on

programming, but most of them are now outdated and teach languages and

technologies that have become obsolete in the process of evolution. There are

several such books regarding C and Pascal, but not C# or Java. Considering

all aspects, it is hard to come up with a good book which we could highly

recommend to anyone who wants to pick up progr amming from scratch.

At one point , the lack of good books on programming for beginners

drove the project leader, Svetlin Nakov, to gather a panel of authors set to

finally write such a book. We decided we could help many young people to

take up programming seriously by sharing our knowledge and inspiring them.

The Origins of This Book

This book is actually an adaptation to C# of the free Bulgarian book

ñIntroduction to Programming with Java ò, with some additional content

added, many bug fixes and small impr ovements, translated later into English.

Svetlin Nakov teaches computer programing, data structures, algorithms

and software technologies since 2000. He is an author and co -author of

several courses in fundamentals of programming taught at Sofia University

Preface 39

(the most prestigious Bulgarian university at this time). Nakov (with

colleagues) teaches programming and software development in the Faculty of

Mathematics and Informatics (FMI) at Sofia University for few years and later

creates his own company for trai ning software engineers. In 2005 , he gathers

and leads a team of volunteers who creates a solid curriculum on

fundamentals of programming and data structures (in C#) with

presentation slides and many examples, demonstrations and homework

assignments. These teaching materials are the first very early outline of the

content in this book. Later this curriculum evolves and is translated to Java

and serves as a base for the Java version of this book. Later the Java book is

translated to C# and after its great su ccess in Bulgaria (thousands paper

copies sold and 50,000 downloads) it is translated from Bulgarian to English.

The Java Programming Fundamentals Book

In mid -2008 , Svetlin Nakov is inspired to create a book on Java programming,

covering his ñIntroduction to Programmingò course in the National

Academy for Software Development (a private training center in Bulgaria,

founded by Svetlin Nakov). He and a group of authors outline the work that

needs to be done and the subjects that need to be covered and work be gins,

with everyone working voluntarily, without any direct profit . Through

delays, pitfalls and improvements, the Java book finally comes out in January

of 2009. It is available both on its website www.intr oprogramming.info for

free, and in a paper edition.

The C# Programming Fundamentals Book

The interest towards the ñIntroduction to Programming with Javaò book is

huge (for Bulgaria). In late 2009 , the project to ñtranslateò the book to C#

begins, under the title ñIntroduction to Programming with C# ò. Again, a

large number of authors, both new and from the Java book group, gather and

begin working. The task seems easier, but turns out to be time -consuming.

About half a year later, the ñpreviewò edition of the book is completed ï with

some mistakes and incorrect content. Another year passes as all of the text

and examples are improved, and new content is added. In the summer of

2011 , the C# book is released . Its official website stays the same as the

Java book (www.introprogramming.info). A paper version of the book is also

released and sold, with a price covering only the expens es o f its printing.

Both books are open -source and their repositories are available at Google

Code: code.google.com/p/introcsharpbook , code.go ogle.com/p/introjavabook .

The Translation of the C# Book: from Bulgarian to

English

In late 2011, following the great success of ñIntroduction to Programming

with C#ò, a project to translate the book to English started. Large group of

volunteers began work on the translation ï each of them with good

programming skills. The book you are reading is the result of the successful

http://www.introprogramming.info/
file:///C:/Users/GGeorgiev/Dropbox/Work/translation-to-English/chapters/4-completed/www.introprogramming.info
http://code.google.com/p/introcsharpbook/
http://code.google.com/p/introjavabook/

40 Fundamentals of Computer Programming wi th C#

translation, review and completion of the original C# Bulgarian book. The

most effort in the translation was given by the leading auth or Svetlin Nakov .

Some of the authors have ideas to make yet another adaptation of the book ï

this time for C++ . As of now, these ideas are still foggy. We hope they will

become a reality one day, but we canôt promis e anything yet.

Bulgaria? Bulgarian Authors? Is This True?

Bulgaria is a country in Europe , part of the European Union , just like

Germany and France. Did you know this? Bulgaria has very solid traditions in

computer programming and technologies.

The main inventor of the technology behind the modern digital computers is

the famous computer engineer John Atanasoff and he is 50% Bulgarian

(see en.wikipedia.org/wiki/John_Vincent_Atanasoff).

Bulgaria is the founder of the Internat ional Olympiad in Informatics

(IOI) . The first IOI was organized and held in 1980 in Pravetz , Bulgaria (see

en.wikipedia.org/wiki/International_Olympiad_in_Informatics).

In 2011 Bulgaria was ranked #3 in the world by Internet speed (see

http://mashable.com/2011/09/21/fastest -download -speeds - infographic).

The worldôs leading component vendor for the Microsoft ecosystem is a

Bulgarian company called Telerik (www.telerik.com) and almost all of its

products are developed in Bulgaria. The worldôs leading software product for

3D rendering (V -Ray), used in most H ollywood movies and by most

automotive producers, is invented and developed in Bulgaria by another

Bulgarian company ï Chaos Group (www.chaosgroup.com). A Bulgarian

company Datecs designed and produces the barcode scanner with credit card

swipe for Apple iPhone / iPad / iPod devices used in all Apple stores. Large

international software companies like SAP , VMware , HP , Cisco , Siemens

and CSC have large development centers in Sofia with thousands developers.

Bulgarian software engineers can be found in every major software company

in the software industry like Microsoft, Google, Oracle, SAP, Facebook, Apple,

IBM, Cisco, Siemens, VMware, HP, Adobe, Nokia, Ericsson, Autodesk, etc.

We, the authors, editors and translators of this book are all proud Bulgarian

software developers ï some living in Bulgaria, others abroad. We are happy

to be part of the global software industry and to help beginners over the world

to learn computer progr amming and become skillful software engineers. We

are supporters of the culture of free education (like Coursera, edX, Udacity

and Khan Academy), free education for everyone and everywhere. We are

happy to share our knowledge, skills and expertise and sharing is part of

our culture .

Authors and Contributors

This book is written by volunteer developers from Bulgaria who want to

share their knowledge and skills about computer programming. They have

http://en.wikipedia.org/wiki/John_Vincent_Atanasoff
http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
http://mashable.com/2011/09/21/fastest-download-speeds-infographic/
http://www.telerik.com/
http://www.chaosgroup.com/

Preface 41

worked for months (some for years) for free to help the c ommunity to learn

programming , data structures and algorithms in an easy and efficient way:

through this book and the presentations and video tutorials coming with it .

Over 70 people contributed to the project: authors, editors, translators, etc.

The Panel of Authors

The panel of authors of both the old, the new and the translated to English

book is indeed the main drivers behind this bookôs existence. Writing content

of this size and quality is a serious task demanding a lot of time.

The idea of having so many authors participati ng has been well tested, since a

few other books have already been written in a similar manner (e.g.

"Programming for the .NET Framework" ï parts 1 and 2). Although all

chapters from the book are written by different authors , they adhere to

the same style and possess the same high quality of content (even though it

might differ a little in some chapters). The text is well structured, has many

titles and subtitles, contains many appropr iate examples, follows a good

manner of expression and is uniformly formatted.

The team that wrote this book is made up of people who are strongly

interested in programming and would like to voluntarily share their

knowledge by participating in writing one or more of the chapters. The best

part is that all authors, co -authors and editors in the team working on the

book are working programmers with hands - on experience , which means

that the reader will receive knowledge, a collection of best practices and

adv ice by people with an active career in the software industry.

The participants in the project made their contribution voluntarily, without

material or any other direct compensation, because they supported the idea

of writing a good book for novice programm ers and because they

strongly wanted to help their future colleagues get into programming quickly.

What follows is a brief presentation of the authors of the book "Introduction

to Programming with C#" (in an alphabetical order). The original authors of

the corresponding chapters from the book "Introduction to Programming with

Java" are mentioned accordingly, since their contributions to some chapters

are greater than those authors who adapted the text and examples to C#

afterwards.

Dilyan Dimitrov

Dilyan Dimitrov is a certified software developer with professional experience

in building mid -size and large web -based systems with the .NET Framework .

His interests include development of both web and desktop applications using

Microsoftôs latest technologies. He graduated from the Sofia University "St.

Kliment Ohridski" where he majored in "Informatics" at the Faculty of

Mathematics and Informatics . . He can be reached at

dimitrov.dilqn@gmail.com or you can visit hi s personal blog at

http://dilyandimitrov.blogspot.com .

http://www.devbg.org/dotnetbook/
mailto:dimitrov.dilqn@gmail.com
http://dilyandimitrov.blogspot.com/

42 Fundamentals of Computer Programming wi th C#

Hristo Germanov

Hristo Germanov is a software engineer , whose interests are related mainly

to .NET technologies . Architecture and design of web based systems,

algorithms and modern standards for quality code are also his passion. He has

participated in developing both small and large web -based and desktop -based

applications. He likes challenging problems and projec ts that require strong

logical thinking. He graduated from the Omega College in Plovdiv with a

degree in "Computer Networks" . He specialized for a "Core .NET Developer" at

the National Academy for Software Development in Sofia.

You can contact him by e -mai l at: hristo.germanov@gmail.com .

Iliyan Murdanliev

Iliyan Murdanliev is a software developer at NearSoft (www.nearsoft.eu).

He currently pursues a masterôs degree in "Computer Technologies and

Applied Programming" at the Technical University of Sofia. He has a

bachelorôs degree in "Applied Mathematics" from the same university. He has

graduated from an English language high school.

Iliyan has participated in significant projects and in the development of front -

end visualization, as well as back -end logic. He has prepared and conducted

trainings in C# and other programming languages and technologies . Iliyanôs

interests lie in the field of cutting -edge technologies in .NET, Windows Forms

and Web -based technologies, design patterns, algorithms and software

engineering. He likes out - of - the - box projects that require not only

knowledge, but also logical thinking.

His personal blog is available at: http://imurdanliev.wordpress.com . He can

be reached by e -mail: i.murdanliev@gmail.com .

Mihail Stoynov

Mihail Stoynov has a masterôs degree in "Economics and Management" from

the Sofia Universi ty "St. Kliment Ohridski". He has obtained his bachelorôs

degree in "Informatics" also from Sofia University.

Mihail is a professional software developer , consultant and instructor with

many years of experience. For the last few years he is an honorary ins tructor

at the Faculty of Mathematics and Informatics and has delivers lectures in

the "Networks Theory", "Programming for the .NET Framework", "Java Web

Applications Development", "Design Patterns" and "High Quality Programming

Code" courses. He has also been an instructor at New Bulgarian University.

He is an author of a number of articles and publications and a speaker at

many conferences and seminars in the field of software technologies and

information security. Mihail is a co -author of the books "Programming for the

.NET Framework" and "Introduction to Programming with Java". He has

participated in Microsoftôs MSDN Academic Alliance and is a lecturer at the

Microsoft Academic Days.

mailto:hristo.germanov@gmail.com
http://www.nearsoft.eu/
http://imurdanliev.wordpress.com/
mailto:i.murdanliev@gmail.com

Preface 43

Mihail has led IT courses in Bulgaria and abroad. He was a lecturer in the

"Java", "Java EE", "SOA" and "Spring Framework" courses at the National

Academy for Software Development.

Mihail has worked at the international offices of Siemens, HP and EDS in the

Netherlands and Germany, where he has gained a lot of experience in the art

of software, as well as in the quality programming , by taking part in th e

development of large software projects. His interests encompass software

architectures and design development, B2B integration of various information

systems, business processes optimization and software systems mainly for

the Java and .NET platforms . Mi hail has participated in dozens of software

projects and has extensive experience in web applications and services,

distributed systems, relational databases and ORM technologies, as well as

management of projects and software development teams.

His person al blog is available at: http://mihail.stoynov.com . His twitter

account is available at: https://twitter.com/mihailstoynov .

Mihail Valkov

Mihail Valkov has been a software developer since 2000. Throughout the

years , he has faced numerous technologies and software development

platforms, some of which are MS .NET, ASP, Delphi. Mihail has been

developing software at Telerik (www.t elerik.com) ever since 2004. There he

co-develops a number of components targeting ASP.NET, Windows Forms,

Silverlight and WPF. In the last few years , Mihail has been leading some of

the best progressing teams in the company, and currently develops an

onli ne Word - like rich text editor.

He can be reached at: m.valkov@gmail.com .

His blog is at: http://blogs.telerik.com/mihailvalkov/ . His twitter account is

availab le at: https://twitter.com/mvalkov .

Mira Bivas

Mira Bivas is an enthusiastic young programmer in one of Telerikôs ASP.NET

teams (www.telerik.com). She is a student at the Faculty of Mathematics and

Informatics at the Sofia University "St. Kliment Ohridski", where she majors in

"Applied Mathematics". Mira has completed the "Intro C#" and "Core .NET"

courses at the National Academy for Software Development (NASD).

She can be reached by e -mail: mira.bivas@gmail.com .

Nikolay Kostov

Nikolay Kostov works as a senior software developer and trainer at

Telerikôs "Technical Training" department (htt p://academy.telerik.com). He is

involved deeply with Telerik Academyôs trainings and the courses organized

by Telerik. He currently majors in "Computer Science" at the Faculty of

Mathematics and Informatics at the Sofia University "St. Kliment Ohridski".

http://mihail.stoynov.com/
https://twitter.com/mihailstoynov
http://www.telerik.com/
mailto:m.valkov@gmail.com
http://blogs.telerik.com/mihailvalkov/
https://twitter.com/mvalkov
http://www.telerik.com/
mailto:mira.bivas@gmail.com
http://academy.telerik.com/

44 Fundamentals of Computer Programming wi th C#

Nikolay has participated in a number of high school and college student

Olympiads and contests in computer science , throughout many years. He

is a two - time champion in the project categories "Desktop Applications" and

"Web Applications" at the Bulgarian Nat ional Olympiad in Information

Technologies (NOIT). He has rich experience in designing and developing Web

applications, algorithmic programming and processing large amounts of data.

His main interests lie in developing software applications, data structure s,

everything related to .NET technologies , web applications security, data

processing automation, web crawlers, single page applications and others.

Nikolayôs personal blog can be found at: http://nikolay.it .

Nikolay Nedy alkov

Nikolay Nedyalkov is the chairman of The Association for Information

Security , technical director of the eBG.bg ôs electronic payments a nd services

portal and business consultant at other companies. Nikolay is a professional

software developer , consultant and instructor with many years of

experience. He has authored a number of articles and publications and has

lectured at many conferences and seminars in the field of software

technologies and infor ma tion security. His experience as an instructor ranges

from assisting in "Data Structures in Programming", "Object -oriented

Programming with C++" and "Visu al C++" to lecturing at the " Network

Security ", " Secure Code ", " Web Development with Java ", " Creating High

Quality Code ", " Programming for the .NET platform " and " Applications

Development with Java " courses. Nikolayôs interests are focus ed on creating

and managing information and communications solutions, modeling and

managing business processes in large -size organizations and state

administration. Nikolay has a bachelorôs and a masterôs degree from the

Faculty of Mathematics and Informat ics at the Sofia University "St. Kliment

Ohridski". As a high school student he was a programming contestant

throughout many years and received a number of accolades.

His personal website is located at: http://www.n edyalkov.com .

Nikolay Vasilev

Nikolay Vasilev is a professional software developer , an instructor and a

participant in many open source projects.

He holds a masterôs degree in "Software Engineering and Artificial

Intelligence" from University of Malaga (Sp ain) and is currently pursuing a

masterôs degree in "Mathematical Physics Equations and Their Applications" at

Sofia University (Bulgaria). He obtained his bachelorôs degree in "Mathematics

and Informatics" from Sofia University .

In the period 2002 -2005 , he was instructor in the classes of "Introduction in

Programming with Java" and "Data Structures and Programming with Java" at

Sofia University.

http://nikolay.it/
http://www.nedyalkov.com/
http://www.iseca.org/
http://www.iseca.org/
http://www.ebg.bg/
http://netsec.iseca.org/
http://netsec.iseca.org/
http://netsec.iseca.org/2004/
http://www.nakov.com/inetjava/
http://codecourse.sourceforge.net/
http://codecourse.sourceforge.net/
http://www.nakov.com/dotnet/2003/
http://jse.openfmi.net/
http://jse.openfmi.net/
http://www.nedyalkov.com/

Preface 45

Nikolay is a co - author of the books " Introduct ion in Programming with

Java " and " Introduction in Programming with C# " and also one of the

initiators, organizers and co -authors of a project for creating an open source

book in Bulgarian , dedicated to the classical (GoF) design patterns in the

software engineering. He is one of the organizers and lecturers of the

"Bulgarian Java User Group".

Nikolay is a certified software developer with nearly 10 years of expertise

in development of Java enterprise applications, gained in international

companies. He participated in large -size systems development from various

domains like e -commerce, banking, visual simulators for nuclear plant sub -

systems, VOD sys tems, etc.; using cutting -edge technologies and applying

the best up - to -date design and development methodologies and practices. His

interests span across various areas such as software engineering and artificial

intelligence, fluid mechanics, project mana gement and scientific research.

Nikolay Vasilevôs personal blog is available at http://blog.nvasilev.com .

Pavel Donchev

Pavel Donchev is a programmer at Telerik (www.telerik.co m), where he

develops web applications mostly for the company internal purposes. He takes

extramural courses in "Theoretical Physics" at the Sofia University "St.

Kliment Ohridski". He was engaged in developing Desktop and Web

Applications for various busi ness sectors ï mortgage credits, online stores,

automation and Web UML diagrams. His interests lie mainly in the sphere of

process automation using Microsoft technologies.

His personal blog is located at: http:/ /donchevp.blogspot.com .

Pavlina Hadjieva

Pavlina Hadjieva is a senior enterprise support officer and team lead at

Telerik (www.telerik.com). She currently pursues a masterôs degree in

"Distributed Systems and Mobile T echnologies" at the Faculty of Mathematics

and Informatics at the Sofia University "St. Kliment Ohridski". She obtained

her bachelorôs degree in "Chemistry and Computer Science" also from Sofia

University.

Her professional interests are oriented towards we b technologies, in particular

ASP.NET , as well as the complete development cycle of .NET Framework

applications.

You can contact Pavlina Hadjieva by e -mail: pavlina.hadjieva@gmail.com .

Radoslav Ivanov

Radoslav Ivanov is an experienced software engineer , consultant and

trainer with several years of professional experience in wide range of

technologies and programming languages. He has solid practical and

theoretical background in computer science and exc ellent writing and

lecturing skills .

http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-csharp-book/
http://blog.nvasilev.com/
http://www.telerik.com/
http://donchevp.blogspot.com/
http://www.telerik.com/
mailto:pavlina.hadjieva@gmail.com

46 Fundamentals of Computer Programming wi th C#

Radoslav has a bachelorôs degree in "Informatics" and masterôs degrees in

"Software Engineering" and "E - learning" from the Sofia University "St.

Kliment Ohridski". For several years he has been an honorary instructor at

the Faculty of Mathematics and Informatics where he was teaching courses in

"Design Patterns in C#", "Programming for the .NET Framework", "Java Web

Applications Development" and "Java EE Development".

He is a co -author of the books " Programming for the .NET Framework " and

" Introduction to Programming with Java ".

His professional interests include data warehousing, security, cloud

computing , Java technologies, the .NET platform, software architecture and

design and project management.

Radoslavôs twitter account is available at: https://twitter.com/radoslavi .

Radoslav Kirilov

Radoslav Kirilov is a senior software developer and team leader at Telerik

(www.telerik.com). He graduated from the Technical University of Sofia with a

major in "Computer Systems and Technologies" . . His professional interests

are orient ed towards web technologies, particularly ASP.NET , and the

complete development cycle of .NET Framework -based applications. Radoslav

is an experienced lecturer who has taken part in putting through, as well as

creating study materials (presentations, examp les, exercises) for the

National Academy for Software Development (NASD). Radoslav is a member

of the instructors' team of the "High Quality Programming Code" course

that started in 2010 at the Technical University of Sofia and at the Sofia

University "St. Kliment Ohridski".

He has been maintaining a tech blog since 2009 located at:

radoslavkirilov.blogspot.com . You can contact Radoslav by e -mail at:

rados lav.pkirilov@gmail.com .

Radoslav Todorov

Radoslav Todorov is a software developer who obtained his bachelorôs

degree from the Faculty of Mathematics and Informatics at the Sofia

University "St. Kliment Ohridski" (www.fmi.uni -sofia.bg). He received his

masterôs degree in the field of computer science from the Technical University

of Denmark in Lyngby , Denmark (http://www.dtu.dk).

Radoslav has been conducting courses as an instructor - assistant at the IT

University of Copenhagen in Denmark (http://www.itu.dk) and participat ing in

the research activity of university projects ever since he received his mastersô

education. He has rich experience in designing, developing and maintaining

large software products for various companies. He gained working

experience at several companies in Bulgaria. At present, he works as a

software engineer for Canon Handy Terminal Solutions Europe in Denmark

(www.canon -europe.com/Handy_

Terminal_Solutions).

http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/intro-java-book/
https://twitter.com/radoslavi
http://www.telerik.com/
http://radoslavkirilov.blogspot.com/
mailto:radoslav.pkirilov@gmail.com
http://www.fmi.uni-sofia.bg/
http://www.dtu.dk/
http://www.itu.dk/
http://www.canon-europe.com/Handy_Terminal_Solutions
http://www.canon-europe.com/Handy_Terminal_Solutions

Preface 47

Radoslavôs interests are oriented towards software technologies for high - level

programming languages, as well as products integrating complete h ardware

and software solutions in the industrial and private sectors.

You can contact Radoslav by e -mail: radoslav_todorov@hotmail.com .

Stanislav Zlatinov

Stanislav Zlatinov is a software developer with p rofessional experience in

web and desktop applications development based on the .NET and Java

platforms.

He has a masterôs degree in "Computer Multimedia" from the "St. Cyril and

St. Methodius" University of Veliko Tarnovo .

His personal blog is located at: http://encryptedshadow.blogspot.com .

Stefan Staev

Stefan Staev is a software developer who is occupied with building web

based systems using the .NET platform. His professional interests are related

to the latest .NET technologies , design patterns and databases. He is a

member of the authors' team of the book "Introduction to Programming with

Java".

Stefan currently majors in "Informatics" at the Faculty of Mathematics and

Informatics at the Sofia Univer sity "St. Kliment Ohridski". He is a " Core .NET

Developer" graduate from the National Academy for Software Development.

You can contact him by e -mail: stefosv@gmail.com . His Twitter micro blog is

located at: http://twitter.com/stefanstaev .

Svetlin Nakov

Svetlin Nakov is the head of the " Technical Training " department at Telerik

Corp. where he manages the project for free training of software engineers

Telerik Softwa re Academy (http://academy.telerik.com) as well as all other

connected courses and training initiatives, such as Telerik School Academy ,

Telerik Algo Academy , Telerik Kids Academy . He is the founder of the

Software University open -education project.

He has achieved a bachelorôs degree in "Computer Science" and a masterôs

degree in "Distributed Systems and Mobile Technologies" at the Sofia

University "St. Kliment Ohridski". Later he obtained a Ph.D. in "Computer

Science" after defending a thesis in the field of "Computational Linguistics"

befor e the Higher Attestation Commission of the Bulgarian Academy of

Sciences (BAS).

His interests encompass software architectures development, the .NET

platform , web applications, databases, Java technologies, training software

specialists, information securi ty, technological entrepreneurship and

managing software development projects and teams.

mailto:radoslav_todorov@hotmail.com
http://encryptedshadow.blogspot.com/
mailto:stefosv@gmail.com
http://twitter.com/stefanstaev
http://academy.telerik.com/
http://schoolacademy.telerik.com/
http://algoacademy.telerik.com/
http://www.telerik-kids.com/
http://softuni.org/

48 Fundamentals of Computer Programming wi th C#

Svetlin Nakov has nearly 20 years of experience as a software engineer ,

programmer, instructor and consultant, moving from Assembler, Basic and

Pascal through C and C+ + to PHP, JavaScript, Java and C#. He was involved

as a software engineer, consultant and manager of teams in dozens of

projects for developing information systems, web applications, database

management systems, business applications, ERP systems, cryptogr aphic

modules and trainings of software engineers. At the age of 24 , he founded his

first software company for training software engineers , which was

acquired 5 years later by Telerik.

Svetlin has extensive experience in creating study materials , preparing and

conducting trainings in programming and modern software technologies,

gathered during his practice as an instructor. For many years now , he has

been an honored instructor at the Faculty of Mathematics and Informatics

at the Sofia University "St. Kliment Ohridski" (FMI at SU), at the New

Bulgarian University (NBU) and at the Technical University of Sofia (TU-

Sofia), where he held courses in "Design and Analysis of Computer

Algorithms", "Internet and Web Programming with Java", "Network Securi ty",

"Programming for the .NET Framework", "Developing Java Web Applications",

"Design Patterns", "High Quality Programming Code", "Developing Web

Applications with the .NET Framework and ASP.NET", "Developing Java and

Java EE Applications", "Web Front -End Development" and many others (see

http://www.nakov.com/courses/).

Svetlin has dozens of scientific and technical articles focused on software

development in both Bulgarian and foreign publications and is the lead author

of the books "Programming for the .NET Framework (vol. 1 & 2) ",

" Introduction to Programming with Java ", " Introduction to Programming with

C# ", " Internet Development with Java " and " Java for Digitally Signing Web

Documents ". He is a regular speaker at technical conferences, trainings and

seminars and up to now has held hundreds of technical lectures at various

technological events in Bulgaria and abroad.

As a h igh school and a college student, Svetlin was champion in tens of

national contests in programming and was awarded with 4 medals at

International Olympiads in Informatics (IOI).

In 2003 , he received the "John Atanasoff " award by the EVRIKA Foundation.

In 2 004 , he was awarded by the Bulgarian President with the "John

Atanasoff " award for his contribution to the development of the information

technologies and the information society.

He is one of the founders of the Bulgarian Association of Software

Developer s (www.devbg.org) and its present chairman.

Apart from computer programming , Svetlin Nakov is founder of NLP Club

Bulgaria (http://nlpclub.devbg.org), a community of NLP (neuro - linguistic

programming) practitioners and successful people who are looking for

personal development and knowledge sharing. The goal for Svetlin is to add

soft skills and personal development to his students at the Software

academy in addition to the profe ssion and job positions they gain.

http://www.nakov.com/courses/
http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.nakov.com/books/inetjava/
http://www.nakov.com/books/signatures/
http://www.nakov.com/books/signatures/
http://www.devbg.org/
http://nlpclub.devbg.org/

Preface 49

The personal website and blog of Svetlin Nakov is: http://www.nakov.com .

His story of life is published at http://www.nakov.com/bl og/2011/09/24/ .

Teodor Bozhikov

Teodor Bozhikov is a senior software developer and team leader at

Telerik (www.telerik.com). He completed his masterôs degree in "Computer

Systems and Technologies" at the Technical Uni versity of Varna. Besides his

background as a WPF and Silverlight programmer, he has achieved expertise

in developing ASP.NET web applications. He was involved briefly in the

development of private websites. Within the ICenters project, he took part in

bui lding and maintaining of a local area network for public use at the Festival

and Congressional Center in Varna. He has held courses in computer literacy

and computer networks basics.

Teodorôs professional interests include web and desktop application

devel opment technologies, architecture and design patterns, networks and all

kinds of new technologies.

You can contact Teodor by e -mail: t_bozhikov@yahoo.com . His Twitter micro

blog is located at: http://twitter.com/tbozhikov .

Teodor Stoev

Teodor Stoev has a bachelorôs and a masterôs degree in "Informatics" from

the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski". At Sofia University, h e mastered in "Software

Technologies". He currently attends a masterôs program in "Computer

Science" at the Saarland University (Saarbr¿cken, Germany).

Teodor is a software designer and developer with many yearsô experience.

He has participated in creating financial and insurance software systems, a

number of web applications and corporate websites. He was actively involved

in the development of the TENCompetence project of the European

Commission. He is a co - author of the book "Introduction to Programming

with Java".

His professional interests lie in the field of object -oriented analysis, modeling

and building of software applications, web technologies and, in particular,

building rich internet applications (RIA). He has an ext ensive background in

algorithmic programming : he has competed at a number of national high

school and collegiate computer science contests.

His personal website is available at: http://www.teodorstoev.com .

You ca n contact Teodor by e -mail: teodor.stoev@gmail.com .

Tsvyatko Konov

Tsvyatko Konov is a senior software developer and instructor with varied

interests and experience. He is competent in fields such as systems

in tegration, building software architectures, developing systems with a

number of technologies, such as .NET Framework , ASP.NET, Silverlight,

http://www.nakov.com/
http://www.nakov.com/blog/2011/09/24/
http://www.telerik.com/
mailto:t_bozhikov@yahoo.com
http://twitter.com/tbozhikov
http://www.teodorstoev.com/
mailto:teodor.stoev@gmail.com

50 Fundamentals of Computer Programming wi th C#

WPF, WCF, RIA, MS SQL Server, Oracle, MySQL, PostgreSQL and PHP. His

experience as an instructor includes a large va riety of courses ï courses for

beginners and experts in .NET technologies, as well as specialized courses in

individual technologies, such as ASP.NET, Oracle, .NET Compact Framework,

"High Quality Programming Code" and others. Tsvyatko was part of the

auth orsô team of the book "Introduction to Programming with Java". His

professional interests include web -based and desktop -based technologies,

client -oriented web technologies, databases and design patterns.

Tsvyatko Konov has a technical blog: http://www.konov.me .

Veselin Georgiev

Veselin Georgiev is a co - founder of Lead IT (www.leadittraining.com) and

software developer at Abilitics (www .abilitics.com). He has a masterôs degree

in "E -Business and E -Governance" at the Sofia University "St. Kliment

Ohridski", after obtaining a bachelorôs degree in "Informatics" from the same

university.

Veselin is a Microsoft Certified Trainer and Microsoft Certified Professional

Developer. He lectured at the Microsoft Tech Days conferences in 2011 and

2009, and also takes part as an instructor in various courses at Sofia

University. He is an experienced lecturer who has trained software

specialists for work ing practical jobs in the IT industry.

His professional interests are oriented towards training, SharePoint and

software architectures. He can be reached at veselin.vgeorgiev@gmail.com .

Veselin Kolev

Vesel in "Vesko" Kolev is a leading software engineer with many yearsô

professional experience. He has worked at various companies where he

managed teams and the development of many different software projects.

As a high school student , he participated in a number of competitions in the

fields of mathematics, computer science and information technology, where

he finished in prestigious places. He currently majors in "Computer Science"

at the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski".

Vesko is an experienced lecturer who has worked on training software

specialists for practical jobs in the IT industry. He is an instructor at the

Faculty of Mathematics and Informatics at the Sofia University "St. Kliment

Ohridski" where he conducts courses in "Modern Java Technologies" and "High

Quality Programming Code". He has delivered similar lectures at the Technical

University of Sofia.

Veskoôs main interests include software projects design, development of

software systems, .NET and Java technologies, Win32 programming (C/C++),

software architectures, design patterns, algorithms , databases, team and

software projects management, specialists training. The projects he has

worked on include large web based syste ms, mobile applications, OCR,

http://www.konov.me/
http://www.leadittraining.com/
http://www.abilitics.com/
mailto:veselin.vgeorgiev@gmail.com

Preface 51

automated translation systems, economic software and many others. Vesko is

a co - author of the book "Introduction to Programming with Java".

Vesko works on the development of Silverlight and WPF based applications at

Telerik (www.telerik.com). He shares parts of his day - to -day experiences

online on his personal blog at http://veskokolev.blogspot.com .

Yordan Pavlov

Yordan Pavlov has a bachelorôs and a masterôs degree in "Computer Systems

and Technologies" from the Technical University of Sofia. He is a software

developer at Telerik (www.telerik.com) with an extensive background in

software components development.

His interests lie mainly in the following fields: object - oriented design, design

patterns, high - quality software development , geographic information

systems (GIS), parallel processing and high performance computing, arti ficial

intelligence, teamsô management.

Yordan won the Imagine Cup 2008 finals in Bulgaria in the Software Design

category, as well as the world finals in Paris, where he won Microsoftôs

prestigious "The Engineering Excellence Achievement Award". He has wo rked

with Microsoft engineers at the company headquarters in Redmond, USA,

where he has gathered useful knowledge and experience in the development

of complex software systems.

Yordan has also received a golden mark for "Contributions to the Innovation

and Information Youth Society". He has taken part in many contests and

Olympiads in programming and informatics.

Yordanôs personal blog can be found at http://yordanpavlov.blogspot.com . He

can be reached by e -m ail: iordanpavlov@gmail.com .

Yosif Yosifov

Yosif Yosifov is a senior software developer at Telerik (www.telerik.com).

His interests consist mainly of .NET technologies , design patterns and

computer algorithms . He has participated in numerous contests and

Olympiads in programming and informatics. He currently pursues a

bachelorôs degree in "Computer Science" at the Faculty of Mathematics and

Informatics at the Sofia Univ ersity "St. Kliment Ohridski".

Yosifôs personal blog can be found at http://yyosifov.blogspot.com . He can be

reached by e -mail: cypressx@gmail.com .

