Tsvyatko

Konoy
Nikolay :
Nedyalkov N/ko{ay
: i,
Yosif G ermzto Kostoy &tock Radoslav
Yosifov L2 Todorov
pavling '
Hadjiev@ = k Teodo,
Svetlin Nakov, Bozhike,
* in Kolev ’
Radoslav Vesel ! n O Yordan
Ivanov Pavlov
Iliyan
Radoslav Murdanliey
Kirliov [
: Stefan) "
Mihai Mihail ~ Paver Yesselin o ey Bivas +
Vl ail Stovhov onchey C€orgiev
alkov y Dilyan
Dimitrov
Stanislav
Zlatinov

FUNDAMENTALS OF
CoMPUTER PROGRAMMING

" with C#

The Bulgariap C# Booj

http://www.introprogramming.info/
http://www.introprogramming.info

Content s

Contents ..o e,
Detailed Table of Contents ...
Preface .. s
Chapter 1. Introduct ion to Programming

Chapter 2. Primitive Types and Variables
Chapter 3. Operators and Expressions
Chapter 4. Console Input and Output

Chapter 5. Conditional Statements . e

Chapter 6. LOOPS ..oovvvvivvviieieeiiiinn,
Chapter 7. Arrays .o,

Chapter 8. Numeral Systems ...

Chapter 9. Methodsccceviriiiiiiiiiiiinns

Chapter 10. Recursion ..ccccveveeeieeiieee,

Chapter 11. Creating and Using Objects

Chapter 12. Exception Handling ...

Chapter 13. Strings and Text Processing

Chapter 14. Defining Classes ...,
Chapter 15. Text Files ...,

Chap ter 16. Linear Data Structures .. e,

Chapter 17. Trees and Graphs ~
Chapter 18. Dictionaries, Hash -Tables and Sets

Chapter 19. Data Structures and Algorithm Complexity
Chapter 20. Object - Oriented Programming Principles
Chapter 21. High -Quality Programming Code

Chapter 22. Lambda Expressions and LINQ
Chapter 23. Methodology of Problem Solving
Chapter 24. Sample Programming Exam
Chapter 25. Sample Programming Exam
Chapter 26. Sample Programming Exam

Conclusion ..o e

i Topic #1
i Topic #2
i Topic #3

e 111
. 139
.. 165
. 195
.o 211
.. 235

265

......... 293

..... 351
... 385
415
... 457
499
..... 615
. 641
681
727
. 769
807
.. 853
..... 915
.. 935
985
1041
1071
1119

FUNDAMENTALS OF
COMPUTER PROGRAMMING
WITH C#

(The Bulgarian C# Programming Book)

Svetlin Nakov & Co.

Dilyan Dimitrov
Hristo Germanov
lliyan Murdanliev

Mihail Stoynov

Mihail Valkov
Mira Bivas
Nikolay Kostov
Nikolay Nedyalkov

Nikolay Vasilev

Pavel Donchev
Pavlina Hadjieva

Radoslav lvanov

Radoslav Kirilov
Radoslav Todorov
Stanislav Zlatinov

Stefan Staev
Svetlin Nakov
Teodor Bozhikov
Teodor Stoev

Tsvyatko Konov
Vesselin Georgiev

Veselin Kolev
Yordan Pavlov

Yosif Yosifov

Sofia, 2013

FUNDAMENTALS OF COMPUTER
P ROGRAMMING WITH C#

(The Bulgarian C# Programming Book)

E Svetlin NakRM¥ & Co. ,

The book is distributed freely under the following license conditions:

1. Book readers (users) may :

- distribute free of charge unaltered copies of the book in electronic or
paper format;

- use portions of the book and the source code examples or their
modifications, for all intents and purposes, including educational and
commercial projects, provided they clearly specify the original source,
the original author(s) of the corresponding text o r source code, this
license and the website ~ www.introprogramming.info

- distribute free of charge portions of the book or modified copies of it
(including translating the book into other languages or adapting it to
other programming languages and platforms), but only by explicitly
mentioning the original source and the authors of the corresponding
text, source code or other material, this license and the official website
of the project: www.introprogramming.info

2. Book readers (users) may NOT

- distribute for profit the book or portions of it, with the exception of the
source code;

- remove this license from the book when modifying it for own needs.

All trademarks referenced in this book are the property of their respective
owners.

Official Web Site
http://www.introprogramming.info

ISBN 978 -954 -400 -773 -7

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Det ali

Contents

Detailed Table of Contents

Preface
About the Book
C# and .NET Framework
How dboRead This Book?

Tabdl e

Why Are Data Structures and Algorithms Emphasized?

Do You Really Want to Become a Programmer?

A Look at the
History: How Did This Book Com
Authors and Contributors

The Book Is Free of Charge!
Reviews

License

Resources Coming with the Book

Chapter 1. Introduction to Progr
In This Chapter
What Does It Mean "To Program

Stages in Software Development

Our First C# Program
The C# Language and the .NET
Visual Studio IDE
Alternatives to Visual Studio

Decompiling Code
C# in Linux, iOS and Android
Other .NET Languages

Exercises

Solutions and Guidelines

Chapter 2. Primitive Types and Variables

In This Chapter
What Is a Variable?
Data Types
Variables
Value and Referenc e Types
Literals

B o.a.k.0.s....Co.nt ent.S.....coooel

e to Be?

amming ...
RPNt
Platform

o f

6 Fundamentals of Compute r Programming with C#

EXEICISES .ioiiiiiiiiiiiiiiiiiiiiis et e e 135
Solutions and GUIdEliNES ..o e e 136
Chapter 3. Operators and EXpPressions e avreeeee s 139
IN ThIS Chaper oo riiiis e eetreeesnieeee s aneeeeaeee 139
(O] 01T =1 (0] £ TP OPUPPPPPPTOPINE ... 139
Type Conversion and CastiNng oo e eeennea 152
EXPIrESSIONS oiiiiiiiiiiiciieiiiiiies s eaeesee e .158
EXEICISES .oooviiiiiiiiiiiiciiiiiiis et e e 160
Solutions and GUIdEliNES ..o e e 161
Chapter 4. Console Input and Output i e, 165
L £ =T o 1= P 165
What IS the CONSOIE? ..ot s e 165
Standard INPut -OUIPUL cooeviiiiiciiierceiiens e eereeenee e 169
Printing to the CONSOIE .o e e 169
Console Input ooceeiieiieeee, 183
Console Input and Output 190
EXEICISES .oiiiiiiiiiiiiiiiiciiiiiie et e e 192
Solutions and GUIdENINES ..o e e 193
Chapter 5. Conditional Statements i e 195
IN ThIS ChapLer ..ociiiiiiiciiiiis s erteee e s e e 195
Comparison O perators and Boolean EXpressions ..cocccvviiiiiiiiiieniies e 195
Conditional Statements "if* and "if SelSE" s e 200

Conditional Statement "switch -case"
EXEICISES ..oviiiiiiiiiiiiic it e
Solutions and Guidelines
Chapter 6. LOOPS .oovvvvvvvviiveeeiiinn,
In This Chapterccccooveveiiiienienns
What Is @ "Loop"? oo
WHhIlE LOOPS i et
Do-While LOOPS ...ccovvevvieiiieiieeniinne
FOr LOOPS it eveesieesiee st
Foreach LOOPS oovcvvvvieeiiieicee,
Nested LOOPS ...occeveeiviieieiiieeeee

Exercises

Chapter 7. Arrays oo,
In This Chaptercccccvviieeiniineene
What Is an "Array"? ..o,
Declaration and Allocation of Memory for Arrays i e 235
Access tothe Elements of an Array ..o e .238
Reading an Array from the Console .. e 241

Detailed Table of Contents 7

Printing an Array to the Console ccoeeeiiiieeeen,
Iteration through Elements of an Array ..o,
Multidimensional Arrays —ccccoveevieenieenneene
Arrays Of ATaYS oo e
EXEICISES .oiiiiiiiiiiiiiie it et
Solutions and Guidelines ccccoceeeeiieeennee.
Chapter 8. Numeral Systems ..,
IN This Chapter .coiciiiiiciieies e
History ina Nutshell ... e
NUMeral SYStEMS oo e
Representation of Numbers
EXErCISES ..covevviiiiiiiriciicine
Solutions and Guidelines ccccooereenienenn
Chapter 9. Methods ...,
IN ThisS Chapter ..o e
Subroutines in Programmingccccceveveieeenieenns
What Is @ "Method"? . e
Why to Use Methods? cccooieviiiiieciiees
How to Declare, Implement and Invoke a Method?
Declaring Our Own Method cccooieviiiiecieee
Implementation (Creation) of Own Method ...,
Invoking @a Method ..ot e
Parameters in Methods —cccoocceeiiiiieennne.
Returning a Result from a Method —cccoooiiiiiiiee
Best Practices when Using Methods ...,
EXEICISES ..oviiiiiiiiiiiiic it et
Solutions and Guidelines cccocoeeeiiiiienen.
Chapter 10. Recursion cccvviiieeviniieeee
IN ThisS Chapter ..o e
What IS RECU TSION? oot evtreesiee e
Example of Recursion ccccooeevienicennen,
Direct and Indirect RECUrSION cceevivieriiiiiieecieee
Bottom of ReCUrsSion ... s
Creating Recursive Methods cccoooiiiiiiieieeee,
Recursive Calculation of Factorial =~coocoeeeiiiieeiiiee.
Recursion or lteration? ccccoeiiiieiiiienenine
Simulation of N Nested LOOPS ..oooiiiiiiiiiiee e
Which is Better: Recursion or lteration?ccooocceiiiiee
Using Recursion 1 Conclusionsccccccceeevcieeeennee.
EXEICISES ..oovviiiiiiiiciiiiiiiiis e
Solutions and Guidelines cccocevenienenn
Chapter 11. Creating and Using Objects

8 Fundamentals of Compute r Programming with C#
In This Chapterccoceevveeeiiiinees 385
Classes and Objects 385
Classes iN C# ...ooevieeeeiiiieeee 387
Creating and Using ODJECIS .oooiiiiiiiiiiiiiiiies et eeeeees 390
Namespacescccccceveeeerriinnnnnn.
EXErciSesccovoeeviieneeniinenn.

Solutions and Guid elines

Chapter 12. Exception Handling =~ e e 415
INThiS Chapter oot e avree e e s e e e 415
What IS an EXCEPLON? ooiiiiiiiiiiiiiiiiviiiiiee e eeneee e 415
EXcept ions HIErarchy ... e e 424
Throwing and Catching EXCEPLONS oo e .426
The try -finally CONSITUCE oo et eeereeenieeens 432
IDisposable and the "using” Statement .. e 437
Advantages of Using EXCEPLIONS oo e 439
Best Practices when Using EXCEPLIONS .o e 445
EXEICISES .vviiiiiiii i iiiiieie et e e 453
Solutions and GUIdENINES ..o e e 454

Chapter 13. Strings and Text Processing o evee e 457

In This Chapter
SHiNGS oo

Strings OPEratioNS ..occccviiiiiiiiiiiiie i e eeeeneeeeeaeree e 462
Constructing Strings: the StringBuilder Class s e, 480
String Formatting 488
EXEICISES .oiiiciiiiiiiiiiiiiiiiiiis e e e 491
Solutions and GUIdEliNES ... e e 496
Chapter 14. Defining ClaSSeS oiiiiiiiiieiies e 499
In This Chapter 499
Custom Classes 499
Usage of Class and Objects cccocevviierieeinenne 502
Organizing Classes in Files and Namespaces .cocccvviiiiiiciiienes eevieeniee e 505
Modifiers and Access Levels (Visibility) s 508
Declaring Classesccccccceeeveieeniiieenn. 509
The Reserv ed Word "thiS" ... s e 511
FIIOS i e e e 512
METhOAS ..ooiiiiiicii e e e 518
Accessing Non -Static Data of the Class ..o e 519
Hiding Fields with Local Variables ...t e ... 522
Visibility of Fields and Methods — .oooiiiis s e 524
CONSITUCIONS oo s e 531
0] 1T o (1= OO RPPUPRRN ... 549

Static Classes and Static MEMDEIS ooiiiiiiiiiiiiiies et .559

Detailed Table of Contents 9

SHUCIUMES i et erree e e s e e e ... 580
10T 4= =i o] o PSR 584
Inner Classes (Nested ClasSeS) vvviciiiciiieiiiiieeiies e s 590
(7= =T TP 594
EXEICISES .oiiiiiiiii it et e e 610
Solutions and GUIENINES ...t e e 613
Chapter 15. Text FilesS e e e 615
IN ThiS Chapter oot e avreeeese e et a e 615
SHEAMS oiiiiiiiiiireies s e eeaeas 615
Reading froma Text File it e e 620
Writing to @ TEXE FIl® oo e e 628
Input / Output Exception Handling .o e .630
Text Files T More EXampleS ..o e v 631
EXEICISES .oiiviiiiiiiiiiiiiieiiiiiiie evereenn e eereesee e aeea 636
Solutions and GUIENINES ..ot e e 638
Chapter 16. Linear Data Structures e e 641
In This Chapterccccocveviiiieenienne
Abstract Data Structures
List Data Structures cccocvevveereeennnnne
EXErci SE€S....ccovvvveeiiiiieeiiieenn

Solutions and Guidelines

Chapter 17. Trees and Graphs s 681
IN ThIS ChapLer ..oooiiiiiiiriiis e trtreeeseee e s seee e 681
Tree Data SHrUCIUMES ...ccoviiiiiiiiiiiiiiiiiiies e reeeeee s s 681
TIEES oo iiiiis e e aaaeeeees 681
Graphs i e e s aeeeeas 714
ST (o] T U 722
Solutions and GUIdElINES ..o e e 723

Chapter 18. Dictionaries, Hash -Tablesand Sets ..., 727
IN ThiS Chapter oo e et 727
Dictionary Data StrUCIUIE ..o et es areeenneeas 727
Hash-Tablesccccoovviiiniennnn.

The "Set" Data S tructure
EXErCiSescccccvvvvvevveeeeeevieenns

Solutions and Guidelines

Chapter 19. Data Structures and Algorithm Complexity . 769
IN ThIS Chaper oot e teteeaeanieeee e aeeea e e 769
Why Are Data Structures So Important? s e 769
Algorithm COMPIEXItY i icciicciiiiis v arrere e s 770
Comparison between Basic Data Structures ..o e 779

When to Use a Particular Data StrUCtUrE? v eevrrrreee e e e e eennnnes 779

10 Fundamentals of Compute r Programming with C#
Choosing a Data Structure T EXAMPIES oo e 786
External Libraries with .NET CoIleCtions ..o e 801
EXEICISES .oiiiiiiiii ittt e e 803
Solutions and GUIENINEScccceiiiiiiiiiiiiiiiiis e e 804
Chapter 20. Object - Oriented Programming Principles ... 807
IN ThIS Chapter oo riiiis e ereeeeeeniee e e seeeae e 807
Letdés Review: Cl ass.es...and..Objec.t. S .. 807
Object -Oriented Programming (OOP) oo e 807
Fundamental Principles of OOP ..ot e aeeans 808
INNEMIEANCE .o e e . 809
ADSIFACHION i e e .824
ENCApPSUIAtiON oo s e 828
POIYyMOrphiSM oot s e s 830
Cohesion and CoupliNg .o e e see e 836
Object -Oriented Modeling (OOM) i e . 842
L0117 Ao = 4o] SRR 844
DESIgN PAMEINS ..oiiiiiiiiiciiiciiiiiiieis et e s 847
EXEICISES .vviiiiiiii it et e e 851
Solutions and GUIdENINES ..o e e 852
Chapter 21. High - Quality Programming Code 853
IN ThIS ChapLer ..ociiiiiiiciiiiis s erteee e s e e 853
Why Is Code Quality Important? .. e . 853
What Does Quality Programming Code Mean? ...iiiiiiiiiiiee e 854
Why Should We Write Quality Code? 854
Identifier Naming cccocceeiiiieniiieee 857
Code FOrMAttiNg .oooiviiiiiiiiiiiiiiiiiiis et e 866
High - Quality ClaSSES ..cccoiiiiiiiiiiiiiiiiiiies ettt aeereea e 874
High -Quality MethodS ..o e e 878
Proper Use of VariableS cccciiiiiiiiiiies e e 883
Proper Use Of EXPreSSIONS v e e 890
USE Of CONSLANES .ooiiiiiiiiiiiciiicriiiiie e nies aerteesiee e 891
Proper Use of Control Flow — StatementScccccvvciiiiiviinies e 894
Defensive Programming ..o e eeneeeneens 898
Code DOCUMENLAtION .oooiiiiiiciii s et eeee e 900
Code RefaCtOriNg ...ccooviiiiiiiiiiiiiiis s e 904
L 1 A =Y 1 o PSP .905
Additional RESOUICES ...ooiiiiiiiiiiiieciciiiees e iee e aeeeeeeaeeaea e 912
EXEICISES ..ooiiiiiiii it et e e 912
Solutions and GUIElINES ..ot e e 913
Chapter 22. Lambda Expressions and LINQ e 915
IN ThIS Chaper oovviiciiiccriiiis e avreeeesree e s sraeaeanes 915
EXtension Methods ... e e 915

Detailed Table of Contents 11

Anonymous Types
Lambda Expressions
LINQ QUENES ..o

Nested LINQ QUENES ..oevveeeiviiiiieeeeeeee,
LINQ Performanceccoocceeeeeeviiinnnnen.

EXErCiSesccccoovvvvevvveeeeeeieennns
Solutions and Guidelines

Chapter 23. Methodology of Problem Solving e .. 935
INThiS Chapter oot e avree e e s e e e 935
Basic Principles of Solving Computer Programming Problems ... 935
Use Pen and Paper 936
Generate Ideas and Give Them a Try! 937
Decompose the Task into Smaller Subtasks — ..ciiiiiiis 938
Verify YOUr Ideas! oo s e 941
If a Pro blem Occurs, Invent a New ldea! ..ies 943
Choose Appropriate Data StruCtures! .o e 946
Think about the Efficiency! e e e 950
Implement Your Algorithm! s e e 953
Write the Code Step by Step! s e e 954
Test YOUr SOIULION! i s e 967
General CoONCIUSIONS i et e 979
EXEICISES ..oiiiiiiiiii it e e e 980
Solutions and GUIdElINES ...t e e 983

Chapter 24. Sample Programming Exam T Topic#l .., 985
IN ThIS ChapLer ..ociiiiiiiciiiiis s erteee e s e e 985
Problem 1: Extract Text from HTML Document ...iiiiiiiee e 985
Problem 2: Escape from Labyrinth ..t e 1012
Problem 3: Store for Car Parts ... e 1026
EXEICISES wvviiiiiiiii i eiiiiieiie et e aereeee s ... 1038
Solutions and GU ideliNES ..o e e 1040

Chapter 25. Sample Programming Exam T Topic#2 .o, 1041
INThiS Chapter oo e eerree e 1041
Problem 1: Counting the Uppercase / Lowercase Words ina Text ... 1041
Problem 2: A Matrix of Prime NUMDbers i e 1054
Problem 3: Evaluate an Arithmetic EXPression .iiiiiiiiiiiieiee e 1060
EXEICISES .oiiiiiiiiii ittt ettt e ... 1069
Solutions and GUIElINES ...t e e 1069

Chapter 26. Sample Programming Exam T TopicC#3 .. 1071
INThi S ChAPLer ooviiiiiiiiccciiiiis e arreeessreeessreee e 1071
Problem 1: Spiral MatriXx — .oooiiiiiiiiciieiciiiis e arere e 1071
Problem 2: Counting Words ina Text File . e 1078

Problem 3: SChOOl ...t e e 1099

12 Fundamentals of Compute r Programming with C#

EXEICISES wiiiiiiiiiiiiiiiiiiieiiiiiiie e eeenee e .. 1117
Solutions and GUIdElINES ..o e e 1118
CONCIUSION s e e 1119
Did You Solve All Problems? it s e 1119
Have You Encountered Difficulties with the Exercises? — .iiiiiiiiieeeiieee e 1119
How Do You Proceed After Reading the BOOK? ..o e 1120
Free Courses at Telerik Software Academy 1121
Good Luck to Everyone! ... 1121

Pref ace

If you want to take up programming seriously, youovehe c o me

right book . For real! This is the book with which you can make your first
steps in programming. It will give a flying start to your long journey into
learning modern programming languages and software development
technologies. This book teaches the fundamental principles and concepts

of programming , Which have not changed significantly in the past 15 years.

Do not hesitate to read this book even if C# is not the language you would
like to pursue. Whatever language you move on to, the knowledge we will

give you here will stick, because this book will teach you to think like
programmers. We will show you and teach you how to write programs for
solving practical algorithmic problems , form the skills in you to come up

with (and implement) algorithms, and use various data structures.

As improbable as it m ight seem to you, the basic principles of writing
computer programs have not changed all that much in the past 15 years.

Programming languages change, technologies get modernized, integrated
development environments get more and more advanced but the
funda mental principles of programming remain the same . When

beginners learn to think algorithmically, and then learn to divide a problem
instinctively into a series of steps to solve it, as well as when they learn to

select the appropriate data structures and w rite high -quality programming
code that is when they become programmers. Once you acquire these skills,

you can easily learn new languages and various technologies T like Web
programming, HTML5 and JavaScript, mobile development, databases and

SQL, XML, RE ST, ASP.NET, Java EE, Python, Ruby and hundreds more.

About the Book

This book is designed specifically to teach you to think like a programmer and

the C# language is just a tool that can be replaced by any other modern
programming languages, such as Java, C++, PHP or Python. This is a book
on programming, not a book on C#!

Please Excuse Us for the Bugs in the Translation!

This book was originally written in Bulgarian language by a large team of
volunteer software engineers and later translated into English . None of the
authors, translators, editors and the other contributors is a native English
speaker so you might find many mistakes and imprecise translation. Please ,
excuse us! Over 70 people have participated in this project (mostly
Bulgarians): authors, editors, translators, correctors, bug submitters, etc. and

14 Fundamentals of Computer Programming wi th C#

still the quality could be improved. The entire team congratulates you on your
choice to read this book and we believe the content in it i S more important
that the small mistakes and inaccuracies you might find. Enjoy!

Who Is This Book Aimed At?

This book is best suited for beginners . It is intended for anyone who so far

has not engaged seriously in programming and would like to begin doing it.

This book starts from scratch and introduces you step by step into the
fundamentals of programming. It wondét teach
might need for becoming a software engineer and working at a software

company, but it will lay the groundwo rk on which you can build up
technological knowledge and skills, and through them you will be able to turn

programming into your profession.

I f youbve never written a computer progr am,
first time. In this book we will teach y ou how to program from scratch

We do not expect any previous knowledge or abilities. All you need is some

basic computer literacy and a desire to take up programming. The rest you

will learn from the book.

If you can already write simple programs or if yo u have studied programming

at school or in coll ege, or dyp oat é&ssueme Yow ded w
know everything ! Read this book and youdl|l becon
things youobdve mi ssed. Thi s book i steathesd e e d
concepts and ski lls that even experienced professional programmers lack.
Software companies are riddled with a shocking amount of self -taught
amateurs who, despite having programmed on a salary for years, have no

grasp of the fundamentals of programming and have no idea w hat a hash

table is, how polymorphism works and how to work with bitwise operations.