The Java Book Authors

This C# fundamentals programming book is based on its original Java

version , the book " Introduction to Programming with Java ". Thanks to the

original Java book authors for their work . They have significant contribution to

almost all chapters of the book. Some chapters are entirely based on their

http://www.telerik.com/
http://veskokolev.blogspot.com/
http://www.telerik.com/
http://yordanpavlov.blogspot.com/
mailto:iordanpavlov@gmail.com
http://www.telerik.com/
http://yyosifov.blogspot.com/
mailto:cypressx@gmail.com
http://www.introprogramming.info/intro-java-book/

52 Fundamentals of Computer Programming wi th C#

work, some partially, but in all cases their original work is the primary origin

of this book :

- Boris Valkov

- Danail Aleksiev

- Hristo Todorov

- Lachezar Bozhkov

- Luchesar Cekov

- Marin Georgiev

- Mario Peshev

- Mariyan Nenchev

- Mihail Stoynov

- Nikolay Nedyalkov

- Nikolay Vasilev

- Petar Velev

- Radoslav Ivanov

- Rumyana Topalska

- Stefan Staev

- Svetlin Nakov

- Teodor Stoev

- Vesselin Kolev

- Vladimir Tsanev

- Yosif Yosifov

The Editors

Apart from the authors, a significant contribution to the making of this

book was made by the editors who voluntarily took part in reviewing the text

and the examples and fixing errors and other problems:

- Dilyan Dimitrov

- Doncho Minkov

- Hristo Radkov

- Iliyan Murdanliev

- Marin Georgiev

- Mihail Stoynov

- Mihail Valkov

- Mira Bivas

- Nikolay Kostov

- Nikolay Vasilev

- Pavel Donchev

- Radoslav Ivanov

- Radoslav Kirilov

- Radoslav Todorov

- Stanislav Zlatinov

- Stefan Staev

- Svetlin Nakov

- Teodor Bozhikov

- Tsvyatko Konov

- Veselin Georgiev

- Veselin Kolev

- Yosif Yosifov

The Translators

This book would have remained only in Bulgarian for many years if these guys

hadnôt volunteered to translate it in English :

- Angel Angelov

- Atanas Valchev

- Blagovest

Buyukliev

- Boyan Dimitrov

- Dimitar Bonev

- Doroteya Agayna

- Dyanko Petkov

- Franz Fischbach

- George Halachev

- George K.

Georgiev

- George S.

Georgiev

- Georgi Mitev

- Georgi Todorov

- Georgi Vaklinov

- Hristo Radkov

- Ivan Nenchovski

- Ivaylo Dyankov

- Ivaylo Gergov

- Zhasmina

Stoyanova

- Kristian Dimitrov

- Lora Borisova

- Martin Gebov

- Martin Radev

- Martin Yankov

- Momchil Rogelov

- Nedjaty Mehmed

- Nencho Nenchev

- Nikolay Angelov

- Nikolay Kostov

- Pavel Benov

- Radoslav Todorov

Preface 53

- Stanislav

Vladimirov

- Svetlin Nakov

- Teodor Rusev

- Tihomir Iliev

- Todor Mitev

- Vasya Stankova

- Ventsi Shterev

- Vesselin Georgiev

- Vesselina Raikova

- Vladimir

Amiorkov

- Vladimir Tsenev

- Yoan Krumov

- Zhelyazko

Dimit rov

Many thanks to George S. Georgiev who was seriously involved in the

translation process and edit ed the translated text for most of the chapters.

Other Contributors

The authors would also like to thank Kristina Nikolova for her efforts in

working out th e bookôs cover design. Big thanks to Viktor Ivanov and Peter

Nikov for their work on the projectôs web site . Big thanks to Ivaylo Kenov

for fixing few hundreds bugs reported in the Bulgarian edition of the book.

Thanks to Ina Dobrilova and Aneliya Stoyanova for the proofreading of the

first few chapters and their contribution to the marketing of the book. Many

thanks to Hristo Radkov who is proficient in English (lives and works in

London for many years) and who edited and corrected the translation of the

first few chapters.

The Book Is Free of Charge!

The present book is distributed absolutely free of charge in an electronic

format under a license that grants its usage for all kinds of purposes,

including commercial projects. The book is also distributed in paper format for

a charge, covering its printing and distribution costs without any profit.

Reviews

If you donôt fully trust the authors who wrote this book, you can take

inspiration from its reviews written by leading worldwide specialists ,

including software engineers at Microsoft , Google , Oracle, SAP and VMware .

Review by Nikola Mihaylov , Microsoft

Programming is an awesome thing! People have been trying for hundreds of

years to make their lives easier, in order to work less. Programming allows

humanityôs tendency towards laziness to continue. If you are a computer

freak or if youôd just like to impress others with a good website or something

of yours "never - seen -before" , then you are welcome. No matter if you are

part of the relatively small group of "freaks" who get off on encountering a

nice program or if youôd just like to fulfill yourself professionally and lead your

life outsi de the workplace, this book is for you .

The fundamental concepts of a carôs engine havenôt changed in years ï

something inside it burns (gas, oil or whatever you have filled it with) and the

car rolls along. Likewise, the concepts of programming havenôt changed for

http://introprogramming.info/

54 Fundamentals of Compu ter Programming with C#

years. Whether you write the next video game, money management software

in a bank or you program the "mind" of a new bio robot, you will use ï with

absolute certainty ï the concepts and the data structures described in

this book .

In this book , you wi ll find a large part of the programming fundamentals .

An analogical fundamental book in the automobile industry would be titled

"Internal Combustion Engines".

Whatever you do, itôs most important to enjoy it ! Before you start reading

this book , think o f something youôd like to do as a programmer ï a website, a

game or some other program! While reading the book, think of how and what

from the stuff you have read you would use in your program! If you find

something interesting, you would learn it easily!

My first program (of which Iôm proud enough to speak of in public) was

simply drawing on the screen using the arrow keys of the keyboard. It took

me quite some time to write it back then, but when it was done, I liked it. I

wish you this: may you like ever ything related to programming! Have a nice

reading and a successful professional fulfillment!

Nikola Mihaylov is a software engineer at Microsoft in the team developing

Visual Studio. He is the author of the website http://nokola.com and is easily

ñturned onò by the topic of programming; he is always ready when itôs

necessary to write something positive! He loves helping people with questions

and a desire for programming, no matter if they are beginners or experts.

When in need, contact him by e -mail: nokola@nokola.com .

Review by Vassil Bakalov , Microsoft

"Introduction to Programming with C#" is a brave effort to not only help the

reader make their first steps in programming, bu t also to introduce them with

the programming environment and to train for the practical tasks that

occur in a programmerôs day- to - day life . The authors have found a good

combination of theory ï to pass over the necessary knowledge for writing and

reading programming code ï and practice ï all kinds of problems, carefully

selected to assimilate the knowledge and to form a habit in the reader to

always think of the efficient solution to the problem in addition to the syntax

when writing programs.

The C# progr amming language is a good choice, because it is an elegant

language through which the programôs representation in the computer

memory is of no concern to us and we can concentrate on improving the

efficiency and elegance of our program.

Up until now I have nôt come across a programming book that introduces its

reader with the programming language and develops their problem

solving skills at the same time. Iôm happy now that there is such a book and

Iôm sure it will be of great use to future programmers.

Vass il Bakalov is a software engineer at Microsoft Corporation (Redmond)

and a participant in the project for the first Bulgarian book for .NET:

http://nokola.com/
mailto:nokola@nokola.com

Preface 55

"Programming for the .NET Framework". His blog is located at:

http://bakalov.com .

Review by Vassil Terziev, Telerik

Skimming through the book, I remembered the time, when I was making my

first steps in PHP programming . I still remember the book I learned from

ï four authors, very disorganized and incoherent content and elementary

exam ples in the chapters for experts and complicated examples in the

chapters for beginners, different coding conventions and emphasis only on the

platform and the language and not on how to use them efficiently for writing

high quality applications.

Iôm very glad that "Introduction to Programming with C#" takes an entirely

different approach . Everything is explained in an easy to understand

manner , but with the necessary profundity, and every chapter goes on to

slowly extend the previous ones. As an outside by stander I was a witness of

the efforts put into writing the book and Iôm happy that this immense energy

and desire to create a more different book truly has materialized in a subject

matter of very high quality.

I strongly hope that this book will be usefu l to its readers and that it will

provide them with a strong basis for finding their feet, a basis that will hook

them on to a professional development in the field of computer programming

and that will help them make a more painless and qualitative start.

Vassil Terziev is one of the founders and CEO of Telerik Corporation, leading

provider of developer tools and components for .NET, HTML5 and mobile

development. His blog is located at http://blogs.te lerik.com/vassilterziev/ .

You can contact him at any time you want by e -mail: terziev@telerik.com .

Review by Veselin Raychev , Google

Perhaps even without reading this, youôll be able to work as a software

develope r, but I think youôll find it much more difficult.

I have seen cases of reinventing the wheel, often times in a worse shape than

the best in theory and the entire team suffers mostly from this. Everybody

committed to programming must sooner or later read w hat algorithm

complexity is, what a hash table is, what binary search is and what the

best practices for using design patterns are. Why donôt you start at this very

moment by reading this book?

There are many books on C# and much more on programming. People would

say about many of them that they are the best guides, the fastest way to get

into the swing of the language. This book differs from others mainly because

it will show you what you must k now to achieve success and not what the

twists and turns of a given programming language are. If you find the

topics covered in this book uninteresting, then software engineering

might possibly not be for you.

http://bakalov.com/
http://blogs.telerik.com/vassilterziev/
mailto:terziev@telerik.com

56 Fundamentals of Compu ter Programming with C#

Veselin Raychev is a software engineer at Goog le where he works on Google

Maps and Google Translate. He has previously worked at Motorola Biometrics

and Metalife AG.

Veselin has won accolades at a number of national and international

contests and received a bronze medal at the International Olympiad i n

Informatics (IOI) in South Korea, 2002, and a silver medal at the Balkan

Olympiad in Informatics (BOI). He represented the Sofia University "St.

Kliment Ohridski" twice at the world finals in computer science (ACM ICPC)

and taught at several optional cou rses at the Faculty of Mathematics and

Informatics at the University of Sofia.

Review by Vassil Popovski, VMware

As an employee at a managing position at VMware and at Sciant before that, I

often have to carry out technical interviews for job candidates at our

company. Itôs surprising how many of the candidates for software engineering

positions that come to us for an interview donôt know how a hash table

works , havenôt heard of algorithm complexity, cannot sort an array or sort it

with a complexity of O(n 3). Itôs hard to believe the amount of self-taught

programmers that havenôt mastered the fundamentals of programming youôll

find in this book. Many people practicing the software developer profession

are not even familiar with the most basic data structures in programming and

donôt know how to iterate through a tree using recursion. Read this book, so

that you wonôt be like these people! It is the first textbook you should

start with during your training as a programmer. The fundamental knowledge

of data str uctures , algorithms and problem solving will be necessary for

you to build your carrier in software engineering successfully and, of

course, to be successful at job interviews and the workplace afterwards.

If you start with creating dynamic websites using databases and AJAX without

knowing what a linked list, tree or hash table is, one day youôll find out what

fundamental gaps there are in your skill set. Do you have to make a fool of

yourself at a job interview, in front of your colleagues or in front of y our

superior when it becomes clear that you donôt know the purpose of a hash

code, or how the List<T> structure works or how hard drive folders are

traversed recursively?

Most programming books will teach you to write simple programs, but they

wonôt take into consideration the quality of the programming code . It is a

topic most authors find unimportant, but writing high quality code is a basic

skill that separates the capable programmers from the mediocre ones.

Throughout the years you might discover the be st practices yourself, but do

you have to learn by trial and error? This book will show you the right course

of action the easy way ï master the basic data structures and

algorithms ; learn to think correctly ; and write your code with high -

quality . I wish y ou beneficial studying.

Vassil Popovski is a software architect at VMware Bulgaria with more than

10 years of experience as a Java developer. At VMware Bulgaria he works on

Preface 5 7

developing scalable Enterprise Java systems. He has previously worked as

senior manager at VMware Bulgaria, as technical director at Sciant and as

team leader at SAP Labs Bulgaria.

As a high school student Vassil won awards at a number of national and

international contests including a bronze medal at the International

Olympiad in Informatics (IOI) in Set¼bal, 1998, and a bronze medal at the

Balkan Olympiad in Informatics (BOI) in Drama, Greece, 1997. As a college

student , Vassil participated in a number of college contests and in the

worldwide inte runiversity contest in programming (ACM ICPC). During the

2001/2002 period , he held the course "Transaction Processing" at the Sofia

University "St. Kliment Ohridski". Vassil is one of the founders of the

Bulgarian Association of Software Developers (BASD) .

Review by Pavlin Dobrev, ProSyst Labs

The book "Introduction to Programming with C#" is an excellent study

material for beginners that gives you the opportunity to master the

fundamentals of programming in an easy to understand manner. Itôs the

seventh b ook written under the guidance of Svetlin Nakov and just like the

others, itôs oriented exclusively to gaining practical programming skills .

The subject matter includes fundamental topics such as data structures,

algorithms and problem solving and that mak es it intransient in technologiesô

development. Itôs filled with countless examples and practical advice for

solving basic problems from a programmerôs everyday work.

The book "Introduction to Programming with C#" represents an adaptation of

the incredibly successful book "Introduction to Programming with Java" to

the C# programming language and Microsoftôs .NET Framework platform and

is based on its leading authorôs, Svetlin Nakov, experience gained while

teaching programming fundamentals ï not only at the National Academy

for Software Development (NASD) and later at Telerik Software

Academy , but at the Faculty of Mathematics and Informatics at the Sofia

University "St. Kliment Ohridski", at the New Bulgarian University and at

the Technical University of So fia as well.

Despite the large number of authors, all of which with differing professional

and training experience, there is a clear logical connection between the

separate chapters from the book. Itôs clearly written , with detailed

explanations and many, many examples far from the dull academic style

of most university textbooks.

Oriented towards those making their first steps in programming, the book

delivers carefully, step by step, the most important stuff a programmer

must be proficient in, in order to practice his profession ï starting from

variables, loops and arrays, to fundamental data structures and algorithms.

The book also covers important topics like recursive algorithms, trees, graphs

and hash tabl es. Itôs one of the few books that teach a good programming

style and high -quality programming code at the same time. There is enough

58 Fundamentals of Compu ter Programming with C#

thought put into the object -oriented programming principles and exceptions

handling, without which modern software develop ment is unimaginable.

The book "Introduction to Programming with C#" teaches the most

important principles and concepts in programming in the way

programmers think when solving problems in their everyday work.

This book doesnôt contain everything about programming and wonôt make you

.NET software engineers. If you want to become really good programmer ,

you need lots and lots of practice. Start from the exercises at the end of each

chapter, but donôt confine yourselves to solving only them. Youôll write

thou sands of lines of code until you become really good ï thatôs the life of

a programmer. This book is indeed a great start ! Seize the opportunity to

come across everything of utmost importance in one place without all the

wandering through the thousands of s elf - instruction books and articles on the

Internet. Good luck!

Dr. Pavlin Dobrev is technical director at ProSyst Labs (www.prosyst.com),

a software engineer with more than 15 yearsô experience, consultant and

scienti st , Ph.D. in "Computer Systems, Complexes and Networks". Pavlin has

made worldwide contributions in developing modern computer technologies

and technological standards . He is an active member of international

standardization organizations such as the OSGi Alliance (www.osgi.org) and

the Java Community Process (www.jcp.org), as well as open source software

initiatives such as the Eclipse Foundation (www.eclipse.org). Pavlin manages

software projects and consults companies of the likes of Miele, Philips,

Siemens, BMW, Bosch, Cisco Systems, France Telecom, Renault, Telefonica,

Telekom Austria, Toshiba, HP, Motorola, Ford, SAP, etc. in the field of

embed ded applications, OSGi based automobile systems, mobile devices and

home networks, integrated development environments and Java Enterprise

servers for applications. He has many scientific and technical publications

and has participated in prestigious inter national conferences.

Review by Nikolay Manchev, Oracle

To become a skillful software developer, you must be ready to invest in

gaining knowledge in many fields and a particular programming language is

only one of them. A good developer mustnôt only know the syntax and the

application programming interface of t he language heôs chosen. He also has to

possess deep knowledge in object - oriented programming , data

structures and quality code writing . He must also back up his knowledge

with serious practical experience.

When I was starting my career as a software devel oper more than 15 years

ago, finding a comprehensive source for learning these things was

impossible . Yes, there were books on the individual programming languages,

but they only described their syntax. For the API description one had to rely

on the docume ntation of the libraries. There were individual books devoted

solely on object -oriented programming. The various algorithms and data

http://www.prosyst.com/
http://www.osgi.org/
http://www.jcp.org/
http://www.eclipse.org/

Preface 59

structures were taught at the university. There was not even a word on high -

quality programming code.

Learning all these th ings, one piece at a time, and making the efforts to put

them into a common context, was up to the one walking "the way of the

programmer". Sometimes a self - taught programmer cannot manage to fill the

huge gaps in their knowledge simply because they have n o idea of the gapsô

existence. Let me give you an example to illustrate the problem.

In the year 2000 I picked up the management of a large Java project. The

team developing it consisted of 25 people and at that moment there were

about 4000 classes written for the project. As a team leader, part of my job

was to regularly review the code written by the other programmers. One

day I saw how one of my colleagues had solved a standard array sorting

assignment. He had written a separate, 25 lines long method imp lementing

the trivial bubble sort algorithm. When I went to see him and asked him why

he would do that instead of solving the problem with a single line of code

using Array.Sort() , he started explaining how the built - in method had been

"sluggish" and that itôs better to write these things yourself. I told him to open

the documentation and showed him that the "sluggish" method works with a

complexity of O(n*log(n)) and his bubble sort is a prime example of bad

performance with its complexity of O(n 2). In the next few minutes of our

conversation I made the actual discovery ï my colleague had no idea what

algorithm complexity is and his knowledge of standard algorithms was

tragic. Consequently I found out he majored in an entirely different

engineering discipli ne, not computer science. Of course, thereôs nothing wrong

with that. His knowledge of Java was no worse than his co -workersô, who had

longer professional exposures than him. But that very day we noticed a gap in

his professional qualification as a develop er that he hadnôt even suspected.

I donôt want to leave you with wrong impressions from this story. Although a

college student who has successfully passed his main exams in "Informatics"

would definitely know the common sorting algorithms and would be able to

calculate their complexity, they would also have gaps in their education .

The sad truth is that the college education in Bulgaria in this discipline is still

theoretically oriented. It has changed very little over the course of the past 15

years. Yes, programs are nowadays written in Java and C#, but these are the

same programs that were written in Pascal and Ada back then.

Somewhere about a year ago I consulted a freshman student who was

majoring in "Informatics" at one of Bulgariaôs top state universities. When we

sat down to go over his notes taken during the "Introduction to Programming"

class, I was amazed at the code his instructor had given . The names of

the methods were a mix of English and transliterated Bulgarian. There was a

method calculate and a method rezultat (the Bulgarian for "result"). The

variables carried the descriptive names a1, a2 and suma (the Bulgarian for

"sum"). Yes, there is nothing tragic in this approach, as long as itôs a ten-

lines - long example, but when this student takes u p the job heôs earned at

some large project, he will be harshly rebuked by the project leader, who will

have to explain to him the coding conventions , naming principle,

60 Fundamentals of Compu ter Programming with C#

cohesion and coupling and variable life span. Then theyôll find out together

about the gap in his knowledge of quality code the same way my colleague

and I found out about his uncertain knowledge in the field of algorithms.

Dear reader, I can boldly state that you are holding a truly unique book in

your hands. Its contents are very carefully selected. Itôs well-arranged and

presented with attention to details, of which only people with tremendous

practical experience and solid scientific knowledge, like the bookôs chief

authors Svetlin Nakov and Veselin Kolev, are capable of. Over the course of

many years they have also been learning "on the fly", supplementing and

expanding their knowledge. Theyôve worked for years on huge projects,

theyôve attended many scientific conferences and theyôve taught hundreds of

students. They know whatôs necessar y for anybody striving for a career

in software development to learn and theyôve presented it in a manner that

no other book on introduction to programming has done before. Your journey

through the bookôs pages will lead you through the C# programming

languageôs syntax. Youôll see how to use a large part of its API. Youôll learn

the fundamentals of object - oriented programming and youôll be able to

work freely with terms such as objects, events and exceptions. Youôll see the

most widely used data structures such as arrays, trees, hash tables and

graphs. Youôll get to know the most widely used algorithms for working with

these structures and youôll come to know their pros and cons. Youôll

understand the concepts for creating high - quality programming code and

youôll know what to require from your programmers when one day you

become a team leader. In addition, the book will challenge you with many

practical problems that will help you master, by the way of practice, the

subject matter it covers. And if one of the problems proves too hard for you,

you can always take a look at the solutions and guidelines the authors have

provided.

Computer programmers make mistakes ï no one is safe from that. The more

capable ones make mistakes out of oversight or overwork, but th e more

incompetent ones ï out of lack of knowledge. Whether you become a good

or a bad software developer depends entirely on you and especially on

how much youôre willing to constantly invest in your knowledge ï be it by

attending courses, reading or prac ticing. But I can tell you one thing for sure

ï no matter how much time you invest in this book, you wonôt make a

mistake. If some years ago someone wanting to become a software developer

had asked me "Where do I start from", I wouldnôt have been able to give

them a definitive answer. Today I can say without worry ï "Start from this

very book (in its C# or Java version)!"

I wish you with all my heart success in mastering the secrets of C#, the .NET

Framework and software development!

Nikolay Manchev is a co nsultant and software developer with many years

of experience in Java Enterprise and Service Oriented Architecture (SOA). He

has worked for BEA Systems and Oracle Corporation. Heôs a certified

developer in the programs run by Sun, BEA and Oracle. He teaches

software technologies and holds courses in "Network Programming",

Preface 61

"J2EE", "Data Compression" and "High Quality Programming Code" at the

Plovdiv University "Paisii Hilendarski" and at the Sofia University "St. Kliment

Ohridski". He has held a number of courses for developers on Oracle

technologies in Central and Eastern Europe (Hungary, Greece, Slovakia,

Slovenia, Croatia and others) and has participated in international projects on

incorporating J2EE based systems for security management. Works of h is in

the field of data compression algorithms have been accepted and presented in

the USA by IEEE. Nikolay is an honorary member of the Bulgarian Association

of Software Developers (BASD). He is author of the book "Oracle Database

Security: Version 10g & 11g ". You can find out more about him on his

personal website: http://www.manchev.org . To contact him, use th e e -mail

address: nick@manchev.org .

Review by Panayot Dobrikov, SAP AG

The book at hand is an incredibly good introduction to programming for

beginners and is a primary example of the notion (promoted by Wikipedia

and others) to create and distribute easy to understand knowledge that is not

only * free of charge *, but is of incredibly high quality as well.

Panayot Dobrikov is program director at SAP AG and co-author of the book

"Programming = ++Algorithms;". You can fi nd out more about him on his

personal website: http://indyana.hit.bg .

Review by Lyubomir Ivanov, Mobiltel

If someone had told me 5 or 10 years ago that there would be a book from

which to learn the basics of managing people and projects ï budgeting,

finances, psychology, planning, etc., I wouldnôt have believed them. I

wouldnôt even believe them at this very moment. For each of these topics

there are tens of books that must be read.

If someone had told me that there would be a book from which we can learn

the fundamentals of programming essential to every software developer ï

I still wouldnôt have believed them.

I remember my time as a novice programmer and a college st udent ï I was

reading several books on programming languages, several others on

algorithms and data structures, and a third set of books on writing high -

quality code. Very few of them helped me to think algorithmically and to

work out an approach for solvi ng the everyday problems I came across

in my practice. None of them gave me an overview of everything I had to

know as a computer programmer and a software engineer. The only things

that helped me were being stubborn and reinventing the wheel.

Today I read this book and Iôm happy that finally, although a bit too late for

me, someone got down to writing The Book that will help any beginner

programmer solve the puzzle of programming ï a modern programming

language, data structures, quality code, a lgorithmic thinking and problem

solving. This is the book that you should take up programming from, if you

http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://www.manchev.org/
mailto:nick@manchev.org
http://indyana.hit.bg/

62 Fundamentals of Compu ter Programming with C#

want to master the art of quality programming. Whether you choose the Java

or C# version of this book , it doesnôt really matter. What matters is that you

must learn to think as a programmer and solve the problems you

encounter when writing software; the programming language is just a tool

you can change for another at any given time.

This book isnôt only for beginners. Even programmers with many years of

experience can learn something from it. I recommend it to every software

developer who would like to realize what they didnôt know up until now.

Have a nice time reading!

Lyubomir Ivanov is the manager of the "Data and Mobile Applications"

department at Mobiltel EAD (part of Mobilkom Austria) where he engages in

developing and integrating IT solutions for the telecommunications industry.

Review by Hristo Deshev, Entrepreneur

Itôs surprising what a large percentage of programmers donôt pay attention to

th e little things like variable names and good code structure . These

things pile up and, in the end, make the difference between a well -written

piece of software and a bowl of spaghetti. This book teaches discipline and

"hygiene" in code writing along with t he very basic concepts in

programming and that will undoubtedly make you a professional .

Hristo Deshev , software craftsman

Review by Hristo Radkov , Clever IT (London, UK)

Fantastic book! It gives the start to any developer geek who wants to develop

into a software prodigy. While you can learn from the quick learning books for

dummies to do coding that ñjust worksò and this is the level expected in many

of the small software development houses around, you can never leave a

trace in the software world without understanding the fundamental

concepts of programming . Yes, you can still develop software applications

and use the goodies of the .NET framework, but just use and not create or

innovate .

If youôd like to ever achieve architectural excellence and be able to

confidently and proudly say you have developed a good piece of software that

will stay there and serve its purpose for years, you need to understand just

how the technologies you use in everyday live (e.g. ASP.NET, MVC, WPF,

WCF, LINQ, Sockets, Task Par allel Library) work, but how they have been

developed and optimized to become what they are. Only then would you save

precious time in finding how to do things efficiently with these technologies,

because that knowledge will naturally come from what you ha ve learned

from this book . And the same applies to understanding the widely

recommended in the world of programming nowadays design patterns,

architectures and techniques.

Preface 63

The book will allow you to prepare yourself to think, design and program

optimally a s a concept and mindset with any object oriented language you

might ever use not just C# or .NET Framework.

Many banking systems here in London have a main requirement to be ñreal-

timeò data servers to thousands of users with minimum delays and

interruptio ns, and this book provides the basics which if you lack you cannot

work on such systems successfully, ever.

This fundamental knowledge distinguishes the excellent and accomplished

developer, whose code would rarely require optimizations and would therefore

save direct and indirect costs to their employer from the general developers

who unfortunately are the prevailing part of the programmers you would meet

in your career. The accomplished specialists evolve and progress into senior

positions much easier whe n having the technical arguments and the mentality

to be creative and visionary, avoiding the difficulties of technology gap

limitations the mass around you have.

So, read the book carefully and diligently to become one!

Hristo Radkov is a Chief software architect and Co- founder at Clever IT , a

software services, best coding practices and architecture consulting company

based in London, United Kingdom. With over 15 years of experience as a

Developer, Team leader, Development manager, Head of IT and Software

Architect he has done projects professionally with C++, Java and C#,

eventually remaining completely on the side of the Microsoft Technologies

after the very first release of .NET Framework , becomi ng recognized by the

industry Microsoft Technology Software Development Best Practices and Cloud

Programming Expert, with MCPD, MCSD.NET, MCDBA and MCTS awards.

Hristo is co - author of the books "Programming for the .NET Framework

(vol. 1 & 2) " and has been instructor for .NET and Design Patterns for many

years. His company Clever IT is consulting top financial institutions and FTSE

100 corporations with multibillion valuations on the World Stock Exchanges.

You can find more about him on www.radkov.com or linked - in at Hristo

Radkov . To contact him, use the e -mail address: hradkov@clevit.com .

Lic ense

The book and all its study materials are distributed freely under the following

license :

Common Definitions

1. The present license defines the terms and conditions for using and

distributing the " study materials " and the book "Fundamentals of

Computer Pr ogramming with C#" , developed by a team of

volunteers under the guidance of Svetlin Nakov (www.nakov.com).

2. The study materials consist of:

http://cleverit.info/
http://www.devbg.org/dotnetbook/
http://www.devbg.org/dotnetbook/
http://www.radkov.com/
http://lnkd.in/6YvJZ3
http://lnkd.in/6YvJZ3
mailto:hradkov@clevit.com
http://www.nakov.com/

64 Fundamentals of Compu ter Programming with C#

- the book (textbook) on "Fundamentals of Computer Programming

with C#"

- sample sou rce code

- demo programs

- exercise problems

- presentation slides

- video materials

3. The study materials are available for free download according to the

terms and conditions specified in this license at the official website of

the project: www.introprogramming.info .

4. Authors of the study materials are the persons who participated in their

creation.

5. User of the study materials is anybody who uses or accesses these

materials or portions of them.

Rights and Limitations of the Users

1. Users may :

- distribute free of charge unaltered copies of the study materials in

electronic or paper format;

- use the study materials or portions of them, including the examples,

demos, exercises and presentation slides or their modifications, for all

intents and purposes, including educational and commercial

projects , provided they clearly specify the original source , the

original author(s) of the corresponding text or source code, this

license and the website www.introprogramming.info ;

- distribute free of charge portions of the study materials or modified

copies of them (including translating them into other languages or

adapting them to other programming languages and platfo rms), but

only by explicitly mentioning the original source and the authors

of the corresponding text, source code or other material, this license

and the official website of the project: www.introprogrammin g.info .

2. Users may not :

- distribute for profit the study materials or portions of them, with

the exception of the source code;

- remove this license from the study materials when modifying them

for own needs.

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Preface 65

Rights and Limitations of the Authors

1. Every author has non -exclusive rights on the products of his / her own

work contributing to build the study materials.

2. The authors have the right to use the products of their contribution for

any purpose, including modifying them and distributing them for profit.

3. The r ights on all study materials written in joint authorship belong to all

co-authors together.

4. The authors may not distribute for profit study materials theyôve written

in joint authorship without the explicit permission of all other co -

authors.

Resources Com ing with the Book

This book "Fundamentals of Computer Programming with C#" comes with a

rich set of resources: official web site , official discussion forum , presentation

slides for each chapter of the book, video lessons for each chapter of the

book and Fa cebook fan page .

The Bookôs Website

The official website of the book "Introduction to programming with C#" is

available at: www.introprogramming.info . At bookôs web site you can

freely download the book and many related resources:

- The whole book in several electronic format s (PDF / DOC / DOCX /

HTML / Kindle / etc.)

- The source code of the examples (demos) for each chapter

- Video lessons covering the entire book content with live demos and

detailed explanations (in English and in Bulgarian)

- PowerPoint presentations slides for each chapter, ready for instructors

who want to teach programming (in English)

- The exercises and solutions guideli nes for each chapter

- Solutions to all problems from the book + explanation of the

algorithm and the source code for each solution + tests (in Bulgarian)

- Interactive Mind maps for each book chapter

- The book in Bulgarian language (the original)

- A Java versio n of the book (with all content and examples adapter to

Java programming language) .

Discussion Forum

The discussion forum where you can find solutions to almost all problems

from the book is available at: f orums.academy.telerik.com .

http://www.introprogramming.info/
http://forums.academy.telerik.com/

66 Fundamentals of Compu ter Programming with C#

This forum is created for discussions among the participants in Telerik

Software Academyôs courses who go through this book during the first few

months of their training and mandatorily solve all problems in the exercise

sections. Most people "living" in the forum are Bulgarian but everyone speaks

English so you are invited to ask your questions about the book exercises in

English.

In the forum youôll find comments and solutions submitted by students and

readers of the boo k, as well as by the trainers at the Software Academy. Just

search thoroughly enough and youôll find several solutions to all problems in

the book (with no exceptions). Every year thousands of participants in

Telerik Software Academy solve problems from th is book and share their

solutions and the difficulties theyôve encountered, so simply search thoroughly

in the forum or ask , if you canôt get to a solution for a particular problem.

Presentation Slides Coming with the Book

This book is used in many univers ities, colleges, schools and organizations as

a textbook on computer programming, C#, data structures and algorithms. To

help instructors teach the lessons following this book we have prepared

PowerPoint presentation slides for each chapter of the book. In structors

are welcome to use the slides free of charge under the license agreement

stated above. The authors' team will be happy to find out that this book and

its study materials and presentation slides are helping people all over the

world to learn progr amming. This is the primary goal of the project: to teach

computer programming fundamentals , in complete, simple, structured,

understandable way, free of charge. You may find the PowerPoint slides in

English at the bookôs official web site: www.introprogramming.info .

Video Materials for Self - Education with the Book

As part of the Telerik Software Academy program (academy.telerik.com) and,

in particular, the free cour se "Fundamentals of C# Programming", videos of

all lectures on the subject matter in this book have been recorded. The video

materials in English and Bulgarian can be found at C# bookôs official web site:

in troprogramming.info .

If you speak Bulgarian you might be interested in Telerik Software Academyôs

video channel in YouTube: youtube.com/TelerikAcademy . It provides for

free thousands video lessons on p rogramming and software development.

Interactive Mind Maps

As part of the book we created a set of interactive mind maps to visualize its

content and to improve the level of memorization. We have a few mind maps

for each chapter that visually illustrates its content and a global mind map of

the entire book. The mind maps are available at the bookôs web site:

http://www.introprogramming.info/english - intro -csharp -book/mind -maps/ .

http://www.introprogramming.info/
http://academy.telerik.com/
http://www.introprogramming.info/
http://www.youtube.com/TelerikAcademy/
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

Preface 67

C# Book Fan Club

For the fans of the book "Introduction to Programming with C#" we have a

Facebook page : www.facebook.com/IntroCSharpBook .

Svetlin Nakov , PhD,

Manager of the "Technical Training" Department,

Telerik Software Academy, Telerik Corporation,

August 24 th , 2013

http://www.facebook.com/IntroCSharpBook
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

www.devbg.org

Bulgarian Association of Software Developers (BASD) is a

non -profit organization that supports the Bulgarian software

developers through educational and other initiatives.

BASD works to promote exchange of experience between the

developers and improvement of their knowledge and skills in

the area of software development and software technologies.

The Association organizes conferences, semin ars and training

courses for software engineers and other professionals

involved in the software industry.

http://www.devbg.org/
http://www.devbg.org

Chapter 1. Introduction
to Programming

In This Chapter

In this chapter we will take a look at the basic programming terminology

and we will write our first C# program . We will familiarize ourselves with

programming ï what it means and its connection to computers a nd

programming languages.

Briefly, we will review the different stages of software development .

We will introduce the C# language, the .NET platform and the different

Microsoft technologies used in software development. We will examine what

tools we need t o program in C# . We will use the C# language to write our

first computer program, compile and run it from the command line as well as

from Microsoft Visual Studio integrated development environment. We will

review the MSDN Library ï the documentation of th e .NET Framework. It will

help us with our exploration of the features of the platform and the language.

What Does It Mean "To Program"?

Nowadays computers have become irreplaceable. We use them to solve

complex problems at the workplace, look for driving directions, have fun and

communicate. They have countless applications in the business world, the

entertainment industry, telecommunications and finance. Itôs not an over-

statement to say that computers build the neural system of our contemporary

society a nd it is difficult to imagine its existence without them.

Despite the fact that computers are so wide -spread, few people know how

they really work . In reality, it is not the computers, but the programs (the

software), which run on them, that matter. It is the software that makes

computers valuable to the end -user, allowing for many different types of

services that change our lives.

How Do Computers Process Information?

In order to understand what it means to program, we can roughly compare a

computer and it s operating system to a large factory with all its workshops,

warehouses and transportation. This rough comparison makes it easier to

imagine the level of complexity present in a contemporary computer. There

are many processes running on a computer, and th ey represent the

workshops and production lines in a factory . The hard drive, along with the

70 Fundamentals of Computer Programming with C#

files on it, and the operating memory (RAM) represent the warehouses, and

the different protocols are the transportation systems, which provide the input

and outpu t of information.

The different types of products made in a factory come from different

workshops. They use raw materials from the warehouses and store the

completed goods back in them. The raw materials are transported to the

warehouses by the suppliers a nd the completed product is transported from

the warehouses to the outlets. To accomplish this, different types of

transportation are used. Raw materials enter the factory, go through different

stages of processing and leave the factory transformed into pr oducts. Each

factory converts the raw materials into a product ready for consumption.

The computer is a machine for information processing . Unlike the

factory in our comparison, for the computer, the raw material and the product

are the same thing ï inform ation. In most cases, the input information is

taken from any of the warehouses (files or RAM), to where it has been

previously transported. Afterwards, it is processed by one or more processes

and it comes out modified as a new product. Web based applicat ions serve as

a prime example. They use HTTP to transfer raw materials and products, and

information processing usually has to do with extracting content from a

database and preparing it for visualization in the form of HTML.

Managing the Computer

The whol e process of manufacturing products in a factory has many levels of

management. The separate machines and assembly lines have operators, the

workshops have managers and the factory as a whole is run by general

executives. Every one of them controls process es on a different level. The

machine operators serve on the lowest level ï they control the machines with

buttons and levers. The next level is reserved for the workshop managers.

And on the highest level, the general executives manage the different aspect s

of the manufacturing processes in the factory. They do that by issuing orders.

It is the same with computers and software ï they have many levels of

management and control. The lowest level is managed by the processor and

its registries (this is accompli shed by using machine programs at a low level)

ï we can compare it to controlling the machines in the workshops. The

different responsibilities of the operating system (Windows 7 for example),

like the file system, peripheral devices, users and communicati on protocols,

are controlled at a higher level ï we can compare it to the management of the

different workshops and departments in the factory. At the highest level, we

can find the application software . It runs a whole ensemble of processes,

which require a huge amount of processor operations. This is the level of the

general executives, who run the whole factory in order to maximize the

utilization of the resources and to produce quality results.

Chapter 1. Introduction to Programming 71

The Essence of Programming

The essence of programming is to control the work of the computer on all

levels. This is done with the help of "orders" and "commands" from the

programmer, also known as programming instructions . To "program" means

to organize the work of the computer through sequences of

instructions . These commands (instructions) are given in written form and

are implicitly followed by the computer (respectively by the operating system,

the CPU and the peripheral devices).

To ñprogramò means writ ing sequences of instructions in

order to organize the w ork of the computer to perform

something. These sequences of instructions are called

ñcomputer programsò or ñscriptsò.

A sequence of steps to achieve , complete some work or obtain some result is

called an algorithm . This is how programming is related to algorithms .

Programming involves describing what you want the computer to do by a

sequence of steps, by algorithms .

Programmers are the people who create these instructions, which control

computers. These instructions are called programs . Numerous programs

exist, and they are created using different kinds of programming

languages . Each language is oriented towards controlling the computer on a

different level. There are languages oriented towards the machine level (the

lowest) ï Assembler for example. Other s are most useful at the system level

(interacting with the operating system), like C. There are also high level

languages used to create application programs. Such languages include C# ,

Java, C++, PHP, Visual Basic, Python, Ruby, Perl, JavaScript and othe rs.

In this book we will take a look at the C# programming language ï a

modern high level language. When a programmer uses C#, he gives

commands in high level, like from the position of a general executive in a

factory. The instructions given in the form o f programs written in C# can

access and control almost all computer resources directly or via the operating

system. Before we learn how to write simple C# programs, letôs take a good

look at the different stages of software development, because programming ,

despite being the most important stage, is not the only one.

Stages in Software Development

Writing software can be a very complex and time -consuming task, involving a

whole team of software engineers and other specialists. As a result, many

methods and practices, which make the life of programmers easier, have

emerged. All they have in common is that the development of each software

product goes through several different stages :

- Gathering the requirements for the product and creating a task;

- Planning and preparing the architecture and design;

72 Fundamentals of Computer Programming with C#

- Implementation (includes the writing of program code);

- Product trials (testing);

- Deployment and exploitation;

- Support .

Implementation, testing, deployment and support are mostly accomplished

using programming.

Gather ing the Requirements

In the beginning, only the idea for a certain product exists. It includes a list of

requirements , which define actions by the user and the computer. In the

general case, these actions make already existing activities easier ï

calculati ng salaries, calculating ballistic trajectories or searching for the

shortest route on Google maps are some examples. In many cases the

software implements a previously nonexistent functionality such as

automation of a certain activity.

The requirements fo r the product are usually defined in the form of

documentation, written in English or any other language. There is no

programming done at this stage. The requirements are defined by experts,

who are familiar with the problems in a certain field. They can a lso write them

up in such a way that they are easy to understand by the programmers. In

the general case, these experts are not programming specialists, and they are

called business analysts .

Planning and Preparing the Architecture and Design

After all the requirements have been gathered comes the planning stage . At

this stage, a technical plan for the implementation of the project is created,

describing the platforms, technologies and the initial architecture (design) of

the program. This step includes a f air amount of creative work, which is done

by software engineers with a lot of experience. They are sometimes called

software architects . According to the requirements, the following parts are

chosen:

- The type of the application ï for example console appli cation, desktop

application (GUI, Graphical User Interface application), client -server

application, Web application, Rich Internet Application (RIA), mobile

application, peer - to -peer application or other;

- The architecture of the software ï for example sing le layer, double

layer, triple layer, multi - layer or SOA architecture;

- The programming language most suitable for the implementation ï

for example C#, Java, PHP, Python, Ruby, JavaScript or C++, or a

combination of different languages;

- The technologies tha t will be used: platform (Microsoft .NET, Java EE,

LAMP or another), database server (Oracle, SQL Server, MySQL, NoSQL

Chapter 1. Introduction to Programming 73

database or another), technologies for the user interface (Flash,

JavaServer Faces, Eclipse RCP, ASP.NET, Windows Forms, Silverlight,

WPF or another), technologies for data access (for example Hibernate,

JPA or ADO.NET Entity Framework), reporting technologies (SQL Server

Reporting Services, Jasper Reports or another) and many other

combinations of technologies that will be used for the imp lementation of

the various parts of the software system.

- The development frameworks that will simplify the development, e.g.

ASP.NET MVC (for .NET), Knockout.js (for JavaScript), Rails (for Ruby),

Django (for Python) and many others.

- The number and skills of the people who will be part of the

development team (big and serious projects are done by large and

experienced teams of developers);

- The development plan ï separating the functionality in stages,

resources and deadlines for each stage.

- Others (size of the team, locality of the team, methods of

communication etc.).

Although there are many rules facilitating the correct analysis and planning, a

fair amount of intuition and insight is required at this stage. This step

predetermines the further advancement of the development process. There is

no programming done at this stage, only preparation.

Implementation

The stage, most closely connected with programming, is the implementation

stage. At this phase, the program (application) is implemented (written)

according to the given task, design and architecture. Programmers

participate by writing the program (source) code. The other stages can

either be short or completely skipped when creating a small project, but the

implementation always presents; otherwise the process is not software

development. This book is dedicated mainly to describing the skills used

during i mplementation ï creating a programmerôs mindset and building the

knowledge to use all the resources provided by the C# language and the .NET

platform, in order to create software applications.

Product Testing

Product testing is a very important stage of so ftware development. Its

purpose is to make sure that all the requirements are strictly followed and

covered. This process can be implemented manually, but the preferred way to

do it is by automated tests . These tests are small programs, which

automate the trials as much as possible. There are parts of the functionality

that are very hard to automate, which is why product trials include automated

as well as manual procedures to ensure the quality of the code.

74 Fundamentals of Computer Programming with C#

The testing (trials) process is implemented by qu ality assurance engineers

(QAs) . They work closely with the programmers to find and correct errors

(bugs) in the software. At this stage, it is a priority to find defects in the code

and almost no new code is written.

Many defects and errors are usually found during the testing stage and the

program is sent back to the implantation stage. These two stages are very

closely tied and it is common for a software product to switch between them

many times before it covers all the requirements and i s ready for the

deployment and usage stages.

Deployment and Operation

Deployment is the process which puts a given software product into

exploitation . If the product is complex and serves many people, this process

can be the slowest and most expensive one. For smaller programs this is a

relatively quick and painless process. In the most common case, a special

program, called installer, is developed. It ensures the quick and easy

installation of the product. If the product is to be deployed at a large

corpor ation with tens of thousands of copies, additional supporting software is

developed just for the deployment. After the deployment is successfully

completed, the product is ready for operation . The next step is to train

employees to use it.

An example would be the deployment of a new version of Microsoft Windows

in the state administration. This includes installation and configuration of

the software as well as training employees how to use it.

The deployment is usually done by the team who has worked on the software

or by trained deployment specialists . They can be system administrators,

database administrators (DBA), system engineers, specialized consultants and

others. At this stage, almost no new code is written but the existing code is

tweaked and config ured until it covers all the specific requirements for a

successful deployment.

Technical Support

During the exploitation process , it is inevitable that problems will appear .

They may be caused by many factors ï errors in the software, incorrect usage

or f aulty configuration, but most problems occur when the users change their

requirements. As a result of these problems, the software loses its abilities to

solve the business task it was created for. This requires additional

involvement by the developers and the support experts . The support

process usually continues throughout the whole life -cycle of the software

product, regardless of how good it is.

The support is carried out by the development team and by specially trained

support experts . Depending on the changes made, many different people

may be involved in the process ï business analysts, architects, programmers,

QA engineers, administrators and others.

Chapter 1. Introduction to Programming 75

For example, if we take a look at a software program that calculates salaries,

it will need to be upd ated every time the tax legislation, which concerns the

serviced accounting process, is changed. The support teamôs intervention will

be needed if, for example, the hardware of the end user is changed because

the software will have to be installed and conf igured again.

Documentation

The documentation stage is not a separate stage but accompanies all the

other stages. Documentation is an important part of software development

and aims to pass knowledge between the different participants in the

development an d support of a software product. Information is passed along

between different stages as well as within a single stage. The development

documentation is usually created by the developers (architects, program -

mers, QA engineers and others) and represents a combination of documents.

Software Development Is More than Just Coding

As we saw, software development is much more than just coding (writing

code), and it includes a number of other processes such as: requirements

analysis, design, planning, testing and support, which require a wide variety

of specialists called software engineers . Programming is just a small, but

very essential part of software development.

In this book we will focus solely on programming, because it is the only

process, of the above, wi thout which, we cannot develop software.

Our First C# Program

Before we continue with an in depth description of the C# language and the

.NET platform, letôs take a look at a simple example, illustrating how a

program written in C# looks like:

class HelloC Sharp
{
 static void Main(string[] args)
 {
 System. Console .WriteLine("Hello C#!");
 }
}

The only thing this program does is to print the message "Hello, C#!" on

the default output. It is still early to execute it, which is why we will only take

a look at its structure. Later we will describe in full how to compile and run a

given program from the command prompt as well as from a development

environment.

76 Fundamentals of Computer Programming with C#

How Do es Our First C# Program Work?

Our first program consists of three logical parts:

- Definition of a class HelloCSharp ;

- Definition of a method Main() ;

- Contents of the method Main() .

Defining a Class

On the first line of our program we define a class called HelloCSharp . The

simplest definition of a class consists of the keyword class , followed by its

name. In our case the name of the class is HelloCSharp . The content of the

class is located in a block of program lines, surrounded by curly brackets: {} .

Defini ng the Main() Method

On the third line we define a method with the name Main() , which is the

starting point for our program. Every program written in C# starts from a

Main() method with the following title (signature):

static void Main(string[] args)

The method must be declared as shown above, it must be static and void , it

must have a name Main and as a list of parameters it must have only one

parameter of type array of string . In our example the parameter is called

args but that is not mandatory. Thi s parameter is not used in most cases so it

can be omitted (it is optional). In that case the entry point of the program can

be simplified and will look like this:

static void Main()

If any of the aforementioned requirements is not met, the program will

compile but it will not start because the starting point is not defined correctly.

Contents of the Main() Method

The content of every method is found after its signature, surrounded by

opening and closing curly brackets. On the next line of our sample program

we use the system object System.Console and its method WriteLine() to

print a message on the default output (the console), in this case "Hello, C#!".

In the Main() method we can write a random sequence of expressions and

they will be executed in the order we assigned to them.

More information about expressions can be found in chapter " Operators and

Expressions ", working with the console is described in chapter " Console Input

and Output ", classes and methods can be found in chapter " Defining Classes ".

Chapter 1. Introduction to Programming 77

C# Distinguishes between Uppercase and Lowercase!

The C# language distinguishes between uppercase and lowercase letters so

we should use the correct casing when we write C# code. In the example

above we used some keywords like class , static , void and the names of

some of the system classes and objects, such as System.Console .

Be careful when writing! The same thi ng, written in upper -

case, lower - case or a mix of both, means different things in

C#. Writing Class is different from class and System.Console

is different from SYSTEM.CONSOLE.

This rule applies to all elements of your program: keywords, names of

variables, class names etc.

The Program Code Must Be Correctly Formatted

Formatting is adding characters such as spaces, tabs and new lines, which are

insignificant to the compiler and they give the code a logical structure and

make it easier to read . Letôs for example take a look at our first program

(the short version of the Main() method):

class HelloCSharp
{
 static void Main()
 {
 System. Console .WriteLine("Hello C#!");
 }
}

The program contains seven lines of code and some of them are indented

more than others. All of that can be written without tabs as well, like so:

class HelloCSharp
{
static void Main()
{
System. Console .WriteLine("Hello C#!");
}
}

Or on the same line:

class HelloCSharp { static void Main(){System. Console .WriteLine(
"Hello C#!");}}

Or even like this:

78 Fundamentals of Computer Programming with C#

 class
 HelloCSharp
{
 static void Main()
 { System .
Console .WriteLine("Hello C#!") ;} }

The examples above will compile and run exactly like the formatted code but

they are more difficult to read and understand , and therefore difficult to

modify and maintain.

Never let your programs contain unformatted code! That

severely reduces program readability and leads to difficulties

for later modifications of the code.

Main Formatting Rules

If we want our code to be correctly formatted, we must follow several

important rules regarding indentation :

- Methods are indented inside the definition of the class (move to the

right by one or more [Tab] characters) ;

- Method contents are indented inside th e definition of the method;

- The opening curly bracket { must be on its own line and placed exactly

under the method or class it refers to;

- The closing curly bracket } must be on its own line, placed exactly

vertically under the respective opening bracket (with the same

indentation);

- All class names must start with a capital letter;

- Variable names must begin with a lower -case letter;

- Method names must start with a capital letter;

Code indentation follows a very simple rule: when some piece of code is

logically inside another piece of code, it is indented (moved) on the right with

a single [Tab]. For example if a method is defined inside a class, it is indented

(moved to the right). In the same way if a method body is inside a method, it

is indented. To simplify this, we can assume that when we have the character

ñ{ñ, all the code after it until its closing ñ}ò should be indented on the right.

File Names Correspond to Class Names

Every C# program co nsists of one or several class definitions . It is

accepted that each class is defined in a separate file with a name

corresponding to the class name and a .cs extension. When these

requirements are not met, the program will still work but navigating the co de

Chapter 1. Introduction to Programming 79

will be difficult. In our example, the class is named HelloCSharp , and as a

result we must save its source code in a file called HelloCSharp.cs .

The C# Language and the .NET Platform

The first version of C# was developed by Microsoft between 1999 and 20 02

and was officially released to the public in 2002 as a part of the .NET

platform. The .NET platform aims to make software development for

Windows easier by providing a new quality approach to programming, based

on the concepts of the " virtual machine " a nd " managed code ". At that time

the Java language and platform reaped an enormous success in all fields of

software development; C# and .NET were Microsoftôs natural response to the

Java technology.

The C# Language

C# is a modern, general - purpose, object - o riented, high - level prog -

ramming language . Its syntax is similar to that of C and C++ but many

features of those languages are not supported in C# in order to simplify the

language, which makes programming easier.

The C# programs consist of one or several files with a .cs extension, which

contain definitions of classes and other types. These files are compiled by the

C# compiler (csc) to executable code and as a result assemblies are created,

which are files with the same name but with a diff erent extension (.exe or

.dll). For example, if we compile HelloCSharp.cs , we will get a file with the

name HelloCSharp.exe (some additional files will be created as well, but we

will not discuss them at the moment).

We can run the compiled code like any o ther program on our computer (by

double clicking it). If we try to execute the compiled C# code (for example

HelloCSharp.exe) on a computer that does not have the .NET Framework,

we will receive an error message.

Keywords

C# uses the following keywords to build its programming constructs (the list

is taken from MSDN in March 2013 and may not be complete):

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

80 Fundamentals of Computer Programming with C#

object operator out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual void volatile while

Since the creation of the first version of the C# language, not all keywords

are in use . Some of them were added in later versions. The main program

elements in C# (which are defined and used with the help of keywords) are

classes , methods , operators , expressions , conditional statements ,

loops , data types , exceptions and few others. In the n ext few chapters of

this book, we will review in details all these programming constructs along

with the use of the most of the keywords from the table above.

Automatic Memory Management

One of the biggest advantages of the .NET Framework is the built - in

automatic memory management . It protects the programmers from the

complex task of manually allocating memory for objects and then waiting for

a suitable moment to release it. This significantly increases the developer

productivity and the quality of the pro grams written in C#.

In the .NET Framework, there is a special component of the CLR that looks

after memory management. It is called a " garbage collector " (automated

memory cleaning system). The garbage collector has the following main

tasks: to check when the allocated memory for variables is no longer in use,

to release it and make it available for allocation of new objects.

It is important to note that it is not exactly clear at what

moment the memory gets cleaned of unused objects (local

variables for example). According to the C# language

specifications, it happens at some moment after a given

variable gets out of scope but it is not specified, whether this

happens instantly, after some time or when the available

memory becomes insufficient for the no rmal program

operation.

Independence from the Environment and the

Programming Language

One of the advantages of .NET is that programmers using different .NET

languages can easily exchange their code. For example a C# programmer

can use the code written by another programmer in VB.NET , Managed C++

or F# . This is possible because the programs written in different .NET

Chapter 1. Introduction to Programming 81

languages share a common system of data types, execution infrastructure

and a unified format of the compiled code (assemblies).

A big advantag e of the .NET technology is the ability to run code, which is

written and compiled only once, on different operating systems and

hardware devices. We can compile a C# program in a Windows environment

and then execute it under Windows, Windows Mobile, Windo ws RT or Linux.

Officially Microsoft only supports the .NET Framework on Windows, Windows

Mobile and Windows Phone, but there are third party vendors that offer .NET

implementation on other operating systems.

Mono (.NET for Linux)

One example of .NET imple mentation for non -Windows environment is the

open - source project Mono (www.mono -project.com) . It implement s the

.NET Framework and most of its accompanying libraries for Linux, FreeBSD,

iPhone and Android. Mono i s unofficial .NET implementation and some

features may work not exactly as expected. It does implement well the core

.NET standards (such as C# compiler and CLR) but does not support fully the

latest .NET technologies and framework like WPF and ASP.NET MVC .

Microsoft Intermediate Language (MSIL)

The idea for independence from the environment has been set in the earliest

stages of creation of the .NET platform and is implemented with the help of a

little trick. The output code is not compiled to instructions for a specific

microprocessor and does n ot use the features of a specific operating system;

it is compiled to the so called Microsoft Intermediate Language (MSIL) .

This MSIL is not directly executed by the microprocessor but from a virtual

environment called Common Language Runtime (CLR) .

Common Language Runtime (CLR) ï the Heart of .NET

In the very center of the .NET platform beats its heart ï the Common

Language Runtime (CLR) ï the environment that controls the execution of

the managed code (MSIL code). It ensures the execution of .NET programs

on different hardware platforms and operating systems.

CLR is an abstract computing machine (virtual machine). Similarly to

physical computers , it supports a set of instructions, registries, memory

access and input -output operations. CLR ensures a control led execution of

the .NET programs using the full capabilities of the processor and the

operating system. CLR also carries out the managed access to the memory

and the other resources of the computer, while adhering to the access rules

set when the program is executed.

http://www.mono-project.com/

82 Fundamentals of Computer Programming with C#

The .NET Platform

The .NET platform contains the C# language , CLR and many auxiliary

instruments and libraries ready for use. There are a few versions of .NET

according to the targeted user group:

- .NET Framework is the most common version of the .NET environment

because of its general purpose. It is used in the development of console

applications, Windows applications with a graphical user interface, web

applications and many more.

- .NET Compact Framework (CF) is a "light" version of the standard

.NET Framework and is used in the development of applications for

mobile phones and other PDA devices using Windows Mobile Edition.

- Silverligh t is also a "light" version of the .NET Framework, intended to

be executed on web browsers in order to implement multimedia and

Rich Internet Applications.

- .NET for Windows Store apps is a subset of .NET Framework

designed for development and execution of .NET applications in

Windows 8 and Windows RT environment (the so called Windows

Store Apps).

.NET Framework

The standard version of the .NET platform is intended for development and

use of console applications, desktop applications, Web applications, Web

services, Rich Internet Applications, mobile applications for tablets and smart

phones and many more. Almost all .NET developers use the standard version.

.NET Technologies

Although the .NET platform is big and comprehensive , it does not provide

all the to ols required to solve every problem in software development. There

are many independent software developers, who expand and add to the

standard functionality offered by the .NET Framework. For example,

companies like the Bulgarian software corporation Tele rik develop subsidiary

sets of components . These components are used to create graphical user

interfaces, Web content management systems, to prepare reports and they

make application development easier.

The .NET Framework extensions are software components , which can be

reused when developing .NET programs. Reusing code significantly facilitates

and simplifies software development, because it provides solutions for

common problems, offers implementations of complex algorithms and

technology standards. The c ontemporary programmer uses libraries and

components every day, and saves a lot of effort by doing so.

Letôs look at the following example ï software that visualizes data in the

form of charts and diagrams. We can use a library , written in .NET, which

draw s the charts. All that we need to do is input the correct data and the

Chapter 1. Introduction to Programming 83

library will draw the charts for us. It is very convenient and efficient. Also it

leads to reduction in the production costs because the programmers will not

need to spend time working on additional functionality (in our case drawing

the charts, which involves complex mathematical calculations and controlling

the graphics card). The application itself will be of higher quality because the

extension it uses is developed and supported by s pecialists with more

experience in that specific field.

Software technologies are sets of classes, modules, libraries, programming

models, tools, patterns and best practices addressing some specific problem

in software development. There are general softwa re technologies, such as

Web technologies, mobile technologies, technologies for computer graphics

and technologies related to some platform such as .NET or Java.

There are many .NET technologies serving for different areas of .NET

development. Typical exa mples are the Web technologies (like ASP.NET and

ASP.NET MVC), allowing fast and easy creation of dynamic Web applications

and .NET mobile technologies (like WinJS), which make possible the creation

of rich user interface multimedia applications working on the Internet.

.NET Framework by default includes as part of itself many technologies and

class libraries with standard functionality, which developers can use. For

example, there are ready - to -use classes in the system library working with

mathematical fun ctions, calculating logarithms and trigonometric functions

(System.Math class). Another example is the library dealing with networks

(System.Net), it has a built - in functionality to send e -mails (using the

System.Net.Mail.MailMessage class) and to download files from the

Internet (using System.Net.WebClient).

A .NET technology is the collection of .NET classes, libraries, tools,

standards and other programming means and established development

models, which determine the technological framework for creating a certain

type of application. A .NET library is a collection of .NET classes, which offer

certain ready - to -use functionality. For example, ADO.NET is a technology

offering standardized approach to accessing relational databases (like

Microsoft SQL Server and MySQL). The classes in the package (namespace)

System.Data.SqlClient are an example of .NET library , which provide

functionality to connect an SQL Server through the ADO.NET technology.

Some of the technologies developed by software developers outside of

Microsoft become wide -spread and as a result establish themselves as

technology standards. Some of them are noticed by Microsoft and later are

added to the next iteration of the .NET Framework. That way, the .NET

platform is constantly evolving and expanding with new libraries and

technologies . For instance, the object - relational mapping technologies

initially were developed as independent projects and products (like the open

code project NHibernate and Telerikôs OpenAccess ORM). After they gaine d

enormous popularity, their inclusion in the .NET Framework became a

necessity. And this is how the LINQ - to -SQL and ADO.NET Entity Framework

technologies were born, respectively in .NET 3.5 and .NET 4.0.

84 Fundamentals of Computer Programming with C#

Application Programming Interface (API)

Each .NET l ibrary or technology is utilized by creating objects and calling their

methods. The set of public classes and methods in the programming libraries

is called Application Programming Interface or just API . As an example

we can look at the .NET API itself; it is a set of .NET class libraries, expanding

the capabilities of the language and adding high - level functionality. All .NET

technologies offer a public API . The technologies are often referred to simply

as API, which adds certain functionality. For example : API for working with

files, API for working with charts, API for working with printers, API for

reading and creating Word and Excel documents, API for creating PDF

documents, Web development API, etc.

.NET Documentation

Very often it is necessary to docu ment an API, because it contains many

namespaces and classes. Classes contain methods and parameters. Their

purpose is not always obvious and needs to be explained . There are also

inner dependencies between the separate classes, which need to be explained

in order to be used correctly. These explanations and technical instructions on

how to use a given technology, library or API, are called documentation . The

documentation consists of a collection of documents with technical content.

The .NET Framework also has a documentation officially developed and

supported by Microsoft. It is publicly available on the Internet and is also

distributed with the .NET platform as a collection of documents and tools for

browsing and searching.

Chapter 1. Introduction to Programming 85

The MS DN Library is Microsoftôs official documentation for all their products

for developers and software technologies. The .NET Frameworkôs technical

documentation is part of the MSDN Library and can be found here:

http://msdn.microsoft.com/en -us/library/vstudio/gg145045.aspx . The above

screenshot shows how it might look like (for .NET version 4.5) .

What We Need to Program in C#?

After we made ourselves familiar with the .NET platform , .NET libraries and

.NET technologies , we can move on to writing, compiling and executing C#

programs.

In order to program in C#, we need two basic things ï an installed .NET

Framework and a text editor . We need the text editor to write and edit the

C# cod e and the .NET Framework to compile and execute it.

.NET Framework

By default, the .NET Framework is installed along with Windows, but in old

Windows versions it could be missing. To install the .NET Framework, we must

download it from Microsoftôs website (http://download.microsoft.com). It is

best if we download and install the latest version.

Do not forget that we need to install the .NET Framework

before we begin! Otherwise, we will not be able to compile

and execute the program.

If we run Windows 8 or Windows 7, the .NET Framework will

be already installed as part of Windows.

Text Editor

The text editor is used to write the source code of the program and to save

it in a file. After that, the code is compiled and executed. There are many text

editing programs. We can use Windowsô built-in Notepad (it is very basic and

inconvenient) or a better free text editor like Notepad++ (notepad -

plus.sourceforge.net) or PSPad (www.pspad.com).

Compilation and Execution of C# Programs

The time has come to compile and execute the simple example program

written in C# we already discussed. To accomplish that, we need to do the

following:

- Create a file named HelloCSharp.cs ;

- Write the sample program in the file;

- Compile HelloCSharp.cs to an executable file HelloCSharp.exe using

th e console -based C# compiler (csc.exe);

- Execute the HelloCSharp.exe file.

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx
http://download.microsoft.com/
http://notepad-plus.sourceforge.net/
http://notepad-plus.sourceforge.net/
http://www.pspad.com/

86 Fundamentals of Computer Programming with C#

Now, letôs do it on the computer!

The instructions above vary depending on the operating system . Since

programming on Linux is not the focus of this book, we will take a thorough

look at what we need to write and execute the sample program on Windows .

For those of you, who want to program in C# in a Linux environment, we

already explained the Mono project , and you can download it and experiment.

Here is the code of our first C# program :

HelloCSharp.cs

class HelloCSharp
{
 static void Main()
 {
 System. Console .WriteLine("Hello C#!");
 }
}

Creating C# Programs in the Windows Console

First we start the Windows command console, also known as Command

Prompt . In Windows 7 this is done from the Windows Explorer start menu :

Start -> Programs -> Accessories -> Command Prompt .

It is advised that we run the console as administrator (r ight click on the

Command Prompt icon and choose ñRun as administrator ò). Otherwise

some operations we want to use may be restricted.

Chapter 1. Introduction to Programming 87

In Windows 8 the ñRun as administratorò command is directly available when

you right click the command prompt icon from the Win8 Start Screen :

After opening the console , letôs create a dir ectory, in which we will

experiment. We use the md command to create a directory and cd command

to navigate to it (enter inside it):

88 Fundamentals of Computer Programming with C#

The directory will be named IntroCSharp and will be located in C:\ . We

change the current directory to C:\ IntroCSharp and create a new file

HelloCSharp.cs , by using the built - in Windows text editor ï Notepad.

To create the text file ñHelloCSharp.cs ò, we execute the following command

on the console:

notepad HelloCSharp.cs

This will start Notepad with the following dialog window, confirming the

creation of a new file:

Notepad will warn us that no such file exists and will ask us if we want to

create it. We click [Yes]. The next step is to rewrite or simply Copy / Paste the

programôs source code.

Chapter 1. Introduction to Programming 89

We save it by pressing [Ctrl+S] and close the Notepad editor with [Alt+F4].

Now we have the initial code of our sample C# program, written in the file

C:\ IntroCSharp \ HelloCSharp.cs .

Compiling C# Programs in Windows

The only thing left to do is to compil e and execute it. Compiling is done by

the csc.exe compiler.

We got our first error ï Windows cannot find an executable file or command

with the name "csc ". This is a very common problem and it is normal to

appear if it is our first time using C#. Several reasons might have caused it:

- The .NET Framework is not installed;

- The .NET Framework is installed correctly , but its directory

Microsoft.NET \ Framework\ v4.0.xxx is not added to the system path

for executable files and Windows cannot find csc.exe .

The first problem is easily solved by installing the .NET Framework (in our

case ï version 4.5). The other problem can be solved by changing the system

path (we will do this later) or by using the full path to csc.exe , as it is shown

on the figure below. In our case, the full file path to the C# compiler is

C:\ Windows\ Microsoft.NET \ Framework\ v4.0.30319 \ csc.exe (note that this

path could vary depending o n the .NET framework version installed). Strange

or not, .NET 4.5 coming with Visual Studio 2012 and C# 5 in stalls in a

directory named ñv4.0.30319 ò ï this is not a mistake.