Dondt be | i ke t hlmsicts of pregrammingtfitste and then the
technologies. Otherwise you risk having your programming skills crippled,

more or less, for years, i f not for life.

If, on the other hand, you have programming experience, examine this book

in details and see if you are familiar with all subjects we have covered, in

order to decide whether it is for you or not. Take a close look especially at the

chapter s "Data Structures and Algorithms Complexity ", " Object -Oriented
Programming Principles ", " Methodology of Problem Solving "and " High -Quality
Programming Code ". It is very likely that, even if you have several years of
experience, you might not be able to work well with data st ructures ; you
might not be able to evaluate the complexity of an algorithm ; you might
not have mastered in depth the concepts of object -oriented programming
(including UML and design patterns); and you might not be acquainted with

the best practices for wr iting high -quality programming code . These are
very important topics that are not covered in all books on programming, so
dondt skip them!

Preface 15

Previous Knowledge Is Not Required!

In this book we do not expect any previous programming knowledge

from the readers . It is not necessary for you to have studied information

technology or computer science, in order to read and comprehend the book

content. The book starts from scratch and gradually gets you involved in
programming. All technical terms you will come acros s will have been

explained beforehand and it is not necessary for you to know them from other

sources. | f you dondt know what a comptkl er

ment environment, variable, array, loop, console, string, data structure,

algorithm, algo ri t hm compl exi ty, class or object

this book , you will learn all these terms and many more and gradually get

accustomed to using them constantly in your everyday work. Just read the

book consistently and do the exercises.

Certain ly, if , after all , you do have prior knowledge in computer science and

information technologies, they will by all means be of use to you. If, at
university, you major in the field of computer science or if you study

information technology at school, this w ill only help you, but it is not a must.

If you major in tourism, law or other discipline that has little in common with
computer technology, you could still become a good programmer

as you have the desire. The software industry is full of good de
without a computer science or related degree.

, as long
velopers

It is expected for you to have basic computer literacy , since we would not
be explaining what a file, hard disk and network adapter is, nor how to move
the mouse or how to write on a keyboard. We expec t you to know how to

work with a computer and how to use the Internet.

It is recommended that the readers have at least some basic knowledge of
English . The entire documentation you will be using every day and almost all
of the websites on programming you would be reading at all times are in

English. In the profession of a programmer, English is absolutely

essential . The sooner you learn it, the better. We hope that you a
speak English; otherwise how do you read this text?

Iready

Make no illusion you can become a programmer without
learning even a little English! This is simply a naive
expectation. I f you dondét speak
& some so rt and then start reading technical literature, make
note of any unfamiliar words and learn them. You will see for
yourselves that Technical English is easy to learn and it
doesndt take much ti me.

Eng

What Is the Scope of This Book?

This book covers the fundamentals of programming . It will teach you how

to define and use variables, how to work with primitive data structures (such
as numbers), how to organize logical statements, conditional statements and

a

16 Fundamentals of Computer Programming wi th C#

loops, how to print on the console, how to use arra ys, how to work with

numeral systems, how to define and use methods, and how to create and use

objects. Along with the basic programming knowledge , this book will help

you understand more complicated concepts such as string processing,
exception handling, using complex data structures (like trees and hash

tables), working with text files, defining custom classes and working with

LINQ queries. The concepts of object -oriented programming (OOP) T an
established approach in modern software development T will be covered in

dept h. Finally, youol |l be f awitmg higvi t-duality he p

programs and solving real -world programming problems. This book presents

a complete methodology for solving programming problems, as well as
algorithmic problems in gen eral, and shows how to implement it with a few
sample subjects and programming exams. This is something you will not find
in any other book on programming!

What Will This Book Not Teach You?

This book will not award you the profession "software engineer" I This
book wonét teach you how to use the entire
databases, how to create dynamic web sites and develop mobile applications,

how to create window -based graphical user interface (GUI) and rich I nternet
applications (RIA). You wonoét | earn how to devel op
applications and systems like Skype, Firefox, MS Word or social networks like

Facebook and retail sites like Amazon.com. And no other single book will.

These kinds of projects require many, many years of work and experience

and the knowledge in this book is just a wonderful beginning for the future

programmer geek.

From this book , you wonot l earn software engineer:i
wonot be abl efortworkimyr enprealr peojects in a software company.

In order to learn all of this, you will need a few more books and extra courses,

but do not regret the time you will spend on this book. You are making the

right choice by starting with the fundamentals of programming rather
than directly with Web developmen t, mobile applications and databases. This
gives you the opportunity to become a master programmer who has in -
depth knowledge of programming and technology. After you acquire the
fundamentals of programming , it will become much easier for you to read and

learn databases and web applications, and you will understand what you read

much easier and in greater depth rather than if you directly begin learning

SQL, ASP.NET, AJAX, XAML or WInRT.

Some of your colleagues directly begin programming with Web or mobile
applications and databases without knowing what an array, a list or hash

table is. Do not envy them! They have set out to do it the hard way,
backwards. They will learn to make low - quality websites with PHP and MySQL,
but they will find it infinitely diffi cult to become real professionals . You,
too, will learn web technologies and databases, but before you take them up,

learn how to program! This is much more important. Learning one

Preface 17

technology or another is very easy once you know the basics, when you can
think algorithmically and you know how to tackle programming problems.

Starting to program with web applications or/and databases

is just as incorrect as studying up a foreign language from
some classical novel rather than from the alphabet and a

& textbook for beginners. It is not impossible, but if you lack

the basics, it is much more difficult. It is highly -probable that
you would end up lacking vital fundamental knowledge and
being the laughing - stock of your colleagues/peers.
How Is the Information Pres ented?
Despite the large number of authors, co -authors and editors, we have done
our best to make the style of the book similar in all chapters and highly
comprehensible. The content is presented in a well -structured manner; it is

broken up into many title s and subtitles, which make its reception easy and
looking up information in the text quick.

The present book is written by programmers for programmers . The
authors are active software developers, colleagues with genuine experience in

both software develop ment and training future programmers. Due to this, the

quality of the content presentation is at a very good level, as you will see for
yourself.

All authors are distinctly aware that the sample source code is one of the
most important things in a book on programming. Due to this very reason,
the text is accompanied with many, many examples, illustrations and figures.

When every chapter is written by a different author, there is no way to
completely avoid differences in the style of speech and the quality of
chapters. Some authors put a lot of work (for months) and a lot of efforts to

make their chapters perfect . Others could not invest too much effort and

that is why some chapters are not as good as the best ones. Last but not

least, the experience of the authors varies 1 some have been programming
professionally for 2 -3 years, while others i for 15 years. This affects the
quality, no doubt, but we assure you that every chapter has been
reviewed and meets the quality standards of Svetlin Nakov and his team.

C# and .NET Framework

This book is about programming . It is intended to teach you to think as a
programmer, to write code, to think in data structures and algorithms and to
solve problems.

We use C# and Microsoft .NET Framework (the platform behind C#) only

as means for writing programming code and we do not scrutinize the

|l anguageds speci fics. Thi s s ame book can
languages like Java and C++, but the differences are not very significant.

http://www.nakov.com/

18 Fundamentals of Computer Programming wi th C#

Nevertheless, | etbés give a short account

of

& C# is a modern programming language for development of
software applications.

| f the words "C#" and ". NET Framewor k"
details about them and their connection in the next chapter . Now let 6 ®xplain
briefly what C#, .NET, .NET Framework, CLR a nd the other technologies
related to C# are.

The C# Programming Language

C# is a modern object -oriented, general -purpose programming
language , created and developed by Microsoft together with the .NET
platform. There is highly diverse software developed wi th C# and on the .NET

platform: office applications, web applications, websites, desktop applications,
mobile applications, games and many others.

C# is a high -level language that is similar to Java and C++ and, to some

ar

extent, languages like Delphi, VB.NE T and C. All C# programs are object -

oriented. They consist of a set of definitions in classes that contain methods

and the methods contain the program logic T the instructions which the
computer executes. You will find out more details on what a class, a m ethod
and C# programs are in the next chapter

Nowadays C# is one of the most popular programming languages Ltis
used by millions of developers worldwide. Because C# is developed by
Microsoft as p art of their modern platform for development and execution of
applications, the .NET Framework, the language is widely spread among
Microsoft -oriented companies, organizations and individual developers. For

better or for worse, as of this book writing, the C# language and the .NET
platform are maintained and managed entirely by Microsoft and are not
open to third parties. Because of this, all other large software corporations

like IBM, Oracle and SAP base their solutions on the Java platform and use

Java as their primary language for developing their own software products.

Unlike C# and the .NET Framework, the Java language and platform are
open -source projects that an entire community of software companies,
organizations and individual developers take part in. The standards, the
specifications and all the new features in the world of Java are developed by
workgroups formed out of the entire Java commun ity, rather than a single
company (as the case of C# and .NET Framework).

The C# language is distributed together with a special environment on which

it is executed, called the Common Language Runtime (CLR) . This
environment is part of the platform .NET Fr amework, which includes CLR, a
bundle of standard libraries providing basic functionality, compilers,
debuggers and other development tools. Thanks to the framework CLR
programs are portable and, once written they can function with little or no

changes on various hardware platforms and operating systems. C# programs

e

Preface 19

are most commonly run on MS Windows, but the .NET Framework and CLR

also support mobile phones and other portable devices based on Windows
Mobile, Windows Phone and Windows 8. C# programs can st ill be run under
Linux, FreeBSD, iOS, Android, MacOS X and other operating systems through
the free .NET Framework implementation Mono , which, however, is not
officially supported by Microsoft.

The Microsoft .NET Framework

The C# language is not distribute d as a standalone product T itis a part of
the Microsoft .NET Framework platform (pronounced "Microsoft dot net
framework"). .NET Framework generally consists of an environment for the
development and execution of programs, written in C# or some other

lan guage, compatible with .NET (like VB.NET, Managed C++, J# or F#). It
consists of:

- the .NET programming languages (C#, VB.NET and others);

- an environment for the execution of managed code (CLR), which
executes C# programs in a controlled manner;

- asetof development tools , such as the csc compiler, which turns C#
programs into intermediate code (called MSIL) that the CLR can
understand;

- a set of standard libraries , like ADO.NET , which allow access to
databases (such as MS SQL Server or MySQL) and WCF which ¢ onnects

applications through standard communication frameworks and protocols
like HTTP, REST, JSON, SOAP and TCP sockets.

The .NET Framework is part of every modern Windows distribution and is

available in different versions. The latest version can be down loaded and
installed from Microsoftds website. As
version of the .NET Framework is 4.5 . Windows Vista includes out -of-the -
box .NET Framework 2.0, Windows 7 T .NET 3.5 and Windows 8 i .NET 4.5.
Why C#?

There are many re asons why we chose C# for our book. It is a modern
programming language, widely spread, used by millions of programmers
around the entire world. At the same time C# is a very simple and easy to
learn (unlike C and C++). It is natural to start with a langua ge that is
suitable for beginners while still widely used in the industry by many large
companies, making it one of the most popular programming languages
nowadays.

C# or Java?

Although this can be extensively discussed, it is commonly acknowledged that
Java is the most serious competitor to C# . We will not make a
comparison between Java and C#, because C# is undisputedly the better,

of

20 Fundamentals of Computer Programming wi th C#

more powerful, richer and just better engineered. But, for the purposes of this
book, we have to emphasize that any modern pr ogramming language will be
sufficient to learn programming and algorithms. We chose C#, because it is
easier to learn and is distributed with highly convenient, free integrated
development environment (e.g. Visual C# Express Edition). Those who prefer

Java can prefer to use the Java version of this book, which can be found here:
www.introprogramming.info

Why Not PHP?

With regards to programing languages popularity, besides C# and Java,
another widely used language is PHP . It is suitable for developing small web
sites and web applications, but it gives rise to serious difficulties when
implementing large and complicated software systems. In the software
industry PHP is used first and foremost for small projects , because it can
easily lead developers into writing code that is bad, disorganized and hard to
maintain, making it inconvenient for more substantial projects. Thi S subject is
also debatable, but it is commonly accepted that, because of its antiquated
concepts and origins it is built on and because of various evolutionary
reasons, PHP is a language that tends towards low - quality
programming , writing bad code and cre ating hard to maintain software. PHP

is a procedural language in concept and although it supports the paradigms of

modern object -oriented programming, most PHP programmers write
procedurally. PHP is known as the language of "code monkeys" in the
software e ngineering profession, because most PHP programmers write

terrifyingly low -quality code . Because of the tendency to write low -quality,
badly structured and badly organized programming code, the entire concept
of the PHP language and platform is considered wrong and serious companies

(like Microsoft, Google, SAP, Oracle and their partners) avoid it. Due to this
reason, if you want to become a serious software engineer, start with C# or
Java and avoid PHP (as much as possible).

Certainly, PHP has its uses in the world of programming (for example
creating a blog with WordPress, a small web site with Joomla or Drupal, or a
discussion board with PhpBB), but the entire PHP platform is not well -

organized and engineered for large systems like .NET and Java. When it

comes to non -web -based applications and large industrial projects, PHP is not

by a long shot among the available options. Lots and lots of experience is
necessary to use PHP correctly and to develop high -quality professional
projects with it. PHP developer s usually learn from tutorials, articles and low -
quality books and pick up bad practices and habits, which then are hard to

eradicate. Therefore, do not learn PHP as vyour first development

language . Start with C# or Java

Based on the large experience of t he authors' collective we advise you to
begin programming with C# and ignore languages such as C, C++ and PHP
until the moment you have to use them.

http://www.introprogramming.info/

Preface 21

Why Not C or C++?

Although this is also debatable, the C and C++ languages are considered
complex and requi res deep understanding of hardware . They still have their
uses and are suitable for low -level programming (e.g. programming for
specialized hardware devices), but we do not advise you to use C/C++ when

you are beginner who wants to learn programming

You can program in pure C, if you have to write an operating system, a
hardware device driver or if you want to program an embedded device,

because of the lack of alternatives and the need to control the hardware very

carefully. The C language is very low -lev el and in no way do we advise
you to begin programming with it. A program
is many times lower compared to their productivity under modern general -
purpose programming languages like C# and Java. A variant of C is used

among Ap ple / iPhone developers, but not because it is a good language, but

because there is no decent alternative. Most Apple -oriented programmers do
not like Objective -C, but they have no choice in writing in something else. In
2014 Apple promoted their new lang uage Swift , which is of higher level and
aims to replace Objective - C for the iOS platform.

C++ is good when you have to program applications that require very close
work with the hardware or that have special performance requirements

(like 3D games). Fora Il other purposes (like Web applications development or
business software) C++ is inadequate. We do not advise you to pursue it, if
you are starting with programming just now. One reason it is still being
studied in some schools and universities is heredit ary, because these
institutions are very conservative. For example, the International Olympiad in
Informatics (IOl) continues to promote C++ as the only language permitted

to use at programming contests, although C++ is rarely used in the
industry . Ifyou donét believe this, |l ook through
count the percentage of job advertisements with C++.

The C++ language lost its popularity mainly because of the inability to quickly

write quality software with it. In order to write high -quality so ftware in C++,

you have to be an incredibly smart and experienced programmer, whereas

the same is not strictly required for C# and Java. Learning C++ takes

much more time and very few programmers know it really well. The

productivity of C++ programmers is many times | ower than C#
why C++ is losing ground. Because of all these reasons, the C++ language

is slowly fading away and therefore we do not advise you to learn it.

Advantages of C#

C# is an object -oriented programming language. Such are a I modern
programming languages used for serious software systems (like Java and
C++). The advantages of object -oriented programming are brought up in

many passages throughout the book, but, for the moment, you can think of
object -oriented languages as lan guages that allow working with objects from
the real world (for example student, school, textbook, book and others).

22 Fundamentals of Computer Programming wi th C#

Objects have properties (e.g. name, color, etc.) and can perform actions (e.g.
move, speak, etc.).

By starting to program with C# and the . NET Framework platform, you are on

a very perspective track . If you open a website with job offers for
programmer s, youbl I see for yourself t hat
specialists is huge and is close to the demand for Java programmers. At the

same time, the demand for PHP, C++ and other technology specialists is far

lower than the demand for C# and Java engineers.

For the good programmer , the language they use is of no significant meaning,
because they know how to program . Whatever language and technology
they might need, they will master it quickly. Our goal is not to teach you
C#, but rather teach you programming! After you master the
fundamentals of programming and learn to think algorithmically, when you
acquain t with other programming languages , you will see for yourself how
much in common they have with C# and how easy it will be to learn them.
Programming is built upon principles that change very slowly over the years

and this book teaches you these very prin ciples.

Examples Are Given in C# 5 and Visual Studio 201 2

All examples in this book are with regard to version 5.0 of the C# language

and the .NET Framework 4.5 platform, which is the | ate
publishing. All examples on using the Visual St udio integrated development
environment are with regard to version 2012 of the product, which were also

the latest at the time of writing this book.

The Microsoft Visual Studio 201 2 integrated development environment
(IDE) has a free version, suitable for beginner C# programmers, called
Microsoft Visual Studio Express 2012 for Windows Desktop . The difference
between the free and the full version of Visual Studio (which is a commercial

software product) lies in the availability of some functionalit ies, which we will
not need in this book.

Although we use C# 5 and Visual Studio 201 2, most examples in this book
will work flawlessly under .NET Framework 2.0 /35/40 andC#20 /35/
4.0 and can be compiled under Visual Studio 2005 / 2008 / 2010 .

tisofno great significance which version of C#

while you learn programming. What matters is that you learn the principles
of programming and algorithmic thinking I The C# language, the .NET
Framework platform and the Visual Studio inte grated development

environment are just tools and you can exchange them for others at any time.
If you read this book and VS2012 is not currently the latest, be sure almost
all of this bookés content will still be the

How o2 Read This Book?

Reading this book has to be accompanied with lots and lots of practice .You
wono6t | earn programming, if you dondét practi

Preface 23

how to swim from a book without actually trying it. There is no other way!
The more you work on the problems after every chapter, the more you will
learn from the book.

Everything you read here , you would have to try for yourself on a computer.

Ot her wi se you woné6ét | earn anything. For exa
Studio and ho w to write your first simple program, you must by all means

download and install Microsoft Visual Studio (or Visual C# Express) and try to

write a progr am. Ot herwi se you wonot |l earn! I n
easy, but programming means practice . Remembe r this and try to solve

the problems from this book. They are carefully selected i they are neither

too hard to discourage you, nor too easy, S
solving them as a challenge. If you encounter difficulties, look for help at th e
discussion group for the "C# Programming Fundamentals” training course

at Telerik Software Academy: http://forums.academy.telerik.com (the forum

is intended for Bulgarian developers but the people "living "in it speak English

and wil|l answer your questions regarding th
students solve the exercises from this book every year so you will find many

solutions to each problem from the book. We will also publish official solutions

+ tests for every exercise in the book at its web site.

Reading this book without practicing is meaningless! You
must spend much more time on writing programs than
& reading the text itself. It is just like learning to drive: no one

can learn driving by reading books. To learn driving , you
need to drive many times in different situations, roads, cars,
etc. To learn programming , you need to program!

Everybody has studied math in school and knows that learning how to solve

math problems requires lots of pr actice. No matter how much they watch and
listen to their teacher s, without actually sitting down and solving

probl ems, t hey wdheéame gaesforrprogramming. You need

lots of practice. You need to write a lot, to solve problems, to experiment, t o]
endeavor in and to struggle with problems, to make mistakes and correct

them, to try and fail , to try anew and experience the moments when things

finally work out. You need lots and lots of practice. This is the only way you

will make progress.

So people say that to become a developer you might need to write at least

50,000 7 100,000 lines of code, but the correct number can vary a lot . Some
people are fast learners or just have problem -solving experience. Others may
need more practice, but in al | cases practicing programming is very
important ! You need to solve problems and to write code to become a
developer. There is no other way!

Do Not Skip the Exercises!

At the end of each chapter there is a considerable list of exercises . Do not
skip them! Without exercises , you will not learn a thing. After you read a

http://forums.academy.telerik.com/

24 Fundamentals of Computer Programming wi th C#

chapter, you should sitin front of the computer and play with the examples

you have seen in the book. Then you should set about solving all problems. If

you cannot solve them all, you should at l east try. I f you dc
time necessary, you must at least attempt solving the first few problems from

each chapter. Do not carry on without solving problems after every

chapter , it would just be meaningless! The problems are small feasible

situations where you apply the stuff you have read. In practice, once you

have become programmers, you would solve similar problems every day, but

on a larger and more complex scale.

after every chapter from the book! Otherwise you risk not

2 You must at all cost strive to solve the exercise problems
learning anything and simply wasting your time.

How Much Time Will We Need for This Book?

Mastering the fundamentals of programming is a crucial task and takes a lot
of time . Even if youbr e i ihc¢hereid ndbway thag yoo dill at
learn programming on a good level for a week or two. To learn any human

skill, you need to read, see or be shown how it is done and then try doing it
yourselves and practice a lot. The same goes for programming T you must
either read, see or listen how it is done, then try doing it yourself . Then you
would succeed or you would not and you would try again, until you finally

realize you have learned it. Learning is done step by step, consecutively, in

series, with a lot of ef ~ fort and consistency.

If you want to read, understand, learn and acquire thoroughly and in -depth
the subject matter in this book, you have to invest at least 2 months for
daylong activity or at least 4 -5 months, if you read and exercise a little

every day. This is the minimum amount of time it would take you to be able
to grasp in depth the fundamentals of programming.

The necessity of such an amount of lessons is confirmed by the free trainings
at Telerik Software Academy (http://academy.telerik.com), which follow this

very book. The hundreds of students, who have participated in training s
based on the lectures from this book, usually learn all subjects from this book
within 3-4 months of full -time work . Thousands of students every year

solve all exercise problems from this book and successfully sit on
programmi ng exams covering t he bookos con
anyone without prior exposure to programming, who has spent less than the

equivalent of 3 -4 month s daylong activity on this book and the corresponding

course s at Telerik Academy, fails the exams.

The main subject matter in the book is presented in more than 1100 pages ,
which will take you a month (daylong) just to read them carefully and test the

samp le programs. Of course, you have to spend enough time on the exercises

(few more months); without them you would hardly learn programming.

http://academy.telerik.com/

Preface 25

Exercises: Complex or Easy?

The exercises in the book consist of about 350 problems with varying
difficulty. For some of them you will need a few minutes, for others several

hours (if you can solve them at all without help). This means you would need

a month or two of daylong exercising or several months, if you do it little by

little.

The exercises at each chapter are ordered in increasing level of difficulty

The first few exercises are easy, similar to the examples in the chapter. The

last few exercises are usually complex. You might need to use external
resources (like information fro m Wikipedia) to solve them. Intentionally , the
last few exercises in each chapter require skills outside of the chapter . We
want to push you to perform a search in your favorite search engine. You

need to learn searching on the Internet! This is an essenti al skill for any
programmer. You need to learn how to learn. Programming is about learning
every day. Technol ogies constantly change at
be a programmer means to learn new APIs, frameworks, technologies

and tools every day . This cannot be avoided, just prepare yourself. You will

find many problems in the exercises, which require searching on the Internet.
Sometime s you will need the skills from the next chapter, sometimes some

well -known algorithm, sometimes something else, but in all cases searching
onthe Internetis an essential skill you need to acquire.