Compiling and Running C# Programs in Windows

Now letôs invoke the csc compiler through it s full path and pass to it the file

we want to compile as a parameter (HelloCSharp.exe):

90 Fundamentals of Computer Programming with C#

After the execution csc is completed without any errors, and we get the

following file as a result: C:\ IntroCSharp \ HelloCSharp.exe . To run it, we

simply need to write its name. The result of the execution of our program is

the message "Hello, C#!" printed on the con sole. It is not great but it is a

good start:

Changing the System Paths in Windows

If we know to use the command line C# compiler (csc.exe) without entering

the full path to it, we could add its folder to the Windows system path .

1. We open Control Panel and select " System ". As a result this well -

known window appears (the screenshot is taken from Windows 7):

 In Windows 8 it might look a bit different, but is almost the same:

Chapter 1. Introduction to Programming 91

2. We select " Advanced system settings ". The dialog window " System

Properties " appears:

92 Fundamentals of Computer Programming with C#

3. We click the button " Environment Variables " and a window with all

the environment variables shows up:

4. We choose " Path " from the list of System variables , as shown on the

figure, and press the "Edit" button. A small window appears, in which we

enter the path to the directory where the .NET Framework is installed:

Of course, first we need to find where our .NET Framework is installed.

By default it is located somewhere inside the Windows system directory

C:\ Windows\ Microsoft.NET , for example:

Chapter 1. Introduction to Programming 93

C:\ Windows\ Microsoft.NET \ Framework64\ v4.0.30319

Adding the additional path to the already existing ones in the Path

variable of the environment is done by adjoining the path name to the

others and using a semicolon (;) as a spacer.

We must be careful because if we delete any of the existing

system paths, some of Windowsô functions or part of the

installed software might fail to operate properly!

5. When we are done with setting the path , we can try running csc.exe ,

without entering its full path. To do s o, we open a new cmd.exe

(Command Prompt) window (it is important to restart the Command

Prompt) and type in the "csc " command. We should see the C#

compiler version and a message that no input file has been specified:

Visual Studio IDE

So far we have examined how to compile and run C# programs using the

Windows console (Command Prompt). Of course, there is an easier way to

do it ï by using an integrated development environment, which will execute

all the commands we have used so far. Letôs take a look at how to work with

development environments (IDE) and how they will make our job easier.

Integrated Development Environments

In the previous examples, we examined how to compile and run a program

consisting of a single file. Usually programs are made of man y files,

sometimes even tens of thousands. Writing in a text editor, compiling and

executing a single file program from the command prompt are simple, but to

do all this for a big project can prove to be a very complex and time -

consuming endeavor. There is a single tool that reduces the complexity,

makes writing, compiling and executing software applications easier ï the so

called Integrated Development Environment (IDE). Development

environments usually offer many additions to the main development function s

94 Fundamentals of Computer Programming with C#

such as debugging, unit testing, checking for common errors, access to a

repository and others.

What Is Visual Studio?

Visual Studio is a powerful integrated environment (IDE) for developing

software applications for Windows and the .NET Framework platfo rm. Visual

Studio (VS) supports different programming languages (for example C#,

VB.NET and C++) and different software development technologies

(Win32, COM, ASP.NET, ADO.NET Entity Framework, Windows Forms, WPF,

Silverlight, Windows Store apps and many mo re Windows and .NET

technologies). It offers a powerful integrated environment for writing code ,

compiling , executing , debugging and testing applications, designing user

interface (forms, dialogs, web pages, visual controls and others), data and

class mode ling, running tests and hundreds of other functions.

IDE means ñintegrated development environmentò ï a tool where you write

code, compile it, run it, test it, debug it, etc. and everything is integrated

into a single place. Visual Studio is typical example of development IDE.

.NET Framework 4.5 comes with Visual Studio 2012 (VS 2012). This is the

latest version of Visual Studio as of March 2013. It is designed for C# 5 , .NET

4.5 and Windows 8 development .

VS 2012 is a commercial product but has a free version called Visual Studio

Express 2012 , which can be downloaded for free from the Microsoft website

at http://microsoft.com/visualstudio/downloa ds.

Visual Studio 2012 Express has several editions (for Desktop, for Web , for

Windows 8 and others). If you want to write C# code following the content of

this book, you may use Visual Studio 2012 Express for Desktop or check

whether you have a free licen se of the full Visual Studio from your University

or organization. Many academic institutions (like Sofia University and Telerik

Software Academy) provide free Microsoft Dream Spark accounts to their

students to get licensed Windows, Visual Studio, SQL Serv er and other

development tools. If you are student, ask your university administration

about the DreamSpark program. Most universities worldwide are members of

this program.

In this book we will take a look at only the most important functions of VS

Expres s 2012 ï the ones related to coding. These are the functions for

creating, editing, compiling, executing and debugging programs.

Note that older Visual Studio versions such as VS 2010 and VS 2008 can

also be used for the examples in this book but their use r interface might look

slightly different. Our examples are based on VS 2012 on Windows 8 .

Before we continue with an example, letôs take a more detailed look of the

structure of Visual Studio 2012ôs visual interface. Windows are the main

part of it. Each of them has a different function tied to the development of

applications. Letôs see how Visual Studio 2012 looks after the default

installation and configuration:

http://microsoft.com/visualstudio/downloads

Chapter 1. Introduction to Programming 95

Visual Studio has several windows that we will explore (see the figure s

above and below):

- Start Page ï from the start page we can easily open any of our latest

projects or start a new one, to create our first C# program or to get

help how to use C#.

- Code Editor ï keeps the programôs source code and allows opening and

editing multiple files.

- Err or List ï it shows the errors in the program we develop (if any). We

learn how to use this window later when we compile C# programs in

Visual Studio.

- Solution Explorer ï when no project is loaded, this window is empty,

but it will become a part of our live s as C# programmers. It will show

the structure of our project ï all the files it contains, regardless if they

are C# code, images or some other type of code or resources.

- Properties ï holds a list of the current objectôs properties. Properties

are used ma inly in the component -based programming, e.g. when we

develop WPF, Windows Store or ASP.NET Web Forms application.

96 Fundamentals of Computer Programming with C#

There are many other windows with auxiliary functionality in Visual Studio but

we will not review them at this time.

Creating a New C# Proj ect

Before doing anything else in Visual Studio, we must create a new project

or load an existing one. The project groups many files, designed to implement

a software application or system, in a logical manner. It is recommended that

we create a separate p roject for each new program.

We can create a project in Visual Studio by following these steps:

- File -> New Project é

- The ñNew Project ò dialog appears and lists all the different types of

projects we can create. We can choose a project type (e.g. Console

Application or WPF Application), programming language (e.g. C# or

VB.NET) and .NET Framework version (e.g. .NET Framework 4.5) and

give a name to our project (in our case ñIntroToCSharp ò):

Chapter 1. Introduction to Programming 97

- We choose Console Application . Console applications are programs,

which use the console as a default input and output. Data is entered

with the keyboard and when a result needs to be printed it appears on

the console (as text on the screen in the program window). Aside from

console applications, we can create application s with a graphical user

interface (e.g. Windows Forms or WPF), Web applications, web services,

mobile applications, Windows Store apps, database projects and others.

- In the field "Name" we enter the name of the project. In our case we

choose the name IntroToCSharp .

- We press the [OK] button.

The newly created project is now shown in the Solution Explorer . Also, our

first file, containing the program code, is automatically added. It is named

Program.cs . It is very important to give meaningful names to ou r files,

classes, methods and other elements of the program, so that we can easily

find them and navigate the code. A meaningful name means a name that

answers the question ñwhat is the intent of this file / class / method /

variable?ò and helps developers to understand how the code works. Donôt use

Problem3 for a name, even if you are solving the problem 3 from the

exercises. Name your project / class by its purpose . If your project is well

named, after few months or a year you will be able to explain what it is

intended to do without opening it and looking inside. Problem3 says nothing

about what this project actually does.

In order to rename the Program.cs file, we right click on it in the Solution

Explorer and select "Rename". We can name the main file of our C# program
Hello CSharp.cs . Renaming a file can also be done with the [F2] key when

the file is selected in the Solution Explore r:

98 Fundamentals of Computer Programming with C#

A dialog window appears asking us if we want to rename class name as well

as the file name. We select " Yes ".

Chapter 1. Introduction to Programming 99

After we complete all these steps we have our first console application named

IntroToCSharp and containing a single class HelloCSharp (store d in the file

Hello CSharp.cs):

All we have to do is add code to the Main() method . By default, the

HelloCSharp.cs code should be loaded and ready for editing. If it is not, we

double click on the HelloCSharp.cs file in the Solution Explorer to load it. We

enter the following source code:

100 Fundamentals of Computer Programming with C#

Compiling the Source Code

The compiling process in Visual Studio includes several steps:

- Syntax error check;

- A check for other errors, like missing libraries;

- Converting the C# code into an executable file (a .NET as sembly). For

console applications it is an .exe file.

To compile a file in Visual Studio, we press the [F6] key or [Shift+Ctrl+B] .

Usually, errors are underlined in red, to attract the programmerôs attention,

while we are still writing or when compiling, a t the latest. They are listed in

the "Error List" window if it is visible (if it is not , we can show it from the

"View" menu of Visual Studio).

If our project has at least one error, it will be marked with a small red " x" in

the " Error List " window. Short info about the problem is displayed for each

error ï filename, line number and project name. If we double click any of the

errors in the "Error List", Visual Studio will automatically take us to the file

and line of code where the error has occurred. In th e screenshot above the

problem is that we have ñusing Systema;ò instead of ñusing Systemò.

Starting the Project

To start the project, we press [Ctrl+F5] (holding the [Ctrl] key pressed and

at the same time pressing the [F5] key).

The program will start and the result will be displayed on the console,

followed by the " Press any key to continue . . . " message:

Chapter 1. Introduction to Programming 101

The last message is not part of the result produced by the program. It is a

reminder by Visual Studio that our program has finished its execution

and it gives us time to see the result. If we run the program by only pressing

[F5] , that message will not appear and the result will vanish instantly after

appearing because the program will have finished its execution, and the

window will be closed. That is why we should always start our console

applications by pressing [Ctrl+F5] .

Not all project types can be executed. In order to execute a C# project, it

needs to have one class with a Main() method declared in the way described

earlier in this chapter .

Debugging the Program

When our program contains errors, also known as bugs , we must find and

remove them, i.e. we need to debug the program. The debugging process

includes:

- Noticing the problem s (bugs);

- Finding the code causing the problems;

- Fixing the code so that the program works correctly;

- Testing to make sure the program works as expected after the changes

are made.

The process can be repeated several times until the program starts working

correctly. After we have noticed the problem, we need to find the code

causing it. Visual Studio can help by allowing us to check step by step

whether everything is working as planned.

To stop the execution of the program at designated positions we can pla ce

breakpoints . The breakpoint is associated with a line of the program. The

program stops its execution on the lines with breakpoints, allowing for the

rest of the code to be executed step by step. On each step we can check and

even change the values of t he current variables.

Debugging is a sort of step by step slow motion execution of the program. It

gives us the opportunity to easily understand the details of the code and see

where exactly and why the errors have occurred.

Letôs create an intentional err or in our program , to illustrate how to use

breakpoints. We will add a line to the program, which will create an exception

during the execution (we will take a detailed look at exceptions in the

"Exception H andling " chapter).

For now letôs edit our program in the following way:

HelloCSharp.cs

class HelloCSharp

102 Fundamentals of Computer Programming with C#

{
 static void Main()
 {
 throw new System. NotImplementedException (
 "Intended exception.");
 System. Console .WriteLine("Hello C#!");
 }
}

When we start the program again with [Ctrl+F5] we will get an error and it

will be printed on the console:

Letôs see how breakpoints will help us find the problem. We move the

cursor to the line with the opening bracket of the Main() method and press

[F9] (by doing so we place a breakpoint on that line). A red dot appears,

indicating that the program will stop there if it is executed in debug mode:

Now we must start the program in debug mode. We select Debug - > Start

Debugging or pr ess [F5] . The program will start and immediately stop at

the first breakpoint it encounters. The line will be colored in yellow and we

can execute the program step by step. With the [F10] key we move to the

next line.

When we are on a given line and it is colored in yellow , the code on that line

is not executed yet . It executes once we have passed that line. In this case

Chapter 1. Introduction to Programming 103

we have not received the error yet despite the fact that we are on the line we

added and should cause it :

We press [F10] one more time t o execute the current line. This time Visual

Studio displays a window specifying the line, where the error occurred as well

as some additional details about it:

104 Fundamentals of Computer Programming with C#

Once we know where exactly the problem in the program is, we can easily

correct it. To do so, first, we need to stop the execution of the program before

it is finished. We select Debug ï> Stop Debugging or press [Shift+F5].

After that we delete the problem line and start the program in normal mode

(without debugging) by pressing) [Ctrl+F5].

Altern atives to Visual Studio

As we have seen, in theory, we can do without Visual Studio, but in practice

that is not a good idea. The work required compiling a big project, finding all

the errors in the code and performing numerous other actions would simply

take too much time without Visual Studio.

On the other hand, Visual Studio is not a free software developing

environment (the full version). Many people cannot afford to buy the

professional version (this is also true for small companies and some people

eng aged in programming).

This is why there are some alternatives to Visual Studio (except VS Express

Edition), which are free and can handle the same tasks relatively well.

SharpDevelop

One alternative is SharpDevelop (#Develop). We can find it at the followi ng

Internet address: http://www.icsharpcode.NET/OpenSource/SD/ . #Develop is

an IDE for C# and is developed as an open -source project. It supports the

majority of the functionalities offered in Visua l Studio 201 2 but also works in

Linux and other operating systems. We will not review it in details but you

should keep it in mind, in case you need a C# development environment and

Visual Studio is not available.

MonoDevelop

MonoDevelop is an integrated software development environment for the

.NET platform. It is completely free (open source) and can be downloaded at:

http://monodevelop.com . With MonoDevelop , we can quickly and easily write

fully functional desktop and ASP.NET applications for Linux, Mac OS X and

Windows. It also enables programmers to easily transfer projects created in

Visual Studio to the Mono platform and make them functional in other

platforms.

Decompiling Code

Sometimes progr ammers need to see the code of a given module or program,

not written by them and with no source code available. The process, which

generates source code from an existing executable binary fi le (.NET

assembly ï .exe or .dll) is called decompiling .

We might need to decompile code in the following cases:

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

Chapter 1. Introduction to Programming 105

- We want to check how a given algorithm is implemented but we do not

have the source code, e.g. to check how Array.Sort() internally works.

- There are several options when using some .NET library, and we want t o

find the optimal choice. We want to see how to use certain API

digging into some compiled code that uses it.

- We have no information how a given library works , but we have the

compiled code (.NET assembly), which uses it, and we want to find out

how exact ly the library works.

- We have lost our source code and we want to recover it. Code

recovery through decompilation will result in lost variable names,

comments, formatting, and others, but is better than nothing.

Decompiling is done with the help of tools, which are not standard part of

Visual Studio. The first popular .NET decompiler was Red Gateôs Reflector

(before it became commercial in early 2011).

Telerik is offering a good and completely free .NET decompiler called

JustDecompile . It can be downloaded from the companyôs website:

http://www.telerik.com/products/decompiler.aspx . JustDecompile allows code

decompilation directly in Visual Studio and also has an external stand -alone

GUI applicat ion for browsing assemblies and decompile their code:

http://www.telerik.com/products/decompiler.aspx

106 Fundamentals of Computer Programming with C#

Another good decompilation tool for .NET is the ILSpy , which is developed

around the SharpDevelop project. ILSpy can be downloaded at:

http://ilspy.net . The program does not require installation. After we start it,

ILSpy loads some of the standard .NET Framework libraries. Via the menu File

-> Open, we can open a certain .NET assembly. We can also load an assembly

from the GAC (Global Assembly Cache). Th is is how ILSpy looks like:

In ILSpy there are two ways to find out how a given method is implemented.

For example, if we want to see how the static method

System.Currency.ToDecimal works, first we can use the tree on the left to

find the Currency class in the System namespace and finally select the

ToDecimal method. If we click on any method, we will be able to see its

source code in C#. Another way to find a given class is using the search

engine in ILSpy . It searches through the names of all classes, i nterfaces,

methods, properties etc. from the loaded assemblies. Unfortunately, the

version at the time of writing of this book (ILSpy 2. 1) can decompile only the

languages C# , VB.NET and IL.

JustDecompile and ILSpy are extremely useful tools , which can hel p almost

every day when developing .NET software and we should definitely download

at least one and play with it. When we are wondering how a certain method

works or how something is implemented in a given assembly, we can always

rely on the decompiler to find out.

http://ilspy.net/

Chapter 1. Introduction to Programming 107

C# in Linux, iOS and Android

C# programming in Linux is not very developed compared to that in Windows.

We do not want to completely skip it, so we will give some guidelines on how

to start programming in C# in Linux, iOS and Android .

The most im portant thing that we need in order to write C# code in Linux is a

.NET Framework implementation. Microsoft .NET Framework is not available

for Linux but there is an open - source .NET implementation called

ñMono ò. We can download Mono at its official website: http://www.mono -

project.com . Mono allows us to compile and execute C# programs in a Linux

environment and on other operating systems. It contains a C# compiler, a

CLR, a garbage collector, the standard .NET libraries and many of the libraries

available for .NET Framework in Windows like Windows Forms and ASP.NET.

Mono supports compiling and running C# code not only in Linux but also in

Solaris, Mac OS X, iOS (iPhone / iPad) and Android . The iOS version

(MonoTouch) and the Android version of Mono (Mono for Android) are

commercial projects, while Mono for Linux is open -source free software.

Of course, Visual Studio does not work in Linux environment but we can use

the #Develop or MonoDevelop as C# IDE in Linux.

Other .NET Languages

C# is the most popular .NET language but there are few other languages that

may be used to write .NET programs:

- VB.NET ï Visual Ba sic .NET (VB) is Basic language adapted to run in

.NET Framework. It is considered a successor of Microsoft Visual Basic 6

(legacy development environment for Windows 3.1 and Windows 95). It

has strange syntax (for C# developers) but generally does the sam e as

C#, just in different syntax. The only reason VB.NET exists is historical:

it is successor of VB6 and keeps most of its syntax. Not recommended

unless you are VB6 programmer.

- Managed C++ ï adaptation of the C++ programming language to .NET

Framework . It can be useful if you need to quickly convert existing C++

code to be used from .NET. Not recommended for new projects. Not

recommended for the readers of this book, even if someone has some

C++ experience, because it makes .NET programming unnecessary

complicated.

- F# ï an experiment to put purely functional programming paradigm in

.NET Framework. Not recommended at all (unless you are functional

programming guru).

- JavaScript ï it may be used to develop Windows 8 (Windows Store)

applications through the WinJS technology. It might be a good choice

for skillful HTML5 developers who have good JavaScript skills. Not

recommended for the readers of this book because it does not support

Console applications.

http://www.mono-project.com/
http://www.mono-project.com/

108 Fundamentals of Computer Programming with C#

Exercises

1. Install and make yourself familiar with Micr osoft Visual Studio and

Microsoft Developer Network (MSDN) Library Documentation.

2. Find the description of the System.Console class in the standard .NET

API documentation (MSDN Library).

3. Find the description of the System.Console.WriteLine() method and its

different possible parameters in the MSDN Library.

4. Compile and execute the sample program from this chapter using the

command prompt (the console) and Visual Studio.

5. Modify the sample program to print a different greeting, for example

"Good Day !".

6. Write a console application that prints your first and last name on the

console.

7. Write a program that prints the following numbers on the console 1,

101, 1001, each on a new line.

8. Write a program that prints on the console the current date and time .

9. Write a progra m that prints the square root of 12345 .

10. Write a program that prints the first 100 members of the sequence 2, -

3, 4, -5, 6, -7, 8.

11. Write a program that reads your age from the console and prints your

age after 10 years .

12. Describe the difference between C# and the .NET Framework .

13. Make a list of the most popular programming languages. How are they

different from C#?

14. Decompile the example program from exercise 5.

Solutions and Guidelines

1. If you have a DreamSpark account (www.dreamspark.com), or your

school or university offers free access to Microsoft products, install the

full version of Microsoft Visual Studio . If you do not have the

opportunity to work with the full version of Microsoft Visual Studio, you

can download Visual Studio Express for free from the Microsoft web

site; it is completely free and works well for educational purposes.

2. Use the address given in the " .NET Documentation " section of this

chapter. Open it and search in the tree on the left side. A Google search

will work just as well and is often the fastest way to find documentation

for a given .NET class.

3. Use the same approach as in the previous exercise.

http://www.dreamspark.com/

Chapter 1. Introduction to Programming 109

4. Follow the inst ruction from the Compiling and Executing C# Programs

section.

5. Use the code from the sample C# program from this chapter and

change the printed message.

6. Find out how to use the System.Console.Write() method.

7. Use the System.Console.WriteLine() method.

8. Find out what features are offered by the System.DateTime class.

9. Find out what features are offered by the System.Math class.

10. Try to learn on your own how to use loops in C#. You may read about

for -loops in the chapter ñLoopsò.

11. Use the methods System.Console.ReadLine() , int.Parse() and
System.DateTime.AddYears() .

12. Research them on the Internet (e.g. in Wikipedia) and take a closer

look at the differences between them. You will find that C# is a

programming language while .NET Framework is development platform

and runtime for running .NET code. Be sure to read the section ñThe C#

Language and the .NET Platform ò form this chapter.

13. Find out which are the most popular languages and examine some

sample programs written in them. Compare them to C#. You might take

a look at C, C++ , Java , C# , VB.NET , PHP , JavaScript , Perl , Python

and Ruby .

14. First downl oad and install JustDecompile or ILSpy (more information

about them can be found in the ñCode Decompilation ò section). After you

run one of them, open your prog ramôs compiled file. It can be found in

the bin \ Debug subdirectory of your C# project. For example, if your

project is named TestCSharp and is located in C:\ Projects , then the

compiled assembly (executable file) of your program will be the following

file C: \ Projects \ TestCSharp \ bin \ Debug\ TestCSharp.exe .

http://www.telerik.com/justdecompile.aspx

Chapter 2. Primitive
Types and Variables

In This Chapter

In this chapter we will get familiar with primitive types and variables in

C# ï what they are and how to work with them. First we will consider the

data types ï integer types, real types with floating -point, Boolean, character,

st ring and object type. We will continue with the variables , with their

characteristics, how to declare them, how they are assigned a value and what

a variable initialization is. We will get familiar with the two major sets of data

types in C# ï value types and reference types . Finally we will examine

different types of literals and their usage.

What Is a Variable?

A typical program uses various values that change during its execution .

For example, we create a program that performs some calculations on the

va lues entered by the user. The values entered by one user will obviously be

different from those entered in by another user. This means that when

creating the program, the programmer does not know what values will be

introduced as input, and that makes it n ecessary to process all possible values

a user may enter.

When a user enters a new value that will be used in the process of calculation,

we can preserve it (temporarily) in the random access memory of our

computer. The values in this part of memory change (vary) throughout

execution and this has led to their name ï variables .

Data Types

Data types are sets (ranges) of values that have similar characteristics. For

instance byte type specifies the set of integers in the range of [0 é 255].

Characteristics

Data types are characterized by:

- Name ï for example, int ;

- Size (how much memory they use) ï for example, 4 bytes;

- Default value ï for example 0.

112 Fundamentals of Computer Programming with C#

Types

Basic data types in C# are distributed into the following types :

- Integer types ï sbyte , byte , short , ushort , int , uint , long , ulong ;

- Real floating -point types ï float , double ;

- Real type with decimal precision ï decimal ;

- Boolean type ï bool ;

- Character type ï char ;

- String ï string ;

- Object type ï object .

These data types are called primitive (built - in types) , be cause they are

embedded in C# language at the lowest level. The table below represents the

above mentioned data types, their range and their default values:

Data

Types

Default

Value
Minimum Value Maximum Value

sbyte 0 - 128 127

byte 0 0 255

short 0 - 32768 32767

ushort 0 0 65535

int 0 - 2147483648 2147483647

uint 0u 0 4294967295

long 0L - 9223372036854775808 9223372036854775807

ulong 0u 0 18446744073709551615

float 0.0f ˫ʦƚʪˬʦʣ- 45 ʨ˫ƚʩˬʦʣ38

double 0.0d ʪ˫ƚʣˬʦʣ- 324 ʦ˫ƚʬˬʦʣ308

decimal 0.0m ʦ˫ƚʣˬʦʣ- 28 ʬ˫ƚʮˬʦʣ28

bool false Two possible values: true and false

char ' \ u0000' ' \ u0000' ' \ uffff'

object null - -

string null - -

Chapter 2. Primitive Types and Variables 113

Correspondence between C# and .NET Types

Primitive data types in C# have a direct correspondence with the types of the

common type system (CTS) in .NET Framework. For instance, int type in C#

corresponds to System.Int32 type in CTS and to Integer type in VB.NET

language, while long type in C# corresponds to System.Int64 type in CTS

and to Long type in VB.NET language. Due to the common types system

(CTS) in .NET Framework there is compatibility between different prog -

ramming languages (like for instance, C#, Managed C++, VB.NET and F #).

For the same reason int , Int32 and System.Int32 types in C# are actually

different aliases for one and the same data type ï signed 32 -bit integer.

Integer Types

Integer types represent integer numbers and are sbyte , byte , short ,

ushort , int , uint , long and ulong . Letôs examine them one by one.

The sbyte type is an 8 - bit signed integer . This means that the number of

possible values for it is 2 8, i.e. 256 values altogether, and they can be both,

positive and negative. The minimum value that can be stored in sbyte is

SByte.MinValue = -128 (-27), and the maximum value is SByte.MaxValue =

127 (2 7-1). The default value is the number 0.

The byte type is an 8 - bit unsigned integer type. It also has 256 different

integer values (2 8) that can only be nonnegative. I ts default value is the

number 0. The minimal taken value is Byte.MinValue = 0, and the maximum

is Byte.MaxValue = 255 (2 8-1).

The short type is a 16 - bit signed integer . Its minimal value is

Int16.MinValue = -32768 (-215), and the maximum is Int16.MaxValue =

32767 (2 15-1). The default value for short type is the number 0.

The ushort type is 16 - bit unsigned integer . The minimum value that it can

store is UInt16.MinValue = 0, and the minimum value is ï

UInt16.MaxValue = 65535 (2 16-1). Its default value is the number 0.

The next integer type that we will consider is int . It is a 32 - bit signed

integer . As we can notice, the growth of bits increases the possible values

that a type can store. The default value for int is 0. Its minimal value is

Int32.MinValue = -2,147,483,648 (-231), and its maximum value is

Int32.MaxValue = 2,147,483,647 (2 31-1).

The int type is the most often used type in programming . Usually

programmers use int when they work with integers because this type is

natural for the 32 -bit microprocess or and is sufficiently "big" for most of the

calculations performed in everyday life.

The uint type is 32 - bit unsigned integer type. Its default value is the

number 0u or 0U (the two are equivalent). The ' u' letter indicates that the

number is of type uint (otherwise it is understood as int). The minimum

114 Fundamentals of Computer Programming with C#

value that it can take is UInt32.MinValue = 0, and the maximum value is

UInt32.MaxValue = 4,294,967,295 (2 32-1).

The long type is a 64 - bit signed type with a default value of 0l or 0L (the

two are equivalen t but it is preferable to use ' L' because the letter ' l ' is easily

mistaken for the digit one ' 1'). The ' L' letter indicates that the number is of

type long (otherwise it is understood int). The minimal value that can be

stored in the long type is Int64.Mi nValue = -9,223,372,036,854,775,808

(-263) and its maximum value is Int64.MaxValue = 9,223,372,036,854,

775,807 (2 63-1) .

The biggest integer type is the ulong type. It is a 64 -bit unsigned type,

which has as a default value ï the number 0u, or 0U (the two are equivalent).

The suffix ' u' indicates that the number is of type ulong (otherwise it is

understood as long). The minimum value that can be recorded in the ulong

type is UInt64.MinValue = 0 and the maximum is UInt64.MaxValue =

18,446,744,073,7 09,551,615 (2 64-1).

Integer Types ï Example

Consider an example in which we declare several variables of the integer

types we know, we initialize them and print their values to the console:

// Declare some variables
byte centuries = 20;
ushort years = 2000 ;
uint days = 730480;
ulong hours = 17531520;
// Print the result on the console
Console .WriteLine(centuries + " centuries are " + years +
 " years, or " + days + " days, or " + hours + " hours.");

// Console output:
// 20 centuries are 2000 years, or 730480 days, or 17531520
// hours.

ulong maxIntValue = UInt64 .MaxValue;
Console .WriteLine(maxIntValue); // 18446744073709551615

You would be able to see the declaration and initialization of a variable in

detail in sections " Declaring Variables " and " Initialization of Variables " below,

and it would become clear from the examples.

In the code snippet above, we demonstrate the use of integer ty pes. For small

numbers we use byte type, and for very large ï ulong . We use unsigned

types because all used values are positive numbers.

Chapter 2. Primitive Types and Variables 115

Real Floating - Point Types

Real types in C# are the real numbers we know from mathematics. They are

represented by a flo ating - point according to the standard IEEE 754 and are

float and double . Letôs consider in details these two data types and
understand what their similarities and differences are.

Real Type Float

The first type we will consider is the 32 -bit real floating - point type float . It

is also known as a single precision real number . Its default value is 0.0f

or 0.0F (both are equivalent). The character ' f ' when put at the end explicitly

indicates that the number is of type float (because by default all real

numbers are considered double). More about this special suffix we can read

bellow in the " Real Literals " section. The considered type has accuracy up to

seven decimal places (the others are lost). For instance, if the number

0.123 456789 is stored as type float it will be rounded to 0.1234568 . The

range of values, which can be included in a float type (rounded with accuracy

of 7 significant decimal digits), range from ˫ʦƚʪ ˬ10- 45 to ˫ʨƚʩ ˬ1038.

Special Values of the Real Types

The real data types have also several special values that are not real numbers

but are mathematical abstractions:

- Negative infinity -Ð (Single.NegativeInfinity) . It is obtained

when for instance we are dividing - 1.0f by 0.0f .

- Positive infinity +Ð (Single.Posi tiveInfinity) . It is obtained

when for instance we are dividing 1.0f by 0.0f .

- Uncertainty (Single.NaN) ï means that an invalid operation is

performed on real numbers. It is obtained when for example we divide

0.0f by 0.0f , as well as when calculating squar e root of a negative

number.

Real Type Double

The second real floating - point type in the C# language is the double type.

It is also called double precision real number and is a 64 -bit type with a

default value of 0.0d and 0.0D (the suffix ' d' is not mandatory because by

default all real numbers in C# are of type double). This type has precision of

15 to 16 decimal digits. The range of values, which can be recorded in double

(rounded with precision of 15 -16 significant decimal digits), is from

˫ʪƚʣ ˬ10- 324 to ˫ʦƚʬ ˬ10308.

The smallest real value of type double is the constant Double.MinValue =

- 1.79769e+308 and the largest is Double.MaxValue = 1.79769e+308 . The

closest to 0 positive number of type double is Double.Epsilon = 4.94066e -
324. As with the type float the variables of type double can take the special

116 Fundamentals of Computer Programming with C#

values: Double.PositiveInfinity (+Ð), Double.NegativeInfinity (-Ð)

and Double.NaN (invalid number).

Real Floating - Point Types ï Example

Here is an example in which we declare variab les of real number types, assign

values to them and print them:

float floatPI = 3.14f;
Console .WriteLine(floatPI); // 3.14
double doublePI = 3.14;
Console .WriteLine(doublePI); // 3.14
double nan = Double .NaN;
Console .WriteLine(nan); // NaN
double infinity = Double .PositiveInfinity;
Console .WriteLine(infinity); // Infinity

Precision of the Real Types

In mathematics the real numbers in a given range are countless (as opposed

to the integers in that range) as between any two real numbers a and b there

are countless other real numbers c where a < c < b. This requires real

numbers to be stored in computer memory with a limited accuracy.

Since mathematics and physics mostly work with extremely large numbers

(positive and negative) and with extremely small numbers (very close to

zero), real types in computing and electronic devices must be stored and

processed appropriately. For example, according to the physics the mass of

electron is approximately 9.109389*10 -31 kilograms and in 1 mole of

substance there are approximately 6.02*10 23 atoms. Both these values can

be stored easily in float and double types.

Due to its flexibility, the modern floating - point representation of real

numbers allows us to work with a maximum number of significant digits for

ve ry large numbers (for example, positive and negative numbers with

hundreds of digits) and with numbers very close to zero (for example, positive

and negative numbers with hundreds of zeros after the decimal point before

the first significant digit).

Accura cy of Real Types ï Example

The real types in C# we went over ï float and double ï differ not only by

the range of possible values they can take, but also by their precision (the

number of decimal digits, which they can preserve). The first type has a

preci sion of 7 digits , the second ï 15 -16 digits.