Solving the exercises in the book takes a few months , real |l vy. | f y
have that much time at your disposal, ask yourselves if you really want to

pursue programming. This is a very serious initiative in which you must invest

a really great deal of efforts. If you really want to learn programming on a

good level, schedule enough time and follow the book or the video lectures

based on it.

Why Are Data Structures and Algo rithms
Emphasized?

This book teaches you, in addition to the basic knowledge in programming,

proper algorithmic thinking and using basic data structures in
programming. Dat a structures and al gorithn
important fundamental skills! If you have a good grasp of them, you will not

have any trouble becoming proficient in a ny software technology,
development tool, framework or API. That is what the most serious software

companies rely on when hiring employees. Proof of this are job intervie ws at

large companies like Google and Microsoft that rely exclusively on

algorithmic thinking and knowledge of all basic data structures and

algorithms

The information below comes from Svetlin Nakov , the leading author of this

book, who passed software en gineering interviews at Microsoft and Google in
2007 -2008 and shares his own experience.

26 Fundamentals of Computer Programming wi th C#

Job Interviews at Google

100% of the questions at job interviews for software engineers at Google,

Zurich, are about data structures, algorithms and algorithmic thinki ng.
At such an interview you may have to implement on a white board a linked

list (see the chapter " Linear Data Structures ") or come up with an algorithm

for filling a raster polygon (given in the form o f a GIF image) with some sort

of color (see Breadth -first search in the chapter " Trees and Graphs "). It
seems like Google are interested in hiring people who can think
algorithmically and who have a grasp of b asic data structures and computer
algorithms. Any technology that candidates would afterwards use in their line

of work can be quickly learned. Needless to say, do not assume this book will

give you all the knowledge and skills to pass a job interview at G oogle. The
knowledge in the book is absolutely a necessary minimum, but not completely
sufficient. It only marks the first steps.

Job Interviews at Microsoft

A lot of questions at job interviews for software engineers at Microsoft,
Dublin, focus on data st ructures , algorithms and algorithmic thinking
For example, you could be asked to reverse the words in a string (see the
chapter " Strings and Text Processing " or to implement topological sorting in

an undirected graph (see the chapter " Trees and Graphs "). Unlike Google,
Microsoft asks a lot of engineering questions related to software architectures,
multithreading, writing secure code, working with large amounts of data and
software testing. This book is far from sufficient for applying at Microsoft, but

the knowledge in it will surely be of use to you for the majority of questions.

About the LINQ Technology

The book includes a chapter on the popular .NET technology LINQ

(Language Integrated Query), which allows execution of various queries
(such as searching, sorting, summation and other group operations) on

arrays, lists and other objects. It is p laced towards the end on purpose, after

the chapters on data structures and algorithms complexity . The reason
behind thisis that the good programmer must know what happens when they

sort a list or search in an array according to criteria and how many oper ations
these actions take. If LINQ is used, it is not obvious how a given query works

and how much time it takes. LINQ is a very powerful and widely -used
technology , but it has to be mastered at a later stage (at the end of the

book), after you are well fa miliar with the basics of programming, the main
algorithms and data structures. Otherwise you risk learning how to write
inefficient code without realizing how it works and how many operations it

performs in the background.

Do You Really Want to Become a P rogrammer?

If you want to become a programmer , you have to be aware that true
programmers are serious, persevering, thinking and questioning people who

Preface 27

handle all kinds of problems. It is important for them to master quickly all
modern or legacy platforms, technologies, libraries, APIs, programming tools,
programming languages and development tools necessary for their job and to
feel programming as a part of their life.

Good programmers spend an extraordinary amount of time on

advancing their engineering sk ills , on learning new technologies, new
programming languages and paradigms, new ways to do their job, new
platforms and new development tools every day. They are capable of logical
thinking ; reasoning on problems and coming up with algorithms for solving

them; imagining solutions as a series of steps; modeling the surrounding
world using technological means; implementing their ideas as programs or
program components; testing their algorithms and programs; seeing issues;
foreseeing the exceptional circumsta nces that can come about and handling
them properly; listening to the advi ce of more experienced people; adapt ing
their applicationsdéd user interface to the us
to the capabilities of the machines and the environment they will be executed
on and interact ed with.

Good programmers constantly read books, articles or blogs on
programming and are interested in new technologies; they constantly enrich

their knowledge and constantly improve the way they work and the quality of

software they write. Some of them become obsessed to such an extent that

they even forget to eat or sleep when confronted with a serious problem or

simply inspired by some interesting lecture or presentation. If you have the
tendency to get motivated to such an extent to do something (like playing
video games incessantly), you can learn programming very quickly by getting

into the mindset that programming is the most interesting thing in this world
for you, in this period of your life.

Good programmers have o ne or more computers, an Internet connection and

live in constant reach with technologies . They regularly visit websites and
blogs related to new technologies, communicate everyday with their
colleagues, visit technology lectures, seminars and other events , even if they

have no use for them at the moment. They experiment with or research the

new means and new ways for making a piece of software or a part of their
work. They examine new libraries, learn new languages, try new frameworks

and play with new dev elopment tools. That way they develop their skills
and maintain their level of awareness, competence and professionalism.

True programmers know that they can never master their profession to its full

extent, because it constantly changes. They live with th e firm belief that they
have to learn their entire lives ; they enjoy this and it satisfies them. True
programmers are curious and questioning people that want to know how
everything works 1 from a simple analog clock to a GPS system, Internet
technology, p rogramming languages, operation systems, compilers, computer
graphics, games, hardware, artificial intelligence and everything else related

to computers and technologies. The more they learn, the more knowledge and

skills they crave after. Their life is ti ed to technologies and they change

28 Fundamentals of Computer Programming wi th C#

with them, enjoying the development of computer science, technologies and
the software industry.

Everything we tell you about true programmers, we know firsthand. We are
convinced that programmer is a profession that requ ires your full
devotion and complete attention, in order to be a really good specialist i
experienced, competent, informed, thinking, reasoning, knowing, capable and

able to deal with non -standard situations. Anyone who takes up programming
"among other th ings" is fated to being a mediocre programmer. Programming
requires complete devotion for years . If you are ready for all of this,
continue reading and take into account that the next few months you will

spend on this book on programming are just a small s tart. And then you will
learn for years until you turn programming into your profession. Once that

happens , you would still learn something every day and compete with
technologies, so that you can maintain your level, until one day programming

develops you r thinking and skills enough, so that you may take up another
profession , because few programmers reach retirement; but there are quite
a lot of successful people who have begun their careers with programming.

Motivate Yourself to Become a Programmer or Fi nd
Another Job!
I f you stild]l h a v ébecdnting g gowdeprogrammer 0 n and if you

have already come to the understanding deep down that the next months and

years will be tied every day to constant diligent work on mastering the secrets

of programming, software development, computer science and software
technologies, you may use an old technique for self - motivation and
confident achievement of goals that can be found in many books and ancient
teachings under one form or another. Keep imagining that you are
programmers and that you have succeeded in becoming ones; you engage
ev ery day in programming ; it is your profession; you can write all the
software in the world (provided you have enough time); you can solve any

problem that experienced programmers can solve. Keep thinking constantly

and incessantly of your goal. Keep tellin g yourself, sometimes even out loud:

"l want to become a good programmer and | have to work hard for this, |

have to read a lot and learn a lot, | have to solve a lot of problems, every

day, constantly and diligently". Put programming books everywhere arou nd
you, even stick a sign that says " I &1 I become a good"hyryaugr am
bed, so that you can see it every evening when you go to bed and every

morning when you wake up. Program every day (no exceptions!), solve
problems, have fun, learn new technologie S, experiment; try writing a game,
making a website, writing a compiler, a database and hundreds of other
programs you may come up with original ideas for. In order to become good
programmers, program every day and think about programming every day

and kee p imagining the future moment when you are an excellent
programmer. You can, as long as you deeply believe that you can! Everybody

can, as long as they believe that they can and pursue their goals constantly

Preface 29

without giving up. No -one would motivate you bet ter than yourselves.
Everything depends on you and this book is your first step.

A great way to really learn programming is to program every

day for a year. If you program every day (without exception)

and you do it for a long time (e.g. year or two) the re is no

& way to not become a programmer. Anyone who practices
programming every day for years will become good someday.

This is valid for any other skill: if you want to learn it, just

practice every day for a long time.

A Look at t he Bookds Contents

Now | et ds take a glance at wh at we Bexte
chapters of the book . We will give an account of each of them with a few
sentences, so that you know what you are about to learn.

Chapter 0: Preface

The preface (the current chapter) int roduces the readers to the book, its
content, what the reader will learn and what will not, how to read the
book, why we use the C# language, why we focus on data structures and
algorithms, etc. The preface also describes the history of the book, the

conte nt of its chapter one by one, the team of authors, editors and translators

from Bulgarian to English. In contains the full reviews written by famous
software engineers from Microsoft, Google, SAP, VMware, Telerik and other
leading software companies from a Il over the world.

Author of the preface is Svetlin Nakov (with little contribution from Veselin
Kolev and Mihail Stoynov). Translation to English: by Ilvan Nenchovski (edited
by Mihail Stoynov, Veselina Raykova , Yoan Krumov and Hristo Radkov).

Chapter 1: 1 ntroduction to Programming

In the chapter " Introduction to Programming ", we will take a look at the basic
terminology in programming and write our first program . We will
familiarize ourselves with w hat programming is and what connection to
computers and programming languages it has. We will briefly review the main

stages in software development, introduce the C# language , the .NET
platform and the different Microsoft technologies used in software

dev elopment. We will examine what auxiliary tools we need to program in C#

and use the C# language to write our first computer program , compile it
and run it using the command line, as well as Microsoft Visual Studio
integrated development environment. We wil | familiarize ourselves with the
MSDN Library 1 the documentation for the .NET Framework, which will help us

ab

in our study of the |l anguageds capabilities.

Author of the chapter is Pavel Donchev ; editors are Teodor Bozhikov and
Svetlin Nakov. The content of the chapter is somewhat based on the work of

30 Fundamentals of Computer Programming wi th C#

Luchesar Cekov from the book "Introduction to Programming with Java".
Translation to English: by Atanas Valchev (edited by Vladimir Tsenev and
Hristo Radkov).

Chapter 2: Primit ive Types and Variables

In the chapter " Primitive Types and Variables , we will examine primitive

types and variables in C# i what they are and how to work with them.
First, we will focus on data types 1 integer types, real floating - point types,
Boolean, character types, strings and object types. We will continue with
variables , what they and their characteristics are, how to declare them, how

they are assigned a value and what variable initializat ionis. We will familiarize
ourselves with the main categories of data types in C# 1 value and reference
types. Finally, we will focus on literals , what they are and what kinds of
literals there are.

Authors of the chapter are Veselin Georgiev and Svetlin Nakov ; editor is
Nikolay Vasilev . The content of the entire chapter is based on the work of
Hristo Todorov and Svetlin Nakov from the book "Introduction to
Programming with Java". Translation to English: by Lora Borisova (edited by

Angel Angelov and Hristo Radkov).

Chapter 3: Operators and Expressions

In the chapter " Operators and Expressions ", we will familiarize ourselves with
the operators in C# and the operations they perform on the various data

ty pes. We will clarify the priorities of operators and familiarize ourselves with

the types of operators, according to the count of the arguments they take and

the operations they perform. Then, we will examine typecasting , why it is
necessary and how to wor k with it. Finally, we will describe and illustrate
expressions and how they are utilized.

Authors of the chapter are Dilyan Dimitrov and Svetlin Nakov ; editor is
Marin Georgiev. The content of the entire chapter is based on the work of
Lachezar Bozhkov from the book "Introduction to Programming with Java".
Translation to English: by Angel Angelov (edited by Martin ~ Yankov and Hristo
Radkov).

Chapter 4: Console Input and Output

In the chapter Console Input and Output ", we will get familiar with the

console as a means for data input and output . We will explain what it is,
when and how it is used, what the concepts of most programming languages
for accessing the console are. We will familiarize ourselves with some of the

features in C# for user interaction and will examine the main streams for

input -output operations Console.In , Console.Out and Console.Error , the
class Console and the utilization of format strings for printing data in
various formats. We will see how to convert text into a number (parsing),
since this is the way to enter numbers in C#.

Preface 31

Author of the chapter is lliyan Murdanliev and editor is Svetlin Nakov. The
content of the entire chapter is largely based on the work of Boris Valkov from
the book "Introduction to Programming with Java". Translation to English: by

Lora Borisova (edited by Dyanko Petkov).

Chapter 5: Conditional Statements

In the chapter " Conditional Statements we will cover the conditional
statements in C# , which we can use to execute different actions depending

on some condition. We will explain the syntax of the conditional operators

if and if -else with suitable examples and explain the practical applicatio ns
of the selection control operator switch . We will focus on the best practices
that must be followed, in order to achieve a better style of programming when

utilizing nested or other types of conditional statements.

Author of the chapter is Svetlin Nakov and editor is Marin Georgiev. The

content of the entire chapter is based on the work of Marin Georgiev from the
book "Introduction to Programming with Java". Translation to English: by
George Vaklinov (edited by Momchil Rogelov).

Chapter 6: Loops

In the ¢ hapter " Loops", we will examine the loop mechanisms , through
which we can execute a shippet of code repeatedly. We will discuss how
conditional repetitions (while and do-while loops) are implemented and how

to work with for loops. We will give examples of the various means for
defining a loop, the way they are constructed and some of their key
applications. Finally, we will see how we can use multiple loops within each

other (nested loops).

Author of the chapter is Stanis lav Zlatinov and editor is Svetlin Nakov. The
content of the entire chapter is based on the work of ~ Rumyana Topalska from
the book "Introduction to Programming with Java". Translation to English: by

Angel Angelov (edited by Lora Borisova).

Chapter 7: Array S

In the chapter " Arrays ", we will familiarize ourselves with arrays as a means

for working with a sequence of elements of the same type. We will
explain what they are, how we can declare, create and instantiate arrays and
how to provide access to their elements. We will examine one -dimensional
and multidimensional arrays . We will learn the various ways for iterating
through an array, reading from the standard input and writing to the standard

output. We will give many e xercises as examples, which can be solved using
arrays , and show you how useful they are.

Author of the chapter is Hristo Germanov and editor is Radoslav Todorov.
The content of the chapter is based on the work of Mariyan Nenchev from the
book "Introductio n to Programming with Java". Translation to English: by
Boyan Dimitrov (edited by Radoslav Todorov and Zhelyazko Dimitrov).

32 Fundamentals of Computer Programming wi th C#

Chapter 8: Numeral Systems

In the chapter Numeral Systems ", we will take a look at th e means for
working with various numeral systems and the representation of

numbers in them. We will pay special attention to the way numbers are

represented in decimal , binary and hexadecimal numeral systems, because

they are widely used in computers, comm unications and programming. We

will also explain the methods for encoding numeral data in a computer and

the types of encodings, namely signed magni
complement and binary -coded decimals.

Author of the chapter is Teodor Bozhikov and editor is Mihail Stoynov. The
content of the entire chapter is based on the work of Petar Velev and Svetlin
Nakov from the book "Introduction to Programming with Java". Translation to
English: by Atanas Valchev (edited by Veselina Raykova).

Chapter 9: Methods

In the chapter " Methods ", we will get to know in details the subroutines in
programming , which are called methods in C#. We will explain when and
why methods are used; will show how methods are declared and what a
method signature is. We will learn how to create a custom method and how
to use (invoke) it subsequently, and will demonstrate how we can use
parameters in methods and how to return a result from a method. Finally, we
will discuss some established practices when working with methods. All of this

will be backed up with examples explained in details and with extra exercises.

Author of the chapter is Yordan Pav lov ; editors are Radoslav Todorov and

Nikolay Vasilev. The content of the entire chapter is based on the work of
Nikolay Vasilev from the book "Introduction to Programming with Java".
Translation to English: by Ivaylo Dyankov (edited by Vladimir ~ Amiorkov and

Franz Fischbach).

Chapter 10: Recursion

In the chapter " Recursion ", we will familiarize ourselves with recursion and
its applications . Recursion is a powerful programming technique where a
method invokes itself . By means of recursion we can solve complicated
combinatorial problems where we can easily exhaust different
combinatorial configurations. We will demonstrate many examples of correct

and incorrect recursion usage and we will convince you how useful it can b e.

Author of the chapter is Radoslav Ivanov and editor is Svetlin Nakov. The
content of the entire chapter is based on the work of Radoslav Ivanov and
Svetlin Nakov from the book "Introduction to Programming with Java".
Translation to English: by Vasya Sta nkova (edited by Yoan Krumov).

Preface 33

Chapter 11: Creating and Using Objects

In the chapter " Creating and Using Objects ", we will get to know the basic
concepts of object -oriented programming I classes and objects 1 and we
will explain how to use classes from the standard libraries of the .NET
Framework. We will focus on some commonly used system classes and will
show how to create and use their instances (objects). We will discuss how to
access properties of an object, how to call constructors and how to work

with static fields in classes. Finally, we will focus on the term "namespaces" i
how they help us, how to include and use them.

Author of the chapter is Teodor Stoev and editor is Stefan Staev. The
content of the entire chapter is based on the work of Teodor Stoev and Stefan
Staev from the book "Introduction to Programming with Java". Translation to

English: by Vasya Stankova (edited by Todor Mitev).

Chapter 12: Exception Handling

In the chapter " Exception Handling ", we will get to know exceptions in
object -oriented programming and in C# in particular. We will learn how to

catch exceptions using the try -catch clause, how to pass them to the
calling method s and how to throw standard, custom or caught exceptions
using the throw statement. We will give a number of examples of their
utilization and will look at the types of exceptions and the exceptions
hierarchy they form in the .NET Framework. Finally, we wi Il look at the

advantages of using exceptions and how to apply them in specific situations.

Author of the chapter is Mihail Stoynov and editor is Radoslav Kirilov. The

content of the entire chapter is based on the work of Luchesar Cekov , Mihalil
Stoynov and Svetlin Nakov from the book "Introduction to Programming with
Java". Translation to English: by Dimitar Bonev and George Todorov (edited

by Doroteya Agayna).

Chapter 13: Strings and Text Processing

In the chapter " Strings and Text Processing ", we will familiarize ourselves with
strings : how they are implemented in C# and how we can process text

content. We will go through different methods for manipulating text ; and
learn how to extract substrings according to passed parameters, how to
search for keywords as well as how to split a string by separator
characters. We will provide useful information on regular expressions and
we will learn how to extract data matching a specific pattern. Finally, we wil I
take a look at the methods and classes for achieving more elegant and strict
formatting of text content on the console, with various ways for printing
numbers and dates.

Author of the chapter is Veselin Georgiev and editor is Radoslav Todorov.
The conten t of the entire chapter is based on the work of Mario Peshev from
the book "Introduction to Programming with Java". Translation to English: by
Vesselin Georgiev (edited by Todor Mitev and Vladimir Amiorkov).

34 Fundamentals of Computer Programming wi th C#

Chapter 14: Defining Classes

In the chapter " Defining Classes ", we will show how we can define custom
classes and what the elements of a class are. We will learn to declare
fields , constructors and properties in classes and will again recall what a
method is but will broaden our knowledge on methods and their access
modifiers. We will focus on the characteristics of constructors and we will
explain in details how program objects exist in the heap (dynamic memory)
and how their fields are initialized. Finall y, will explain what class static
elements 1 fields (including constants), properties and methods 1 are and
how to utilize them. In this chapter , we will also introduce generic types
(generics), enumerated types (enumerations) and nested classes.

Authors o fthe chapter are Nikolay Vasilev , Svetlin Nakov , Mira Bivas and
Pavlina Hadjieva . The content of the entire chapter is based on the work of
Nikolay Vasilev from the book "Introduction to Programming with Java".
Translation to English: by Radoslav Todorov, Yoan Krumov , Teodor Rusev and
Stanislav Vladimirov (edited by Vladimir ~ Amiorkov , Pavel Benov and Nencho
Nenchev). This is the largest chapter in the book, so lots of contributors

worked on it to prepare it to a high quality standard for you.

Chapter 15: T ext Files

In the chapter " Text Files ", we will familiarize ourselves with working with
text files in the .NET Framework. We will explain what a stream is, what its
purpose is and how it is used. We will describe what a text file is and how to
read and write data in text files and will present and elaborate on the best
practices for catching and handling exceptions when working with text files.
Naturally , we will visualize and demonstrate in practice all of this with a lot of
examples.

Author of the chapter is Radoslav Kirilov and editor is Stanislav Zlatinov .
The content of the entire chapter is based on the work of Danail Alexiev from
the book "Introduc tion to Programming with Java". Translation to English: by

Nikolay Angelov (edited by Martin ~ Gebov).

Chapter 16: Linear Data Structures

In the chapter " Linear Data Structures ", we will familiarize oursel ves with
some of the basic representations of data in programming and with linear
data structures , because very often, in order to solve a given problem, we

need to work with a sequence of elements . For example, to read this book

we have to read consecutiv ely every single page, e.g. we have to traverse
consecutively every single element of its set of pages. We are going to see
how for a specific problem some data structure is more efficient and
convenient than another. Then we will examine the linear struct ures
"stack " and " queue " and their applications and will get to know in details
some implementations of these structures.

list ",

Preface 35

Author of the chapter is Tsvyatko Konov and editors are Dilyan Dimitrov and

Svetlin Nakov. The content of the entire chapter is largely based on the work
of Tsvyatko Konov and Svetlin Nakov from the book "Introduction to
Programming with Java". Translation to English: by Vasya Stankova (edited

by lvaylo Gergov).

Chapter 17: Trees and Graphs

In the chapter " Trees and Graphs ", we will look at the so called tree -like
data structures , which are trees and graphs . Knowing the properties of
these structures is important for modern programming. Every one of these
structures is used for modeli ng real -life problems that can be efficiently solved

with their help. We will examine in details what tree -like data structures are
and show their primary advantages and disadvantages. Also , we will provide
sample implementations and exercises , demonstrati ng their practical utiliza -
tion. Further , we will scrutinize binary trees, binary search trees and
balanced trees and then examine the data structure "graph" , the types of
graphs and their usage. We will also show which parts of the .NET Framework

make use of binary search trees

Author of the chapter is Veselin Kolev and editors are lliyan Murdanliev and
Svetlin Nakov. The content of the entire chapter is based on the work of
Veselin Kolev from the book "Introduction to Programming with Java".
Translation to English: by Kristian Dimitrov and Todor Mitev (edited by
Nedjaty Mehmed and Dyanko Petkov).

Chapter 18: Dictionaries, Hash Tables and Sets

In the chapter "Dictionaries, Hash Tables and Sets ", we will analyze more
complex data structures like dictionaries and sets , and their implementa -
tions with hash tables and balanced trees . We will explain in de tails what
hashing and hash tables mean, and why they are such important parts of
programming. We will discuss the concept of " collisions " and how they can
occur when implementing hash tables. We will also suggest various
approaches for solving them. We wi Il look at the abstract data structure " set "
and explain how it can be implemented with a dictionary or a balanced
tree . We will provide examples that illustrate the applications of these data
structures in everyday practice.

Author of the chapter is Mihai | Valkov and editors are Tsvyatko Konov and

Svetlin Nakov. The content of the entire chapter is partially based on the work
of Vladimir Tsanev (Tsachev) from the book "Introduction to Programming
with Java". Translation to English: by George Mitev and Geor ge K. Georgiev

(edited by martin ~ Gebov and Ivaylo Dyankov).

36 Fundamentals of Computer Programming wi th C#

Chapter 19: Data Structures and Algorithm

Complexity

In the chapter " Data Structures and Algorithm Complexity ", we will compare
the data structures we have learned so far based on their performance for
basic operations (addition, searching, deletion, etc.) . We will give
recommendations for the most appropriate data structures in certain cases.

We will explain when it is preferable to use a hash table , an array , a
dynamic array , a set implemented by a hash table or a balanced tree

There is an implementation in the .NET Framework for every one of these
structures. We only have to learn how to decide when to use a particular data
structure, so that we can write efficient and reliable source code.

Authors of the chapter are Nikolay Nedyalkov and Svetlin Nakov ; editor is
Veselin Kolev. The content of the entire chapter is based on the work of
Svetlin Nakov and Nikolay Nedyalkov from the book "I ntroduction to
Programming with Java". Translation to English: by George Halachev and
Tihomir lliev (edited by Martin Yankov).

Chapter 20: Object - Oriented Programming Principles

In the chapter " Obje ct-Oriented Programming Principles ", we will familiarize
ourselves with the principles of object -oriented programming (OOP): class
inheritance , interfaces implementation, data and behavior abstraction
data encapsulation and hiding implementation details, polymorphism and
virtual methods. We will explain in detail the principles of cohesion and
coupling . We will also briefly outline object -oriented modeling and object
model creation based on a specific business problem and will get to know

UML anditsrole in object oriented modeling . Finally, we will briefly discuss

design patterns and provide examples for design patterns commonly used in
practice.

Author of the chapter is Mihail Stoynov and editor is Mihalil Valkov . The
content of the entire chapter is based on the work of Mihail Stoynov from the

book "Introduction to Programming with Java". Translation to English: by

Vasya Stankova and Momchil Rogelov (edited by lvan Nenchovski).

Chapter 21: High - Quality Programming Code

In the chapter " High - Quality Programming Code , we will take a look at the
basic rules for writing high - quality programming code . We will focus on
naming conventions for program elements (variables, methods, classes and
others), for matting and code layout guidelines, best practices for creating

high -quality classes and methods , and the principles of high -quality code
documentation. Many examples of high -quality and low -quality code will be
given. In the course of work , it will be exp lained how to use an integrated
development environment, in order to automate some operations like
formatting and refactoring existing code, when it is necessary. Unit
testing as an industrial method to automated testing will also be discussed.

Preface 37

Authors of the chapter are Mihail Stoynov and Svetlin Nakov . Editor is
Pavel Donchev . The content of the entire chapter is partially based on the
work of Mihail Stoynov, Svetlin Nakov and Nikolay Vasilev from the book
"Introduction to Programming with Java". Translation to English: by Blagovest
Buyukliev (edited by Dyanko Petkov, Mihail Stoynov and Martin Yankov).

Chapter 22: Lambda Expressions and LINQ

In the chapter " Lambda Expressions and LINQ , we will introduce some of the
more sophisticated capabilities of C#. To be more specific, we will pay special

attention to clarifying how to make queries to collections using lambda
expressions and LINQ . We will explain how to add functionality to already
created classes, using extension methods . We will familiarize ourselves with
anonymous types and briefly describe their nature and usage. We will also
discuss lambda expressions and show in practice how m ost of the built -in
| ambda functions wor k. Afterwards we wil/l
is part of C#. We will learn what it is, how it works, and what queries we can

make using it. Finally, we will discuss the keywords in LINQ, their meaning

and we will demonstrate their capabilities with a lot of examples.

Author of the chapter is Nikolay = Kostov and editor is Veselin Kolev.
Translation to English: by Nikolay Kostov (edited by Zhasmina Stoyanova and
Mihail Stoynov).

Chapter 23: Methodology of Prob lem Solving

In the chapter " Methodology of Problem Solving ", we will discuss an advisable
approach for solving programming problems and we will illustrate it with
concrete examples. We will discuss the engineering principles we should

follow when solving problems (that largely apply to problems in math, physics
and other disciplines) and we will show them in action. We will describe the

steps we must go through while we solve a few sample problems an d
demonstrate the mistakes that can be made, if we do not follow these steps.
We will consider some important steps of problem solving (such as

testing) that are usually skipped.

Author of the chapter is Svetlin Nakov and editor is Veselin Georgiev. The
content of the whole chapter is entirely based on the work of Svetlin Nakov
from the book "Introduction to Programming with Java". Translation to

English: by Ventsi Shterev and Martin Radev (edited by Tihomir lliev and
Nedjaty Mehmed).

Chapters 24, 25, 26: Sample Programming Exam

In the chapters " Sample Programming Exam (Topic #1 , Topic #2 and Topic

#3)", we will look at the problem descriptions of nine sample problems
from three sample programming exams and we will propose solutions to
them. In the course of solving them , we will put into practice the methodology

described in the chapter" Methodology of Problem Solving

38 Fundamentals of Computer Programming wi th C#

Authors of the chapters are Stefan Staev , Yosif Yosifov ~ and Svetlin Nakov
respectively; their respective editors are Radoslav Todorov, Radoslav Ivanov
and Teodor Stoev . The contents of these chapters are largely based on the

work of Stefan Staev , Svetlin Nakov, Radoslav Ivanov and Teodor Stoev from
the book "Intro duction to Programming with Java". Translation to English: by
Stanislav Vladimirov , Ivaylo Gergov , Ivan Nenchovski and Ivaylo Gergov

(edited by Dyanko Petkov , Vladimir Tsenev and Veselina Raykova).

Chapters 28: Conclusion

In the conclusion we give further instruction how to proceed with your

development as a skillful software engineer after this book. We explain
the free courses at Telerik Software Academy T the largest training center for
software development profes sionals in Bulgaria i how to apply, what you will

learn, how to choose a career path and we mention few other resources.

Author of the chapter is Svetlin Nakov . Translation to English: by Ivan
Nenchovski (edited by Svetlin Nakov).

History: How Did This Boo k Come to Be?

Often in our teaching practice students ask us from which book to start

learning how to program . There are enthusiastic young people who want to

|l earn programming, tvhatt to dhegin 6with .k ndmwf ort unat el
hard to recommend a goo d book. We can come up with many books

concerning C#, but none of them teaches programming. Indeed there areni
many books that teach the concepts of computer programming,

algorithmic thinking and data structures. Certainly, there are books for

beginners that teach the C# programming language, but those rarely cover

the fundamentals of program ming. There are some good books on
programming, but most of them are now outdated and teach languages and

technologies that have become obsolete in the process of evolution. There are

several such books regarding C and Pascal, but not C# or Java. Considering

all aspects, itis hard to come up with a good book which we could highly
recommend to anyone who wants to pick up progr amming from scratch.

At one point , the lack of good books on programming for beginners
drove the project leader, Svetlin Nakov, to gather a panel of authors set to
finally write such a book. We decided we could help many young people to
take up programming seriously by sharing our knowledge and inspiring them.

The Origins of This Book

This book is actually an adaptation to C# of the free Bulgarian book
filntroduction to Programming with Java o, with some additioa
added, many bug fixes and small impr ovements, translated later into English.

Svetlin Nakov teaches computer programing, data structures, algorithms
and software technologies since 2000. He is an author and co -author of
several courses in fundamentals of programming taught at Sofia University

Preface 39

(the most prestigious Bulgarian university at this time). Nakov (with
colleagues) teaches programming and software development in the Faculty of

Mathematics and Informatics (FMI) at Sofia University for few years and later
creates his own company for trai ning software engineers. In 2005 , he gathers
and leads a team of volunteers who creates a solid curriculum on
fundamentals of programming and data structures (in C#) with

presentation slides and many examples, demonstrations and homework
assignments. These teaching materials are the first very early outline of the
content in this book. Later this curriculum evolves and is translated to Java

and serves as a base for the Java version of this book. Later the Java book is
translated to C# and after its great su ccess in Bulgaria (thousands paper
copies sold and 50,000 downloads) it is translated from Bulgarian to English.

The Java Programming Fundamentals Book

In mid -2008 , Svetlin Nakov is inspired to create a book on Java programming,
covering his Al ntr oducttoi oRrogr ammi ng 0 in ¢he WNateoral
Academy for Software Development (a private training center in Bulgaria,

founded by Svetlin Nakov). He and a group of authors outline the work that

needs to be done and the subjects that need to be covered and work be gins,
with everyone working voluntarily, without any direct profit . Through
delays, pitfalls and improvements, the Java book finally comes out in January

of 2009. It is available both on its website www.intr _oprogramming.info for
free, and in a paper edition.

The C# Programming Fundamentals Book

The interest towards the dAlntroduction to
huge (for Bulgaria). In late 2009 , theprojectto fitransl ated the boo
begins, under the t i t Inteoduétion to Programming with C# 0. Again,
large number of authors, both new and from the Java book group, gather and

begin working. The task seems easier, but turns out to be time -consuming.
About half a year | ater, t ehbeok i pompleted e W dvithe d i t

some mistakes and incorrect content. Another year passes as all of the text

and examples are improved, and new content is added. In the summer of
2011, the C# book is released . Its official website stays the same as the
Java book (www.introprogramming.info). A paper version of the book is also
released and sold, with a price covering only the expens es of its printing.

Both books are open -source and their repositories are available at Google
Code: code.google.com/p/introcsharpbook , code.go ogle.com/p/introjavabook

The Translation of the C# Book: from Bulgarian to
English

In |l ate 2011, foll owing the great success
with C#0, a trpnslag tleddok to Bnglish started. Large group of
volunteers began work on the translation i each of them with good
programming skills. The book you are reading is the result of the successful

http://www.introprogramming.info/
file:///C:/Users/GGeorgiev/Dropbox/Work/translation-to-English/chapters/4-completed/www.introprogramming.info
http://code.google.com/p/introcsharpbook/
http://code.google.com/p/introjavabook/

40 Fundamentals of Computer Programming wi th C#

translation, review and completion of the original C# Bulgarian book. The
most effort in the translation was given by the leading auth or Svetlin Nakov

Some of the authors have ideas to make yet another adaptation of the book i
this time for C++ . As of now, these ideas are still foggy. We hope they will
become areality one day, butwe ¢ a n@dmis e anything yet.

Bulgaria? Bulgarian Authors? Is This True?

Bulgaria is a country in Europe , part of the European Union , just like
Germany and France. Did you know this? Bulgaria has very solid traditions in
computer programming and technologies.

The main inventor of the technology behind the modern digital computers is
the famous computer engineer John Atanasoff and he is 50% Bulgarian
(see en.wikipedia.org/wiki/John_Vincent_Atanasoff).

Bulgaria is the founder of the Internat ional Olympiad in Informatics
(I0l) . The first IOl was organized and held in 1980 in Pravetz , Bulgaria (see
en.wikipedia.org/wiki/International_Olympiad_in_Informatics).

In 2011 Bulgaria was ranked #3 in the world by Internet speed (see
http://mashable.com/2011/09/21/fastest -download -speeds -infographic).

The worl doés |l eadi ng c orntipeo Miosaft ecosystethoig a f o
Bulgarian company called Telerik (www.telerik.com) and almost all of its
products are devel oped in Bulgari a. The wor
3D rendering (V -Ray), used in most H ollywood movies and by most
automotive producers, is invented and developed in Bulgaria by another

Bulgarian company 7 Chaos Group (www.chaosgroup.com). A Bulgarian
company Datecs designed and produces the barcode scanner with credit card

swipe for Apple iPhone / iPad / iPod devices used in all Apple stores. Large
international software companies like SAP, VMware , HP, Cisco, Siemens

and CSC have large development centers in Sofia with thousands developers.

Bulgarian software engineers can be found in every major software company
in the software industry like Microsoft, Google, Oracle, SAP, Facebook, Apple,
IBM, Cisco, Siemens, VMware, HP, Adobe, Nokia, Ericsson, Autodesk, etc.

We, the authors, editors and translators of this book are all proud Bulgarian
software developers T some living in Bulgaria, others abroad. We are happy

to be part of the global software industry and to help beginners over the world

to learn computer progr amming and become skillful software engineers. We

are supporters of the culture of free education (like Coursera, edX, Udacity
and Khan Academy), free education for everyone and everywhere. We are

happy to share our knowledge, skills and expertise and sharing is part of
our culture

Authors and Contributors

This book is written by volunteer developers from Bulgaria who want to
share their knowledge and skills about computer programming. They have

http://en.wikipedia.org/wiki/John_Vincent_Atanasoff
http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
http://mashable.com/2011/09/21/fastest-download-speeds-infographic/
http://www.telerik.com/
http://www.chaosgroup.com/

Preface 41

worked for months (some for years) for free to help the ¢ ommunity to learn
programming , data structures and algorithms in an easy and efficient way:
through this book and the presentations and video tutorials coming with it

Over 70 people contributed to the project: authors, editors, translators, etc.

The Panel of Authors

The panel of authors of both the old, the new and the translated to English
book is indeed the main drivers behind t hi s bookédés existence.
of this size and quality is a serious task demanding a lot of time.

The idea of having so many authors participati ng has been well tested, since a

few other books have already been written in a similar manner (e.g.
"Programming for the .NET Framework" I_parts 1 and 2). Although all
chapters from the book are written by different authors , they adhere to

the same style and possess the same high quality of content (even though it

might differ a little in some chapters). The text is well structured, has many

tittes and subtitles, contains many appropr iate examples, follows a good
manner of expression and is uniformly formatted.

The team that wrote this book is made up of people who are strongly
interested in programming and would like to voluntarily share their
knowledge by participating in writing one or more of the chapters. The best
part is that all authors, co -authors and editors in the team working on the
book are working programmers with hands -on experience , which means
that the reader will receive knowledge, a collection of best practices and

adv ice by people with an active career in the software industry.

The participants in the project made their contribution voluntarily, without

material or any other direct compensation, because they supported the idea

of writing a good book for novice programm ers and because they
strongly wanted to help their future colleagues get into programming quickly.

What follows is a brief presentation of the authors of the book "Introduction
to Programming with C#" (in an alphabetical order). The original authors of
the corresponding chapters from the book "Introduction to Programming with

Java" are mentioned accordingly, since their contributions to some chapters

are greater than those authors who adapted the text and examples to C#
afterwards.

Dilyan Dimitrov

Dilyan Dimitrov is a certified software developer with professional experience
in building mid -size and large web -based systems with the .NET Framework
His interests include development of both web and desktop applications using

Mi crosoftds | at est gradeatett nfoin ¢hg i Bofia. Univeesity "St.
Kliment Ohridski" where he majored in "Informatics" at the Faculty of

Mathematics and Informatics . . He can be reached at
dimitrov.dilgn@gmail.com or you <can visit hi s personal blog at

http://dilyandimitrov.blogspot.com

http://www.devbg.org/dotnetbook/
mailto:dimitrov.dilqn@gmail.com
http://dilyandimitrov.blogspot.com/

42 Fundamentals of Computer Programming wi th C#

Hristo Germanov

Hristo Germanov is a software engineer , whose interests are related mainly

to .NET technologies . Architecture and design of web based systems,
algorithms and modern standards for quality code are also his passion. He has
participated in developing both small and large web -based and desktop -based
applications. He likes challenging problems and projec ts that require strong
logical thinking. He graduated from the Omega College in Plovdiv with a
degree in "Computer Networks" . He specialized for a "Core .NET Developer" at
the National Academy for Software Development in Sofia.

You can contact himby e -mail at: hristo.germanov@gmail.com

liyan Murdanliev

lliyan Murdanliev is a software developer at NearSoft (www.nearsoft.eu).

He currently pursues a m angptiter rTéchnolodiesgand e i n
Applied Programming” at the Technical University of Sofia. He has a

bachel ordéds degree in "Applied Mat hematics"
graduated from an English language high school.

lliyan has participated in significant projects and in the development of front -

end visualization, as well as back -end logic. He has prepared and conducted

trainings in C# and other programming languages and technologies .1 1 i yan©o:
interests lie in the field of cutting -edge technologies in .NET, Windows Forms

and Web -based technologies, design patterns, algorithms and software
engineering. He likes out -of -the -box projects that require not only
knowledge, but also logical thinking.

His personal blog is available at: http://imurdanliev.wordpress.com . He can
be reached by e -mail: i.murdanliev@gmail.com

Mihail Stoynov

Mi hail Stoynov has a masterds degree fiom " Ec
the Sofia Universi ty " St . Kl i ment Ohridski ". He has
degree in "Informatics" also from Sofia University.

Mihail is a professional software developer , consultant and instructor with

many years of experience. For the last few years he is an honorary ins tructor

at the Faculty of Mathematics and Informatics and has delivers lectures in

the "Networks Theory", "Programming for the .NET Framework", "Java Web
Applications Development", "Design Patterns" and "High Quality Programming

Code" courses. He has also been an instructor at New Bulgarian University.

He is an authorofa number of articles and publications and a speaker at

many conferences and seminars in the field of software technologies and

information security. Mihail is a co -author of the books "Programming for the

.NET Framework" and "Introduction to Programming with Java". He has
participated in Microsoftédés MSDN Academic /

Microsoft Academic Days.

mailto:hristo.germanov@gmail.com
http://www.nearsoft.eu/
http://imurdanliev.wordpress.com/
mailto:i.murdanliev@gmail.com

Preface 43

Mihail has led IT courses in Bulgaria and abroad. He was a lecturer in the
"Java", "Java EE", "SOA" and "Spring Framework" courses at the National
Academy for Software Development.

Mihail has worked at the international offices of Siemens, HP and EDS in the
Netherlands and Germany, where he has gained a lot of experience in the art

of software, as well as in the quality programming , by taking part in th e
development of large software projects. His interests encompass software
architectures and design development, B2B integration of various information

systems, business processes optimization and software systems mainly for

the Java and .NET platforms . Mihail has participated in dozens of software
projects and has extensive experience in web applications and services,
distributed systems, relational databases and ORM technologies, as well as
management of projects and software development teams.

His person al blog is available at: http://mihail.stoynov.com . His twitter
account is available at: https://twitter.com/mihailstoynov

Mihail Valkov

Mihail Valkov has been a software developer since 2000. Throughout the
years, he has faced numerous technologies and software development
platforms, some of which are MS .NET, ASP, Delphi. Mihail has been
developing software at Telerik (www.t elerik.com) ever since 2004. There he
co-develops a number of components targeting ASP.NET, Windows Forms,
Silverlight and WPF. In the last few years , Mihail has been leading some of
the best progressing teams in the company, and currently develops an

onli ne Word -like rich text editor.

He can be reached at: m.valkov@gmail.com

His blog is at: http://blogs.telerik.com/mihailvalkov/ . His twitter account is
availab le at: https://twitter.com/mvalkov

Mira Bivas
Mira Bivas is an enthusiastic young programmer in oneof Tel erASRNET
teams (www.telerik.com). She is a student at the Faculty of Mathematics and

Informatics at the Sofia University "St. Kliment Ohridski", where she majors in
"Applied Mathematics". Mira has completed the "Intro C#" and "Core .NET"
courses at the National Academy for Software Development (NASD).

She can be reached by e -mail: mira.bivas@gmail.com

Nikolay Kostov

Nikolay Kostov works as a senior software developer and trainer at
T el e r"ldehmisal Training”" department (htt p://academy.telerik.com). He is
invol ved deeply with trairngse r and theAcoussdseonygnézed
by Telerik. He currently majors in "Computer Science" at the Faculty of
Mathematics and Informatics at the Sofia University "St. Kliment Ohridski".

http://mihail.stoynov.com/
https://twitter.com/mihailstoynov
http://www.telerik.com/
mailto:m.valkov@gmail.com
http://blogs.telerik.com/mihailvalkov/
https://twitter.com/mvalkov
http://www.telerik.com/
mailto:mira.bivas@gmail.com
http://academy.telerik.com/

44 Fundamentals of Computer Programming wi th C#

Nikolay has participated in a number of high school and college student

Olympiads and contests in computer science , throughout many years. He
is a two -time champion in the project categories "Desktop Applications" and
"Web Applications” at the Bulgarian Nat ional Olympiad in Information

Technologies (NOIT). He has rich experience in designing and developing Web
applications, algorithmic programming and processing large amounts of data.

His main interests lie in developing software applications, data structure s,
everything related to .NET technologies , web applications security, data
processing automation, web crawlers, single page applications and others.

Ni k o | pessdnal blog can be found at: http://nikolay.it

Nikolay Nedy alkov

Nikolay Nedyalkov is the chairman of The Association for Information
Security , technical director of the eBG.bg 6 =lectronic payments a nd services
portal and business consultant at other companies. Nikolay is a professional

software developer , consultant and instructor with many vyears of
experience. He has authored a number of articles and publications and has
lectured at many conferences and seminars in the field of software
technologies and infor mation security. His experience as an instructor ranges
from assisting in "Data Structures in Programming”, "Object -oriented
Programming with C++" and "Visu al C++" to lecturing at the " Network
Security ", " Secure Code ", " Web Development with Java ", " Creating High

Quality Code ", " Programming for the .NET platform and pplications
Development with Java " courses. Ni k o | mtgrésts are focus ed on creating
and managing information and communications solutions, modeling and

managing business processes in large -size organizations and state
admi ni stration. Ni kol ay has a bachel orés
Faculty of Mathematics and Informat ics at the Sofia University "St. Kliment
Ohridski". As a high school student he was a programming contestant

throughout many years and received a number of accolades.

His personal website is located at: http://www.n __edyalkov.com

Nikolay Vasilev

Nikolay Vasilev is a professional software developer , an instructor and a
participant in many open source projects.

He hol ds a masterbs degree i n "Software
Intelligence” from University of Malaga (Sp ain) and is currently pursuing a
masterds degree in "Mathemati cal Physics
Sofia Uni versity (Bulgari a). He obtained his
and Informatics" from Sofia University .

In the period 2002 -2005, he was instructor in the classes of "Introduction in
Programming with Java" and "Data Structures and Programming with Java" at
Sofia University.

() e

http://nikolay.it/
http://www.nedyalkov.com/
http://www.iseca.org/
http://www.iseca.org/
http://www.ebg.bg/
http://netsec.iseca.org/
http://netsec.iseca.org/
http://netsec.iseca.org/2004/
http://www.nakov.com/inetjava/
http://codecourse.sourceforge.net/
http://codecourse.sourceforge.net/
http://www.nakov.com/dotnet/2003/
http://jse.openfmi.net/
http://jse.openfmi.net/
http://www.nedyalkov.com/

Preface 45

Nikolay is a co-author of the books "Introduct ion in Programming with
Java" and " Introduction in Programming with C# " and also one of the
initiators, organizers and co -authors of a project for creating an open source
book in Bulgarian , dedicated to the classical (GoF) design patterns in the
software engineering. He is one of the organizers and lecturers of the
"Bulgarian Java User Group".