Consider an example in which we declare several variables of the known real

types, initialize them and print their values on the console. The purpose of the

example is to illustrate the difference in their accur acy:

Chapter 2. Primitive Types and Variables 117

// Declare some variables
float floatPI = 3.141592653589793238f;
double doublePI = 3.141592653589793238;

// Print the results on the console
Console .WriteLine("Float PI is: " + floatPI);
Console .WriteLine("Double PI is: " + doublePI);

// Console output:
// Float PI is: 3.141593
// Double PI is: 3.14159265358979

We see that the number Ȁ which we declared as float , is rounded to the 7 - th

digit, and the one we declared double ï to 15 - th digit. We can conclude that

the real type double retains much greater precision than float , thus if we

need a greater precision after the decimal point, we will use it.

About the Presentation of the Real Types

Real floating -point numbers in C# consist of three components (according to

the standard IEEE 754) : sign (1 or -1), mantissa and order (exponent),

and their values are calculated by a complex formula. More detailed

information about the representation of the real numbers is provided in the

chapter " Nume ral Systems " where we will take an in -depth look at the

representation of numbers and other data types in computing.

Errors in Calculations with Real Types

In calculations with real floating -point data types it is possible to observe

strange behavior , beca use during the representation of a given real number

it often happens to lose accuracy . The reason for this is the inability of some

real numbers to be represented exactly as a sum of negative powers of the

number 2. Examples of numbers that do not have an accurate representation

in float and double types are for instance 0.1, 1/3, 2/7 and other. Here is a

sample C# code, which demonstrates errors in calculations with floating -point

numbers in C#:

float f = 0.1f;
Console .WriteLine(f); // 0.1 (correct due to rounding)
double d = 0.1f;
Console .WriteLine(d); // 0.100000001490116 (incorrect)

float ff = 1.0f / 3;
Console .WriteLine(ff); // 0.3333333 (correct due to rounding)
double dd = ff;
Console .WriteLine(dd); // 0.333333343267441 (incorrect)

118 Fundamentals of Computer Programming with C#

The reason for the unexpected result in the first example is the fact that the

number 0.1 (i.e. 1/10) has no accurate representation in the real floating -

point number format IEEE 754 and its approximate value is recorded. When

printed directly the result l ooks correct because of the rounding . The rounding

is done during the conversion of the number to string in order to be printed

on the console. When switching from float to double the approximate

representation of the number in the IEEE 754 format is more noticeable.

Therefore, the rounding does no longer hide the incorrect representation and

we can observe the errors in it after the eighth digit.

In the second case the number 1/3 has no accurate representation and is

rounded to a number very close to 0.3333333. The value of this number is

clearly visible when it is written in double type, which preserves more

significant digits.

Both examples show that floating - point number arithmetic can produce

mistakes , and is therefore not appropriate for precise financial calculations.

Fortunately, C# supports decimal precision arithmetic where numbers like 0.1

are presented in the memory without rounding.

Not all real numbers have acc urate representation in float

and double types. For example, the number 0.1 is represent -

ted rounded in float type as 0.099999994 .

Real Types with Decimal Precision

C# supports the so -called decimal floating - point arithmetic, where

numbers are represented via the decimal numeral system rather than the

binary one. Thus, the decimal floating point -arithmetic type in C# does not

lose accuracy when storing and processing floating -point numbers.

The type of data for real numbers with decimal precision in C# is the 128 -

bit type decimal . It has a precision from 28 to 29 decimal places. Its minimal

value is -ʬƚʮˬʦʣ28 and its maximum value is ˩ʬƚʮˬʦʣ28. The default value is

0.0m or 0.0M. The ' m' character at the end indicates explicitly that the number

is of type decimal (because by default all real numbers are of type double).

The closest to 0 numbers, which can be recorded in decimal, are ˫ʦƚʣ ˬ10- 28.

It is obvious that decimal can store neither very big positive or negative

numbers (for example, with hundreds of digits), nor values very close to 0.

However, this type is almost perfect for financial calculations because it

represents the numbers as a sum of powers of 10 and losses from rounding

are much smaller than when using binary representation. The real number s of

type decimal are extremely convenient for financial calculations ï

calculation of revenues, duties, taxes, interests, payments, etc.

Here is an example in which we declare a variable of type decimal and assign

its value:

Chapter 2. Primitive Types and Variables 119

decimal decimalPI = 3.14159265358979323846m;
Console .WriteLine(decimalPI); // 3.14159265358979323846

The number decimalPI , which we declared of type decimal , is not rounded

even with a single position because we use it with precision of 21 digits ,

which fits in the type decimal without being rounded.

Because of the high precision and the absence of anomalies during

calculations (which exist for float and double), the decimal type is

extremely suitable for financial calculations where accuracy is c ritical.

Despite its smaller range, the decimal type retains precision

for all decimal numbers it can store! This makes it much

more suitable for precise calculations, and very appropriate

for financial ones.

The main difference between real floating - point numbers and real

numbers with decimal precision is the accuracy of calculations and the

extent to which they round up the stored values. The double type allows us

to work with very large values and values very close to zero but at the

expens e of accuracy and some unpleasant rounding errors. The decimal type

has smaller range but ensures greater accuracy in computation, as well as

absence of anomalies with the decimal numbers.

If you perform calculations with money use the decimal type

inste ad of float or double . Otherwise, you may encounter

unpleasant anomalies while calculating and errors as a

result!

As all calculations with data of type decimal are done completely by software,

rather than directly at a low microprocessor level, the calcu lations of this type

are from several tens to hundreds of times slower than the same

calculations with double , so use this type only when it is really necessary.

Boolean Type

Boolean type is declared with the keyword bool . It has two possible values:

true and false . Its default value is false . It is used most often to store the

calculation result of logical expressions .

Boolean Type ï Example

Consider an example in which we declare several variables from the already

known types, initialize them, compare the m and print the result on the

console:

// Declare some variables

120 Fundamentals of Computer Programming with C#

int a = 1;
int b = 2;
// Which one is greater?
bool greaterAB = (a > b);
// Is 'a' equal to 1?
bool equalA1 = (a == 1);
// Print the results on the console
if (greaterAB)
{
 Console .WriteLine("A > B");
}
else
{
 Console .WriteLine("A <= B");
}

Console .WriteLine("greaterAB = " + greaterAB);
Console .WriteLine("equalA1 = " + equalA1);

// Console output:
// A <= B
// greaterAB = False
// equalA1 = True

In the example above, we declare two variables of type int , compare them

and assign the result to the bool variable greaterAB . Similarly, we do the

same for the variable equalA1 . If the variable greaterAB is true , then A > B
is printed on the console, otherwise A <= B is printed.

Character Type

Character type is a single character (16 -bit number of a Unicode table

character). It is declared in C# with the keyword char . The Unicode table is

a technological standard that represe nts any character (letter, punctuation,

etc.) from all human languages as writing systems (all languages and

alphabets) with an integer or a sequence of integers. More about the Unicode

table can be found in the chapter " Strings and Text Processing ". The smallest

possible value of a char variable is 0, and the largest one is 65535. The

values of type char are letters or other characters, and are enclosed in

apostrophes.

Character Type ï Example

Consi der an example in which we declare one variable of type char , initialize

it with value 'a' , then 'b' , then 'A' and print the Unicode values of these

letters to the console:

Chapter 2. Primitive Types and Variables 121

// Declare a variable
char ch = 'a' ;
// Print the results on the console
Console .WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'b' ;
Console .WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'A' ;
Console .WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);

// Console output:
// The code of 'a' is: 97
// The code of 'b' is: 98
// The code of 'A' is: 65

Strings

Strings are sequences of characters . In C# they are declared by the

keyword string . Their default value is null . Strings are enclosed in quotation

marks. Various text -processing operations can be pe rformed using strings:

concatenation (joining one string with another), splitting by a given separator,

searching, replacement of characters and others. More information about text

processing can be found in the chapter " Strings and Text Processing ", where

you will find detailed explanation on what a string is, what its applications are

and how we can use it.

Strings ï Example

Consider an example in which we declare several variables of type string ,

initialize them and print their values on the console:

// Declare some variables
string firstName = "John" ;
string lastName = "Smith" ;
string fullName = firstName + " " + lastName;
// Print the results on the console
Console .WriteLine("Hello, " + firstName + "!");
Console .WriteLine("Your full name is " + fullName + ".");

// Console output:
// Hello, John!
// Your full name is John Smith.

122 Fundamentals of Computer Programming with C#

Object Type

Object type is a special type, which is the parent of all other types in the .NET

Framework. De clared with the keyword object , it can take values from any

other type . It is a reference type, i.e. an index (address) of a memory area

which stores the actual value.

Using Objects ï Example

Consider an example in which we declare several variables of typ e object ,

initialize them and print their values on the console:

// Declare some variables
object container1 = 5;
object container2 = "Five" ;

// Print the results on the console
Console .WriteLine("The value of container1 is: " + container1);
Console .WriteLine("The value of container2 is: " + container2);

// Console output:
// The value of container 1 is: 5
// The value of container2 is: Five.

As you can see from the example, we can store the value of any other type in

an object type variable. This makes the object type a universal data

container.

Nullable Types

Nullable types are specific wrappers around the value types (as int ,

double and bool) that allow storing data with a null value. This provides

opportunity for types that generally do not allow lack of value (i.e. value

null) to be used as reference types and to accept both normal values and the

special one null . Thus nullable types hold an optional value .

Wrapping a given type as nullable can be done in two ways:

Nullable <int > i1 = null ;
int ? i2 = i1;

Both declarations are equivalent. The easiest way to perform this operation is

to add a question mark (?) after the type, for example int? , the more difficult

is to use the .ÕÌÌÁÂÌÅ˱ƛ˲ syntax.

Nullable types are reference typ es i.e. they are reference to an object in the

dynamic memory, which contains their actual value. They may or may not

have a value and can be used as normal primitive data types, but with some

specifics, which are illustrated in the following example:

Chapter 2. Primitive Types and Variables 123

int i = 5;
int ? ni = i;
Console .WriteLine(ni); // 5

// i = ni; // this will fail to compile
Console .WriteLine(ni.HasValue); // True
i = ni.Value;
Console .WriteLine(i); // 5

ni = null ;
Console .WriteLine(ni.HasValue); // False
//i = ni.Value; // System.InvalidOperationException
i = ni.GetValueOrDefault();
Console .WriteLine(i); // 0

The example above shows how a nullable variable (int?) can have a value

directly added even if the value is non -nullable (int). The opposite is not

directly possible. For this purpose, the nullable typesô property Value can be

used. It returns the value stored in the nullable type variable, or produces an

error (InvalidOperationException) during program execution if the value is

mi ssing (null). In order to check whether a variable of nullable type has a

value assigned, we can use the Boolean property HasValue . Another useful

method is GetValueOrDefault() . If the nullable type variable has a value,

this method will return its value, else it will return the default value for the

nullable type (most commonly 0).

Nullable types are used for storing information, which is not mandatory . For

example, if we want to store data for a student such as the first name and

last name as mandatory an d age as not required, we can use type int? for

the age variable:

string firstName = "John" ;
string lastName = "Smith" ;
int ? age = null ;

Variables

After reviewing the main data types in C# letôs see how we can use them. In

order to work with data we should use variables . We have already seen their

usage in the examples, but now letôs look at them in more detail.

A variable is a container of informati on , which can change its value. It

provides means for:

- storing information;

- retrieving the stored information;

124 Fundamentals of Computer Programming with C#

- modifying the stored information.

In C# programming, you will use variables to store and process information

all the time.

Characteristics of Var iables

Variables are characterized by:

- name (identifier), for example age;

- type (of the information preserved in them), for example int ;

- value (stored information), for example 25.

A variable is a named area of memory , which stores a value from a

particular data type, and that area of memory is accessible in the program by

its name. Variables can be stored directly in the operational memory of the

program (in the stack) or in the dynamic memory in which larger objects are

stored (such as character strings and arrays).

Primitive data types (numbers, char , bool) are called value types because

they store their value directly in the program stack.

Reference data types (such as strings, objects and arrays) are an address,

pointing to the dynamic memory where their value is stored. They can be

dynamically allocated and released i.e. their size is not fixed in advance

contrary to the case of value types.

More information about the value and reference data types is provided in the

section " Value and Reference Types ".

Naming Variables ï Rules

When we want the compiler to allocate a memory area for some information

which is used in our program we must provide a name for it. It works like an

identifier and allows referring to the relevant memory area.

The name of the variable can be any of our choice but must follow certain

rules defined in the C# language specification:

- Variable names ca n contain the letters a-z, A-Z, the digits 0-9 as well as

the character ' _'.

- Variable names cannot start with a digit.

- Variable names cannot coincide with a keyword of the C# language.

For example, base, char , default , int , object , this , null and many

othe rs cannot be used as variable names.

A list of the C# keywords can be found in the section " Keywords " in chapter

" Introduction to Programming ". If we want to name a variable like a keyword,

we can ad d a prefix to the name ï "@". For example, @char and @null are

valid variable names while char and null are invalid.

Chapter 2. Primitive Types and Variables 125

Naming Variables ï Examples

Proper names:

- name

- first_Name

- _name1

Improper names (will lead to compilation error):

- 1 (digit)

- if (keyword)

- 1name (starts with a digit)

Naming Variables ï Recommendations

We will provide some recommendations how to name your variables, since not

all names, allowed by the compiler, are appropriate for the variables.

- The names should be descriptive and explain what the variable is used

for. For example, an appropriate name for a variable storing a personôs

name is personName and inappropriate name is a37.

- Only Latin characters should be used. Although Cyrillic is allowed b y

the compiler, it is not a good practice to use it in variable names or in

the rest of the identifiers within the program.

- In C# it is generally accepted that variable names should start with a

small letter and include small letters, every new word, howev er, starts

with a capital letter. For instance, the name firstName is correct and

better to use than firstname or first_name . Usage of the character _

in the variable names is considered a bad naming style.

- Variable names should be neither too long nor too short ï they just

need to clarify the purpose of the variable within its context.

- Uppercase and lowercase letters should be used carefully as C#

distinguishes them. For instance, age and Age are different variables.

Here are some examples of well -named va riables:

- firstName

- age

- startIndex

- lastNegativeNumberIndex

And here are some examples for poorly named variables (although the names

are correct from the C# compilerôs perspective):

- _firstName (starts with _)

126 Fundamentals of Computer Programming with C#

- last_name (contains _)

- AGE (is written with capi tal letters)

- Start_Index (starts with capital letter and contains _)

- lastNegativeNumber_Index (contains _)

- a37 (the name is not descriptive and does not clearly provide the

purpose of the variable)

- fullName23 , fullName24 , etc. (it is not appropriate for a variable name

to contain digits unless this improves the clarity of the variable used; if

you need to have multiple variables with similar names ending in a

different number, storing the same or similar type of data, it may be

more appropriate to create a single collection or array variable and

name it fullNamesList , for example).

Variables should have names, which briefly explain their purpose . When a

variable is named with an inappropriate name, it makes the program very

difficult to read and modify later (after a while, when we have forgotten how

it works). For further explanation on the proper naming of variables refer to

chapter " High -Quality Programming Code ".

Always try to use short and precise names when naming the

variables. Follow the rule that the variable name should state

what it is used for, e.g. the name should answer the question

"what value is stored in this variable". When this condition is

not fulfi lled then try to find a better name. Digits are not

appropriate to be used in variable names.

Declaring Variables

When you declare a variable, you perform the following steps:

- specify its type (such as int);

- specify its name (identifier, such as age);

- optionally specify initial value (such as 25) but this is not obligatory.

The syntax for declaring variables in C# is as follows:

<data type> <identifier> [= <initialization>] ;

Here is an example of declaring variables:

string name;
int age;

Chapter 2. Primitive Types and Variables 127

Assigning a Value

Assigning a value to a variable is the act of providing a value that must be

stored in the variable. This operation is performed by the assignment operator

"=". On the left side of the operator we put the variable name and on the right

side ï its new value.

Here is an example of assigning values to variables:

name = "John Smith" ;
age = 25;

Initialization of Variables

The word initialization in programming means specifying an initial value.

When setting value to variables at the time of their declarat ion we actually

initialize them.

Default Variable Values

Each data type in C# has a default value (default initialization) which is used

when there is no explicitly set value for a given variable. We can use the

following table to see the default values of the types, which we already got

familiar with:

Data Type Default Value Data Type Default Value

sbyte 0 float 0.0f

byte 0 double 0.0d

short 0 decimal 0.0m

ushort 0 bool false

int 0 char ' \ u0000'

uint 0u string null

long 0L object null

ulong 0u

Letôs summarize how to declare variables, initialize them and assign values to

them with the following example:

// Declare and initialize some variables
byte centuries = 20;
ushort years = 2000;
decimal decimalPI = 3.141592653589793238m;
bool isEmpty = true ;
char ch = 'a' ;

128 Fundamentals of Computer Programming with C#

string firstName = "John" ;

ch = (char)5;
char secondChar;

// Here we use an already initialized variable and reassign it
secondChar = ch;

Value and Reference Types

Data types in C# are two types: value and reference .

Value types are stored in the program execution stack and directly contain

their value. Value types are the primitive numeric types, the character type

and the Boolean type: sbyte , byte , short , ushort , int , long , ulong ,

float , double , decimal , char , bool . The memory allocated for them is

released when the program exits their range, i.e. when the block of code in

which they are defined completes its execution. For example, a variable

declared in the method Main() of the program is stored in the stack until t he

program completes execution of this method, i.e. until it finishes (C#

programs terminate after fully executing the Main() method).

Reference types keep a reference (address), in the program execution

stack, and that reference points to the dynamic memo ry (heap), where

their value is stored. The reference is a pointer (address of the memory cell)

indicating the actual location of the value in the heap. An example of a value

at address in the stack for execution is 0x00AD4934. The reference has a

type. Th e reference can only point to objects of the same type, i.e. it is a

strongly typed pointer. All reference types can hold a null value. This is a

special service value, which means that there is no value.

Reference types allocate dynamic memory for their c reation. They also

release some dynamic memory for a memory cleaning (garbage

collector), when it is no longer used by the program. It is unknown exactly

when a given reference variable will be released of the garbage collector as

this depends on the memor y load and other factors. Since the allocation and

release of memory is a slow operation, it can be said that the reference types

are slower than the value ones.

As reference data types are allocated and released dynamically during

program execution, their size might not be known in advance. For example, a

variable of type string can contain text data which varies in length. Actually

the string text value is stored in the dynamic memory and can occupy a

different volume (count of bytes) while the string var iable stores the address

of the text value.

Reference types are all classes , arrays and interfaces such as the types:

object , string , byte[] . We will learn about classes, objects, strings, arrays

and interfaces in the next chapters of this book. For now, it is enough to know

Chapter 2. Primitive Types and Variables 129

that all types, which are not value, are reference and their values are stored

in the heap (the dynamically allocated me mory).

Value and Reference Types and the Memory

In this example we will illustrate how value and reference types are

represented in memory . Consider the execution of the following

programming code:

int i = 42;
char ch = 'A' ;
bool result = true ;
object obj = 42;
string str = "Hello" ;
byte [] bytes = { 1, 2, 3 };

At this point the variables are located in the memory as follows:

If we now execute the following code, which changes the values of the

variables, we will see what happens to the memory when changing the

value and reference types:

String @7cdaf2

Int32 @9ae764

HeapStack

42

i

ch

result

obj

42

str

Hello

(4 bytes)

A (2 bytes)

true (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]2 3

130 Fundamentals of Computer Programming with C#

i = 0;
ch = 'B' ;
result = false ;
obj = null ;
str = "Bye" ;
bytes[1] = 0;

After these changes the variables and their values are located in the

memory as follows:

As you can see from the figure, a change in a value type (i = 0) changes its

value directly into the stack . When changing a reference type , things are

different: the value is changed in the heap (bytes[1] = 0). The variable

that keeps the array reference remains unchanged (0x00190D11). When

assigning a null value in a reference type, that reference is disconnected

from its value and the variable remains with no value (obj = null).

When assigning new value to an object (a reference type variable) the new

ob ject is allocated in the heap (the dynamic memory) while the old object

remains free (unreferenced). The reference is redirected to the new object

(str = "Bye") while the old objects ("Hello ") will be cleaned at some moment

String @9a787b

null

HeapStack

0

i

ch

result

obj

42

str

Hello

(4 bytes)

B (2 bytes)

false (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]0 3

Bye string

Chapter 2. Primitive Types and Variables 131

by the g arbage collector (the .NET Framework ôs internal system for

automatic memory cleaning) as they are not in use anymore.

Literals

Primitive types, which we already met, are special data types built into the C#

language. Their values specified in the source code of the progra m are called

literals . One example will make this clearer:

bool result = true ;
char capitalC = 'C' ;
byte b = 100;
short s = 20000;
int i = 300000;

In the above example, literals are true , 'C' , 100, 20000 and 300000. They

are variable values set directly in the source code of the program.

Types of Literals

In C# language, there are several types of literals:

- Boolean

- Integer

- Real

- Character

- String

- Object literal null

Boolean Literals

Boolean literals are:

- true

- false

When we assign a value to a variable of type bool we can use only one of

these two values or a Boolean expression (which is calculated to true or

false).

Boolean Literals ï Example

Here is an example of a declaration of a variable of type bool and assignin g a

value, which represents the Boolean literal true :

bool result = true ;

132 Fundamentals of Computer Programming with C#

Integer Literals

Integer literals are sequences of digits , a sign (+, -), suffixes and prefixes.

Using prefixes we can present integers in the program source in decimal or

hexadecimal format. More information about the different numeral systems

we can find in the chapter " Numeral Systems ". In the integer literals the

following prefixes and suffixes may take part:

- "0x" and " 0X" as prefix indicates hexadecimal values, for example

0xA8F1;

- ' l ' and 'L' as suffix indicates long type data, for example 357L.

- 'u' and 'U' as suffix indicates uint or ulong data type, for example 112u.

By default (if no suffix is used) the integer literals are of type int .

Integer Literals ï Examples

Here are some examples of using integer literals:

// The following variables are initialized with the same value
int numberInDec = 16;
int numberInHex = 0x1 0;

// This will cause an error, because the value 234L is not int
int longInt = 234L;

Real Literals

Real literals are a sequence of digits , a sign (+, -), suffixes and the decimal

point character. We use them for values of type float , double and decimal .

Real literals can be represented in exponential format. They also use the

following indications:

- 'f ' and 'F' as suffixes mean data of type float ;

- 'd' and 'D' as suffixes mean data of type double ;

- 'm' and 'm' as suffixes mean data of type decimal ;

- 'e' is an exponent, for example, " e- 5" means the integer part multiplied

by 10 -5.

By default (if there is no suffix), the real numbers are of type double .

Real Literals ï Examples

Here are some examples of real literals' usage:

// The following is the correct way of assigning a value:
float realNumber = 12.5f;

Chapter 2. Primitive Types and Variables 133

// This is the same value in exponential format:
realNumber = 1.25e+1f;

// The following causes an error, because 12.5 is double
float realNumber = 12.5;

Character Literals

Character literals are single characters enclosed in apostrophes (single

quotes). We use them to set the values of type char . The value of a character

literal can be:

- a character, for example 'A' ;

- a character code, for example ' \ u0065' ;

- an escaping sequence;

Escaping Sequences

Sometimes it is necessary to work with characters that are not displayed on

the keyboard or with characters that have special meaning s, such as the ñnew

lineò character. They cannot be represented directly in the source code of

the program and in order to u se them we need special techniques, which we

will discuss now.

Escaping sequences are literals. They are a sequence of special characters,

which describe a character that cannot be written directly in the source code.

This is, for instance, the ñnew line ò character.

There are many examples of characters that cannot be represented directly in

the source code: a double quotation mark, tab, new line, backslash and

others. Here are some of the most frequently used escaping sequences :

- \ ' ï single quote

- \ " ï dou ble quotes

- \ \ ï backslash

- \ n ï new line

- \ t ï offset (tab)

- \ uXXXX ï char specified by its Unicode number, for example \ u03A7.

The character \ (backslash) is also called an escaping character because it

allows the display on screen (or other output device) o f characters that have

special meaning or effect and cannot be represented directly in the source

code.

134 Fundamentals of Computer Programming with C#

Escaping Sequences ï Examples

Here are some examples of character literals:

// An ordinary character
char character = 'a' ;
Console .WriteLine(character);

// Unicode character code in a hexadecimal format
character = ' \ u003A' ;
Console .WriteLine(character);

// Assigning the single quotiation character (escaped as \ ')
character = ' \ '' ;
Console .WriteLine(character);

// Assigning the backslash character (escaped as \ \)
character = ' \ \ ' ;
Console .WriteLine(character);

// Console output:
// a
// :
// '
// \

String Literals

String literals are used for data of type string . They are a sequence of

characters enclosed in double quotation marks.

All the escaping rules for the char type discussed above are also valid for

string literals.

Strings can be preceded by the @ character that specifies a quoted string

(verbatim string). In quoted strings the rules for escaping are not valid, i.e.

the character \ means \ and is not an escaping character. Only one character

needs to be escaped in the quoted strings ï the character " (double -quotes)

and it is escaped in the following way ï by repeating it "" (double double -

quotes). All other characters are treated literally, even the new line. Quoted

strings are often used for the file system paths naming.

String Literals ï Examples

Here are few examples for string literals usage:

string quotation = " \ "Hello, Jude \ ", he said." ;

Chapter 2. Primitive Types and Variables 135

Console .WriteLine(quotation);
string path = "C: \ \ Windows\ \ Notepad.exe" ;
Console .WriteLine(path);
string verbatim = @"The \ is not escaped as \ \ .
I am at a new line." ;
Console .WriteLine(verbatim);
// Console output:
// "Hello, Jude", he said.
// C:\ Windows\ Notepad.exe
// The \ is not escaped as \ \ .
// I am at a new line.

More about strings we will find in the chapter " Strings and Text Processing ".

Exercises

1. Declare several variables by selecting for each one of them the most

appropriate of the types sbyte , byte , short , ushort , int , uint , long

and ulong in order to assign them the following values: 52,130; -115;

4825932; 97; -10000; 20000; 224; 970,700,000; 112; -44; -1,000,000;

1990; 123456789123456789.

2. Which of the following values can be assigned to variables of type float ,

double and decimal : 5, -5.01, 34.567839023; 12.345; 8923.1234857 ;

3456.091124875956542151256683467?

3. Write a program, which compares correctly two real numbers wi th

accuracy at least 0.000001 .

4. Initialize a variable of type int with a value of 256 in

hexadecimal format (256 is 100 in a numeral system with base 16).

5. Declare a variable of type char and assign it as a value the character,

which has Unicode code, 72 (us e the Windows calculator in order to find

hexadecimal representation of 72).

6. Declare a variable isMale of type bool and assign a value to it depending

on your gender.

7. Declare two variables of type string with values "Hello" and "World".

Declare a variable of type object . Assign the value obtained of

concatenation of the two string variables (add space if necessary) to this

variable. Print the variable of type object .

8. Declare two variables of type string and give them values "Hello" and

"World". Assign the value obtained by the concatenation of the two

variables of type string (do not miss the space in the middle) to a

variable of type object . Declare a third variable of type string and

initialize it with the value of the variable of type object (you should use

type casting).

136 Fundamentals of Computer Programming with C#

9. Declare two variables of type string and assign them a value ñThe

"use" of quotations causes difficulties. ò (without the outer quotes).

In one of the variables use quoted string and i n the other do not use it.

10. Write a program to print a figure in the shape of a heart by the sign " o".

11. Write a program that prints on the console isosceles triangle which

sides consist of the copyright character " É".

12. A company dealing with marketing wants t o keep a data record of its

employees . Each record should have the following characteristic ï first

name, last name, age, gender (ómô or ófô) and unique employee number

(27560000 to 27569999). Declare appropriate variables needed to

maintain the informatio n for an employee by using the appropriate data

types and attribute names.

13. Declare two variables of type int . Assign to them values 5 and 10

respectively. Exchange (swap) their values and print them.

Solutions and Guidelines

1. Look at the ranges of the numerical types in C# described in this chapter.

2. Consider the number of digits after the decimal point. Refer to the table

that describes the sizes of the types float , double and decimal .

3. Two floating -point variables are considered equal if their difference is less

than some predefined precision (e.g. 0.000001):

bool equal = Math.Abs(a - b) < 0.000001 ;

4. Look at the section about Integer Literals . To easily convert numbers to a

different numeral system use the built - in Windows calculator. For a

hexadecimal representation of the literal use prefix 0x.

5. Look at the section about Character Literals .

6. Look at the s ection about Boolean Literals .

7. Look at the sections about Strings and Object Data Type .

8. Look at the sections about Strings and Object Data Type . To cast from

object to string use typecasting :

string str = (string)obj;

9. Look at the section about Character Literals . It is necessary to use the

escaping character \ " or verbatim strings .

10. Use #ÏÎÓÏÌÅƚ7ÒÉÔÅ,ÉÎÅƽƛƾ, the character ' o' and spaces.

11. Use #ÏÎÓÏÌÅƚ7ÒÉÔÅ,ÉÎÅƽƛƾ, the character É and spaces . Use Windows

Character Map in order to find the Unicode code of the sign " É".

Note that the console may display " c" instead of "É" if it does not

Chapter 2. Primitive Types and Variables 137

support Unicode. If this happens, you might be unable to do anything to

fix it. Some versions of Windows just do not support Unicode in the

console even when you explicitly set the character encoding to UTF -8:

Console .OutputEncoding = System.Text. Encoding .UTF8;

You may need to change the font of your console to some font that

supports the ñÉò symbol, e.g. ñConsolas ò or ñLucida Console ò.

12. For the names use type string , for the gender use type char (only one

char m/ f), a nd for the unique number and age use some integer type.

13. Use third temporary variable for exchanging the variables:

int a = 5;
int b = 10;

int oldA = a;
a = b;
b = oldA;

To swap integer variables other solutions exist which do not use a third

variable. For example, if we have two integer variables a and b:

int a = 5;
int b = 10;

a = a + b;
b = a - b;
a = a - b;

You might also use the XOR swap algorithm for exchanging integer

values: http://en.wikipedia.org/wiki/XOR_swap_algorithm .

http://en.wikipedia.org/wiki/XOR_swap_algorithm

Chapter 3. Operators
and Expressions

In This Chapter

In this chapter we will get acquainted with the operators in C# and the

actions they can perform when used with the different data types. In the

beginning, we will explain which operators have higher priority and we will

analyze the different types of operators, according to the number of the

arguments they can take and the actions they perform. In t he second part,

we will examine the conversion of data types . We will explain when and

why it is needed to be done and how to work with different data types. At the

end of the chapter, we will pay special attention to the expressions and how

we should work with them. Finally, we have prepared exercises to strengthen

our knowledge of the material in this chapter.

Operators

Every programming language uses operators , through which we can perform

different actions on the data. Letôs take a look at the operators in C# and see

what they are for and how they are used.

What Is an Operator?

After we have learned how to declare and set a variable in the previous

chapter , we will discuss how to perform various operations with them. For this

purpose we will get familiar with operators.

Operators allow processing of primitive data types and objects. They take as

an input one or more operands and return some value as a result. Operators

in C# are special character s (such as " + ", " .", " ^ ", etc.) and they perform

transformations on one, two or three operands. Examples of operators in C#

are the signs for adding, subtracting, multiplication and division from math

(+ , - , * , /) and the operations they perform on the int egers and the real

numbers.

Operators in C#

Operators in C# can be separated in several different categories:

- Arithmetic operators ï they are used to perform simple mathematical

operations.

140 Fundamentals of Computer Programming with C#

- Assignment operators ï allow assigning values to variables.

- Compar ison operators ï allow comparison of two literals and/or

variables.

- Logical operators ï operators that work with Boolean data types and

Boolean expressions.

- Binary operators ï used to perform operations on the binary

representation of numerical data.

- Type conversion operators ï allow conversion of data from one type to

another.

Operator Categories

Below is a list of the operators, separated into categories:

Category Operators

arithmetic - , +, * , / , %, ++, --

logical &&, || , ! , ^

binary &, | , ^ , ~, <<, >>

comparison ==,!= , >, <, >=, <=

assignment =, +=, - =, *= , /= , %=, &=, |= , ^=, <<=, >>=

string concatenation +

type conversion (type) , as, is , typeof , sizeof

other . , new, () , [] , ?: , ??

Types of Operators by Number of Arguments

Operators can be separated into different types according to the number of

arguments they could take:

Operator type Number of arguments (operands)

unary takes one operand

binary takes two operands

ternary takes three operands

All binary operators in C# are left - associative , i.e. the expressions are

calculated from left to right, except for the assignment operators. All

assignment operators and conditional operators ?: and ?? are right -

associative, i.e. the expressions are calculated from right to left. The u nary

operators are not associative.

Some of the operators in C# perform different operations on the different

data types. For example the operator +. When it is used on numeric data

Chapter 3. Operators and Expressions 141

types (int , long , float , etc.), the operator performs mathematical additio n.

However, when we use it on strings, the operator concatenates (joins

together) the content of the two variables/literals and returns the new string.