Nikolay is a certified software developer with nearly 10 years of expertise
in development of Java enterprise applications, gained in international
companies. He participated in large -size systems development from various
domains like e -commerce, banking, visual simulators for nuclear plant sub -
systems, VOD sys tems, etc.; using cutting -edge technologies and applying
the best up -to-date design and development methodologies and practices. His
interests span across various areas such as software engineering and artificial
intelligence, fluid mechanics, project mana gement and scientific research.

Nikolay V a s i | pengaia blog is available at http://blog.nvasilev.com

Pavel Donchev

Pavel Donchev is a programmer at Telerik (www.telerik.co m), where he
develops web applications mostly for the company internal purposes. He takes
extramural courses in "Theoretical Physics" at the Sofia University "St.
Kliment Ohridski". He was engaged in developing Desktop and Web
Applications for various busi ness sectors 1 mortgage credits, online stores,
automation and Web UML diagrams. His interests lie mainly in the sphere of
process automation using Microsoft technologies.

His personal blog is located at: http:/ /donchevp.blogspot.com

Pavlina Hadjieva

Pavlina Hadjieva is a senior enterprise support officer and team lead at
Telerik (www.telerik.com) . She currently pursues a n
"Distributed Systems and Mobile T echnologies" at the Faculty of Mathematics

and Informatics at the Sofia University "St. Kliment Ohridski". She obtained

her bachel ords degree in "ChemistrfyomaSofth Con
University.

Her professional interests are oriented towards we b technologies, in particular
ASP.NET , as well as the complete development cycle of .NET Framework
applications.

You can contact Pavlina Hadjieva by e -mail: pavlina.hadjieva@gmail.com

Radoslav Ivanov

Radoslav Ivanov is an experienced software engineer , consultant and
trainer with several years of professional experience in wide range of
technologies and programming languages. He has solid practical and
theoretical background in computer science and exc ellent writing and
lecturing skills

http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-csharp-book/
http://blog.nvasilev.com/
http://www.telerik.com/
http://donchevp.blogspot.com/
http://www.telerik.com/
mailto:pavlina.hadjieva@gmail.com

46 Fundamentals of Computer Programming wi th C#

Radosl av has a bachelordés degree in "Infor
"Software Engineering" and "E -learning" from the Sofia University "St.

Kliment Ohridski". For several years he has been an honorary instructor at

the Faculty of Mathematics and Informatics where he was teaching courses in

"Design Patterns in C#", "Programming for the .NET Framework", "Java Web
Applications Development" and "Java EE Development".

He is a co -author of the books " Programming for the .NET Framework " and
"Introduction to Programming with Java "

His professional interests include data warehousing, security, cloud
computing , Java technologies, the .NET platform, software architecture and
design and project management.

R a d o s | taittebascount is available at: https://twitter.com/radoslavi

Radoslav Kirilov

Radoslav Kirilovis a senior software developer and team leader at Telerik
(www.telerik.com). He graduated from the Technical University of Sofia with a
major in "Computer Systems and Technologies" . . His professional interests
are orient ed towards web technologies, particularly ASP.NET , and the
complete development cycle of .NET Framework -based applications. Radoslav
is an experienced lecturer who has taken part in putting through, as well as

creating study materials (presentations, examp les, exercises) for the
National Academy for Software Development (NASD). Radoslav is a member

of the instructors' team of the "High Quality Programming Code" course

that started in 2010 at the Technical University of Sofia and at the Sofia
University "St. Kliment Ohridski".

He has been maintaining a tech blog since 2009 located at:
radoslavkirilov.blogspot.com . You can contact Radoslav by e -mail at:
rados lav.pkirilov@gmail.com

Radoslav Todorov

Radoslav Todorov is a software developer who obtained h i

degree from the Faculty of Mathematics and Informatics at the Sofia

University "St. Kliment Ohridski" (www.fmi.uni_-sofia.bg). He received his
masterdéds degree in the fifemdheddchnca Unpverdityer s c i
of Denmark in Lyngby , Denmark (http://www.dtu.dk).

Radoslav has been conducting courses as an instructor -assistant at the IT
University of Copenhagen in Denmark (http://www.itu.dk) and participat ing in

the research activity of university projects ever since hereceived hi s mast er
education. He has rich experience in designing, developing and maintaining

large software products for various companies. He gained working

experience at several companies in Bulgaria. At present, he works as a
software engineer for Canon Handy Terminal Solutions Europe in Denmark
(www.canon -europe.com/Handy

Terminal_Solutions).

http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/intro-java-book/
https://twitter.com/radoslavi
http://www.telerik.com/
http://radoslavkirilov.blogspot.com/
mailto:radoslav.pkirilov@gmail.com
http://www.fmi.uni-sofia.bg/
http://www.dtu.dk/
http://www.itu.dk/
http://www.canon-europe.com/Handy_Terminal_Solutions
http://www.canon-europe.com/Handy_Terminal_Solutions

Preface 47

Ra d o s | iaterdsts are oriented towards software technologies for high -level
programming languages, as well as products integrating complete h ardware
and software solutions in the industrial and private sectors.

You can contact Radoslav by e -mail: radoslav_todorov@hotmail.com

Stanislav ~ Zlatinov

Stanislav Zlatinov is a software developer with p rofessional experience in

web and desktop applications development based on the .NET and Java
platforms.

He has a masterés degree in "Computer Mul t i

St. Methodius" University of Veliko Tarnovo .

His personal blog is located at: http://encryptedshadow.blogspot.com

Stefan Staev

Stefan Staev is a software developer who is occupied with building web
based systems using the .NET platform. His professional interests are related

to the latest .NET technologies , design patterns and databases. He is a
member of the authors' team of the book "Introduction to Programming with

Java".

Stefan currently majors in "Informatics" at the Faculty of Mathematics and
Informatics at the Sofia Univer sity "St. Kliment Ohridski". He is a " Core .NET
Developer" graduate from the National Academy for Software Development.

You can contact him by e -mail: stefosv@gmail.com . His Twitter micro blog is
located at: http://twitter.com/stefanstaev

Svetlin Nakov

Svetlin Nakov is the head of the " Technical Training " department at Telerik
Corp. where he manages the project for free training of software engineers

Telerik Softwa re Academy (http://academy.telerik.com) as well as all other
connected courses and training initiatives, such as Telerik School Academy
Telerik Algo Academy , Telerik Kids Academy . He is the founder of the
Software University open -education project.

He has achieved a bachelpartéy d&edgreemmec ei"n a'h@o
degree in "Distributed Systems and Mobile Technologies" at the Sofia

University "St. Kliment Ohridski". Later he obtained a Ph.D. in "Computer

Science" after defending a thesis in the field of "Computational Linguistics"

befor e the Higher Attestation Commission of the Bulgarian Academy of

Sciences (BAS).

His interests encompass software architectures development, the .NET
platform , web applications, databases, Java technologies, training software
specialists, information securi ty, technological entrepreneurship and
managing software development projects and teams.

mailto:radoslav_todorov@hotmail.com
http://encryptedshadow.blogspot.com/
mailto:stefosv@gmail.com
http://twitter.com/stefanstaev
http://academy.telerik.com/
http://schoolacademy.telerik.com/
http://algoacademy.telerik.com/
http://www.telerik-kids.com/
http://softuni.org/

48 Fundamentals of Computer Programming wi th C#

Svetlin Nakov has nearly 20 years of experience as a software engineer ,
programmer, instructor and consultant, moving from Assembler, Basic and
Pascal through C and C+ + to PHP, JavaScript, Java and C#. He was involved
as a software engineer, consultant and manager of teams in dozens of
projects for developing information systems, web applications, database
management systems, business applications, ERP systems, cryptogr aphic
modules and trainings of software engineers. At the age of 24, he founded his
first software company for training software engineers , which was
acquired 5 years later by Telerik.

Svetlin has extensive experience in creating study materials , preparing and
conducting trainings in programming and modern software technologies,
gathered during his practice as an instructor. For many years now , he has
been an honored instructor at the Faculty of Mathematics and Informatics

at the Sofia University "St. Kliment Ohridski" (FMI at SU), at the New
Bulgarian University (NBU) and atthe Technical University of Sofia (TU-
Sofia), where he held courses in "Design and Analysis of Computer
Algorithms", "Internet and Web Programming with Java", "Network Securi ty",
"Programming for the .NET Framework", "Developing Java Web Applications”,

"Design Patterns", "High Quality Programming Code", "Developing Web
Applications with the .NET Framework and ASP.NET", "Developing Java and

Java EE Applications”, "Web Front -End Development" and many others (see
http://www.nakov.com/courses/).

Svetlin has dozens of scientific and technical articles focused on software
development in both Bulgarian and foreign publications and is the lead author
of the books "Programming for the .NET Framework (vol. 1 & 2)

"Introduction to Programming with Java ", " Introduction to Programming with
C#", " Internet Development with Java " and " Java for Digitally Signing Web
Documents ". He is a regular speaker at technical conferences, trainings and

seminars and up to now has held hundreds of technical lectures at various
technological events in Bulgaria and abroad.

As a high school and a college student, Svetlin was champion in tens of
national contests in programming and was awarded with 4 medals at
International Olympiads in Informatics (1Ol).

In 2003 , he received the "John Atanasoff " award by the EVRIKA Foundation.
In 2004, he was awarded by the Bulgarian President with the "John
Atanasoff " award for his contribution to the development of the information
technologies and the information society.

He is one of the founders of the Bulgarian Association of Software
Developer s (www.devbg.org) and its present chairman.

Apart from computer programming , Svetlin Nakov is founder of NLP Club
Bulgaria (http://nipclub.devbg.org), a community of NLP (neuro -linguistic
programming) practitioners and successful people who are looking for
personal development and knowledge sharing. The goal for Svetlin is to add

soft skills and personal development to his students at the Software
academy in addition to the profe ssion and job positions they gain.

http://www.nakov.com/courses/
http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.nakov.com/books/inetjava/
http://www.nakov.com/books/signatures/
http://www.nakov.com/books/signatures/
http://www.devbg.org/
http://nlpclub.devbg.org/

Preface 49

The personal website and blog of Svetlin Nakov is: http://www.nakov.com
His story of life is published at http://www.nakov.com/bl 00/2011/09/24/

Teodor Bozhikov

Teodor Bozhikov is a senior software developer and team leader at
Telerik (www.telerik.com) . He completed his masterods
Systems and Technologies" at the Technical Uni versity of Varna. Besides his

background as a WPF and Silverlight programmer, he has achieved expertise
in developing ASP.NET web applications. He was involved briefly in the

development of private websites. Within the ICenters project, he took part in
building and maintaining of a local area network for public use at the Festival
and Congressional Center in Varna. He has held courses in computer literacy

and computer networks basics.

T e o d o rpfofessional interests include web and desktop application
devel opment technologies, architecture and design patterns, networks and all
kinds of new technologies.

You can contact Teodor by e -mail: t_bozhikov@yahoo.com . His Twitter micro
blog is located at: http://twitter.com/tbozhikov

Teodor Stoev

Teodor Stoev has a bachelorés and a masterds deg
the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski". At Sofia University, h e mastered in "Software
Technol ogi es". He currently attends a ma s
Science" at the Saarland University (Saar br ¢Geknany),

Teodor is a software designer and developer with many yearsod ex
He has participated in creating financial and insurance software systems, a

number of web applications and corporate websites. He was actively involved

in the development of the TENCompetence project of the European

Commission. He is a co-author of the book "Introduction to Programming
with Java".

His professional interests lie in the field of object -oriented analysis, modeling
and building of software applications, web technologies and, in particular,
building rich internet applications (RIA). He has an ext ensive background in
algorithmic programming : he has competed at a humber of national high
school and collegiate computer science contests.

His personal website is available at: http://www.teodorstoev.com

You can contact Teodor by e -mail: teodor.stoev@gmail.com

Tsvyatko Konov

Tsvyatko Konov is a senior software developer and instructor with varied
interests and experience. He is competent in fields such as systems
integration, building software architectures, developing systems with a
number of technologies, such as .NET Framework , ASP.NET, Silverlight,

http://www.nakov.com/
http://www.nakov.com/blog/2011/09/24/
http://www.telerik.com/
mailto:t_bozhikov@yahoo.com
http://twitter.com/tbozhikov
http://www.teodorstoev.com/
mailto:teodor.stoev@gmail.com

50 Fundamentals of Computer Programming wi th C#

WPF, WCF, RIA, MS SQL Server, Oracle, MySQL, PostgreSQL and PHP. His
experience as an instructor includes a large va riety of courses i courses for
beginners and experts in .NET technologies, as well as specialized courses in
individual technologies, such as ASP.NET, Oracle, .NET Compact Framework,

"High Quality Programming Code" and others. Tsvyatko was part of the
auth or s 6 t efdhm book "Introduction to Programming with Java". His
professional interests include web -based and desktop -based technologies,
client -oriented web technologies, databases and design patterns.

Tsvyatko Konov has a technical blog: http://www.konov.me

Veselin Georgiev

Veselin Georgiev is a co-founder of Lead IT (www.leadittraining.com) and
software developer at Abilitics (www .abilitics.com) . He has a master
in "E -Business and E -Governance" at the Sofia University "St. Kliment
Ohridski ", after obtaining a bactoemlthersénee deg
university.

Veselin is a Microsoft Certified Trainer and Microsoft Certified Professional
Developer. He lectured at the Microsoft Tech Days conferences in 2011 and

2009, and also takes part as an instructor in various courses at Sofia
University. He is an experienced lecturer who has trained software

specialists for work ing practical jobs in the IT industry.

His professional interests are oriented towards training, SharePoint and
software architectures. He can be reached at veselin.vgeorgiev@gmail.com

Veselin Kolev

Veselin "Vesko" Kolev is a leading software engineer wi t h many ye:
professional experience. He has worked at various companies where he

managed teams and the development of many different software projects.

As a high school student , he participated in a number of competitions in the

fields of mathematics, computer science and information technology, where

he finished in prestigious places. He currently majors in "Computer Science"

at the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski".

Vesko is an experienced lecturer who has worked on training software
specialists for practical jobs in the IT industry. He is an instructor at the
Faculty of Mathematics and Informatics at the Sofia University "St. Kliment

Ohridski" where he conducts courses in "Modern Java Technologies" and "High
Quality Programming Code". He has delivered similar lectures at the Technical
University of Sofia.

V e s k onfam interests include software projects design, development of
software systems, .NET and Java technologies, Win32 programming (C/C++),
software architectures, design patterns, algorithms , databases, team and
software projects management, specialists training. The projects he has
worked on include large web based syste ms, mobile applications, OCR,

http://www.konov.me/
http://www.leadittraining.com/
http://www.abilitics.com/
mailto:veselin.vgeorgiev@gmail.com

Preface 51

automated translation systems, economic software and many others. Vesko is
a co-author ofthe book "Introduction to Programming with Java".

Vesko works on the development of Silverlight and WPF based applications at
Telerik (www.telerik.com). He shares parts of his day -to-day experiences
online on his personal blog at http://veskokolev.blogspot.com

Yordan Pavlov

Yordan Pavlov has a bachelordés and a master

and Technologies" from the Technical University of Sofia. He is a software
developer at Telerik (www.telerik.com) with an extensive background in
software components development.

His interests lie mainly in the following fields: object -oriented design, design
patterns, high -quality software development , geographic information
systems (GIS), parallel processing and high performance computing, arti ficial
intelligence, teamsd management.

Yordan won the Imagine Cup 2008 finals in Bulgaria in the Software Design
category, as well as the world finals i n
prestigious "The Engineering Excellence Achievement Award". He has wo rked

with Microsoft engineers at the company headquarters in Redmond, USA,
where he has gathered useful knowledge and experience in the development
of complex software systems.

Yordan has also received a golden mark for "Contributions to the Innovation
and Information Youth Society". He has taken part in many contests and
Olympiads in programming and informatics.

Y o r d ape@anal blog can be found at http://yordanpavlov.blogspot.com . He
can be reached by e -mail: iordanpaviov@gmail.com

Yosif Yosifov

Yosif Yosifov is a senior software developer at Telerik (www.telerik.com).

His interests consist mainly of .NET technologies , design patterns and
computer algorithms . He has participated in numerous contests and
Olympiads in programming and informatics. He currently pursues a
bachel ords degree in "Computer Science" at
Informatics at the Sofia Univ ersity "St. Kliment Ohridski".

Y o s i peréosal blog can be found at http://yyosifov.blogspot.com . He can be
reached by e -mail: cypressx@gmail.com

The Java Book Authors

This C# fundamentals programming book is based on its original Java
version , the book " Introduction to Programming with Java ". Thanks to the
original Java book authors for their work . They have significant contribution to

almost all chapters of the book. Some chapters are entirely based on their

http://www.telerik.com/
http://veskokolev.blogspot.com/
http://www.telerik.com/
http://yordanpavlov.blogspot.com/
mailto:iordanpavlov@gmail.com
http://www.telerik.com/
http://yyosifov.blogspot.com/
mailto:cypressx@gmail.com
http://www.introprogramming.info/intro-java-book/

52

Fundamentals of Computer Programming wi

th C#

work, some partially, but in all cases their original work is the primary origin
of this book

Boris Valkov
Danail Aleksiev
Hristo Todorov
Lachezar Bozhkov
Luchesar Cekov
Marin Georgiev
Mario Peshev

The Editors

Apart from the authors, a

Dilyan Dimitrov
Doncho Minkov
Hristo Radkov
lliyan Murdanliev
Marin Georgiev
Mihail Stoynov
Mihail Valkov
Mira Bivas

The Translators

This book would have remained only

hadndét v ol towanstateitiae Bnglish

Angel Angelov
Atanas Valchev

Blagovest
Buyukliev

Boyan Dimitrov
Dimitar Bonev
Doroteya Agayna
Dyanko Petkov
Franz Fischbach
George Halachev

George K.
Georgiev

Mariyan Nenchev
Mihail Stoynov
Nikolay Nedyalkov
Nikolay Vasilev
Petar Velev
Radoslav lvanov
Rumyana Topalska

significant contribution
book was made by the editors who voluntarily took part in reviewing the text
and the examples and fixing errors and other problems:

Nikolay Kostov
Nikolay Vasilev
Pavel Donchev
Radoslav lvanov
Radoslav Kirilov
Radoslav Todorov
Stanislav
Stefan Staev

George S.
Georgiev

Georgi Mitev
Georgi Todorov
Georgi Vaklinov
Hristo Radkov
Ivan Nenchovski
Ivaylo Dyankov
Ivaylo Gergov

Zhasmina
Stoyanova

Kristian Dimitrov

Zlatinov

Stefan Staev
Svetlin Nakov
Teodor Stoev
Vesselin Kolev
Vladimir Tsanev
Yosif Yosifov

to the making of this

Svetlin Nakov
Teodor Bozhikov
Tsvyatko Konov
Veselin Georgiev
Veselin Kolev
Yosif Yosifov

in Bulgarian for many years if these guys

Lora Borisova
Martin Gebov
Martin Radev
Martin Yankov
Momchil Rogelov
Nedjaty Mehmed
Nencho Nenchev
Nikolay Angelov
Nikolay Kostov
Pavel Benov
Radoslav Todorov

Preface 53

- Stanislav - Vasya Stankova - Vladimir Tsenev
Vladimirov - Ventsi Shterev - Yoan Krumov
- Svetlin Nakov - Vesselin Georgiev - Zhelyazko
- Teodor Rusev - Vesselina Raikova Dimit rov
- Tihomir lliev - Vladimir
- Todor Mitev Amiorkov
Many thanks to George S. Georgiev who was seriously involved in the

translation process and edit ed the translated text for most of the chapters.

Other Contributors

The authors would also like to thank Kristina Nikolova for her efforts in
workingoutth e bookés cover desi gkiorlvaBovg &and ®eteks t o
Nikov for their wor k on t he wegbrsitej. Bigthédnks to Ivaylo Kenov

for fixing few hundreds bugs reported in the Bulgarian edition of the book.

Thanks to Ina Dobrilova and Aneliya Stoyanova for the proofreading of the

first few chapters and their contribution to the marketing of the book. Many

thanks to Hristo Radkov who is proficient in English (lives and works in

London for many years) and who edited and corrected the translation of the

first few chapters.

The Book Is Free of Charge!

The present book is distributed absolutely free of charge in an electronic
format under a license that grants its usage for all kinds of purposes,
including commercial projects. The book is also distributed in paper format for

a charge, covering its printing and distribution costs without any profit.

Reviews

| f y ou donot ful | ys who wrsté this boek, yaw tah ¢ake
inspiration from its reviews written by leading worldwide specialists ,
including software engineers at Microsoft , Google , Oracle, SAP and VMware

Review by Nikola Mihaylov , Microsoft

Programming is an awesome thing! People have been trying for hundreds of

years to make their lives easier, in order to work less. Programming allows
humanitydéds tendency towards |l aziness to <co
freak or i f youdd just 1like to i mpsanstBingot he

of yours "never -seen -before" , then you are welcome. No matter if you are

part of the relatively small group of "freaks" who get off on encountering a

nice program or if youé6d just I|like to fulfil
life outsi de the workplace, this book is for you

The fundament al concepts of a carods eimgi ne
something inside it burns (gas, oil or whatever you have filled it with) and the
car rolls along. Li kewi se, the conangeptfos of

http://introprogramming.info/

54 Fundamentals of Compu ter Programming with C#

years. Whether you write the next video game, money management software

in a bank or you program the "mind" of a new bio robot, you will use T with
absolute certainty 1 the concepts and the data structures described in

this book

In this book , you wi ll find a large part of the programming fundamentals
An analogical fundamental book in the automobile industry would be titled
"Internal Combustion Engines".

Whatever you do, i t O0te enjmyoits t ! Befarepyou stad reading
this book , thinko f s omet hi ng vy o uaddprdgrarkneer tioa welmsite, a
game or some other program! While reading the book, think of how and what

from the stuff you have read you would use in your program! If you find
something interesting, you would learn it easily!

My first program (of which I dm proud enough to sp
simply drawing on the screen using the arrow keys of the keyboard. It took

me quite some time to write it back then, but when it was done, | liked it. |

wish you this: may you like ever ything related to programming! Have a nice

reading and a successful professional fulfillment!

Nikola Mihaylov is a software engineer at Microsoft in the team developing

Visual Studio. He is the author of the website http://nokola.com and is easily
fiturned ono by the topic of programming;
necessary to write something positive! He loves helping people with questions

and a desire for programming, no matter if they are beginners or experts.

When in need, contact him by e -mail: nokola@nokola.com

Review by Vassil Bakalov , Microsoft

"Introduction to Programming with C#" is a brave effort to not only help the

reader make their first steps in programming, bu t also to introduce them with
the programming environment and to train for the practical tasks that
occur in a progr atnayrlifé s. The aythors have found a good
combination of theory T to pass over the necessary knowledge for writing and
reading programming code 1 and practice 1 all kinds of problems, carefully
selected to assimilate the knowledge and to form a habit in the reader to
always think of the efficient solution to the problem in addition to the syntax

when writing programs.

The C# progr amming language is a good choice, because it is an elegant

|l anguage t hrough whi ch t he progr amds repr
memory is of no concern to us and we can concentrate on improving the

efficiency and elegance of our program.

Upuntinowlhave n6t come across a prhatgntroglunesitsn g b o o

reader with the programming language and develops their problem
solving skills at the same ti me. | 8m happy now t hat
Il 6m sure it wildl be of great use to future i

Vass il Bakalov is a software engineer at Microsoft Corporation (Redmond)
and a participant in the project for the first Bulgarian book for .NET:

http://nokola.com/
mailto:nokola@nokola.com

Preface 55

"Programming for the .NET Framework”. His blog is located at:
http://bakalov.com

Review by Vassil Terziev, Telerik

Skimming through the book, | remembered the time, when | was making my
first steps in PHP programming . | still remember the book | learned from

i four authors, very disorganized and incoherent content and elementary

exam ples in the chapters for experts and complicated examples in the
chapters for beginners, different coding conventions and emphasis only on the

platform and the language and not on how to use them efficiently for writing

high quality applications.

I & m vgad vhat "Introduction to Programming with C#" takes an entirely

different approach . Everything is explained in an easy to understand

manner , but with the necessary profundity, and every chapter goes on to

slowly extend the previous ones. As an outside by stander | was a witness of

the efforts put into writing the book and I
and desire to create a more different book truly has materialized in a subject

matter of very high quality.

| strongly hope that this book will be usefu | to its readers and that it will
provide them with a strong basis for finding their feet, a basis that will hook

them on to a professional development in the field of computer programming

and that will help them make a more painless and qualitative start.

Vassil Terziev is one of the founders and CEO of Telerik Corporation, leading
provider of developer tools and components for .NET, HTML5 and mobile

development. His blog is located at http://blogs.te _lerik.com/vassilterziev/

You can contact him at any time you want by e -mail: terziev@telerik.com

Review by Veselin Raychev , Google

Perhaps even without reading this, youol |l
developer , but | think youdll find it much more

| have seen cases of reinventing the wheel, often times in a worse shape than
the best in theory and the entire team suffers mostly from this. Everybody

committed to programming must sooner or later read w hat algorithm
complexity is, what a hash table is, what binary search is and what the
best practices for using design patterns are. Why donét you sta

moment by reading this book?

There are many books on C# and much more on programming. People would

say about many of them that they are the best guides, the fastest way to get

into the swing of the language. This book differs from others mainly because

it will show you what you must k now to achieve success and not what the
twists and turns of a given programming language are. If you find the
topics covered in this book uninteresting, then software engineering

might possibly not be for you.

http://bakalov.com/
http://blogs.telerik.com/vassilterziev/
mailto:terziev@telerik.com

56 Fundamentals of Compu ter Programming with C#

Veselin Raychev s a software engineer at Goog le where he works on Google
Maps and Google Translate. He has previously worked at Motorola Biometrics
and Metalife AG.

Veselin has won accolades at a number of national and international
contests and received a bronze medal at the International Olympiad i n
Informatics (IOl) in South Korea, 2002, and a silver medal at the Balkan
Olympiad in Informatics (BOI). He represented the Sofia University "St.

Kliment Ohridski" twice at the world finals in computer science (ACM ICPC)
and taught at several optional cou rses at the Faculty of Mathematics and

Informatics at the University of Sofia.

Review by Vassil Popovski, VMware

As an employee at a managing position at VMware and at Sciant before that, |

often have to carry out technical interviews for job candidates at our

company. l'téds surprising how many of the cal
positions that come to us f orhowaanhash tabbleer vi ew
works havenot heard of algorithm complexity,

with a complexity of On%. 1'téds hard to believe-taughet am
programmers that havenot mastered the funda
find in this book. Many people practicing the software developer profession

are not even familiar with the most basic data structures in programming and

dondt know how to iterate thr dRegglthisbookisoee usi
that you wonot be | i ké&isthh érsgt eextbpok gqu Isheuld

start with during your training as a programmer. The fundamental knowledge

of data str uctures , algorithms and problem solving will be necessary for

you to build your carrier in software engineering successfully and, of

course, to be successful at job interviews and the workplace afterwards.

If you start with creating dynamic websites using databases and AJAX without
knowing what a |inked I|ist, tree or hash ta
fundamental gaps there are in your skill set. Do you have to make a fool of

yourself at a job interview, in front of your colleagues or in front of y our
superior when it becomes <cl ear that you dol
code, or how the List<T> structure works or how hard drive folders are

traversed recursively?

Most programming books will teach you to write simple programs, but they

won o6t nhtadoresideration the quality of the programming code Lt isa
topic most authors find unimportant, but writing high quality code is a basic

skill that separates the capable programmers from the mediocre ones.
Throughout the years you might discover the be st practices yourself, but do
you have to learn by trial and error? This book will show you the right course

of action the easy way i master the basic data structures and
algorithms ; learn to think correctly ; and write your code with high -
quality .lwishy ou beneficial studying.

Vassil Popovski is a software architect at VMware Bulgaria with more than
10 years of experience as a Java developer. At VMware Bulgaria he works on

Preface 57

developing scalable Enterprise Java systems. He has previously worked as
senior manager at VMware Bulgaria, as technical director at Sciant and as
team leader at SAP Labs Bulgaria.

As a high school student Vassil won awards at a number of national and
international contests including a bronze medal at the International
Olympiad in Informatics (IOl) in Set Ypbl898, and a bronze medal at the
Balkan Olympiad in Informatics (BOI) in Drama, Greece, 1997. As a college
student , Vassil participated in a number of college contests and in the
worldwide inte runiversity contest in programming (ACM ICPC). During the
2001/2002 period , he held the course "Transaction Processing" at the Sofia
University "St. Kliment Ohridski”. Vassil is one of the founders of the
Bulgarian Association of Software Developers (BASD)

Review by Pavlin Dobrev, ProSyst Labs

The book "Introduction to Programming with C#" is an excellent study

material for beginners that gives you the opportunity to master the
fundament al s of programming in an easy to
seventh b ook written under the guidance of Svetlin Nakov and just like the

ot her s, itds or i en gamidg peastical progranvmeny gkillst o

The subject matter includes fundamental topics such as data structures,

algorithms and problem solving and that mak es it intransient in
devel opment . It 6s filled wi t h countl ess e X

solving basic problems from a programmer 6s ever.yday worKk

The book "Introduction to Programming with C#" represents an adaptation of

the incredibly successful book "Introduction to Programming with Java" to

the C# programming | anguage and Microsoftds
i s based on i ts l eading aut hor d8s, Svetlin
teaching programming fundamentals T not only at the National Academy

for Software Development (NASD) and later at Telerik Software
Academy , but at the Faculty of Mathematics and Informatics at the Sofia
University "St. Kliment Ohridski", at the New Bulgarian University and at

the Technical University of So fia as well.

Despite the large number of authors, all of which with differing professional

and training experience, there is a clear logical connection between the
separate chapters f r o wlearly hwattenb o 0 kith ddtafled s
explanations and many, many examples far from the dull academic style
of most university textbooks.

Oriented towards those making their first steps in programming, the book

delivers carefully, step by step, the most important stuff a programmer
must be proficient in, in order to practice his profession I starting from
variables, loops and arrays, to fundamental data structures and algorithms.

The book also covers important topics like recursive algorithms, trees, graphs

and hash tabl e s . I'tds one of t heachf good ptogramknglg t h at
style and high -quality programming code at the same time. There is enough

58 Fundamentals of Compu ter Programming with C#

thought put into the object -oriented programming principles and exceptions
handling, without which modern software develop ment is unimaginable.

The book “Introduction to Programming with C#" teaches the most
important principles and concepts in programming in the way
programmers think when solving problems in their everyday work.

This book doesndt contaigremmryghand wbodt
.NET software engineers. If you want to become really good programmer ,
you need lots and lots of practice. Start from the exercises at the end of each
chapter, but donot confine yourselves t
thou sands of lines of code until you become really good ithatodés th
a programmer. This book is indeed a great start ! Seize the opportunity to
come across everything of utmost importance in one place without all the

wandering through the thousands of s elf-instruction books and articles on the
Internet. Good luck!

[0)
e

Dr. Pavlin Dobrev is technical director at ProSyst Labs (www.prosyst.com),
a software engineer with mor e tcbnauftantl 5andy e ar
scienti st, Ph.D. in "Computer Systems, Complexes and Networks". Pavlin has

made worldwide contributions in developing modern computer technologies

and technological standards . He is an active member of international
standardization organizations such as the OSGi Alliance (www.o0sgi.org) and
the Java Community Process (www.jcp.org), as well as open source software
initiatives such as the Eclipse Foundation (www.eclipse.org). Pavlin manages
software projects and consults companies of the likes of Miele, Philips,
Siemens, BMW, Bosch, Cisco Systems, France Telecom, Renault, Telefonica,
Telekom Austria, Toshiba, HP, Motorola, Ford, SAP, etc. in the field of

embed ded applications, OSGi based automobile systems, mobile devices and

home networks, integrated development environments and Java Enterprise

servers for applications. He has many scientific and technical publications

and has patrticipated in prestigious inter national conferences.

Review by Nikolay Manchev, Oracle

To become a skillful software developer, you must be ready to invest in
gaining knowledge in many fields and a particular programming language is

only one of t hem. A good developer mustnot
application programming interface of t he | anguage hebés chosen.
possess deep knowledge in object -oriented programming , data
structures and quality code writing . He must also back up his knowledge

with serious practical experience.

When | was starting my career as a software devel oper more than 15 years

ago, finding a comprehensive source for learning these things was

impossible . Yes, there were books on the individual programming languages,
but they only described their syntax. For the APl description one had to rely
on the docume ntation of the libraries. There were individual books devoted
solely on object -oriented programming. The various algorithms and data

1

http://www.prosyst.com/
http://www.osgi.org/
http://www.jcp.org/
http://www.eclipse.org/

Preface 59

structures were taught at the university. There was not even a word on high -
quality programming code.

Learning all these th ings, one piece at a time, and making the efforts to put

them into a common context, was up to the one walking "the way of the

programmer”. Sometimes a self -taught programmer cannot manage to fill the

huge gaps in their knowledge simply because they have n o idea of the
existence. Let me give you an example to illustrate the problem.

In the year 2000 | picked up the management of a large Java project. The

team developing it consisted of 25 people and at that moment there were

about 4000 classes written for the project. As a team leader, part of my job

was to regularly review the code written by the other programmers. One

day | saw how one of my colleagues had solved a standard array sorting

assignment. He had written a separate, 25 lines long method imp lementing

the trivial bubble sort algorithm. When | went to see him and asked him why

he would do that instead of solving the problem with a single line of code

using Array.Sort() , he started explaining how the built -in method had been
"sluggish"andthat it 6s better to write these things
the documentation and showed him that the "sluggish” method works with a

complexity of O(n*log(n)) and his bubble sort is a prime example of bad

performance with its complexity of O(n?). In the next few minutes of our
conversation | made the actual discovery T my colleague had no idea what

algorithm complexity is and his knowledge of standard algorithms was

tragic. Consequently | found out he majored in an entirely different

engineering discipli n e , not computer science. Of cours
with that. His knowledge of Java was no worse than his co -wor kersé, who
longer professional exposures than him. But that very day we noticed a gap in

his professional qualification as a develop er that he hadndét even

I don6t want to | eave you with wrong i mpres
college student who has successfully passed his main exams in "Informatics"

would definitely know the common sorting algorithms and would be able to
calculate their complexity, they would also have gaps in their education

The sad truth is that the college education in Bulgaria in this discipline is still

theoretically oriented. It has changed very little over the course of the past 15

years. Yes, programs are nowadays written in Java and C#, but these are the

same programs that were written in Pascal and Ada back then.

Somewhere about a year ago | consulted a freshman student who was

majoring in "lInformatics" at one tiessfWh&uMegar i
sat down to go over his notes taken during the "Introduction to Programming"
class, | was amazed at the code his instructor had given . The names of

the methods were a mix of English and transliterated Bulgarian. There was a
method calculate and a method rezultat (the Bulgarian for "result"). The

variables carried the descriptive names al, a2 and suma (the Bulgarian for
"sum") . Yes, there is nothing tragic in thi
lines -long example, but when this student takes u p the job hebds e

some large project, he will be harshly rebuked by the project leader, who will
have to explain to him the coding conventions , haming principle,

60 Fundamentals of Compu ter Programming with C#

cohesion and coupling and variable |ife sp:
about the gap in his knowledge of quality code the same way my colleague
and | found out about his uncertain knowledge in the field of algorithms.

Dear reader, | can boldly state that you are holding a truly unique book in

your hands. Its contents are very carefully sel ect ed. -afranged andve | |
presented with attention to details, of which only people with tremendous

practical experience and solid scientific knowl edge,
authors Svetlin Nakov and Veselin Kolev, are capable of. Over the course of

many years they have also been learning "on the fly", supplementing and
expanding their knowl edge. Theydve worked

theydve attended many scientific conference
student s. They redessar ywdr anlybddy striving for a career

in software development to Il earn and theybve presente
no other book on introduction to programming has done before. Your journey

t hrough t he bookés pages wi || |l ead you
languageds synt ax. Youdl | see how to wuse a |
the fundamentals of object -oriented programming and youdl | be
work freely with terms such as objects, eve
most widely used data structures such as arrays, trees, hash tables and
graphs. Youdl |l get to know the most widely
t hese structures and youol | cC ome t o know
understand the concepts for creating high -quality programming code and
youol | know what t o require from your pr ooc
become a team leader. In addition, the book will challenge you with many

practical problems that will help you master, by the way of practice, the

subject matter it covers. And if one of the problems proves too hard for you,

you can always take a look at the solutions and guidelines the authors have

provided.

t

4‘

Computer programmers make mistakes T no one is safe from that. The more

capable ones make mistakes out of oversight or overwork, but th e more
incompetent ones i out of lack of knowledge. Whether you become a good

or a bad software developer depends entirely on you and especially on

how much youdre willing to constaritbeytbyi nve:
attending courses, reading or prac ticing. But | can tell you one thing for sure

i no matter how much time you invest in th
mistake. If some years ago someone wanting to become a software developer

had asked me "Where do | start from", ivel w0
them a definitive answer. Today | can say without worry 1 "Start from this

very book (inits C# or Java version)!"

I wish you with all my heart success in mastering the secrets of C#, the .NET
Framework and software development!

Nikolay Manchev is a co nsultant and software developer with many years

of experience in Java Enterprise and Service Oriented Architecture (SOA). He

has wor ked for BEA Syst ems and Or acl e Co
developer in the programs run by Sun, BEA and Oracle. He teaches
software technologies and holds courses in "Network Programming",

Preface 61

"J2EE", "Data Compression" and "High Quality Programming Code" at the

Plovdiv University "Paisii Hilendarski" and at the Sofia University "St. Kliment
Ohridski". He has held a number of courses for developers on Oracle
technologies in Central and Eastern Europe (Hungary, Greece, Slovakia,
Slovenia, Croatia and others) and has participated in international projects on
incorporating J2EE based systems for security management. Works of h is in
the field of data compression algorithms have been accepted and presented in

the USA by IEEE. Nikolay is an honorary member of the Bulgarian Association

of Software Developers (BASD). He is author of the book "Oracle Database
Security: Version 10g & 11g ". You can find out more about him on his
personal website: http://www.manchev.org . To contact him, use th e e-mail
address: nick@manchev.org

Review by Panayot Dobrikov, SAP AG

The book at hand is an incredibly good introduction to programming for
beginners and is a primary example of the notion (promoted by Wikipedia
and others) to create and distribute easy to understand knowledge that is not

only * free of charge *, butisof incredibly high quality as well.
Panayot Dobrikov is program director at SAP AG and co-author of the book
"Programming = ++Algorithms;". You can fi nd out more about him on his

personal website: http://indyana.hit.bg

Review by Lyubomir Ivanov, Mobiltel

If someone had told me 5 or 10 years ago that there would be a book from

which to learn the basics of managing people and projects i budgeting,
finances, psychol ogy, pl anning, et c. , I w
woul dnodt even believe them at this very mo
there are tens of books that must be read.

If someone had told me that there would be a book from which we can learn

the fundamentals of programming essential to every software developer T

I still wouldnét have believed them.

| remember my time as a novice programmer and a college st udent T | was

reading several books on programming languages, several others on
algorithms and data structures, and a third set of books on writing high -
quality code. Very few of them helped me to think algorithmically and to
work out an approach for solvi ng the everyday problems | came across
in my practice. None of them gave me an overview of everything | had to

know as a computer programmer and a software engineer. The only things

that helped me were being stubborn and reinventing the wheel.

Today | read this book and I &d&m happy that f
me, someone got down to writing The Book that will help any beginner

programmer solve the puzzle of programming I a modern programming

language, data structures, quality code, a Igorithmic thinking and problem

solving. This is the book that you should take up programming from, if you

http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://www.manchev.org/
mailto:nick@manchev.org
http://indyana.hit.bg/

62 Fundamentals of Compu ter Programming with C#

want to master the art of quality programming. Whether you choose the Java

or C# version of this book ,it doesndét really matter. yoMhat
must learn to think as a programmer and solve the problems you
encounter when writing software; the programming language is just a tool

you can change for another at any given time.

This book i snb6t onl y f or Evenepogrammers with many years of
experience can learn something from it. | recommend it to every software
devel oper who would |Iike to realize what t he

Have a nice time reading!

Lyubomir lvanov is the manager of the "Data and Mobile Applications"”
department at Mobiltel EAD (part of Mobilkom Austria) where he engages in
developing and integrating IT solutions for the telecommunications industry.

Review by Hristo Deshev, Entrepreneur

l'tds surprising what a | arge percentage of
the little things like variable names and good code structure . These
things pile up and, in the end, make the difference between a well -written
piece of software and a bowl! of spaghetti. This book teaches discipline and
"hygiene" in code writing along with t he very basic concepts in
programming and that will undoubtedly make you a professional

Hristo Deshev |, software craftsman

Review by Hristo Radkov , Clever IT (London, UK)

Fantastic book! It gives the start to any developer geek who wants to develop

into a software prodigy. While you can learn from the quick learning books for

dummi es to do coding that fAjust workso and
of the small software development houses around, you can never leave a

trace in the software world without understanding the fundamental

concepts of programming . Yes, you can still develop software applications

and use the goodies of the .NET framework, but just use and not create or

innovate

| f youod I i ke t oarchitectaral exeelience e v e and be able to
confidently and proudly say you have developed a good piece of software that

will stay there and serve its purpose for years, you need to understand just

how the technologies you use in everyday live (e.g. ASP.NET, MVC, WPF,
WCF, LINQ, Sockets, Task Par allel Library) work, but how they have been
developed and optimized to become what they are. Only then would you save
precious time in finding how to do things efficiently with these technologies,
because that knowledge will naturally come from what you ha ve learned
from this book . And the same applies to understanding the widely
recommended in the world of programming nowadays design patterns,
architectures and techniques.

Preface 63

The book will allow you to prepare yourself to think, design and program
optimally a s a concept and mindset with any object oriented language you
might ever use not just C# or .NET Framework.

Many banking systems here in London hav-e a
ti meo dat a servers t o thousands of users
interruptio ns, and this book provides the basics which if you lack you cannot

work on such systems successfully, ever.

This fundamental knowledge distinguishes the excellent and accomplished
developer, whose code would rarely require optimizations and would therefore
save direct and indirect costs to their employer from the general developers

who unfortunately are the prevailing part of the programmers you would meet

in your career. The accomplished specialists evolve and progress into senior
positions much easier whe n having the technical arguments and the mentality
to be creative and visionary, avoiding the difficulties of technology gap
limitations the mass around you have.

So, read the book carefully and diligently to become one!

Hristo Radkov is a Chief software architect and Co-founderat CleverIT ,a
software services, best coding practices and architecture consulting company

based in London, United Kingdom. With over 15 years of experience as a
Developer, Team leader, Development manager, Head of IT and Software
Architect he has done projects professionally with C++, Java and C#,
eventually remaining completely on the side of the Microsoft Technologies

after the very first release of .NET Framework , becomi ng recognized by the
industry Microsoft Technology Software Development Best Practices and Cloud
Programming Expert, with MCPD, MCSD.NET, MCDBA and MCTS awards.
Hristo is co -author of the books "Programming _ for the .NET Framework
(vol. 1 & 2) " and has been instructor for .NET and Design Patterns for many
years. His company Clever IT is consulting top financial institutions and FTSE

100 corporations with multibillion valuations on the World Stock Exchanges.

You can find more about him on www.radkov.com or linked -in at Hristo
Radkov . To contact him, use the e -mail address: hradkov@clevit.com
Lic ense

The book and all its study materials are distributed freely under the following
license

Common Definitions

1. The present license defines the terms and conditions for using and

distributing the " study materials "and the book "Fundamentals of
Computer Pr ogramming with C#" , developed by a team of
volunteers under the guidance of Svetlin Nakov (www.nakov.com).

2. The study materials consist of:

http://cleverit.info/
http://www.devbg.org/dotnetbook/
http://www.devbg.org/dotnetbook/
http://www.radkov.com/
http://lnkd.in/6YvJZ3
http://lnkd.in/6YvJZ3
mailto:hradkov@clevit.com
http://www.nakov.com/

64

Fundamentals of Compu ter Programming with C#

- the book (textbook) on "Fundamentals of Computer Programming
with C#"

- sample sou rce code
- demo programs

- exercise problems

- presentation slides

- video materials

. The study materials are available for free download according to the

terms and conditions specified in this license at the official website of
the project: www.introprogramming.info

. Authors of the study materials are the persons who participated in their

creation.

. User of the study materials is anybody who uses or accesses these

materials or portions of them.

Rights and Limitations of the Users

1. Users may :

- distribute free of charge unaltered copies of the study materials in
electronic or paper format;

- use the study materials or portions of them, including the examples,

demos, exercises and presentation slides or their modifications, for all
intents and purposes, including educational and commercial
projects , provided they clearly specify the original source , the

original author(s) of the corresponding text or source code, this
license and the website ~ www.introprogramming.info

- distribute free of charge portions of the study materials or modified
copies of them (including translating them into other languages or
adapting them to other programming languages and platfo rms), but
only by explicitly mentioning the original source and the authors
of the corresponding text, source code or other material, this license
and the official website of the project: www.introprogrammin ___g.info .

2. Users may not

- distribute for profit the study materials or portions of them, with
the exception of the source code;

- remove this license from the study materials when modifying them
for own needs.

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Preface 65

Rights and Limitations of the Authors

1. Every author has non -exclusive rights on the products of his / her own
work contributing to build the study materials.

2. The authors have the right to use the products of their contribution for
any purpose, including modifying them and distributing them for profit.

3. The rights on all study materials written in joint authorship belong to all
co-authors together.

4. The authors may not distribute for profi
in joint authorship without the explicit permission of all other co -
authors.

Resources Com ing with the Book

This book "Fundamentals of Computer Programming with C#" comes with a

rich set of resources: official web site , official discussion forum , presentation
slides for each chapter of the book, video lessons for each chapter of the
book and Facebook fan page

The Bookds Website

The official website of the book "Introduction to programming with C#" is
available at: www.introprogramming.info . At book 6s siteeybu can
freely download the bookand many related resources:

- The whole book in several electronic format s (PDF / DOC / DOCX /
HTML / Kindle /etc.)