Operators ï Example

Here is an example of using operators:

int a = 7 + 9;
Console .WriteLine(a); // 16

string firstName = "John" ;
string lastName = "Doe" ;

// Do not forget the space between them
string fullName = firstName + " " + lastName;
Console .WriteLine(fullName); // John Doe

The example shows how, as explained above, when the operator + is used on

numbers it returns a numerical value, and when it is used on strings it returns

concatenated strings.

Operator Precedence in C#

Some operators have precedence (priority) over others. For example, in

math multiplication has precedence over addit ion. The operators with a higher

precedence are calculated before those with lower. The operator () is used to

change the precedence and like in math, it is calculated first.

The following table illustrates the precedence of the operators in C#:

Priority Operators

Highest

priority

é

(,)

++, -- (as postfix), new, (type) , typeof , sizeof

++, -- (as prefix), +, - (unary), ! , ~

* , / , %

+ (string concatenation)

+, -

<<, >>

<, >, <=, >=, is , as

==, !=

&, ^ , |

142 Fundamentals of Computer Programming with C#

Lowest

priority
&&

||

?: , ??

=, *= , /= , %=, +=, - =, <<=, >>=, &=, ^=, |=

The operators located upper in the table have higher precedence than

those below them, and respectively they have an advantage in the calculation

of an expression. To change the precedence of an operator we can use

brackets.

When we write expressions that are more complex or have many operators, it

is recommended to use brackets to avoid difficulties in reading and

understanding the code. For example:

// Ambiguous
x + y / 100

// Unambiguou s, recommended
x + (y / 100)

Arithmetical Operators

The arithmetical operators in C# +, - , * are the same like the ones in math.

They perform addition, subtraction and multiplication on numerical values and

the result is also a numerical value.

The division operator / has different effect on integer and real numbers.

When we divide an integer by an integer (like int , long and sbyte) the

returned value is an integer (no rounding, the fractional part is cut). Such

division is called an integer division . Example of integer division : 7 / 3 = 2.

Integer division by 0 is not allowed and causes a runtime exception

DivideByZeroException . The remainder of integer division of integers can be

obtained by the operator %. For example, 7 % 3 = 1, and ï10 % 2 = 0.

When dividing two real numbers or two numbers, one of which is real (e.g.

float , double , etc.), a real division is done (not integer), and the result is a

real number with a whole and a fractional part. For example: 5.0 / 2 = 2.5. In

the division of real n umbers it is allowed to divide by 0.0 and respectively

the result is +Ð (Infinity), -Ð (- Infinity) or NaN (invalid value).

The operator for increasing by one (increment) ++ adds one unit to the

value of the variable, respectively the operator -- (decrement) subtracts one

unit from the value. When we use the operators ++ and -- as a prefix (when

we place them immediately before the variable), the new value is calculated

first and then the result is returned. When we use the same operators as

post - fix (meanin g when we place them immediately after the variable) the

Chapter 3. Operators and Expressions 143

original value of the operand is returned first, then the addition or subtraction

is performed.

Arithmetical Operators ï Example

Here are some examples of arithmetic operators and their effect:

int squarePerimeter = 17;
double squareSide = squarePerimeter / 4.0 ;
double squareArea = squareSide * squareSide;
Console .WriteLine(squareSide); // 4.25
Console .WriteLine(squareArea); // 18.0625

int a = 5;
int b = 4;
Console .WriteLine(a + b); // 9
Console .WriteLine(a + (b++)); // 9
Console .WriteLine(a + b); // 10
Console .WriteLine(a + (++b)); // 11
Console .WriteLine(a + b); // 11
Console .WriteLine(14 / a); // 2
Console .WriteLine(14 % a); // 4

int one = 1;
int zero = 0;
// Console.WriteLine(one / zero); // DivideByZeroException

double dMinusOne = - 1.0 ;
double dZero = 0.0 ;
Console .WriteLine(dMinusOne / zero); // - Infinity
Console .WriteLine(one / dZero); // Infinity

Logical Operators

Logical (Boolean) operators take Boolean values and return a Boolean result

(true or false). The basic Boolean operators are " AND " (&&), " OR " (||),

"exclusive OR " (^) and logical negation (!).

The following table contains the logical operators in C# and th e operations

that they perform:

x y !x x && y x || y x ^ y

true true false true true false

true false false false true true

false true true false true true

144 Fundamentals of Computer Programming with C#

false false true false false false

The table and the following example show that the logical "AND" (&&) returns

true only when both variables contain truth. Logical "OR" (||) returns true

when at least one of the operands is true. The logical negation operator (!)

changes the value of the argument. For example, if the operand has a value

true and a negation operator is applied, the new value will be false . The

negation operator is a unary operator and it is placed before the argument.

Exclusive "OR" (^) returns true if only one of the two operands has the value

true . If the two operands have differ ent values, exclusive "OR" will return the

result true , if they have the same values it will return false .

Logical Operators ï Example

The following example illustrates the usage of the logical operators and their

actions:

bool a = true ;
bool b = false ;
Console .WriteLine(a && b); // False
Console .WriteLine(a || b); // True
Console .WriteLine(!b); // True
Console .WriteLine(b || true); // True
Console .WriteLine((5 > 7) ^ (a == b)); // False

Laws of De Morgan

Logical operations fall under the laws of De Morgan from the mathematical

logic:

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

The first law states that the negation of the conjunction (logical AND) of two

propositions is equal to the disjunction (logical OR) of their negations.

The second law states that the negation of the disjunction of both statements

is equivalent to the conjunction of their negations.

Operator for Concatenation of Strings

The operator + is used to join strings (string). It c oncatenates (joins) two

or more strings and returns the result as a new string. If at least one of the

arguments in the expression is of type string , and there are other operands

of type different from string , they will be automatically converted to type

string , which allows successful string concatenation.

It is fantastic how .NET runtime handles such operation incompatibilities for

us on the fly, saving us some coding time and allowing us to concentrate on

Chapter 3. Operators and Expressions 145

the main objectives of our programming task! Howe ver, it is a good practice

to not miss to cast the variables on which we wish to apply an operation; we

should instead have them converted to the appropriate type for each

operation, so that we are in full control of the end result and prevent implicit

typ e casts. We will provide more detailed information on casting operations

further down in the section " Type Conversion " of this chapter.

Operator for Concatenation of Strings ï Example

Here is an example, which shows conc atenations of two strings and a string

with a number:

string csharp = "C#" ;
string dotnet = ".NET" ;
string csharpDotNet = csharp + dotnet;
Console .WriteLine(csharpDotNet); // C#.NET
string csharpDotNet4 = csharpDotNet + " " + 5;
Console .WriteLine(csharpDotNet4); // C#.NET 5

In the example we initialize two variables of type string and assign them

values. On the third and fourth row we concatenate both strings and pass the

results to the method Console.WriteLine() to print it on the console. On the

next line we join the resulting string with a space and the number 5. We

assign the returned value to the variable csharpDotNet5 , which will

automatically be converted to type string . On the last row we print the

result.

Concatenation (joining, gluing) of strings is a slow operation

and should be used carefully. It is recommended to use the

StringBuilder class for iterative (repetitive) operations on

strings.

In the chapter " Strings " we will explain in detail why the StringBuilder class

must be used for join operations on strings performed in a loop.

Bitwise Operators

A bitwis e operator is an operator that acts on the binary representation of

numeric types. In computers all the data and particularly numerical data is

represented as a series of ones and zeros. The binary numeral system is

used for this purpose. For example, numb er 55 in the binary numeral system

is represented as 00110111.

Binary representation of data is convenient because zero and one in

electronics can be implemented by Boolean circuits, in which zero is

represented as "no electricity" or for example with a vo ltage of -5V and the

one is presented as "have electricity" or say with voltage +5V.

146 Fundamentals of Computer Programming with C#

We will examine in depth the binary numeral system in the chapter

"Numeral Systems ", but just for now we can consider that th e numbers in

computers are represented as ones and zeros, and bitwise operators are used

to analyze and change those ones to zeros and vice versa.

Bitwise operators are very similar to the logical ones. In fact, we can

imagine that the logical and bitwise operators perform the same thing but

using different data types. Logical operators work with the values true and

false (Boolean values), while bitwise operators work with numerical values

and are applied bitwise over their binary representation, i.e., they work with

the bits of the number (the digits 0 and 1 of which it consists). Just like the

logical operators in C#, there are bitwise operators "AND" (&), bitwise "OR"

(|), bitwise negation (~) and excluding "OR" (^).

Bitwise Operators and Their Performanc e

The bitwise operators' performance on binary digits 0 and 1 is shown in the

following table:

x y ~x x & y x | y x ^ y

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

As we see bitwise and logical operators are very much alike. The difference in

the writing of "AND" and "OR" is that the logical operators are written with

double ampersand (&&) and double vertical bar (||), and the bitwise ï with a

single ampersand or vertical bar (& and |). Bitwise and logical operators for

exclusive "OR" are the same "^". For logical negation we use " ! ", while for

bitwise negation (inversion) the " ~" operator is used.

In programming there are two bitwise operators that have no analogue in

logical operators. These are the bit shift left (<<) and bit shift right (>>).

Used on numerical values, they move all the bits of the value to the left or

right. The bits that fall outside the number are lost and replaced with 0.

The bit shifting operators are used in the following way: on the left side of

the operator we place the va riable (operand) with which we want to use the

operator, on the right side we put a numerical value, indicating how many bits

we want to offset. For example, 3 << 2 means that we want to move the bits

of the number three, twice to the left. The number 3 pr esented in bits looks

like this: " 0000 0011 ". When you move twice left, the binary value will look

like this: " 0000 1100 ", and this sequence of bits is the number 12. If we look

at the example we can see that actually we have multiplied the number by 4.

Bit shifting itself can be represented as multiplication (bitwise shifting left) or

division (bitwise shifting right) by a power of 2. This occurrence is due to the

Chapter 3. Operators and Expressions 147

nature of the binary numeral system. Example of moving to the right is 6 >>

2, which means to move the binary number " 0000 0110" with two positions to

the right. This means that we will lose two right -most digits and feed them

with zeros on the left. The end result will be " 0000 0001" which is 1.

Bitwise Operators ï Example

Here is an example of using bitwise operators. The binary representation of

the numbers and the results of the bitwise operators are shown in the

comments (green text):

byte a = 3; // 0000 0011 = 3
byte b = 5; // 0000 0101 = 5

Console .WriteLine(a | b); // 0000 0111 = 7
Console .WriteLine(a & b); // 0000 0001 = 1
Console .WriteLine(a ^ b); // 0000 0110 = 6
Console .WriteLine(~a & b); // 0000 0100 = 4
Console .WriteLine(a << 1); // 0000 0110 = 6
Console .WriteLine(a << 2); // 0000 11 00 = 12
Console .WriteLine(a >> 1); // 0000 0001 = 1

In the example we first create and initialize the values of two variables a and

b. Then we print on the console the results of some bitwise operations on the

two variables. The first operation that we apply is "OR". The example shows

that for all positions where there was 1 in the binary representation of the

variables a and b, there is also 1 in the result. The second operation is "AND".

The result of the operation contains 1 only in the right -most bit, because the

only place where a and b have 1 at the same time is their right -most bit.

Exclusive "OR" returns ones only in positions whe re a and b have different

values in their binary bits. Finally, the logical negation and bitwise shifting:

left and right, are illustrated.

Comparison Operators

Comparison operators in C# are used to compare two or more operands. C#

supports the following comparison operators:

- greater than (>)

- less than (<)

- greater than or equal to (>=)

- less than or equal to (<=)

- equality (==)

- difference (!=)

148 Fundamentals of Computer Programming with C#

All comparison operators in C# are binary (take two operands) and the

returned result is a Boolean value (true or false). Comparison operators

have lower priority than arithmetical operators but higher than the

assignment operators.

Comparison Operators ï Example

The following example demonstrates the usage of comparison operators in

C#:

int x = 10, y = 5;
Console .Wri teLine("x > y : " + (x > y)); // True
Console .WriteLine("x < y : " + (x < y)); // False
Console .WriteLine("x >= y : " + (x >= y)); // True
Console .WriteLine("x <= y : " + (x <= y)); // False
Console .WriteLine("x == y : " + (x == y)); // False
Console .WriteLine("x != y : " + (x != y)); // True

In the example, first we create two variables x and y and we assign them the

values 10 and 5. On the next line we print on the console using the method

#ÏÎÓÏÌÅƚ7ÒÉÔÅ,ÉÎÅƽƛƾ the result from comparing the two variables x and y

using the operator >. The returned value is true because x has a greater

value than y. Similarly, in the next rows the results from the other 5

comparison operators, used to compare the variables x and y, are printed.

Assignment Operators

The operator for assigning value to a variable is " =" (the character for

mathematical equation). The syntax used for assigning value is as it follows:

operand1 = literal, expression or operand2;

Assignment Operators ï Example

Here is an example to show the usage of the assignment operator:

int x = 6;
string helloString = "Hello string." ;
int y = x;

In the example we assign value 6 to the variable x. On the second line we

assign a text literal to the variable helloStrin g, and on the third line we

copy the value of the variable x to the variable y.

Chapter 3. Operators and Expressions 149

Cascade Assignment

The assignment operator can be used in cascade (more than once in the

same expression). In this case assignments are carried out consecutively from

right to left. Hereôs an example:

int x, y, z;
x = y = z = 25;

On the first line in the example we initialize three variables and on the second

line we assign them the value 25.

The assignment operator in C# is " =", while the comparison

operator is " ==". The exchange of the two operators is a

common error when we are writing code. Be careful not to

confuse the comparison operator and the assignment

operator as they look very similar.

Compound Assignment Operators

Except the assignment operator there are also compound assignment

operators . They help to reduce the volume of the code by typing two

operations together with an operator: operation and assignment. Compound

operators have the following syntax:

operand1 operator = operand2;

The upper expression is like the following:

operand1 = operand1 operator operand2;

Here is an example of a compound operator for assignment:

int x = 2;
int y = 4;

x *= y; // Same as x = x * y;
Console .WriteLine(x); // 8

The most commonly used compound assignment operators are += (adds value

of operand2 to operand1), - = (subtracts the value of the right operand from

the value of the left one).Other compound assignment operators are *= , /=

and %=.

The following example gives a good idea of how the compound assignment

operators wo rk:

int x = 6;

150 Fundamentals of Computer Programming with C#

int y = 4;

Console .WriteLine(y *= 2); // 8
int z = y = 3; // y=3 and z=3

Console .WriteLine(z); // 3
Console .WriteLine(x |= 1); // 7
Console .WriteLine(x += 3); // 10
Console .WriteLine(x /= 2); // 5

In the example, first we create the variables x and y and assign them values

6 and 4. On the next line we print on the console y, after we have assigned it

a new value using the operator *= and the literal 2.The result of the operation

is 8. Further in the example we apply the other compound assignment

operators and print the result on the console.

Conditional Operator ?:

The conditional operator ?: uses the Boolean value of an expression to

determine which of two other expressions must be calculated and returned as

a result. The operator works on three operands and that is why it is called

ternary operator. The character " ?" is placed between the fi rst and second

operand, and " : " is placed between the second and third operand. The first

operand (or expression) must be Boolean , and the next two operands must

be of the same type , such as numbers or strings.

The operator ?: has the following syntax:

operand1 ? operand2 : operand3

It works like this: if operand1 is set to true , the operator returns as a result

operand2 . Otherwise (if operand1 is set to false), the operator returns as a

result operand3 .

During the execution, the value of the first argumen t is calculated. If it has

value true , then the second (middle) argument is calculated and it is

returned as a result. However, if the calculated result of the first argument is

false , then the third (last) argument is calculated and it is returned as a

re sult.

Conditional Operator "?:" ï Example

The following example shows the usage of the operator "?: ":

int a = 6;
int b = 4;
Console .WriteLine(a > b ? "a>b" : "b<=a"); // a>b

Chapter 3. Operators and Expressions 151

int num = a == b ? 1 : - 1; // num will have value - 1

Other Operators

So far we have examined arithmetic, logical and bitwise operators, the

operator for concatenating strings, also the conditional operator ?: . Besides

them in C # there are several other operators worth mentioning.

The "." Operator

The access operator " . " (d ot) is used to access the member fields or

methods of a class or object. Example of usage of point operator:

Console .WriteLine(DateTime.Now); // Prints the date + time

Square Brackets [] Operator

Square brackets [] are used to access elements of an array by index ,

they are the so -called indexer . Indexers are also used for accessing

characters in a string. Example:

int [] arr = { 1, 2, 3 };
Console .WriteLine(arr[0]); // 1
string str = "Hello" ;
Console .WriteLine(str[1]); // e

Brackets () Operator

Brackets () are used to override the priority of execution of expressions

and operators. We have already seen how the brackets work.

Type Conversion Operator

The operator for type conversion (type) is used to convert a variable from

one type to another. We will examine it in details in the section " Type

Conversion ".

Operator "as"

The operator as also is used for type conversion but invalid conversion

returns null, not an exception.

Operator "new"

The new operator is used to create and initialize new objects . We will

examine it in details in the chapter " Creating and Using Objects ".

152 Fundamentals of Computer Programming with C#

Operator "is"

The is operator is used to check whether an object is compatible with a given

type (check object's type).

Operator "??"

The operator ?? is similar to the conditional operator ?: . The difference is that

it is placed between two operands and returns the left operand only if its

value is no t null, otherwise it returns the right operand. Example:

int ? a = 5;
Console .WriteLine(a ?? - 1); // 5
string name = null ;
Console .WriteLine(name ?? "(no name)"); // (no name)

Other Operators ï Examples

Here is an example that shows the operators we just explained:

int a = 6;
int b = 3;

Console .WriteLine(a + b / 2); // 7
Console .WriteLine((a + b) / 2); // 4

string s = "Beer" ;
Console .WriteLine(s is string); // True

string notNullString = s;
string nullString = null ;
Console .WriteLine(nullString ?? "Unspecified"); // Unspecified
Console .WriteLine(notNullString ?? "Specified"); // Beer

Type Conversion and Casting

Generally, operators work over arguments with the same data type. However,

C# has a wide variety of data types from which we can choose the most

appropriate for a particular purpose. To perform an operation on variables of

two different data types we need to convert both to the same data type. Type

conversion (typecasting) can be explicit and implicit .

All expressions in C# have a type. This type can derive from the expression

structure and the types, variables and literals used in it. It is possible to wri te

an expression which type is inappropriate for the current context. In some

cases this will lead to a compilation error, but in other cases the context can

get a type that is similar or related to the type of the expression. In this case

the program perf orms a hidden type conversion .

Chapter 3. Operators and Expressions 153

Specific conversion from type S to type T allows the expression of type S to be

treated as an expression of type T during the execution of the program. In

some cases this will require a validation of the transformation. Here are some

examples:

- Conversion of type object to type string will require verification at

runtime to ensure that the value is really an instance of type string .

- Conversion from string to object does not require any verification. The

type string is an inheritor of the type object and can be converted to

its base class without a risk of an error or data loss. We shall examine

inheritance in details in the chapter "Object -Oriented Programmin g

Principles ".

- Conversion of type int to long can be made without verification during

the execution, because there is no risk of data loss since the set of

values of type int is a subset of values of type long .

- Conversion from type double to long requires conversion of 64 -bit

floating -point value to 64 -bit integer. Depending on the value, data loss

is possible and therefore it is necessary to convert the types explicitly .

In C# not all types can be converted to all other types, but only to some of

them. For convenience, we shall group some of the possible transformations

in C# according to their type into three categories:

- implicit conversion ;

- explicit conversion ;

- conversion to or from string ;

Implicit Type Conversion

Implicit (hidden) type conversion is pos sible only when there is no risk of data

loss during the conversion, i.e. when converting from a lower range type to a

larger range (e.g. from int to long). To make an implicit conversion it is not

necessary to use any operator and therefore such transform ation is called

implicit. The implicit conversion is done automatically by the compiler when

you assign a value with lower range to a variable with larger range or if the

expression has several types with different ranges. In such case the

conversion is ex ecuted into the type with the highest range.

Implicit Type Conversion ï Examples

Here is an example of implicit type conversion:

int myInt = 5;
Console .WriteLine(myInt); // 5

long myLong = myInt;
Console .WriteLine(myLong); // 5

154 Fundamentals of Computer Programming with C#

Console .WriteLine(myLong + myInt); // 10

In the example we create a variable myInt of type int and assign it the value

5. After that we create a variable myLong of type long and assign it the value

contained in myInt . The value stored in myLong is automatically converted

from type int to type long . Finally, we output the result from adding the two

variables. Because the variables are from different types they are

automatically converted to the type with the greater range, i.e. to type long

and the result that is printed on the console is long again. Indeed, the given

parameter to the method Console.WriteLine() is of type long , but inside

the method it will be converted again, this time to type string , so it can be

printed on the console. This transformation is performed by the method

Long.ToString() .

Possible Implicit Conversions

Here are some possible implicit conversions of primitive data types in C#:

- sbyte Ÿ short , int , long , float , double , decimal ;

- byte Ÿ short , ushort , int , uint , long , ulong , float , double ,
decimal ;

- short Ÿ int , long , float , double , decimal ;

- ushort Ÿ int , uint , long , ulong , float , double , decimal ;

- char Ÿ ushort , int , uint , long , ulong , float , double , decimal

(although char is a character type in some cases it may be regarded as

a number and have a numeric type of behavior, it can even participate

in numeric expressions);

- uint Ÿ long , ulong , float , double , decimal ;

- int Ÿ long , float , double , decimal ;

- long Ÿ float , double , decimal ;

- ulong Ÿ float , double , decimal ;

- float Ÿ double .

There is no data loss when converting types of smaller range to types

with a larger range . The numerical value remains the same after

conversion. There are a few exceptions. When you convert type int to type

float (32 -bit values), the difference is that int uses all bits for a whole

number, whereas float has a part of bits used for representation of a

fractional part. Hence, loss of precision is possible because of rounding when

conversion from int to float is made . The same applies for the conversion of

64 -bit long to 64 -bit double .

Chapter 3. Operators and Expressions 155

Explicit Type Conversion

Explicit type conversion is used whenever there is a possibility of data loss.

When converting floating point type to integer type there is always a loss of

data coming from the elimination of the fractional part and an explicit

conversion is obligatory (e.g. double to long). To make such a conversion it

is necessary to use the operator for data conversion (type). There may also

be data loss when con verting a type with a wider range to type with a

narrower one (double to float or long to int).

Explicit Type Conversion ï Example

The following example illustrates the use of explicit type conversion and data

loss that may occur in some cases:

double myDouble = 5.1d ;
Console .WriteLine(myDouble); // 5.1

long myLong = (long)myDouble;
Console .WriteLine(myLong); // 5

myDouble = 5e9d; // 5 * 10^9
Console .WriteLine(myDouble); // 5000000000

int myInt = (int)myDouble;
Console .WriteLine(myInt); // - 2147483648
Console .WriteLine(int .MinValue); // - 2147483648

In the first line of the example we assign a value 5.1 to the variable

myDouble. After we convert (explicitly) to type long using the operator

(long) and print on the console the variable myLong we see that the variable

has lost its fractional part, because long is an integer. Then we assign to the

real double precision variable myDouble the value 5 billion. Finally, we convert

myDouble to int by the operator (int) and print variable myInt . The r esult is

the same like when we print int.MinValue because myDouble contains a

value bigger than the range of int .

It is not always possible to predict what the value of a

variable will be after its scope overflows! Therefore, use

sufficiently large types and be careful when switching to a

"smaller" type.

Data Loss during Type Conversion

We will give an example for data loss during type conversion:

long myLong = long .MaxValue;

156 Fundamentals of Computer Programming with C#

int myInt = (int)myLong;

Console .WriteLine(myLong); // 9223372036854775807
Console .WriteLine(myInt); // - 1

The type conversion operator may also be used in case of an intentional

implicit conversion. This contributes to the readability of code, reducing the

chance for errors and it is considered good practice by many programmers.

Here are some more examples for type conversions:

float heightInMeters = 1.74f ; // Explicit conversion
double maxHeight = heightInMeters; // Implicit
double minHeight = (double)heightInMeters; // Explicit
float actualHeight = (float)maxHeight; // Explicit

float maxHeightFloat = maxHeight; // Compilation error!

In the example above at the last line we have an expression that will generate

a compilation error. This is because we try implicitly to convert type double to

float , which can cause data loss. C# is a strongly typed programming

language and does not allow such appropriation of values.

Forcing Overflow Exceptions during Casting

Sometimes it is convenient, instead of getting the wrong result, when a type

overflows during switching from larger to smaller type, to get notification of

the problem. This is done by the keyword checked which includes a check for

overflow in integer types :

double d = 5e9d; // 5 * 10^9
Console .WriteLine(d); // 5000000000
int i = checked((int)d); // System.OverflowException
Console .WriteLine(i);

During the execution of the code fragment above an exception (i.e.

notification of an error) of type OverflowException is raised. More

information about the exceptions and the methods to catch and handle them

can be found in the chapter " Exception Handling ".

Possible Explicit Conversions

The explicit conversions between numeral types in C# are possible between

any couple among the following types:

sbyte , byte , short , ushort , char , int , uint , long , ulong , float , double ,

decimal

Chapter 3. Operators and Expressions 157

In these conversions data can be lost, like data about the number size or

information about its precision.

Notice that conversion to or from string is not possible through typecasting.

Conversion to String

If it is necessary we can convert any type of data, including the value null , to

string . The conversion of strings is done automatically whenever you use the

concatenation operator (+) and one of the arguments is not of type string. In

this case the argument is converted to a string and the operator returns a

new string representing the concatenation of the two strings.

Another way to convert different objects to type string is to call the method

ToString() of the variable or the value. I t is valid for all data types in .NET

Framework. Even calling 3.ToString() is fully valid in C# and the result will

return the string "3" .

Conversion to String ï Example

Letôs take a look on several examples for converting different data types to

string:

int a = 5;
int b = 7;

string sum = "Sum = " + (a + b);
Console .WriteLine(sum);

String incorrect = "Sum = " + a + b;
Console .WriteLine(incorrect);

Console .WriteLine(
 "Perimeter = " + 2 * (a + b) + ". Area = " + (a * b) + ".");

The result from the example is as follows:

Sum = 12
Sum = 57
Perimeter = 24. Area = 35.

From the results it is obvious, that concatenating a number to a character

string returns in result the string followed by the text representation of the

number. Note that the " +" for concatenating strings can cause unpleasant

effects on the addition of numbers, because it has equal priority with the

operator " +" for mathematical addition. Unless the priorities of the operations

are changed by placing the brackets, they will alway s be executed from left to

right.

158 Fundamentals of Computer Programming with C#

More details about converting from and to string we will look at the chapter

"Console Input and Output ".

Expressions

Much of the programôs work is the calculation of expressions. Expressions

are sequences of operators, literals and variables that are calculated to

a value of some type (number, string, object or other type). Here are some

examples of expressions:

int r = (150- 20) / 2 + 5;

// Expression for calculating the surface of the circle
double surface = Math.PI * r * r;

// Expression for calculating the perimeter of the circle
double perimeter = 2 * Math.PI * r;

Console .WriteLine(r);
Console .WriteLine(surface);
Console .WriteLine(perimeter);

In the example three expressions are defined. The first expression calculates

the radius of a circle. The second calculates the area of a circle, and the last

one finds the perimeter. Here is the result from the fragment above:

70
15393.80400259
439.822971502571

Side Effects of Expressions

The calculation of the expression can have side effects , because the

expression can contain embedded assignment operators, can cause increasing

or decreasing of the value and calling methods. Here is an example of such a

side effect:

int a = 5;
int b = ++a;

Console .WriteLine(a); // 6
Console .WriteLine(b); // 6

Chapter 3. Operators and Expressions 159

Expressions, Data Types and Operator Priorities

When writing expressions , the data types and the behavior of the used

operators should be considered. Ignoring this can lead to unexpected results.

Here are some simple examples:

// First example
double d = 1 / 2;
Console .WriteLine(d); // 0, not 0.5

// Second example
double half = (double)1 / 2;
Console .WriteLine(half); // 0.5

In the first example, an expression divides two integers (written this way, 1

and two are integers) and assigns the result to a variable of type double . The

result may be unexpected for some people, b ut that is because they are

ignoring the fact that in this case the operator " / " works over integers and the

result is an integer obtained by cutting the fractional part.

The second example shows that if we want to do division with fractions in the

result, it is necessary to convert to float or double at least one of the

operands. In this scenario the division is no longer integer and the result is

correct.

Division by Zero

Another interesting example is division by 0. Most programmers think that

division b y 0 is an invalid operation and causes an error at runtime

(exception) but this is actually true only for integer division by 0. Here is an

example, which shows that fractional division by 0 is Infinity or NaN:

int num = 1;
double denum = 0; // The value is 0.0 (real number)
int zeroInt = (int) denum; // The value is 0 (integer number)
Console .WriteLine(num / denum); // Infinity
Console .WriteLine(denum / denum); // NaN
Console .WriteLine(zeroInt / zeroInt); // DivideByZeroException

Using Brackets to Make t he Code Clear

When working with expressions it is important to use brackets whenever

there is the slightest doubt about the priorities of the operations. Here is an

example that shows how useful the brackets are:

double incorrect = (double)((1 + 2) / 4);
Console .WriteLine(incorrect); // 0

160 Fundamentals of Computer Programming with C#

double correct = ((double)(1 + 2)) / 4;
Console .WriteLine(correct); // 0.75

Console .WriteLine("2 + 3 = " + 2 + 3); // 2 + 3 = 23
Console .WriteLine("2 + 3 = " + (2 + 3)); // 2 + 3 = 5

Exercises

1. Write an expression that checks whether an integer is odd or even .

2. Write a Boolean expression that checks whether a given integer is

divisible by both 5 and 7 , without a remainder.

3. Write an expression that looks for a given integer if its third digit (righ t

to left) is 7.

4. Write an expression that checks whether the third bit in a given integer

is 1 or 0.

5. Write an expression that calculates the area of a trapezoid by given

sides a , b and height h .

6. Write a program that prints on the console the perimeter and the area

of a rectangle by given side and height entered by the user.

7. The gravitational field of the Moon is approximately 17% of that on the

Earth. Write a program that calculates the weight of a man on the

moon by a given weight on the Earth.

8. Write an ex pression that checks for a given point {x, y} if it is within

the circle K({0, 0}, R=5) . Explanation: the point {0, 0} is the center of

the circle and 5 is the radius.

9. Write an expression that checks for given point {x, y} if it is within the

circle K({0, 0}, R=5) and out of the rectangle [{ -1, 1}, {5, 5}] .

Clarification: for the rectangle the lower left and the upper right corners

are given.

10. Write a program that takes as input a four - digit number in format abcd

(e.g. 2011) and performs the following action s:

- Calculates the sum of the digits (in our example 2+0+1+1 = 4).

- Prints on the console the number in reversed order: dcba (in our

example 1102).

- Puts the last digit in the first position: dabc (in our example 1201).

- Exchanges the second and the third digits: acbd (in our example

2101).

Chapter 3. Operators and Expressions 161

11. We are given a number n and a position p. Write a sequence of

operations that prints the value of the bit on the position p in the

number (0 or 1). Example: n=35, p=5 -> 1. Another exam ple: n=35,

p=6 -> 0.

12. Write a Boolean expression that checks if the bit on position p in the

integer v has the value 1. Example v=5, p=1 -> false .

13. We are given the number n, the value v (v = 0 or 1) and the position p.

write a sequence of operations that changes the value of n , so the bit on

the position p has the value of v . Example: n=35, p=5, v=0 -> n=3.

Another example: n=35, p=2, v=1 -> n=39.

14. Write a program that checks if a given number n (1 < n < 100) is a

prime number (i.e. it is divisible without remainder only to itself and 1).

15. * Write a program that exchanges the values of the bits on positions

3, 4 and 5 with bits on positions 24, 25 and 26 of a given 32 -bit unsigned

integer.

16. * Write a program that exchanges bits {p, p+1, é, p+k-1} with bits {q,

q+1, é, q+k-1} of a given 32 -bit unsigned integer.

Solutions and Guidelines

1. Take the remainder of dividing the number by 2 and check if it is 0 or

1 (respectively the number is odd or even). Use % operator to calculat e

the remainder of integer division.

2. Use a logical "AND" (&& operator) and the remainder operation % in

division. You can also solve the problem by only one test: the division of

35 (think why).

3. Divide the number by 100 and save it in a new variable, which then

divide by 10 and take the remainder. The remainder of the division by 10

is the third digit of the original number. Check if it is equal to 7.

4. Use bitwise "AND" on the current number and the number that has 1

only in the third bit (i.e. number 8, if bits start counting from 0). If the

returned result is different from 0 the third bit is 1:

int num = 25;
bool bit3 = (num & 8) != 0;

5. The formula for trapezoid surface is: S = (a + b) * h / 2 .

6. Search the Internet for how to read integers from the console and use

the formula for rectangle area calculation. If you have difficulties see

instructions on the next problem.

7. Use the following code to read the number from the console :

1 62 Fundamentals of Computer Programming with C#

Console .Write("Enter number: ");
int number = Convert .ToInt32(Console .ReadLine());

Then multiply by 0.17 and print it.

8. Use the Pythagorean Theorem a2 + b2 = c2. The point is inside the circle

when (x*x) + (y*y) Ò 5*5 .

9. Use the code from the previous task and add a check for the

rectangle . A point is inside a rectangl e with walls parallel to the axes,

when in the same time it is right of the left wall, left of the right wall,

down from the top wall and above the bottom wall.

10. To get the individual digits of the number you can divide by 10 and

take the remainder of the division by 10:

int a = num % 10;
int b = (num / 10) % 10;
int c = (num / 100) % 10;
int d = (num / 1000) % 10;

11. Use bitwise operations :

int n = 35; // 00100011
int p = 6;
int i = 1; // 00000001
int mask = i << p; // Move the 1 - st bit left by p positions

// If i & mask are positive then the p - th bit of n is 1
Console .WriteLine((n & mask) != 0 ? 1 : 0);

12. The task is similar to the previous one.

13. Use bitwise operations by analogy with the previous two problems. You

can reset the bit at position p in the number n as follows:

n = n & (~(1 << p));

You can set bits in the unit at position p in the number n as follows:

n = n | (1 << p);

Think how you can combine the above two hints.

14. Read about loops in the Internet or in the chapter ñLoopsò. Use a loop

and check the number for divisibility by all integers from 1 to the square

root of the number. Since n < 100 , you ca n find in advance all prime

numbers from 1 to 100 and checks the input over them. The prime

Chapter 3. Operators and Expressions 163

numbers in the range [1é100] are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

15. Use 3 times a combination of ge tting and setting a bit at a given

position . The first exchange is given below:

int bit3 = (num >> 3) & 1;
int bit24 = (num >> 24) & 1;
num = num & (~(1 << 24)) | (bit3 << 24);
num = num & (~(1 << 3)) | (bit24 << 3);

16. Extend the solution of the previous problem to perform a sequence of

bit exchanges in a loop . Read about loops in the chapter ñLoopsò.

Chapter 4. Console
Input and Output

In This Chapter

In this chapter we will get familiar with the console as a tool for data input

and output . We will explain what it is, when and how to use it, and how most

programming languages access the console. We will get familiar with some of

the features in C# for user interaction : reading text and numbers from the

console and printing text and numbers . We will also examine the main

streams for input -output operations Console.In , Console.Out and

Console.Error , the Console and the usage of format strings for printing

data in various formats.

What I s the Console?

The Console is a window of the operating system through which users c an

interact with system programs of the operating system or with other console

applications. The interaction consists of text input from the standard input

(usually keyboard) or text display on the standard output (usually on the

computer screen). These ac tions are also known as input - output

operations . The text written on the console brings some information and is a

sequence of characters sent by one or more programs.

For each console application the operating system connects input and output

devices. By d efault these are the keyboard and the screen but they can be

redirected to a file or other devices.

Communication between the User and the Program

A lot of programs communicate in some way with the user. This is necessary

for the user in order to give inst ructions to them. Modern communication

methods are many and various: they can be through graphical or web -

based interface , console or others. As we mentioned one of the tools for

communication between programs and users is the console, which is

becoming le ss and less used. This is because the modern user interface

concepts are more convenient and intuitive to work with, from a user ôs

perspective.

166 Fundamentals of Computer Programming with C#

When to Use the Console?

In some cases the console remains an irreplaceable tool for communication

with the user . One of these cases is when writing small and simple

programs where it is necessary to focus the attention on the specific problem

to be solved, rather than the elegant representation of the result to the user.

Then a simple solution is used for entering or printing a result, such as input -

output console. Another use case is when we want to test a small piece of

code for a larger application. Due to simplicity of the operation of the console

application we can isolate this part of the code easily and comfo rtably without

having to go through a complex user interface and a number of screens to get

to the desired code for testing.

How to Launch the Console?

Each operating system has its own way to launch the console. On Windows for

example, it can be done in t he following way:

Start - > (All) Programs - > Accessories - > Command Prompt

After starting the console a black screen (this color can be changed) like th e

following should appear:

When starting the console the home directory of the current user (in this c ase

the username is nakov) is used as a current directory and this is displayed as

a guide for the user.

Console can be launched through pressing the Start button

and typing " cmd" in the search box and pressing [Enter] (on

Windows Vista, Windows 7 and later). For Windows XP, go

through the sequence Start -> Runé - >, type in " cmd" and

press [Enter].

For simplified visualization of the results from now on in this chapter instead

of a console screenshot we will use the form:

Results from console

Chapter 4. Console Input and Output 167

More about Consoles

The system console is the black window shown above which displays text

information . It can display text strings and has a cursor, which moves to the

right after each character is printed. After the cursor passes through the last

column of the console (usually it has 80 columns), it moves to the beginning

of the next line. If the cursor passes through the last line, the console scrolls

its content upwards and shows a new empty line below the last line.

Programs in Windows can be console -based, desktop -based, Web -based and

other. The console - based programs use the console for their input and

output. The desktop -based programs use graphical u ser interface (GUI). The

Web -based programs have Web -based user interface. In this book we will

write console -based programs almost all the time, so their input will be read

from the keyboard and their output will be printed in the console.

Some console -based programs expect the users to enter text, numbers and

other data, and this is usually done through the keyboard .

The console in Windows is often associated with the system command

interpreter , also called the " Command Prompt " or " shell " or which is a

console -based program in the operating system, which provides access to

system commands as well as a wide range of programs, which are part of the

operating system or are additionally installed to it.

The word " shell " means "wrap" and has a meaning of a wrap per between the

user and the inside of the operating system.

The so called operating system "shells" can be split into two main categories

according to the type of interface they can provide to the operating system:

- CLI ï Command Line Interface ï is a cons ole for commands (such as

cmd.exe in Windows and bash in Linux).

- GUI ï Graphical User Interface ï is a graphical work environment (such

as Windows Explorer).

For both types the main purpose of the shell is to run other programs with

which the user works although most of the interpreters also support some

advanced features such as the opportunity to examine the content of

directories with files.

Each operating system has its own command interpreter that

has its own commands.

For example, when starting Windows console, we run the so -called Windows

command interpreter in it (cmd.exe) that executes system programs and

commands in interactive mode. For example, the command dir shows the

files in the current directory:

168 Fundamentals of Computer Programming with C#

Basic Cons ole Commands

We will take a look at some basic commands in the Windows standard

command prompt , which is useful for finding and launching programs.

Windows Console Commands

The command interpreter running in the console is also called " Command
Prompt" or " MS- DOS Prompt" (in older versions of Windows). We will take a

look at some basic commands for this interpreter:

Command Description

dir Displays the content of the current directory.

cd <directory name> Changes the current directory.

mkdir <directory name> Creates a new directory in the current one.

rmdir <directory name> Deletes an existing directory.

type <file name> Prints file content.

copy <src file>
<destination file>

Copies one file into another.

Here is an example of multiple commands executed in the Windows command

shell. The result of the commandsô execution is displayed on the console:

C:\ Documents and Settings \ User1>cd "D: \ Project2009 \ C# Book"

C:\ Documents and Settings \ User1>D:

Chapter 4. Console Input and Output 169

D:\ Project2008 \ C# Book>dir
 Volume in drive D has no label.
 Volume Serial Number is B43A - B0D6

 Directory of D: \ Project2009 \ C# Book

26.12.2009 12:24 <DIR> .
26.12.2009 12:24 <DIR> ..
26.12.2009 12:23 537 600 Chapter - 4- Console - Input -
Output.doc
26.12.2009 12:23 < DIR> Test Folder
26.12.2009 12:24 0 Test.txt
 2 File(s) 537 600 bytes
 3 Dir(s) 24 154 062 848 bytes free

D:\ Project2009 \ C# Book>

Standard Input - Output

The standard input -output also known as " St andard I/O " is a system input -

output mechanism created since the UNIX operating systems was developed

many years ago. Special peripheral devices for input and output are used,

through which data can be input and output.

When the program is in mode of accep ting information and expects action by

the user, there is a blinking cursor on the console showing that the system is

waiting for command entering.

Later we will see how we can write C# programs that expect input data to be

entered from the console.

Printi ng to the Console

In most programming languages printing and reading the information from

the console is implemented in similar ways and the most of the solutions are

based on the concept of " standard input " and " standard output ".

Standard Input and Standa rd Output

The operating system is required to define standard input - output

mechanisms for user interaction. When starting a given console program,

system code running at the initialization of the program is responsible for

opening (closing) of streams to the allocated by the operating system

mechanisms for input -output. This system code in itializes the program

abstraction for user interaction embedded in the respective programming

language. In this way, the application started can automatically read the user

170 Fundamentals of Computer Programming with C#

input from the standard input stream (in C# this is Console.In), print

information on the standard output stream (in C# this is Console.Out) and

can signal for problem situations in the standard error stream (in C# this is

Console.Error).

The concept of the streams will be later examined in details. For now we will

focus on the theoretical basis related to the program input and output in C#.

Devices for Console Input and Output

Besides the keyboard an application input can come from many other places,

such as file, microphone, barcode reader and others. The output of a

program ma y be on the console (on the screen), as well as in a file or another

output device, such as a printer:

We will show a basic example that illustrates text printing to the console

through the abstraction for access ing the standard input and standard output

provided to us by C#:

Console .Out.WriteLine("Hello World");

The result of the above code execution would be the following:

Hello World

Console.Out Stream

System.Console class has different properties and methods (classes are

considered in details in the chapter " Creating and Using Objects ") which are

used to read and display text on the console as well as its formatting. Among

them there are three properties that make impression and they are related to

data entering and displaying, namely the Console.Out , Console.In and

Console.Error . They p rovide access to the standard streams for printing on

the console, for reading from the console and to the error messages reporting

stream accordingly. Although we could use them directly, the other methods

of System.Console give us the convenience for wor king with input -output

console operations and actually most often these properties are ignored.

However it is good to remember that this part of the console functionality is

working on these streams. If needed, we can replace the default input /

output / e rror streams at runtime by using the methods Console.SetOut(ƛ) ,

Console.SetIn(ƛ) and Console.SetError(ƛ) respectively .

Chapter 4. Console Input and Output 171

Now we will examine the most commonly used methods for text printing on

the console.

Using Console.Write(é) and Console.WriteLine(é)

Work with these methods is easy because they can print all the basic types

(string, numeric and primitive types).

Here are some examples of printing various types of data:

// Print String
Console .WriteLine("Hello World");

// Print int
Console .WriteLine(5);

// Print double
Console .WriteLine(3.14159265358979);

The result of this code execution looks like this:

Hello World
5
3. 14159265358979

As we see by using #ÏÎÓÏÌÅƚ7ÒÉÔÅ,ÉÎÅƽƛƾ it is possible to print various data

types because for each type there is a predefined version of the

method 7ÒÉÔÅ,ÉÎÅƽƛƾ in the Console class.

The difference between 7ÒÉÔÅƽƛƾ and 7ÒÉÔÅ,ÉÎÅƽƛƾ is that the 7ÒÉÔÅƽƛƾ

method prints on the console what it is pr ovided between the parentheses but

does nothing in addition while the method 7ÒÉÔÅ,ÉÎÅƽƛƾ means directly

ñwrite lineò. This method does what the 7ÒÉÔÅƽƛƾ one does but in addition

goes to a new line. In fact the method does not print a new line but simply

puts a ñcommandò for moving cursor to the position where the new line

starts (this command consists of the character \ r followed by \ n) .

Here is an example, which illustrates the difference between 7ÒÉÔÅƽƛƾ and

7ÒÉÔÅ,ÉÎÅƽƛƾ:

Console .WriteLine("I love");
Console .Write("this ");
Console .Write("Book!");

The output of this example is:

I love
this Book!

172 Fundamentals of Computer Programming with C#

We notice that the output of this example is printed on two lines, even though

the code is on three. This happens because on the first line of code we use

WrÉÔÅ,ÉÎÅƽƛƾ which prints " I love " and then goes to a new line. In the next

two lines of the code uses the Write ƽƛƾ method, which prints without going

on a new line and thus the words " this " and " Book! " remain on the same

line.

Concatenation of Strings

In general C# does not allow the use of operators over string objects. The

only exception to this rule is the addition operation (+) which concatenates

(joins) two strings and returns as result a new string. This allows chaining

of concatenate (+) operations one after another in a sequence. The next

example represents concatenation of three strings.

string age = "twenty six" ;
string text = "He is " + age + " years old." ;
Console .WriteLine(text);

The result of this code execution is again a string:

He is twenty six years old.

Concatenation of Mixed Types

What happens when we want to print larger and more complex text, which

consists of different types? Until now we used versions of the method

7ÒÉÔÅ,ÉÎÅƽƛƾ for a specific type. Is it necessary when we want to print

different types at once to use different versions of the method 7ÒÉÔÅ,ÉÎÅƽƛƾ
for each of these types? The answer to this question is ñnoò because in C# we

can unite text and other data (for instance, numeric) by using the " +"

operator. The followi ng example is like the previous but in it the years (age)

are from integer type:

int age = 26;
string text = "He is " + age + " years old." ;
Console .WriteLine(text);

In the example is concatenation and printing on the screen performed. The

result of the example is the following:

He is 26 years old.

On the second line of the example code we see that a concatenation of the

string " He is " and the integer type " age" is performed. We are trying to

combine two different types . This is possible because of the presence of

the following important rule.

Chapter 4. Console Input and Output 173

When a string is involved in concatenation with any other

type the result is always a string.

From the rule it is clear that the result of "He is " + age is again a string and

then the result is added to the last part of the expression " years old." . So

after calling a chain of + operators ultimately the result is a string and thus

the string version of the method 7ÒÉÔÅ,ÉÎÅƽƛƾ is invoked.

For short the abo ve example can be written as follows:

int age = 26;
Console .WriteLine ("He is " + age + " years old.");

Some Features of String Concatenation

There are some interesting situations with concatenation (addition) of strings

that you need to know and be careful about because they lead to errors. The

following example represents a surprising behavior of the code:

string s = "Four: " + 2 + 2;
Console .WriteLine(s);
// Four: 22

string s1 = "Four: " + (2 + 2);
Console .WriteLine(s1);
// Four: 4

As seen from the example the operatorsô execution order (see chapter

"Operator and Expressions ") is of great importance! In our example first the

concatenation of " Four: " to " 2" is performed and the result of the

operation is string . After that, another concatenation with the second

number is performed and the obtained unexpected result is " Four: 22 "

instead of the expected " Four: 4 ". This is because the operations are

performed from left to right and in this scen ario a string participates in each

of them.

In order to avoid this unpleasant situation we can use parentheses that will

change the order of operatorsô execution can be used to achieve the desired

result. Parentheses are operators with highest priority and make the

execution of the operation "addition" of the two numbers happen before the

concatenation with the string on the left. Thus first the addition of the two

numbers is done and then they are concatenated with the string.

This mistake is very common f or beginner programmers because they do not

consider that string concatenation is performed from left to right because the

addition of numbers is of the same priority than as concatenation.

174 Fundamentals of Computer Programming with C#

When you concatenate strings and also sum numbers, use

parentheses to specify the correct order of operations.

Otherwise they are executed from left to right.

Formatted Output with Write(é) and WriteLine(é)

For printing long and elaborate series of elements, special options (also

known as overloads) of the me thods 7ÒÉÔÅƽƛƾ and 7ÒÉÔÅ,ÉÎÅƽƛƾ have been

introduced. These options have a completely different concept than the

standard methods for printing in C#. Their main idea is to adopt a special

string, formatted with special formatting characters and list of val ues, which

should be substituted in place of ñthe format specifiersò. Here is how

7ÒÉÔÅƽƛƾ is defined in the standard C# libraries:

public static void Write(string format, object arg0,
 object arg1, object arg2, object arg3, ƛƾ;

Formatted Output ï Examples

The following example prints twice the same thing but in different ways:

string str = "Hello World!" ;

// Print (the normal way)
Console .Write(str);

// Print (through formatting string)
Console .Write("{0}" , str);

The result of this example execution is:

Hello World!Hello World!

We see as a result " Hello, World! " twice on one line. This is because there

is no printing of a new line in the program.

First we print the string in a well - known way in order to see the difference

with the other approach. The second printing is the formatting 7ÒÉÔÅƽƛƾ and

the first argument is the format string. In this case {0} means to put the first

argument after the for matting string in the place of {0} . The expression {0}

is called a placeholder , i.e. a place that will be replaced by a specific value

while printing.

The next example will further explain th is concept:

string name = "John" ;
int age = 18;

Chapter 4. Console Input and Output 175

string town = "Seattle" ;
Console .Write(
 "{0} is {1} years old from {2}! \ n" , name, age, town);

The result of this example execution is as follows:

John is 18 years old from Seattle!

From the signature of this 7ÒÉÔÅƽƛƾ version we saw that the first argument is

the format string. Following is a series of arguments, which are placed where

we have a number enclosed in curly brackets. The expression {0} means to

put in its place the first of the arguments submitted after the format string

(in this case name) . Next is {1} which means to replace with the second of

the arguments (age) . The last placeholder is {2} , which means to replace with

the next parameter (town). Last is \ n, which is a special character that

indicates movin g to a new line.

It is appropriate to mention that actually the new line command on Windows

is \ r \ n, and on Unix - based operating systems ï \ n. When working with

the console it does not matter that we use only \ n because the standard input

stream considers \ n as \ r \ n but if we write into a file, for example, using only

\ n is wrong (on Windows).

Composite Formatting

The methods for formatted output of the Console class use the so -called

composite formatting feature . The composite formatting is used for

consol e printing as well as in certain operations with strings. We examined the

composite formatting in the simplest of its kind in the previous example but it

has significantly bigger potential than what we have seen so far. Basically the

composite formatting u ses two things: composite formatting string and

series of arguments , which are replaced in certain places in the string.

Composite Formatting String

The composite formatting string is a mixture of normal text and formatting

items . In formatting the normal text remains the same as in the string and

the places of formatting items are replaced by the values of the respective

arguments printed according to certain rules. These rules are specified using

the syntax of formatting items.

Formatting Items

The format ting items provide the possibility for powerful control over the

displayed value and therefore can obtain very complicated form. The following

formation scheme represents the general syntax of formatting items :

{index[,alignment][:formatString]}

176 Fundamentals of Computer Programming with C#

As we not ice the formatting item begins with an opening curly bracket { and

ends with a closing curly bracket } . The content between the brackets is

divided into three components of which only the index component is

mandatory. Now we will examine each of them separ ately.

Index Component

The index component is an integer and indicates the position of the

argument from the argument list. The first argument is indicated by " 0", the

second by " 1", etc. The composite formatting string allows having multiple

formatting it ems that relate to one and same argument. In this case index

component of these items is one and the same number. There is no restriction

on the sequence of argumentsô calling. For example, we could use the

following formatting string:

Console .Write(
 "{1} is {0} years old from { 3}!" , 18, "John" , 0, "Seattle");

In cases where some of the arguments are not referenced by any of the

formatting items, those arguments are simply ignored and do not play a role.

However it is good to remove such arguments from the list of arguments

because they introduce unnecessary complexity and may lead to confusion.

In the opposite case , when a formatting item refers an argument that does

not exist in the list of arguments , an exception is thrown . This may occur,

for example, if we have formatting placeholder {4} and we submitted a list of

only two arguments.

Alignment Component

The alignment component is optional and indicates the string alignment . It

is a positive or negative integer and the positive values indicate alignment

to the right and the negative ï alignment to the left. The value of the number

indicates the number of positions in which to align the number. If the string

we want to represe nt has a length greater than or equal to the value of the

number, then this number is ignored. If it is less, however, the unfilled

positions are filled in with spaces.

For example, letôs try the following formatting:

Console .WriteLine("{0,6}" , 123);
Console .WriteLine("{0,6}" , 1234);
Console .WriteLine("{0,6}" , 12);
Console .Write("{0, - 6}" , 123);
Console .WriteLine(" -- end");

It w ill output the following result:

 123

Chapter 4. Console Input and Output 177

 1234
 12
123 -- end

If we decide to use the alignment component, we must separate it from the

index component by a comma as it is done in the example above.

The "formatString" Component

This component specifies the specific formatting of the string. It varies

depending on the type of argument. There are three main types of

formatString components:

- for numerical types of arguments

- for arguments of type date (DateTime)

- for arguments of type enumeration (listed types)

Format String Components for Numbers

This type formatString component has two subtypes: standard -defined

formats and user -defined formats (custom format strings).

Standard Formats for Numbers

These formats are defined by one of several format specifiers , which are

letters with particular importance. After the format specifier there can be a

positive integer called precision , which has a different meaning for the

different specifiers. When it affects the number of decimal places after the

decimal point, the result is rounded. The following table describes specifiers

and their precision meaning:

Specifier Description

"C" or "c"

Indicates the currency and the result will be displayed

along with the currency sign for the current ñcultureò

(for example, English). The precision indicates the

number of decimal places after the decimal point.

"D" or "d"

An integer number . The precision indicates the

minimum number of characters for representing the

string and, if necessary, zeroes are supplemented in the

beginning.

"E" or "e"
Exponential notation . The precision indicates the

number of places after the decimal point.

"F" or "f"
Integer or decimal number . The precision indicates

the number of signs after the decimal point.

178 Fundamentals of Computer Programming with C#

"N" or "n"

Equivalent to "F" but represents also the corresponding

separator for thousands, millions, etc. (for example, in

the English language often the number " 1000" is

represented as " 1,000 " ï with comma between the

number 1 and the zeroes).

"P" or "p"
Percentage: it w ill multiply the number by 100 and will

display the percent character upfront . The precision

indicates the number of signs after the decimal point.

"X" or "x"

Displays the number in hexadecimal numeral system.

It works only for integer numbers. The precision

indicates minimum numbers of signs to display the

string as the missing ones are supplemented with zeroes

at the beginning.

Part of the formatting is determined by the current ñcultureò settings ,

which are taken by default from the regional settings of the operating system.

"The cultures" are set of rules that are valid for a given language or a given

country and that indicate which character is to be used as decimal separator,

how the cu rrency is displayed, etc. For example, for the Japanese "culture"

the currency is displayed by adding " ʞ" after the amount, while for the

American "culture", the character "$" is displayed before the amount. For

Bulgarian currency is suffixed by " ɝɔƚ".

St andard Formats for Numbers ï Example

Letôs see a few examples of usage of the specifiers represented in the table

above . In the code below we assume the regional settings are Bulgarian so

the currency will be printed in Bulgarian , the decimal separator wil l be " , " and

the thousands separator will be space (the regional settings can be changed

from Control Panel in Windows):

StandardNumericFormats.cs

class StandardNumericFormats
{
 static void Main()
 {
 Console .WriteLine("{0:C2}" , 123.456);
 //Output: ʦʧʨƗʩʫ ɝɔƚ
 Console .WriteLine("{0:D6}" , - 1234);
 //Output: - 001234
 Console .WriteLine("{0:E2}" , 123);
 //Output: 1,23 E+002
 Console .WriteLine("{0:F2}" , - 123.456);
 //Output: - 123,46

Chapter 4. Console Input and Output 179

 Console .WriteLine("{0:N2}" , 1234567.8);
 //Output: 1 234 567,80
 Console .WriteLine("{0:P}" , 0.456);
 //Output: 45,60 %
 Console .WriteLine("{0:X}" , 254);
 //Output: FE
 }
}

If we run the same code with English (United States) culture, the output will

be as follows:

$123.46
- 001234
1.23E+002
- 123.46
1,234,567.80
45.60 %
FE

Custom Formats for Numbers

All formats that are not standard are assigned to the user (custom) formats.

For the custom formats are again defined a set of specifiers and the

difference with the standard formats is that a number of specifiers can be

used (in standard formats only a single specifier is used). The following table

lists various specifiers and their meaning:

Specifier Description

0
Indicates a digit. If at this position of the result a digit is

missing, a zero is written instead.

Indicates a digit. Does not print anything if at this

position in the result a digit is missing.

. Decimal separator for the respective ñcultureò.

, Thousands separator for the respective ñcultureò.

%
Multiplies the result by 100 and prints the character for

percent.

E0 or E+0 or E- 0

Indicates an exponential notation. The number of zeroes

indicates the number of signs of the exponent. The sign

"+" means that we always want to represent also the

number ôs sign while minus means to display the sign

only if the value is negative.

180 Fundamentals of Computer Programming with C#

There are many characteristics regarding the use of custom formats for

numbers, but they will not be discussed here . You may find more information

in MSDN . Here are some simple examples that illustrate how to use custom

formatting strings (the output is given for the U.S. culture) :

CustomNumericFormats.cs

class CustomNumericFormats
{
 static void Main()
 {
 Console .WriteLine("{0:0.00}" , 1);
 //Output: 1 . 00
 Console .WriteLine("{0:#.##}" , 0.234);
 //Output: . 23
 Console .WriteLine("{0:#####}" , 12345.67);
 //Output: 12346
 Console .WriteLine("{0:(0#) ### ## ##}" , 29342525);
 //Output: (02) 934 25 25
 Console .WriteLine("{0:%##}" , 0.234);
 //Output: %23
 }
}

Format String Components for Dates

When formatting dates we again have separation of standard and custom

formats.

Standard Defined Date Formats

Since the standard defined formats are many we will list only few of them.

The rest can be easily checked on MSDN.

Specifier Format (for English (United States) "culture")

d 2/27/2012

D February 27, 2012

t 17:30 (hour)

T 17:30:22 (hour)

Y or y February 2012 (only month and year)

Custom Date Formats

Similar to custom formats for numbers here we have multiple format

specifiers and we can combine several of them. Since here are many

Chapter 4. Console Input and Output 181

specifiers we will show only some of them, which we will use to demonstrate

how to use custom formats for dates . Consider the following table:

Specifiers Format (for English (United States) "culture")

d Day ï from 1 to 31

dd Day ï from 0 1 to 31

M Month ï from 1 to 12

MM Month ï from 0 1 to 12

yy The last two digits of the year (from 00 to 99)

yyyy Year written in 4 digits (e.g. 2012)

hh Hour ï from 00 to 11

HH Hour ï from 00 to 23

m Minutes ï from 0 to 59

mm Minutes ï from 00 to 59

s Seconds ï from 0 to 59

ss Seconds ï from 00 to 59

When using these specifiers we can insert different separators between the

different parts of the date, such as " . " or " / ". Here are few examples:

DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);
Console .WriteLine("{0:dd/MM/yyyy HH:mm:ss}" , d);
Console .WriteLine("{0:d.MM.yy}" , d);

Execution of these examples gives the following result for the U.K. culture:

27/02/2012 17:30:22
27.02.12

Note that the result can vary depending on the current culture. For example if

we run the same code in the Bulgarian culture, the result will be different :

27.02.2012 17:30:22
27.02.12

Format String Enumeration Components

Enumerations (listed types) are data types that can take as value one of

several predefined possible values (e.g. the seven days of the week). We will

examine them in details in the chapter " Defining Classes ".

182 Fundamentals of Computer Programming with C#

In enumerations there is very little to be formatted. Four standard format

specifiers are defined:

Specifier Format

G or g Represents enumeration as a string.

D or d Represents enumeration as a number.

X or x
Represents enumeration as a number in hexadecimal

numeral system and with eight digits.

Here are some examples:

Console .WriteLine("{0:G}" , DayOfWeek.Wednesday);
Console .WriteLine("{0:D}" , DayOfWeek.Wednesday);
Console .WriteLine("{0:X}" , DayOfWeek.Wednesday);

While executing the above code we get the following result:

Wednesday
3
00000003

Formatting Strings and Localization

When using format strings it is possible one and same program to print

different values depending on the localization settings for the operating

system. For example, when printing the month from a given date if the

current localization is English it will print in English, for example ñAugustò,

while if the localization is French it will print in French, for example " Ao¾t".

When launching a console application it automatically retrieves the operating

system localization (culture settings) and uses it for reading and writing

formatted data (like numbers, dates, currency, etc.).

Localization in .NET is also called "culture" and can be changed manually by

the class System.Globalization.CultureInfo . Here is an example in which

we print a number and a date by the U.S. and Bulgarian localization:

CultureInfoExample.cs

using System;
using System.Threading;
using System.Globalization;

class CultureInfoExample
{
 static void Main()

Chapter 4. Console Input and Output 183

 {
 DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);

 Thread .CurrentThread.CurrentCulture =
 CultureInfo .GetCultureInfo("en - US");
 Console .WriteLine("{0:N}" , 1234.56);
 Console .WriteLine("{0:D}" , d);

 Thread .CurrentThread.CurrentCulture =
 CultureInfo .GetCultureInfo("bg - BG");
 Console .WriteLine("{0:N}" , 1234.56);
 Console .WriteLine("{0:D}" , d);
 }
}

When starting the example the following result is obtained:

1,234.56
Monday, February 27, 2012
1 234,56
ʧʬ Ȳɗɔɢɥɒɢɚ ʧʣʦʧ ɕƚ

Console Input

As in the beginning of th is chapter we explained, the most suitable for small

applications is the console communication because it is easiest to implement.

The standard input device is the part of the operating system that controls

from where the program will receive its input data. By defa ult "the standard

input device" reads its input from a driver "attached" to the keyboard. This

can be changed and the standard input can be redirected to another location,

for example to a file, but this is rarely done.

Each programming language has a mech anism for reading and writing to the

console. The object that controls the standard input stream in C#, is

Console.In .

From the console we can read different data:

- text;

- other types after parsing the text;

Actually for reading the standard input stream Console.In is rarely used

directly. The class Console provides two methods Console.Read() and

Console.ReadLine() that run on this stream and usually reading from the

console is done by them.

184 Fundamentals of Computer Programming with C#

Reading through Console.ReadLine()

The method Console.ReadLine() provides great convenience for reading

from console. How does it work? When this method is invoked, the program

prevents its work and wait for input from the console. The user enters some

string on the console and presses the [Enter] key. At this moment th e

console understands that the user has finished entering and reads the string.

The method Console.ReadLine() returns as result the string entered by the

user. Now perhaps it is clear why this method has this name .

The following example demonstrates the op eration of Console.ReadLine() :

UsingReadLine.cs

class UsingReadLine
{
 static void Main()
 {
 Console .Write("Please enter your first name: ");
 string firstName = Console .ReadLine();

 Console .Write("Please enter your last name: ");
 string lastName = Console .ReadLine();

 Console .WriteLine("Hello, {0} {1}!" , firstName, lastName);
 }
}

// Output: Please enter your first name: John
// Please enter your last name: Smith
// Hello, John Smith!

We see how easy it is to read text from the console by using the method

Console.ReadLine() :

- We print some text in the console, which asks for a user name (this is

only for the convenience of the user and is not obligatory).

- We execute reading of an entire line from the console using the method

ReadLine() . This leads to blocking the program until the user enters

some text and presses [Enter].

- Then we repeat these two steps for the last name.

- Once we have gathered the necessary information we print it on the

console.

Chapter 4. Console Input and Output 185

Reading through Console.Read()

The method Read() behaves slightly different than ReadLine() . As a

beginning it reads only one character and not the entire line. The other

significant difference is that the method do es not return directly the read

character but its code. If we want to use the result as a character we must

convert it to a character or use the method Convert.ToChar() on it. There is

one important characteristic: the character is read only when the [Ente r]

key is pressed . Then the entire string written on the console is transferred to

the buffer of the standard input string and the method Read() reads the first

character of it. In subsequent invocations of the method if the buffer is not

empty (i.e. there are already entered in but still unread characters) then the

program execution will not stop and wait, but will directly read the next

character from the buffer and thus until the buffer is empty. Only then the

program will wait again for a user input if Read() is called again. Here is an

example:

UsingRead.cs

class UsingRead
{
 static void Main()
 {
 int codeRead = 0;
 do
 {
 codeRead = Console .Read();
 if (codeRead != 0)
 {
 Console .Write((char)codeRead);
 }
 }
 while (codeRead != 10);
 }
}

This program reads one line entered by the user and prints it character by

character . This is possible due to a small trick ï we are previously aware that

the [Enter] key actually enters two characters in the buffer. These are the

"carriage return " code (Unicode 13) followed by the " linefeed " code

(Unicode 10). In order to understand that one line is finished we are looking

for a character with code 10 in the Unicode table . Thus the program reads

only one line and exits the loop .

We should mention that the method Console.Read() is rarely used in

practice if there is an alternative to use Console.ReadLine() . The reason for

this is that the possibility of mistaking with Console.Read() is much greater

186 Fundamentals of Computer Programming with C#

than if we choose an alternative approach and the code will most likely be

unnecessarily complicated.

Reading Numbers

Reading numbers from the console in C# is not done directly . In order to

read a number we should have previously read the input as a string (using

ReadLine()) and then convert this string to a number. The operation of

converting a string into another type is called parsing . All pr imitive types

have methods for parsing. We will give a simple example for reading and

parsing of numbers:

ReadingNumbers.cs

class ReadingNumbers
{
 static void Main()
 {
 Console .Write("a = ");
 int a = int .Parse(Console .ReadLine());

 Console .Write("b = ");
 int b = int .Parse(Console .ReadLine());

 Console .WriteLine("{0} + {1} = {2}" , a, b, a + b);
 Console .WriteLine("{0} * {1} = {2}" , a, b, a * b);

 Console .Write("f = ");
 double f = double .Parse(Console .ReadLine());
 Console .WriteLine("{0} * {1} / {2} = {3}" ,
 a, b, f, a * b / f);
 }
}

The result of program execution might be as follows (provided that we enter

5, 6 and 7.5 as input):

a = 5
b = 6
5 + 6 = 11
5 * 6 = 30
f = 7 . 5
5 * 6 / 7 . 5 = 4

In this particular example the specific thing is that we use parsing methods

of numerical types and when wrong a result is passed (such as text) this

Chapter 4. Console Input and Output 187

will cause an error (exception) System.FormatException . This is especially

true when reading real numbers, because the delimiter used between the

whole and fractional part is different in various cultures and depends on

regional settings of the operating system.