- The source code of the examples (demos) for each chapter

- Video lessons covering the entire book content with live demos and
detailed explanations (in English and in Bulgarian)

- PowerPoint presentations slides for each chapter, ready for instructors
who want to teach programming (in English)

- The exercises and solutions guideli nes for each chapter

- Solutions to all problems from the book + explanation of the
algorithm and the source code for each solution + tests (in Bulgarian)

- Interactive Mind maps for each book chapter
- The bookin Bulgarian language (the original)
- A Java versio n of the book (with all content and examples adapter to
Java programming language)
Discussion Forum

The discussion forum where you can find solutions to almost all problems
from the book is available at: forums.academy.telerik.com

http://www.introprogramming.info/
http://forums.academy.telerik.com/

66 Fundamentals of Compu ter Programming with C#

This forum is created for discussions among the participants in Telerik
Software Academyds courses who go through
months of their training and mandatorily solve all problems in the exercise

sections. Most people "living" in the forum are Bulgarian but everyone speaks

English so you are invited to ask your questions about the book exercises in

English.

Inthe forum y ou & | Icomments@nd solutions submitted by students and

readers of the boo k, as well as by the trainers at the Software Academy. Just

search thoroughly enough and youéll find se
the book (with no exceptions). Every year thousands of participants in

Telerik Software Academy solve problems from th is book and share their
solutions and the difficulties theybdve encol
in the forum or ask , if you candédt get to a solution f

Presentation Slides Coming with the Book

This book is used in many univers ities, colleges, schools and organizations as

a textbook on computer programming, C#, data structures and algorithms. To

help instructors teach the lessons following this book we have prepared
PowerPoint presentation slides for each chapter of the book. In structors
are welcome to use the slides free of charge under the license agreement
stated above. The authors' team will be happy to find out that this book and

its study materials and presentation slides are helping people all over the
world to learn progr amming. This is the primary goal of the project: to teach
computer programming fundamentals , in complete, simple, structured,
understandable way, free of charge. You may find the PowerPoint slides in
English at the book owsww.intfoprég@mnaifg.infvéeb s.i t e:

Video Materials for Self - Education with the Book

As part of the Telerik Software Academy program (academy.telerik.com) and,

in particular, the free cour se "Fundamentals of C# Programming", videos of

all lectures on the subject matter in this book have been recorded. The video
materials in English and Bul garian can be f
in troprogramming.info

If you speak Bulgarian you might be interested in Telerik Softwvare Academyds
video channel in YouTube: youtube.com/TelerikAcademy . It provides for
free thousands video lessons on p rogramming and software development.

Interactive Mind Maps

As part of the book we created a set of interactive mind maps to visualize its

content and to improve the level of memorization. We have a few mind maps

for each chapter that visually illustrates its content and a global mind map of

t he entire book. The mi nd maps ar e availa
http://www.introprogramming.info/english -intro -csharp -book/mind _-maps/ .

http://www.introprogramming.info/
http://academy.telerik.com/
http://www.introprogramming.info/
http://www.youtube.com/TelerikAcademy/
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

Preface 67

Mind Maps on the Book “Fundamentals of Computer Programming with C#"

C# Book Fan Club

For the fans of the book "Introduction to Programming with C#" we have a
Facebook page : www.facebook.com/IntroCSharpBook

Svetlin Nakov , PhD,
Manager of the "Technical Training" Department,
Telerik Software Academy, Telerik Corporation,
August 24 ™, 2013

http://www.facebook.com/IntroCSharpBook
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

s

Bulgarian Association
Of Software Developers

www.devbg.org

Bulgarian Association of Software Developers (BASD) is a
non - profit organization that supports the Bulgarian software
developers through educational and other initiatives.

BASD works to promote exchange of experience between the
developers and improvement of their knowledge and skills in
the area of software development and software technologies.

The Association organizes conferences, semin ars and training
courses for software engineers and other professionals
involved in the software industry.

http://www.devbg.org/
http://www.devbg.org

Chaptked ntroduct i
to Programming

In This Chapter

In this chapter we will take a look at the basic programming terminology
and we will write our first C# program . We will familiarize ourselves with
programming 1 what it means and its connection to computers a nd

programming languages.
Briefly, we will review the different stages of software development

We will introduce the C# language, the .NET platform and the different
Microsoft technologies used in software development. We will examine what

tools we need to program in C# . We will use the C# language to write our
first computer program, compile and run it from the command line as well as

from Microsoft Visual Studio integrated development environment. We will
review the MSDN Library i the documentation of th e .NET Framework. It will
help us with our exploration of the features of the platform and the language.

What Does It Mean "To Program"?

Nowadays computers have become irreplaceable. We use them to solve

complex problems at the workplace, look for driving directions, have fun and
communicate. They have countless applications in the business world, the
entertai nment i ndustry, tel ecommuni cati-ons

statement to say that computers build the neural system of our contemporary
society a nd it is difficult to imagine its existence without them.

Despite the fact that computers are so wide -spread, few people know how
they really work . In reality, it is not the computers, but the programs (the
software), which run on them, that matter. It is the software that makes
computers valuable to the end -user, allowing for many different types of
services that change our lives.

How Do Computers Process Information?

In order to understand what it means to program, we can roughly compare a
computer and it s operating system to a large factory with all its workshops,
warehouses and transportation. This rough comparison makes it easier to
imagine the level of complexity present in a contemporary computer. There

are many processes running on a computer, and th ey represent the
workshops and production lines in a factory . The hard drive, along with the

70 Fundamentals of Computer Programming with C#

files on it, and the operating memory (RAM) represent the warehouses, and
the different protocols are the transportation systems, which provide the input
and outpu t of information.

The different types of products made in a factory come from different
workshops. They use raw materials from the warehouses and store the
completed goods back in them. The raw materials are transported to the
warehouses by the suppliers a nd the completed product is transported from

the warehouses to the outlets. To accomplish this, different types of
transportation are used. Raw materials enter the factory, go through different

stages of processing and leave the factory transformed into pr oducts. Each
factory converts the raw materials into a product ready for consumption.

The computer is a machine for information processing . Unlike the
factory in our comparison, for the computer, the raw material and the product
are the same thing 1 inform ation. In most cases, the input information is

taken from any of the warehouses (files or RAM), to where it has been
previously transported. Afterwards, it is processed by one or more processes

and it comes out modified as a new product. Web based applicat ions serve as
a prime example. They use HTTP to transfer raw materials and products, and
information processing usually has to do with extracting content from a
database and preparing it for visualization in the form of HTML.

Managing the Computer

The whol e process of manufacturing products in a factory has many levels of
management. The separate machines and assembly lines have operators, the
workshops have managers and the factory as a whole is run by general
executives. Every one of them controls process es on a different level. The
machine operators serve on the lowest level I they control the machines with
buttons and levers. The next level is reserved for the workshop managers.

And on the highest level, the general executives manage the different aspect S
of the manufacturing processes in the factory. They do that by issuing orders.

It is the same with computers and software T they have many levels of
management and control. The lowest level is managed by the processor and
its registries (this is accompli shed by using machine programs at a low level)

i we can compare it to controlling the machines in the workshops. The
different responsibilities of the operating system (Windows 7 for example),
like the file system, peripheral devices, users and communicati on protocols,
are controlled at a higher level I we can compare it to the management of the
different workshops and departments in the factory. At the highest level, we

can find the application software . It runs a whole ensemble of processes,
which require a huge amount of processor operations. This is the level of the
general executives, who run the whole factory in order to maximize the
utilization of the resources and to produce quality results.

Chapter 1. Introduction to Programming 71

The Essence of Programming

The essence of programming is to control the work of the computer on all
levels. This is done with the help of "orders" and "commands" from the
programmer, also known as programming instructions . To "program" means
to organize the work of the computer through sequences of

instructions . These commands (instructions) are given in written form and

are implicitly followed by the computer (respectively by the operating system,

the CPU and the peripheral devices).

To Apr ogrmean® writ ing sequences of instructions in

& order to organize the w ork of the computer to perform
something. These sequences of instructions are called

fifcomputer programso or fscriptso.

A sequence of steps to achieve , complete some work or obtain some result is
called an algorithm . This is how programming is related to algorithms
Programming involves describing what you want the computer to do by a
sequence of steps, by algorithms

Programmers are the people who create these instructions, which control
computers. These instructions are called programs . Numerous programs
exist, and they are created using different kinds of programming
languages . Each language is oriented towards controlling the computer on a
different level. There are languages oriented towards the machine level (the

lowest) 1 Assembler for example. Other s are most useful at the system level

(interacting with the operating system), like C. There are also high level
languages used to create application programs. Such languages include C#,
Java, C++, PHP, Visual Basic, Python, Ruby, Perl, JavaScript and othe rs.

In this book we will take a look at the C# programming language i a

modern high level language. When a programmer uses C#, he gives
commands in high level, like from the position of a general executive in a

factory. The instructions given in the form o f programs written in C# can
access and control almost all computer resources directly or via the operating

system. Before we learn how to write simple C# programs, | e ttdkes a good
look at the different stages of software development, because programming ,
despite being the most important stage, is not the only one.

Stages in Software Development

Writing software can be a very complex and time -consuming task, involving a
whole team of software engineers and other specialists. As a result, many
methods and practices, which make the life of programmers easier, have
emerged. All they have in common is that the development of each software
product goes through several different stages

- Gathering the requirements for the product and creating a task;

- Planning and preparing the architecture and design;

72 Fundamentals of Computer Programming with C#

- Implementation (includes the writing of program code);
- Product trials (testing);

- Deployment and exploitation;

- Support

Implementation, testing, deployment and support are mostly accomplished
using programming.

Gather ing the Requirements

In the beginning, only the idea for a certain product exists. It includes a list of
requirements , which define actions by the user and the computer. In the

general case, these actions make already existing activities easier T
calculati ng salaries, calculating ballistic trajectories or searching for the
shortest route on Google maps are some examples. In many cases the
software implements a previously nonexistent functionality such as
automation of a certain activity.

The requirements for the product are usually defined in the form of
documentation, written in English or any other language. There is no
programming done at this stage. The requirements are defined by experts,

who are familiar with the problems in a certain field. They can a Iso write them
up in such a way that they are easy to understand by the programmers. In

the general case, these experts are not programming specialists, and they are

called business analysts

Planning and Preparing the Architecture and Design

After all the requirements have been gathered comes the planning stage . At
this stage, a technical plan for the implementation of the project is created,

describing the platforms, technologies and the initial architecture (design) of

the program. This step includes a f air amount of creative work, which is done

by software engineers with a lot of experience. They are sometimes called

software architects . According to the requirements, the following parts are
chosen:
- The type of the application 1 for example console appli cation, desktop
application (GUI, Graphical User Interface application), client -server

application, Web application, Rich Internet Application (RIA), mobile
application, peer -to-peer application or other;

- The architecture of the software i for example sing le layer, double
layer, triple layer, multi -layer or SOA architecture;
- The programming language most suitable for the implementation T

for example C#, Java, PHP, Python, Ruby, JavaScript or C++, or a
combination of different languages;

- The technologies that will be used: platform (Microsoft .NET, Java EE,
LAMP or another), database server (Oracle, SQL Server, MySQL, NoSQL

Chapter 1. Introduction to Programming 73

database or another), technologies for the user interface (Flash,
JavaServer Faces, Eclipse RCP, ASP.NET, Windows Forms, Silverlight,
WPF or another), technologies for data access (for example Hibernate,

JPA or ADO.NET Entity Framework), reporting technologies (SQL Server
Reporting Services, Jasper Reports or another) and many other
combinations of technologies that will be used for the imp lementation of
the various parts of the software system.

- The development frameworks that will simplify the development, e.qg.
ASP.NET MVC (for .NET), Knockout.js (for JavaScript), Rails (for Ruby),
Django (for Python) and many others.

- The number and skills of the people who wil be part of the
development team (big and serious projects are done by large and
experienced teams of developers);

- The development plan I separating the functionality in stages,
resources and deadlines for each stage.

- Others (size of the team, locality of the team, methods of
communication etc.).

Although there are many rules facilitating the correct analysis and planning, a

fair amount of intuition and insight is required at this stage. This step
predetermines the further advancement of the development process. There is
no programming done at this stage, only preparation.

Implementation

The stage, most closely connected with programming, is the implementation

stage. At this phase, the program (application) is implemented (written)
according to the given task, design and architecture. Programmers
participate by writing the program (source) code. The other stages can
either be short or completely skipped when creating a small project, but the
implementation always presents; otherwise the process is not software
development. This book is dedicated mainly to describing the skills used
during i mplementation 1 creatinga pr ogr ammer 6 s randbudlding the
knowledge to use all the resources provided by the C# language and the .NET
platform, in order to create software applications.

Product Testing

Product testing is a very important stage of so ftware development. Its
purpose is to make sure that all the requirements are strictly followed and
covered. This process can be implemented manually, but the preferred way to

do it is by automated tests . These tests are small programs, which
automate the trials as much as possible. There are parts of the functionality

that are very hard to automate, which is why product trials include automated

as well as manual procedures to ensure the quality of the code.

74 Fundamentals of Computer Programming with C#

The testing (trials) process is implemented by qu ality assurance engineers
(QAs) . They work closely with the programmers to find and correct errors
(bugs) in the software. At this stage, it is a priority to find defects in the code

and almost no new code is written.

Many defects and errors are usually found during the testing stage and the
program is sent back to the implantation stage. These two stages are very

closely tied and it is common for a software product to switch between them

many times before it covers all the requirements and i s ready for the
deployment and usage stages.

Deployment and Operation

Deployment is the process which puts a given software product into
exploitation . If the product is complex and serves many people, this process
can be the slowest and most expensive one. For smaller programs this is a

relatively quick and painless process. In the most common case, a special
program, called installer, is developed. It ensures the quick and easy
installation of the product. If the product is to be deployed at a large

corpor ation with tens of thousands of copies, additional supporting software is
developed just for the deployment. After the deployment is successfully
completed, the product is ready for operation . The next step is to train
employees to use it.

An example would be the deployment of a new version of Microsoft Windows
in the state administration. This includes installation and configuration of
the software as well as training employees how to use it.

The deployment is usually done by the team who has worked on the software
or by trained deployment specialists . They can be system administrators,
database administrators (DBA), system engineers, specialized consultants and

others. At this stage, almost no new code is written but the existing code is

tweaked and config ured until it covers all the specific requirements for a
successful deployment.

Technical Support

During the exploitation process , it is inevitable that problems will appear
They may be caused by many factors i errors in the software, incorrect usage

or f aulty configuration, but most problems occur when the users change their
requirements. As a result of these problems, the software loses its abilities to

solve the business task it was created for. This requires additional
involvement by the developers and the support experts . The support
process usually continues throughout the whole life -cycle of the software
product, regardless of how good it is.

The support is carried out by the development team and by specially trained
support experts . Depending on the changes made, many different people
may be involved in the process T business analysts, architects, programmers,
QA engineers, administrators and others.

Chapter 1. Introduction to Programming 75

For example, if we take a look at a software program that calculates salaries,
it will need to be upd ated every time the tax legislation, which concerns the

serviced accounting process, i s changed. Th
be needed if, for example, the hardware of the end user is changed because

the software will have to be installed and conf igured again.

Documentation

The documentation stage is not a separate stage but accompanies all the

other stages. Documentation is an important part of software development
and aims to pass knowledge between the different participants in the
development an d support of a software product. Information is passed along
between different stages as well as within a single stage. The development
documentation is usually created by the developers (architects, program
mers, QA engineers and others) and represents a combination of documents.

Software Development Is More than Just Coding

As we saw, software development is much more than just coding (writing
code), and it includes a number of other processes such as: requirements
analysis, design, planning, testing and support, which require a wide variety
of specialists called software engineers . Programming is just a small, but
very essential part of software development.

In this book we will focus solely on programming, because it is the only
process, of the above, wi thout which, we cannot develop software.

Our First C# Program

Before we continue with an in depth description of the C# language and the
NET platform, l etds take a | ook at a sin
program written in C# looks like:

class HelloC Sharp
{

static void Main(string[] args)

{
}

System. Console .WriteLine("Hello C#!"),

}

The only thing this program does is to print the message "Hello, C#!" on
the default output. It is still early to execute it, which is why we will only take

a look at its structure. Later we will describe in full how to compile and run a

given program from the command prompt as well as from a development
environment.

76 Fundamentals of Computer Programming with C#

How Do es Our First C# Program Work?
Our first program consists of three logical parts:

- Definition of a class HelloCSharp ;

- Definition of a method ~ Main() ;

- Contents of the method Main() .

Defining a Class

On the first line of our program we define a class called HelloCSharp . The
simplest definition of a class consists of the keyword class , followed by its
name. In our case the name of the class is HelloCSharp . The content of the
class is located in a block of program lines, surrounded by curly brackets: {.

Defini ngthe Main() Method

On the third line we define a method with the name Main() , which is the
starting point for our program. Every program written in C# starts from a
Main() method with the following title (signature):

static void Main(string[] args)

The method must be declared as shown above, it must be static and void , it
must have a name Main and as a list of parameters it must have only one
parameter of type array of string . In our example the parameter is called
args but that is not mandatory. Thi s parameter is not used in most cases so it

can be omitted (it is optional). In that case the entry point of the program can

be simplified and will look like this:

static void Main()

If any of the aforementioned requirements is not met, the program will
compile but it will not start because the starting point is not defined correctly.

Contents of the Main() Method

The content of every method is found after its signature, surrounded by

opening and closing curly brackets. On the next line of our sample program

we use the system object System.Console and its method WriteLine() to
print a message on the default output (the console), in this case "Hello, C#!".

In the Main() method we can write a random sequence of expressions and
they will be executed in the order we assigned to them.

More information about expressions can be found in chapter " Operators and
Expressions ", working with the console is described in chapter " Console Input

and Output ", classes and methods can be found in chapter " Defining Classes

Chapter 1. Introduction to Programming 77

C# Distinguishes between Uppercase and Lowercase!

The C# language distinguishes between uppercase and lowercase letters so
we should use the correct casing when we write C# code. In the example

above we used some keywords like class , static , void and the names of
some of the system classes and objects, such as System.Console .

Be careful when writing! The same thi ng, written in upper -
& case, lower -case or a mix of both, means different things in

C#. Writing Class is different from class and System.Console
is different from SYSTEM.CONSQOLE

This rule applies to all elements of your program: keywords, names of
variables, class names etc.

The Program Code Must Be Correctly Formatted

Formatting is adding characters such as spaces, tabs and new lines, which are
insignificant to the compiler and they give the code a logical structure and
make it easier to read . L ed$ for example take a look at our first program

(the short version of the Main() method):

class HelloCSharp

{

static void Main()

{

System. Console .WriteLine("Hello C#!");

}
}
The program contains seven lines of code and some of them are indented
more than others. All of that can be written without tabs as well, like so:

class HelloCSharp
{

static void Main()
{
System. Console .WriteLine("Hello C#!"),
}
}

Or on the same line:

class HelloCSharp {static void Main(){System. Console .WriteLine(
"Hello C#!");}}

Or even like this:

78 Fundamentals of Computer Programming with C#

class
HelloCSharp
{
static void Main()
{ System
Console .WriteLine("Hello C#!") i} }

The examples above will compile and run exactly like the formatted code but
they are more difficult to read and understand , and therefore difficult to
modify and maintain.

Never let your programs contain unformatted code! That
& severely reduces program readability and leads to difficulties
for later modifications of the code.

Main Formatting Rules

If we want our code to be correctly formatted, we must follow several
important rules regarding indentation

- Methods are indented inside the definition of the class (move to the
right by one or more [Tab] characters) ;

- Method contents are indented inside th e definition of the method;

- The opening curly bracket { must be on its own line and placed exactly
under the method or class it refers to;

- The closing curly bracket } must be on its own line, placed exactly
vertically under the respective opening bracket (with the same
indentation);

- All class names must start with a capital letter;
- Variable names must begin with a lower -case letter;
- Method names must start with a capital letter;

Code indentation follows a very simple rule: when some piece of code is

logically inside another piece of code, it is indented (moved) on the right with

a single [Tab]. For example if a method is defined inside a class, it is indented

(moved to the right). In the same way if a method body is inside a method, it

is indented. To simplify this, we can assume that when we have the character

A, all the code aftelo ishouhdi bei isdehosidnog.

File Names Correspond to Class Names

Every C# program co nsists of one or several class definitions Lt s
accepted that each class is defined in a separate file with a name
corresponding to the class name and a .CS extension. When these

requirements are not met, the program will still work but navigating the co de

Chapter 1. Introduction to Programming

79

will be difficult. In our example, the class is named

result we must save its source code in a file called

The C# Language and the .NET Platform

The first version of

HelloCSharp , and as a

HelloCSharp.cs

C# was developed by Microsoft between 1999 and 20

and was officially released to the public in 2002 as a part of the .NET

platform.

The .NET platform

aims to make software development for

Windows easier by providing a new quality approach to programming, based
on the concepts of the "
the Java language and platform reaped an enormous success in all fields of

software

Java techno

logy.

The C# Language

C# is a modern, general

ramming language
features of those languages are not supported in C# in order to simplify the

language, which makes programming easier.

The C# programs consist of

virtual machine

devel opment ;

- purpose, object
. Its syntax is similar to that of C and C++ but many

one or several files

"and " managed code

C#

and

-oriented, high

". At that time

NET wer e

-level prog

contain definitions of classes and other types. These files are compiled by the
(csc) to executable code and as a result assemblies are created,
which are files with the same name but with a diff

C# compiler

dll

We can run the compiled code like any o

Keywords
C# uses the

). For example, if we compile
name HelloCSharp.exe

following

keywords

erent extension (
HelloCSharp.cs , we will get a file with the

.exe

(some additional files will be created as well, but we
will not discuss them at the moment).

ther program on our computer (by
double clicking it). If we try to execute the compiled C# code (for example
HelloCSharp.exe) on a computer that does not have the .NET Framework,
we will receive an error message.

is taken from MSDN in March 2013 and may not be complete):

to build its programming constructs (the list

02

Mi cr

with a .CS extension, which

or

abstract as base bool break byte
case catch char checked class const
continue decimal default delegate do double
else enum event explicit extern false
finally fixed float for foreach goto

if implicit in int interface internal
is lock long namespace | new null

80 Fundamentals of Computer Programming with C#

object operator out override params private
protected | public readonly ref return shyte
sealed short sizeof stackalloc static string
struct switch this throw true try
typeof uint ulong unchecked | unsafe ushort
using virtual void volatile while

Since the creation of the first version of the C# language, not all keywords

are in use . Some of them were added in later versions. The main program
elements in C# (which are defined and used with the help of keywords) are

classes , methods , operators , expressions , conditional statements ,
loops , data types , exceptions and few others. In the n ext few chapters of
this book, we will review in details all these programming constructs along

with the use of the most of the keywords from the table above.

Automatic Memory Management

One of the biggest advantages of the .NET Framework is the built -in
automatic memory management . It protects the programmers from the
complex task of manually allocating memory for objects and then waiting for

a suitable moment to release it. This significantly increases the developer
productivity and the quality of the pro grams written in C#.

In the .NET Framework, there is a special component of the CLR that looks

after memory management. It is called a " garbage collector " (automated
memory cleaning system). The garbage collector has the following main

tasks: to check when the allocated memory for variables is no longer in use,

to release it and make it available for allocation of new objects.