The separator for floating point numbers depends on the

current language settings of the operatin g system (Regional

and Language Options in Windows). In some systems as

separator the character comma can be used, in others ï point

(dot). Entering a point (dot) instead of a comma will cause

System.FormatException when the current language settings

use c omma.

The exceptions as a mechanism for reporting errors wi ll be discussed in the

chapter "Exception Handling ". For now you can consider that when the

program provides an error this is associated with the o ccurrence of an

exception that prints detailed information about the error on the console. For

example, letôs suppose that the regional settings of the computer are

Bulgarian and we execute the following code:

Console .Write("Enter a floating - point number: ");
string line = Console .ReadLine();
double number = double .Parse(line);
Console .WriteLine("You entered: {0}" , number);

If we enter the number "3.14" (with a wrong decimal separator for the

Bulgarian settings) we will get the following exception (error message):

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
 at System.Number.StringToNumber(String str, NumberStyles
options, NumberBuffer& number, NumberFormatInfo info, Boolean
parseDecimal)
 at System.Number.ParseDouble(String value, NumberStyles
options, NumberFormatInfo numfmt)
 at System.Double.Parse(String s, NumberStyles style,
NumberFormatInfo info)
 at System.Double.Parse(String s)
 at ConsoleApplication.Program.Main() in
C:\ Projects \ Intro CSharpBook\ ConsoleExample \ Program.cs:line 14

Parsing Numbers Conditionally

When parsing a string to a number using the method Int32.Parse(string)

or by Convert.ToInt32(string) if the submitted string is not a number we

188 Fundamentals of Computer Programming with C#

get an exception. Sometimes it is ne cessary to catch the failed parsing and to

print an error message or to ask the user to enter in a new value.

Interception of an incorrectly entered number when parsing a sting can be

done in two ways:

- by catching exceptions (see the chapter "Exception Handling ");

- by conditional parsing (using the method 4ÒÙ0ÁÒÓÅƽƛƾ).

Letôs consider the conditional parsing of numbers in .NET Framework. The

method)ÎÔʨʧƚ4ÒÙ0ÁÒÓÅƽƛƾ accepts two parameters ï a parsing string and a

variable to record the result of parsing. If the parsing is successful the method

returns value true . For greater clarity, letôs consider an example:

string str = Console.ReadLine();
int intValue;
bool parseSuccess = Int32.TryParse(str, out intValue);
Console.WriteLine(parseSuccess ?
 "The square of the number is " + intValue * intValue + " . "
 : "Invalid number!");

In the example, conditional parsing of a string entered from the console to the

integer type Int32 is performed. If we enter as input " 2", parsing will be

successful so the result of TryParse() will be true , and the parsed number

will be recorded in the variable intValue and on the console the squared

number will be printed:

Result: The square of the number is 4.

If we try to parse an invalid number such as "abc", TryParse() will return

false as a result and the user that will be notified that he has entered an

invalid number:

Invalid number!

Note that the method TryParse() as a result of its work returns

simultan eously two values : the parsed number (as an output parameter)

and a Boolean value as a result of the method invocation. Returning multiple

values at once is possible because one of the values is returned as an output

parameter (out parameter). The output parameters return value in a

predefined for the purpose variable coinciding with their type. When calling a

method the output parameters must be preceded by the keyword out .

Reading by Console.ReadKey()

The method Console.ReadKey() waits for key pressing on the console and

reads its character equivalent without the need of pressing [Enter] . The

result of invoking ReadKey() is information about the pressed key (or

Chapter 4. Console Input and Output 189

more accurately a key combination) as an object of type ConsoleKeyInfo .

The obtained object contains the character that is entered by the pressed key

combination (property KeyChar) along with information about the keys

[Shift], [Ctrl] and [Alt] (property Modifiers). For example, if we press

[Shift+A] we will read a capital le tter ' A' while in the Modifiers property we will

have the Shift flag. Here is an example:

ConsoleKeyInfo key = Console .ReadKey();
Console .WriteLine();
Console .WriteLine("Character entered: " + key.KeyChar);
Console .WriteLine("Special keys: " + key.Modifiers);

If we execute the program and press [Shift+A] , we will obtain the following

result:

A
Character entered: A
Special keys: Shift

Simplified Reading of Numbers through Nakov.IO.Cin

There is no standard easy way to read several numbers, located on the same

line, separated by a space. In C# and .NET Framework we need to read a

string, split it into tokens using the space as separator and parse the obtained

tokens to extract the numbers. In other languages and platforms like C++ we

can dire ctly read numbers, characters and text from the console without

parsing. This is not available in C# but we can use an external library or class.

The standard library Nakov.IO.Cin provides a simplified way to read

numbers from the console. You can read about it from the blog of its author

Svetlin Nakov: http://www.nakov.com/blog/2011/11/23/cin -class - for -csharp -

read - from -console -nakov - io-cin / . Once we have copied the file Cin.cs from

Nakov.IO.Cin into our Visual Studio C# project, we could write code like this:

using Nakov.IO;
ƛ
int x = Cin .NextInt();
double y = Cin .NextDouble();
decimal d = Cin .NextDecimal();
Console .WriteLine("Result: {0} {1} {2}" , x, y, d);

If we execute the code, we can enter 3 numbers by putting any amount of

whitespace separators between them. For example we can enter the first

number, two spaces, the second number, a new line + space and the last

number + space. The n umbers will be read correctly and the output will

be as follows:

http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/
http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/

190 Fundamentals of Computer Programming with C#

3 2.5
 3.58
Result: 3 2.5 3.58

Console Input and Output ï Examples

We will consider few more examples of console input and output that will

show us some interesting techniques.

Printing a Letter

Next is a practical example representing console input and formatted text in

the form of a letter:

PrintingLetter.cs

class PrintingLetter
{
 static void Main()
 {
 Console .Write("Enter person name: ");
 string person = Console .ReadLine();

 Console .Write("Enter book name: ");
 string book = Console .ReadLine();

 string from = "Authors Team" ;

 Console .WriteLine(" Dear {0}," , person);
 Console .Write("We are pleased to inform " +
 "you that \ "{1} \ " is the best Bulgarian book. {2}" +
 "The authors of the book wish you good luck {0}!{2}" ,
 person, book, Environment .NewLine);

 Console .WriteLine(" Yours,");
 Console .WriteLine(" {0}" , from);
 }
}

The result of the execution of the above program could be the following:

Enter person name: Readers
Enter book name: Introduction to programming with C#
 Dear Readers,
We are pleased to inform you that "Introduction to programming

Chapter 4. Console Input and Output 191

with C#" is the best Bulgarian book.
The authors of the book wish you good luck Readers!
 Yours,
 Authors Team

In this example we have a letter template. The program "asks" a few

questions to the user and reads from the console information needed to print

the letter by replacing the formatting specifiers with the data filled in by the

user.

Area of a Rectangle or a Triangle

We will consider another example: calculating of an area of a rectangle or a

triangle.

CalculatingArea.cs

class CalculatingArea
{
 static void Main()
 {
 Console .WriteLine("This program calculates " +
 "the area of a rectangle or a triangle");

 Console .WriteLine("Enter a and b (for rectangle) " +
 "or a and h (for triangle): ");

 int a = int .Parse(Console .ReadLine());
 int b = int .Parse(Console .ReadLine());

 Console .WriteLine("Enter 1 for a rectangle or " +
 "2 for a triangle: ");

 int choice = int .Parse(Console .ReadLine());
 double area = (double) (a * b) / choice;
 Console .WriteLine("The area of your figure is " + area);
 }
}

The result of the above example ôs execution is as follows:

This program calculates the area of a rectangle or a triangle
Enter a and b (for rectangle) or a and h (for triangle):
5
4

192 Fundamentals of Computer Programming with C#

Enter 1 for a rectangle or 2 for a triangle:
2
The area of your figure is 10

Exercises

1. Write a program that reads from the console three numbers of type int

and prints their sum.

2. Write a program that reads from the console the radius "r " of a circle

and prints its perimeter and area .

3. A given company has name, address, phone number, fax number, web

site and manager. The manager has name, surname and phone number.

Write a program that reads information about the company and its

manager and then prints it on the console.

4. Write a program that prints three numbers in three virtual columns

on the console. Each column should have a width of 10 characters and

the numbers should be left aligned . The first number should be an

integer in hexadecimal ; the second should be fractional positive ; and

the third ï a negative fraction . The last two numbers have to be

rounded to the second decimal place.

5. Write a progra m that reads from the console two integer numbers (int)

and prints how many numbers between them exist, such that the

remainder of their division by 5 is 0 . Example: in the range (1 4, 25)

there are 3 such numbers : 15, 20 and 25 .

6. Write a program that reads two numbers from the console and prints the

greater of them . Solve the problem without using conditional

statements.

7. Write a program that reads five integer numbers and prints their

sum . If an invalid number is entered the program should prompt the user

to enter another number.

8. Write a program that reads five numbers from the console and prints the

greatest of them.

9. Write a program that reads an integer number n from the console. After

that reads n numbers from the console and prints their sum .

10. Write a prog ram that reads an integer number n from the console and

prints all numbers in the range ǁʦƛÎǂ, each on a separate line.

11. Write a program that prints on the console the first 100 numbers in the

Fibonacci sequence : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , 233, é

12. Write a program that calculates the sum (with precision of 0.001) of

the following sequence : 1 + 1/2 - 1/3 + 1/4 - 1/5 + é

Chapter 4. Console Input and Output 193

Solutions and Guidelines

1. Use the methods Console.ReadLine() and Int32.Parse() .

2. Use Math.PI constant and the well - known geome tric formulas .

3. Format the text with 7ÒÉÔÅƽƛƾ or 7ÒÉÔÅ,ÉÎÅƽƛƾ similar to the example

with the letter that we looked at.

4. Use the format strings explained in the ñComposite Formattingò section

and the method Console.WriteLine() . Below is a piece of the code:

int hexNum = 2013;
Console .WriteLine("| 0x{0, - 8:X}|" , hexNum);
double fractNum = - 1.856;
Console .WriteLine("|{0, - 10:f2}|" , fractNum);

5. There are two approaches for solving the problem:

First approach : Use mathematical tricks for optimized calculation based

on the fact that every fifth number is divisible by 5 . Think how to

implement this correctly and about the borderline cases.

The second approach is easier but it works slower. With a for - loop

each n umber within the given range can be checked. You should read in

Internet or in the chapter "Loops " how to use for - loop s.

6. Since the problem requires a solution, which does not use conditional

statements , you should use a different approach. Two possible solutions

of the problem include the use of functions of class Math. The greater of

the two numbers you can find with the function Math.Max(a, b) and the

smaller with Math.Min(a, b) .

Another solution to the pr oblem includes usage of the function for

taking the absolute value of a number Math.Abs(a) :

int a = 2011;
int b = 1990;
Console .WriteLine("Greater: {0}" , (a + b + Math.Abs(a - b)) / 2);
Console .WriteLine("Smaller: {0}" , (a + b - Math.Abs(a - b)) / 2);

The third solution uses bitwise operations :

int a = 1990;
int b = 2011;
int max = a - ((a - b) & ((a - b) >> 31));
Console .WriteLine(max);

There is another solution which is partially correct because it uses a

hidden conditional statement (the ternary ?: operator) :

194 Fundamentals of Computer Programming with C#

int a = 1990;
int b = 2013;
int max = a > b ? a : b;
Console .WriteLine(max);

7. You can read the numbers in five different variables and finally sum

them and print the obtained sum . Note that the sum of 5 int values may

not fit in the int type so you should use long .

Another approach is using loops . When parsing the consecutive numbers

use conditional parsing with 4ÒÙ0ÁÒÓÅƽƛƾ. When an invalid number is

entered, repeat reading of the number. You can do this through while

loop with an appropriate exit condition. To avoid repetitive code you can

explore the for - loops from the chapter " Loops ".

8. You can use the comparison statement " if " (you can read about it on

the Internet or from the chap ter " Conditional Statements ") . To avoid

repe ating code you can use the loop ing construct " for " (you could read

about it online or in the chapter " Loops ") .

9. You should u se a for - loop (see the chapter "Loops "). Read the numbers

one after another and accumulate their sum in a variable, which then

display on the console at the end.

10. Use a combination of loops (see the chapter "Loops ") and the methods

Console.ReadLine() , Console.WriteLine() and Int32.Parse() .

11. More about the Fibonacci sequence can be found in Wikipedia at:

http://en.w ikipedia.org/wiki/Fibonacci_sequence . For the solution of the

problem use 2 temporary variables in which store the last 2 calculated

values and with a loop calculate the rest (each subsequent number in the

sequence is a sum of the last two). Use a for - loop to implement the

repeating logic (see the chapter "Loops ").

12. Accumulate the sum of the sequence in a variable inside a while - loop

(see the chapter " Loops ") . At each step compare the old sum with the

new sum . If the difference between the two sums Math.Abs(current_sum
Ƶ old_sum) is less than the required precision (0.001) , the calculation

should finish because the difference is constantly decreasing and the

precision is constantly incr easing at each step of the loop . The expected

result is 1.307 .

http://en.wikipedia.org/wiki/Fibonacci_sequence

Chapter 5. Conditional
Statements

In This Chapter

In this chapter we will cover the conditional statements in C# , which we

can use to execute different actions depending on a given condition. We will

explain the syntax of the conditional operators if and if -else with suitable

examples and explain the prac tical application of the operator for selection

switch - case .

We will focus on the best practices to be followed in order to achieve a

better programming style when using nested or other types of conditional

statements.

Comparison Operators and Boolean Expressions

In the following section we will recall the basic comparison operators in the

C# language. They are important, because we use them to describe

conditions in our conditional statements.

Comparison Operators

There are several comparisons operator s in C#, which are used to compare

pairs of integers, floating -point numbers, characters, strings and other types:

Operator Action

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Comparison operators can be used to compare expressions such as two

numbers, two numerical expressions, or a number and a variable. The result

of the comparison is a Boolean value (true or false).

Letôs look at an example of using comparisons:

196 Fundamentals of Computer Programming with C#

int weight = 700;
Console .WriteLine(weight >= 500); // True

char gender = ' m' ;
Console .WriteLine(gender <= 'f'); // False

double colorWaveLength = 1.630;
Console .WriteLine(colorWaveLength > 1.621); // True

int a = 5;
int b = 7;
bool condition = (b > a) && (a + b < a * b);
Console .WriteLine(condition); // True

Console .WriteLine('B' == 'A' + 1); // True

In the sample code we perform a comparison between numbers and between

characters. The numbers are compared by size while characters are compared

by their lexicogra phical order (the operation uses the Unicode numbers for the

corresponding characters).

As seen in the example, the type char behaves like a number and can be

subtracted, added and compared to numbers freely. However, this should be

used cautiously as it could make the code difficult to read and understand.

By running the example we will produce the following output:

True
False
True
True
True

In C# several types of data that can be compared:

- numbers (int , long , float , double , ushort , decimal , é)

- characters (char)

- Booleans (bool)

- References to objects, also known as object pointers (string , object ,

arrays and others)

Every comparison can affect two nu mbers, two bool values, or two object

references. It is allowed to compare expressions of different types , like

an integer with a floating -point number for example. However, not every pair

of data types can be compared directly. For example, we cannot comp are a

string with a number.

Chapter 5. Conditional Statements 197

Comparison of Integers and Characters

When comparing integers and characters, we directly compare their binary

representation in memory i.e. we compare their values . For example, if we

compare two numbers of type int , we will co mpare the values of their

respective series of 4 bytes. Here is one example for integer and character

comparisons:

Console .WriteLine("char 'a' == 'a'? " + ('a' == 'a')); // True
Console .WriteLine("char 'a' == 'b'? " + ('a' == 'b')); // False
Console .WriteLine("5 != 6? " + (5 != 6)); // True
Console .WriteLine("5.0 == 5L? " + (5.0 == 5L)); // True
Console .WriteLine("true == false? " + (true == false)); // False

The result of the example is as follows:

char 'a' == 'a'? True
char 'a' == 'b'? False
5 != 6? True
5.0 == 5L? True
true == false? False

Comparison of References to Objects

In .NET Framework there are reference data types that do not contain their

value (unlike the value types), but contain the address of the memory in the

heap where their value is located. Strings, arrays and classes are such types.

They behave like a pointer to some value and can have the value null , i.e. no

value. When comparing reference type variables, we compare the

addresses they hold, i.e. we check whether they point to the same location

in the memory, i.e. to the same object.

Two object pointers (references) can refer to the same object or to different

objects, or one of them can point to nowhere (to have null value). In the

following example we cre ate two variables that point to the same value

(object) in the heap.

string str = "beer" ;
string anotherStr = str;

After executing the source code above, the two variables str and anotherStr

will point to the same object (string with value "beer"), which is located at

some address in the heap (managed heap).

We can check whether the variables point to the same object with the

comparison operator (==) . For most reference types this operator does not

compare the content of the obje cts but rather checks if they point at the same

198 Fundamentals of Computer Programming with C#

location in memory, i.e. if they are one and the same object. The size

comparisons (<, >, <= and >=) are not applicable for object type variables.

The following example illustrates the comparison of reference s to objects:

string str = "beer" ;
string anotherStr = str;
string thirdStr = "be e" ;
thirdStr = thirdStr + 'r' ;
Console .WriteLine("str = {0}" , str);
Console .WriteLine("anotherStr = {0}" , anotherStr);
Console .WriteLine("thirdStr = {0}" , thirdStr);
Console .WriteLine(str == anotherStr); // True - same object
Console .WriteLine(str == thirdStr); // True - equal objects
Console .WriteLine((object)str == (object)anotherStr); // True
Console .WriteLine((object)str == (object)thirdStr); // False

If we execute the sample code, we will get the following result:

str = beer
anotherStr = beer
thirdStr = beer
True
True
True
False

Because the strings used in the example (instances of the class

System.String , defined by the keyword string in C#) are of reference type,

the ir values are set as objects in the heap. The two objects str and thirdStr

have equal values, but are different objects, located at separate addresses in

the memory. The variable anotherStr is also reference type and gets the

address (the reference) of str , i.e. points to the existing object str . So by

the comparison of the variables str and anotherStr , it appears that they are

one and the same object and are equal. The result of the comparison between

str and thirdStr is also equality, because the operator == compares the

strings by value and not by address (a very useful exception to the rule for

comparison by address). However, if we convert the three variables to objects

and then compare them, we will get a comparison of the addresses in the

heap where t heir values are located and the result will be different.

This above example shows that the operator == has a special behavior

when comparing strings , but for the rest of the reference types (like arrays

or classes) it applies comparison by address.

You will learn more about the class String and the comparison of strings in

the c hapter about "Strings ".

Chapter 5. Conditional Statements 199

Logical Operators

Letôs recall the logical operators in C#. They are often used to construct

logical (Boolean) expressions. The logical operators are: &&, || , ! and ^.

Logical Operators && and ||

The logical operators && (logical AND) and || (logical OR) are only used on

Boolean expressions (values of type bool). In order for the result ï of

compa ring two expressions with the operator && ï to be true (true), both

operands must have the value true . For instance:

bool result = (2 < 3) && (3 < 4);

This expression is "true", because both the operands: (2 < 3) and (3 < 4) are

"true". The logical operator && is also called short - circuit , because it does

not lose time in additional unnecessary calculations. It evaluates the left part

of the expression (the first operand) and if the result is false , it does not lose

time f or evaluating the second operand ï itôs not possible the end result to be

"true" when the first operand is not "true". For this reason it is also called

short - circuit logical operator "and" .

Similarly, the operator || returns true if at least one of the tw o operands has

the value "true". Example:

bool result = (2 < 3) || (1 == 2);

This example is "true", because its first operand is "true". Just like the &&

operator, the calculation is done fast ï if the first operand is true , the second

is not calculated at all, as the result is already known. It is also called short -

circuit logical operator "or" .

Logical Operators & and |

The operators for comparison & and | are similar to && and || , respectively .

The difference lies in the fact that both operands are calculated one after the

other, although the final result is known in advance. That ôs why these

comparison operators are also known as full - circuit logical operators and

are used very rarely.

For instance, when two operands are compared with & and the firs t one is

evaluated "false", the calculation of the second operand is still executed. The

result is clearly "false". Likewise, when two operands are compared with | and

the first one is "true", we still evaluate the second operand and the final result

is ne vertheless "true".

We must not confuse the Boolean operators & and | with the bitwise

operators & and | . Although they are written in the same way, they take

different arguments (Boolean or integer expressions) and return different

result (bool or integer) and their actions are not identical.

200 Fundamentals of Computer Programming with C#

Logical Operators ^ and !

The ^ operator, also known as exclusive OR (XOR) , belongs to the full -

circuit operators, because both operands are calculated one after the other.

The result of applying the operator is true if exactly one of the operands

is true, but not both simultaneously . Otherwise the result is false . Here

is an example:

Console. WriteLine ("Exclusive OR: " + ((2 < 3) ^ (4 > 3)));

The result is as follows:

Exclusive OR: False

The previous expression is eva luated as false, because both operands: (2 <3)

and (4 > 3) are true.

The operator ! returns the reversed value of the Boolean expression to

which it is attached. Example:

bool value = !(7 == 5); // True
Console .WriteLine(value);

The above expression can be read as "the opposite of the truth of the phrase

"7 == 5 ". The result of this pattern is True (the opposite of False). Note that

when we print the value true it is displayed on the console as " True " (with

capital letter). This "defect" comes from the VB .NET language that also runs

in .NET Framework.

Conditional Statements "if" and "if - else"

After reviewing how to compare expressions, we will continue with conditional

statements, which will allow us to implement programming logic.

Conditional statements if and if - else are conditional control statements.

Because of them the program can behave differently based on a defined

condition checked during the execution of the statement .

Conditional Statement "if"

The main format of the conditional statements if is as follows:

if (Boolean expression)
{
 Body of the conditional statement;
}

It includes: if -clause, Boolean expression and body of the conditional

statement.

Chapter 5. Conditional Statements 201

The Boolean expression can be a Boolean variable or Boolean logic al

expression. Boolean expressi ons cannot be integer (unlike other programming

languages like C and C++).

The body of the statement is the part locked between the curly brackets:

{} . It may consist of one or more operations (statements). When there are

several operations, we have a comp lex block operator, i.e. series of

commands that follow one after the other, enclosed in curly brackets .

The expression in the brackets which follows the keyword if must return the

Boolean value true or false . If the expression is calculated to the value

true , then the body of a conditional statement is executed. If the result is

false , then the operators in the body will be skipped .

Conditional Statement "if" ï Example

Letôs take a look at an example of using a conditional statement if :

static void Main()
{
 Console .WriteLine("Enter two numbers.");
 Console .Write("Enter first number: ");
 int firstNumber = int .Parse(Console .ReadLine());
 Console .Write("Enter second number: ");
 int secondNumber = int .Parse(Console .ReadLine());
 int biggerNumber = firstNumb er;
 if (secondNumber > firstNumber)
 {
 biggerNumber = secondNumber;
 }
 Console .WriteLine("The bigger number is: {0}" , biggerNumber);
}

If we start the example and enter the numbers 4 and 5 we will get the

following result:

Enter two numbers.
Enter first number: 4
Enter second number: 5
The bigger number is: 5

Conditional St atement "if" and Curly Brackets

If we have only one operator in the body of the if -statement, the curly

brackets denoting the body of the conditional operator may be omitted, as

shown below. However, it is a good practice to use them even if we have only

one operator. This will make the code is more readable .

Here is an example of omitting the curly brackets which leading to confusion:

202 Fundamentals of Computer Programming with C#

int a = 6;
if (a > 5)
 Console .WriteLine("The variable is greater than 5.");
 Console .WriteLine("This code will always execute!");
// Bad practice: misleading code

In this example the code is misleadingly formatted and creates the impression

that both printing statements are part of the body of the if -block. In fact,

this is true only for the first one.

Always put curly brackets { } for the body of ñif ò blocks even
if they consist of only one operator!

Conditional Statement "if - else"

In C#, as in most of the programming languages there is a conditional

statement with else clause: the if -else statement. Its format is the

following:

if (Boolean expression)
{
 Body of the conditional statement;
}
else
{
 Body of the else statement;
}

The format of the if - else structure consists of the reserved word if ,

Boolean expression, body of a conditional statement, reserved word else and

else -body statement. The body of else -structure may consist of one or more

operators, enclosed in curly bracke ts, same as the body of a conditional

statement.

This statement works as follows: the expression in the brackets (a Boolean

expression) is calculated. The calculation result must be Boolean ï true or

false . Depending on the result there are two possible ou tcomes. If the

Boolean expression is calculated to true , the body of the conditional

statement is executed and the else -statement is omitted and its operators

do not execute. Otherwise, if the Boolean expression is calculated to false ,

the else - body is exe cuted , the main body of the conditional statement is

omitted and the operators in it are not executed.

Conditional Statement "if - else" ï Example

Letôs take a look at the next example and illustrate how the if - else

statement works:

Chapter 5. Conditional Statements 203

static void Main()
{
 int x = 2;
 if (x > 3)
 {
 Console .WriteLine("x is greater than 3");
 }
 else
 {
 Console .WriteLine("x is not greater than 3");
 }
}

The program code can be interpreted as follows: if x>3, the result at the end

is: " x is greater than 3 ", otherwise (else) the result is: " x is not greater

than 3 ". In this case, since x=2, after the calculation of the Boolean

expression the operator of the else structure will be executed . The result of

the example is:

x is not greater than 3

The following scheme illustrates the process flow of this example:

204 Fundamentals of Computer Programming with C#

Nested "if" Statements

Sometimes the programming logic in a program or an application needs to be

represented by multiple if -structures contained in each other. We call them

nested if or nested if - else structures .

We call nesting the placement of an if or if -else structure in the body of

another if or else structure. In such situations every else clause

corresponds to the closest previous if clause. This is how we understand

which else clause relates to which if clause.

It ôs not a good practice to exceed three nested levels, i.e. we should not nest

more than three conditional statements into one another. If for some reason

we need to nest more than three structures, we should export a part of the

code in a separate m ethod (see chapter Methods).

Nested "if" Statements ï Example

Here is an example of using nested if structures:

int first = 5;
int second = 3;

if (first == second)
{
 Console .WriteLine("These two numbers are equal.");
}
else
{
 if (first > second)
 {
 Console .WriteLine("The first number is greater.");
 }
 else
 {
 Console .WriteLine("The second number is greater.");
 }
}

In the example above we have two numbers and compare them in two steps:

first we compare whether they are equal and if not, we compare again, to

determine which one is the greater. Here is the result of the execution of the

code above:

The first number is greater.

Chapter 5. Conditional Statements 205

Sequences of "if - else - if - else -é"

Sometimes we need to use a sequence of if structures , where the else

clause is a new if structure. If we use nested if structures, the code would

be pushed too far to the right. That ôs why in such situations it is allowed to

use a new if right after the else . It ôs even considered a good practice. Here

is an example:

char ch = 'X' ;
if (ch == 'A' || ch == 'a')
{
 Console .WriteLine("Vowel [ei]");
}
else if (ch == 'E' || ch == 'e')
{
 Console .WriteLine("Vowel [i:]");
}
else if (ch == 'I' || ch == 'i')
{
 Console .WriteLine("Vowel [ai]");
}
else if (ch == 'O' || ch == 'o')
{
 Console .WriteLine("Vowel [ou]");
}
else if (ch == 'U' || ch == 'u')
{
 Console .WriteLine("Vowel [ju:]");
}
else
{
 Console .WriteLine("Consonant");
}

The program in the example makes a series of comparisons of a variable to

check if it is one of the vowels from the English alphabet . Every following

comparison is done only in case that the previous comparison was not true. In

the end, if none of the if -conditions is not fulfilled, the last else clause is

executed. Thus, the result of the example is as follows:

Consonant

Conditional "if" Statements ï Good Practices

Here are some guidelines, which we recommend for writing if, structures:

206 Fundamentals of Computer Programming with C#

- Use blocks, surr ounded by curly brackets {} after if and else in order

to avoid ambiguity

- Always format the code correctly by offsetting it with one tab inwards

after if and else , for readability and avoiding ambiguity.

- Prefer switch -case structure to of a series of if - el se- if - else -ƛ
structures or nested if - else statement, if possible. The construct

switch - case we will cover in the next section .

Conditional Statement "switch - case"

In the following section we will co ver the conditional statement switch . It is

used for choosing among a list of possibilities.

How Does the "switch - case" Statement Work?

The structure switch - case chooses which part of the programming code to

execute based on the calculated value of a certa in expression (most often of

integer type). The format of the structure for choosing an option is as follows:

switch (integer _selector)
{
 case integer _value _1:
 statement s;
 break ;
 case integer _value _2:
 statement s;
 break ;
 ƳƳ ƛ
 default :
 statement s;
 break ;
}

The selector is an expression returning a resulting value that can be

compared, like a number or string . The switch operator compares the result

of the selector to every value listed in the case labels in the body of the

switch structure. If a match is found in a case label, the corresponding

structure is executed (simple or complex). If no match is found, the default

statement is executed (when such exists). The value of the selector must be

calculated before comparing it to the values inside the switch structure. The

labels should not have repeating values, they must be unique.

As it can be seen from the definition above, every case ends with the

operator break , which ends the body of the switch struct ure. The C#

compiler requires the word break at the end of each case -section containing

code. If no code is found after a case -statement, the break can be omitted

Chapter 5. Conditional Statements 207

and the execution passes to the next case -statement and continues until it

finds a break oper ator. After the default structure break is obligatory.

It is not necessary for the default clause to be last, but it ôs recommended to

put it at the end, and not in the middle of the switch structure.

Rules for Expressions in Switch

The switch statement is a clear way to implement selection among many

options (namely, a choice among a few alternative ways for executing the

code). It requires a selector, which is calculated to a certain value. The

selector type could be an integer number , char , string or enum. If we want

to use for example an array or a float as a selector, it will not work. For non -

integer data types, we should use a series of if statements.

Using Multiple Labels

Using multiple labels is appropriate, when we want to execute the same

structure in more than one case. Let ôs look at the following example:

int number = 6;
switch (number)
{
 case 1:
 case 4:
 case 6:
 case 8:
 case 10:
 Console .WriteLine("The number is not prime!"); break ;
 case 2:
 case 3:
 case 5:
 case 7:
 Console .WriteLine("The number is prime!"); break ;
 default :
 Console .WriteLine("Unknown number!"); break ;
}

In the above example, we implement multiple labels by using case

statements without break after them. In this case, first the integer value of

the selector is calculated ï that is 6, and then this value is compared to every

integer value in the case statements. When a match is found, the code block

after it is executed. If no match is found, t he default block is executed. The

result of the example above is as follows:

The number is not prime!

208 Fundamentals of Computer Programming with C#

Good Practices W hen Using "switch - case"

- A good practice when using the switch statement is to put the default

statement at the end , in order to have easier to read code.

- It ôs good to place first the cases , which handle t he most common

situations . Case statements, which handle situations occurring rarely,

can be placed at the end of the structure.

- If the values in the case labels are integer, it ôs recom mended that they

be arranged in ascending order .

- If the values in the case labels are of character type, it ôs recommended

that the case labels are sorted alphabetically .

- It ôs advisable to always use a default block to handle situations that

cannot be proce ssed in the normal operation of the program. If in the

normal operation of the program the default block should not be

reachable, you could put in it a code reporting an error .

Exercises

1. Write an if -statement that takes two integer variables and exchanges

their values if the first one is greater than the second one.

2. Write a program that shows the sign (+ or -) of the product of three real

numbers, without calculating it. Use a sequence of if operators.

3. Write a program that finds the biggest of three integers , using nested

if statements.

4. Sort 3 real numbers in descending order. Use nested if statements.

5. Write a program that asks for a digit (0 -9), and depending on the input,

shows the digit as a word (in English). Use a switch statement.

6. Write a program that gets the coefficients a, b and c of a quadratic

equation: ax2 + bx + c, calculates and prints its real roots (if they exist).

Quadratic equations may have 0, 1 or 2 real roots.

7. Write a program that finds the greatest of given 5 numbers .

8. Write a program that, depending on the user ôs choice, inputs int , double

or string variable. If the variable is int or double , the program

increases it by 1. If the variable is a string , the program appends " * " at

the end. Print the result at the console . Use switch statement.

9. We are given 5 integer numbers. Write a program that finds those

subsets whose sum is 0 . Examples:

- If we are given the numbers {3, -2, 1, 1, 8}, the sum of -2, 1 and 1

is 0.

- If we are given the numbers {3, 1, -7, 35, 22}, there are no subsets

with sum 0.