It is important to note that it is not exactly clear at what

moment the memory gets cleaned of unused objects (local

variables for example). According to the C# language
specifications, it happens at some moment after a given

variable gets out of scope but it is not specified, whether this

happens instantly, after some time or when the available

memory becomes insufficient for the no rmal program
operation.

A

Independence from the Environment and the
Programming Language

One of the advantages of .NET is that programmers using different .NET
languages can easily exchange their code. For example a C# programmer
can use the code written by another programmer in VB.NET , Managed C++
or F#. This is possible because the programs written in different .NET

Chapter 1. Introduction to Programming 81

languages share a common system of data types, execution infrastructure

and a unified format of the compiled code (assemblies).

A big advantag e of the .NET technology is the ability to run code, which is

written and compiled only once, on different operating systems and
hardware devices. We can compile a C# program in a Windows environment

and then execute it under Windows, Windows Mobile, Windo ws RT or Linux.

Officially Microsoft only supports the .NET Framework on Windows, Windows
Mobile and Windows Phone, but there are third party vendors that offer .NET
implementation on other operating systems.

Mono (.NET for Linux)

One example of .NET imple mentation for non -Windows environment is the

open -source project Mono (www.mono -project.com). It implement s the
.NET Framework and most of its accompanying libraries for Linux, FreeBSD,
iPhone and Android. Mono i s unofficial .NET implementation and some

features may work not exactly as expected. It does implement well the core
.NET standards (such as C# compiler and CLR) but does not support fully the
latest .NET technologies and framework like WPF and ASP.NET MVC

Microsoft Intermediate Language (MSIL)

The idea for independence from the environment has been set in the earliest
stages of creation of the .NET platform and is implemented with the help of a
little trick. The output code is not compiled to instructions for a specific
microprocessor and does n ot use the features of a specific operating system;
it is compiled to the so called Microsoft Intermediate Language (MSIL)
This MSIL is not directly executed by the microprocessor but from a virtual
environment called Common Language Runtime (CLR)

Common Language Runtime (CLR) T the Heart of .NET
In the very center of the .NET platform beats its heart i the Common
Language Runtime (CLR) i the environment that controls the execution of

the managed code (MSIL code). It ensures the execution of .NET programs
on different hardware platforms and operating systems.

CLR is an abstract computing machine (virtual machine). Similarly to
physical computers , it supports a set of instructions, registries, memory
access and input -output operations. CLR ensures a control led execution of
the .NET programs using the full capabilities of the processor and the
operating system. CLR also carries out the managed access to the memory
and the other resources of the computer, while adhering to the access rules

set when the program is executed.

http://www.mono-project.com/

82 Fundamentals of Computer Programming with C#

The .NET Platform

The .NET platform contains the C# language , CLR and many auxiliary
instruments and libraries ready for use. There are a few versions of .NET
according to the targeted user group:

- .NET Framework is the most common version of the .NET environment
because of its general purpose. It is used in the development of console
applications, Windows applications with a graphical user interface, web
applications and many more.

- .NET Compact Framework (CF) is a "light" version of the standard
.NET Framework and is used in the development of applications for
mobile phones and other PDA devices using Windows Mobile Edition.

- Silverligh t is also a "light" version of the .NET Framework, intended to
be executed on web browsers in order to implement multimedia and
Rich Internet Applications.

- .NET for Windows Store apps is a subset of .NET Framework
designed for development and execution of .NET applications in
Windows 8 and Windows RT environment (the so called Windows
Store Apps).

.NET Framework

The standard version of the .NET platform is intended for development and
use of console applications, desktop applications, Web applications, Web
services, Rich Internet Applications, mobile applications for tablets and smart
phones and many more. Almost all .NET developers use the standard version.

.NET Technologies

Although the .NET platform is big and comprehensive , it does not provide
all the to ols required to solve every problem in software development. There

are many independent software developers, who expand and add to the
standard functionality offered by the .NET Framework. For example,
companies like the Bulgarian software corporation Tele rik develop subsidiary
sets of components . These components are used to create graphical user
interfaces, Web content management systems, to prepare reports and they

make application development easier.

The .NET Framework extensions are software components , which can be
reused when developing .NET programs. Reusing code significantly facilitates

and simplifies software development, because it provides solutions for
common problems, offers implementations of complex algorithms and
technology standards. The ¢ ontemporary programmer uses libraries and
components every day, and saves a lot of effort by doing so.

L et @ak at the following example i software that visualizes data in the
form of charts and diagrams. We can use a library , written in .NET, which
draw s the charts. All that we need to do is input the correct data and the

Chapter 1. Introduction to Programming 83

library will draw the charts for us. It is very convenient and efficient. Also it

leads to reduction in the production costs because the programmers will not

need to spend time working on additional functionality (in our case drawing

the charts, which involves complex mathematical calculations and controlling

the graphics card). The application itself will be of higher quality because the
extension it uses is developed and supported by s pecialists with more
experience in that specific field.

Software technologies are sets of classes, modules, libraries, programming
models, tools, patterns and best practices addressing some specific problem
in software development. There are general softwa re technologies, such as

Web technologies, mobile technologies, technologies for computer graphics
and technologies related to some platform such as .NET or Java.

There are many .NET technologies serving for different areas of .NET
development. Typical exa mples are the Web technologies (like ASP.NET and
ASP.NET MVC), allowing fast and easy creation of dynamic Web applications

and .NET mobile technologies (like WinJS), which make possible the creation

of rich user interface multimedia applications working on the Internet.

.NET Framework by default includes as part of itself many technologies and

class libraries with standard functionality, which developers can use. For
example, there are ready -to-use classes in the system library working with
mathematical fun ctions, calculating logarithms and trigonometric functions
(System.Math class). Another example is the library dealing with networks
(System.Net), it has a built -in functionality to send e -mails (using the
System.Net.Mail.MailMessage class) and to download files from the
Internet (using System.Net.WebClient).

A .NET technology is the collection of .NET classes, libraries, tools,
standards and other programming means and established development
models, which determine the technological framework for creating a certain
type of application. A .NET library is a collection of .NET classes, which offer
certain ready -to-use functionality. For example, ADO.NET is a technology
offering standardized approach to accessing relational databases (like
Microsoft SQL Server and MySQL). The classes in the package (namespace)
System.Data.SqlClient are an example of .NET library , which provide
functionality to connect an SQL Server through the ADO.NET technology.

Some of the technologies developed by software developers outside of
Microsoft become wide -spread and as a result establish themselves as
technology standards. Some of them are noticed by Microsoft and later are

added to the next iteration of the .NET Framework. That way, the .NET
platform is constantly evolving and expanding with new libraries and
technologies . For instance, the object -relational mapping technologies
initially were developed as independent projects and products (like the open

code project NHibernate and T el er OpkenAscess ORM). After they gaine d
enormous popularity, their inclusion in the .NET Framework became a
necessity. And this is how the LINQ -to-SQL and ADO.NET Entity Framework
technologies were born, respectively in .NET 3.5 and .NET 4.0.

84 Fundamentals of Computer Programming with C#

Application Programming Interface (API)

Each .NET | ibrary or technology is utilized by creating objects and calling their
methods. The set of public classes and methods in the programming libraries

is called Application Programming Interface or just API . As an example
we can look at the .NET API itself; it is a set of .NET class libraries, expanding
the capabilities of the language and adding high -level functionality. All .NET
technologies offer a public APl . The technologies are often referred to simply

as API, which adds certain functionality. For example : API for working with
files, APl for working with charts, APl for working with printers, API for

reading and creating Word and Excel documents, API for creating PDF
documents, Web development API, etc.

.NET Documentation

Very often it is necessary to docu ment an API, because it contains many
namespaces and classes. Classes contain methods and parameters. Their
purpose is not always obvious and needs to be explained . There are also
inner dependencies between the separate classes, which need to be explained

in order to be used correctly. These explanations and technical instructions on

how to use a given technology, library or API, are called documentation . The
documentation consists of a collection of documents with technical content.

The .NET Framework also has a documentation officially developed and
supported by Microsoft. It is publicly available on the Internet and is also
distributed with the .NET platform as a collection of documents and tools for
browsing and searching.

v Visual Studio Search Visual Studio with Bing Q sGNIN

HOME SAMPLES LANGUAGES EXTENSIONS DOCUMENTATION COMMUNITY
visual studio team foundation server/alm .net framework

get started for free (3)

* Developer Tools and

Langusges v .NET Framework Class Library

.NET Framework 4.5
.NET Framework 4.5 | Other Versions « 105 out of 128 rated this helpful - Rate this topic
4 NET Framewark Class

e The .NET Framework dass library is a library of classes, interfaces, and value types that provide access to system

" System functionality. It is the foundation an which .NET Framework applications, components, and controls are built.

* System.Activities The namespaces and namespace categories in the class library are listed in the following table and documented
Namespaces in detail in this reference, The namespaces and categories are listed by usage, with the most frequently used

© System.Addln Namespaces| Namespaces appearing first.
System.CodeDom
Namespaces

4 Namespaces

* System.Collections
Namespaces

Namespace Description
+ System.ComponentModel
I es es :
\amespaces System The System namespace contains fundamental classes and base
System.Configuration classes that define commonly-used value and reference data types,
Namespaces events and event handlers, interfaces, attributes, and processing
» System.Data Mamespaces exceptions.
> Systemn.Deployme L .
System.Deployment System.Activities The System.Activities namespaces contain all the dasses necessary

\amespaces to create and waork with activities in Window Workflow Foundation.

* System.Device.Location

Chapter 1. Introduction to Programming 85

The MSDN Library i's Microsoftés official document a
for devel opers and software technologi es.
documentation is part of the MSDN Library and can be found here:
http://msdn.microsoft.com/en -us/library/vstudio/gg145045.aspx . The above
screenshot shows how it might look like (for .NET version 4.5)

What We Need to Program in C#?

After we made ourselves familiar with the .NET platform , .NET libraries and
.NET technologies , We can move on to writing, compiling and executing C#
programs.

In order to program in C#, we need two basic things T an installed .NET

Framework and a text editor . We need the text editor to write and edit the
C# cod e and the .NET Framework to compile and execute it.

.NET Framework

By default, the .NET Framework is installed along with Windows, but in old
Windows versions it could be missing. To install the .NET Framework, we must
downl!l oad it from Mi dhtp/Aovhléad.microsoél.bomi t §. It is
best if we download and install the latest version.

Do not forget that we need to install the .NET Framework
before we begin! Otherwise, we will not be able to compile

& and execute the program.

If we run Windows 8 or Windows 7, the .NET Framework will
be already installed as part of Windows.

Text Editor

The text editor is used to write the source code of the program and to save

itin a file. After that, the code is compiled and executed. There are many text

editing programs. We c ann Notepad (Ws very basisand bui | t
inconvenient) or a better free text editor like Notepad++ (notepad -
plus.sourceforge.net) or PSPad (www.pspad.com).

Compilation and Execution of C# Programs

The time has come to compile and execute the simple example program
written in C# we already discussed. To accomplish that, we need to do the
following:

- Create a file named HelloCSharp.cs ;
- Write the sample program in the file;

- Compile HelloCSharp.cs to an executable file HelloCSharp.exe using
th e console -based C# compiler (csc.exe);

- Execute the HelloCSharp.exe file.

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx
http://download.microsoft.com/
http://notepad-plus.sourceforge.net/
http://notepad-plus.sourceforge.net/
http://www.pspad.com/

86 Fundamentals of Computer Programming with C#

Now, | e tdé ison the computer!

The instructions above vary depending on the operating system . Since
programming on Linux is not the focus of this book, we will take a thorough
look at what we need to write and execute the sample program on Windows

For those of you, who want to program in C# in a Linux environment, we
already explained the ~ Mono project , and you can download it and experiment.

Here is the code of our first C# program

HelloCSharp.cs

class HelloCSharp

{
static void Main()
{
System. Console .WriteLine("Hello C#!"),
}
}
Creating C# Programs in the Windows Console
First we start the Windows command console, also known as Command
Prompt .In Windows 7 this is done from the Windows Explorer start menu :
Start ->Programs -> Accessories -> Command Prompt
It is advised that we run the console as administrator (right click on the
Command Prompt icon and ¢ hoRus as afilministrator 0). Otherwise

some operations we wantto use may be restricted.

':”“— Command Prompt 41_

Open

% Snipping Tool ® Run as administrator

I‘J'/fl Paint Pin to Taskbar \

Pin to Start Menu

*;Er Remote Desktop Conns Remove from this list

@- Magnifier Properties

.'J'IH Solitaire Help and Support

SRR
= O

» Al Programs

Chapter 1. Introduction to Programming 87

In Windows8 the ARun as administratoro command i
you right click the command prompt icon from the Win8 Start Screen

Search

A p pS Results for “cmd” [

cmd

fen—] Command Prompt

Apps
o] Open V52012 x64

Native Tools...

a Settings
o] V52012 x64 Cross
— Tools Command...

E Files
o] V52012 ARM Cross
—' Tools Command...

A p pS Results for “ecmd”

e Command Prnmpﬂ'

®H & @ @ ®

Pin to Start Pin to taskbar Open new Fun as Open file
window administrator location

After opening the console , | et éreate a dir ectory, in which we will
experiment. We use the mdcommand to create a directory and cd command
to navigate to it (enter inside it):

Administrator: Command Prompt

C:somd IntroCSharp
C:sod IntroCSharp
G IntroCSharpr

88 Fundamentals of Computer Programming with C#

The directory will be named IntroCSharp and will be located in C:\. We
change the current directory to C:\IntroCSharp and create a new file
HelloCSharp.cs , by using the built -in Windows text editor 7 Notepad.

To create the text file fiHelloCSharp.cs o, we execute the following command
on the console:

notepad HelloCSharp.cs

This will start Notepad with the following dialog window, confirming the
creation of a new file:

B® Administrator: Command Prompt — -
~
sIntroCSharpinotepad HelloCSharp.cs
sIntroCSharp> S] o
Untitled - Notepad -

File Edit Format WView Help

<
Motepad “
! Cannot find the HelloCSharp.cs file,
Do you want to create a new file?
Yes Mo Cancel
Notepad will warn us that no such file exists and will ask us if we want to

create it. We click [Yes]. The next step is to rewrite or simply Copy / Paste the
programbés source code.

El HelloCSharp.cs - Notepad ==
File Edit Format Yiew Help
class HelloCSharp

{
static void Main()
{
System.Console.Writeline("Hello C#!");
}

Chapter 1. Introduction to Programming 89

We save it by pressing [CtrI+S] and close the Notepad editor with [Alt+F4].
Now we have the initial code of our sample C# program, written in the file
C:\ IntroCSharp \ HelloCSharp.cs

Compiling C# Programs in Windows

The only thing left to do is to compil e and execute it. Compiling is done by
the csc.exe compiler.

. Administrator: Command Prompt - O -

sIntroCSharpicsc HelloCSharp.cs
‘csc’ is not recognized asz an internal or external command.
pperable program or bhatch file.

snIntroCSharp

We got our first error T Windows cannot find an executable file or command
with the name "csc". This is a very common problem and it is normal to
appear if it is our first time using C#. Several reasons might have caused it:

- The .NET Framework is not installed;

- The .NET Framework is installed correctly , but its directory
Microsoft. NET \ Framework\ v4.0.xxx is not added to the system path
for executable files and Windows cannot find csc.exe .

The first problem is easily solved by installing the .NET Framework (in our

case 1 version 4.5). The other problem can be solved by changing the system

path (we will do this later) or by using the full path to csc.exe , as itis shown
on the figure below. In our case, the full file path to the C# compiler is

C:\ Windows Microsoft. NET \ Framework\ v4.0.30319 \ csc.exe (note that this
path could vary depending o n the .NET framework version installed). Strange

or not, .NET 4.5 coming with Visual Studio 2012 and C# 5 in stalls in a
direct ory vh(O303l8 07 thisis not a mistake.

Compiling and Running C# Programs in Windows

Now | e tirfvake the csc compiler through it s full path and pass to it the file
we want to compile as a parameter (HelloCSharp.exe):

o Administrator: Command Prompt

ssnIntroC8harp>C:sWindowss\Microsoft .NET~\Framewvorksv4.0.30319~csc HelloCSharp.cs
icrosoft (R> Uisual CH Compiler version 4.0.30319.17929
for Microsoft (R> .MET Framework 4.5

opyright (C)» Microsoft Corporation. All rights reserved.

snIntroC8harpr_

90 Fundamentals of Computer Programming with C#

After the execution csc is completed without any errors, and we get the

following file as a result: C:\IntroCSharp \ HelloCSharp.exe . To run it, we
simply need to write its name. The result of the execution of our program is
the message "Hello, C#!" printed on the con sole. It is not great but it is a
good start:

B2 Administrator: Command Prompt - o IEM |

sIntroCSiharp*HelloCSharp.exe
ello CH?

snIntroCiharpl

Changing the System Paths in Windows

If we know to use the command line C# compiler (csc.exe) without entering
the full path to it, we could add its folder to the Windows system path

1. We open Control Panel and select " System ". As a result this well
known window appears (the screenshot is taken from Windows 7):

= |5]

|_‘ <« A Control Panel Tterns » Systern - |+¢| | Bearch Control Ponel 2

.g. -

Control Panel Home . - .
View basic information about your computer

P g Windows edition

R tinos Windows 7 Enterprise

B pecen Copyright © 2009 Microseft Corporation. All rights
Hy' Advanced system settings reserved.

m

System
Rating: 272 Windows Experience Index
Processor: Intel(R) Core(TM)2 Quad CPU Q8200 @

2.33GHz 233 GHz
Installed memory (RAM): 4.00 GB (3.90 GB usable)
Action Center System type: 64-bit Operating Systemn

Windows Update Pen and Touch: Mo Pen or Touch Input is available for this

Performance Information and Display

Tools . .
Computer name, demain, and workgroup settings

In Windows 8 it might look a bit different, but is almost the same:

Chapter 1. Introduction to Programming 91

+ 1 (8« All Control Panel ltems »+ System vl Search Control Panel

Contrel Panel Home

'@ Device Manager
'@ Remote settings
@ System protection

View basic information about your computer

Windows edition

@ Advanced system settings

Windows 8 Enterprise -- R
Windows 8
Corporation, All ..

rights reserved,

System
Seealso Rating: mWindows Experience Index
Action Center
Processor: Intel(R) Core(TM)2 Duc CPU E4300 @ 2.20GHz 2.20 GHz
Wind Updat
aowEEReEE Installed memory (RAM): 4.00 GB
Fl’:‘r:;:rmance Informatien and System type: 64-bit Operating System, x64-based processor
Pen and Touch: Ma Pen er Touch Input is available for this Display
2. We select " Advanced system settings ". The dialog window " System
Properties " appears:

| Computer Name I Hardware | Advanced |S}ﬂstem Protection I Hﬂmnt&|

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processaor scheduling, memony usage, and virtual memary

Ilzer Profiles
Desktop settings related to your sign4n

Startup and Recovery
System startup, system failure, and debugging information

 Environment Variables...

92 Fundamentals of Computer Programming with C#

3. We click the button " Environment Variables " and a window with all
the environment variables shows up:

Lser variables for nakov

Variable Value

TEMP 24 ISERPROFILE%%:\AppDataLocal Temp
P %ol JSERPROFILES:\AppData\Local \Temp

System variables

Variable

Cr\windows\system32;C: Wiindows; C:h,..
PATHEXT .COM; [EXE; . BAT;.CMD;.VBS; .VBE;. JS;. ...
PROCESSOR,_A... AMDS4
PROCESSOR_ID... Intel64Family & Model 15 Stepping 13, ... ¥

Mew. .. | | Delete |

| oo

4. We choose " Path " from the list of System variables , as shown on the
figure, and press the "Edit" button. A small window appears, in which we
enter the path to the directory where the .NET Framework is installed:

Variable name: | Path |

Variable value: | s\Microsoft. MET \Frameworka4w4.0,30319 |

ook | cancel |

Of course, first we need to find where our .NET Framework is installed.
By default it is located somewhere inside the Windows system directory
C:\ Windows Microsoft.NET , for example:

Chapter 1. Introduction to Programming 93

C:\ Windows Microsoft. NET \ Framework64\ v4.0.30319

Adding the additional path to the already existing ones in the Path
variable of the environment is done by adjoining the path name to the
others and using a semicolon (;) as a spacer.
We must be careful because if we delete any of the existing
& system paths, some of Wi ndowsd fun
installed software might fail to operate properly!

5. When we are done with setting the path , We can try running Ccsc.exe ,
without entering its full path. To do s 0, wWe open a nhew cmd.exe
(Command Prompt) window (it is important to restart the Command
Prompt) and type in the "csc" command. We should see the C#

compiler version and a message that no input file has been specified:

. Administrator: Command Prompt - B “

sIntroCSharpicsc

icrosoft C(R> Uisual CH Compiler version 4.0.30317_17229
or Microzoft (R>» _NET Framework 4.5

opuyright <C> Microsoft Corporation. All rights reserved.

parning CE2008: Mo source files specified
error CE51562: Outputs without szource must have the ~out optio

sIntroCSharpl

Visual Studio IDE

So far we have examined how to compile and run C# programs using the
Windows console (Command Prompt). Of course, there is an easier way to

do it T by using an integrated development environment, which will execute

all the commands we have used so far. L et tke a look at how to work with
development environments (IDE) and how they will make our job easier.

Integrated Development Environments

In the previous examples, we examined how to compile and run a program
consisting of a single file. Usually programs are made of man y files,
sometimes even tens of thousands. Writing in a text editor, compiling and
executing a single file program from the command prompt are simple, but to
do all this for a big project can prove to be a very complex and time -

consuming endeavor. There is a single tool that reduces the complexity,
makes writing, compiling and executing software applications easier i the so
called Integrated Development Environment (IDE). Development

environments usually offer many additions to the main development function S

94 Fundamentals of Computer Programming with C#

such as debugging, unit testing, checking for common errors, access to a
repository and others.

What Is Visual Studio?

Visual Studio is a powerful integrated environment (IDE) for developing
software applications for Windows and the .NET Framework platfo rm. Visual
Studio (VS) supports different programming languages (for example C#,

VB.NET and C++) and different software development technologies

(Win32, COM, ASP.NET, ADO.NET Entity Framework, Windows Forms, WPF,
Silverlight, Windows Store apps and many mo re Windows and .NET
technologies). It offers a powerful integrated environment for writing code
compiling , executing , debugging and testing applications, designing user
interface (forms, dialogs, web pages, visual controls and others), data and

class mode ling, running tests and hundreds of other functions.

IDE means Aintegrated devel o)p aeaol where you iwriteo n me nt
code, compile it, run it, test it, debug it, etc. and everything is integrated
into a single place. Visual Studio is typical example of development IDE.

.NET Framework 4.5 comes with Visual Studio 2012 (VS 2012). This is the
latest version of Visual Studio as of March 2013. It is designed for C#5 , .NET
4.5 and Windows 8 development

VS 2012 is a commercial product but has a free version called Visual Studio
Express 2012 , which can be downloaded for free from the Microsoft website
at http://microsoft.com/visualstudio/downloa ds.

Visual Studio 2012 Express has several editions (for Desktop, for Web , for
Windows 8 and others). If you want to write C# code following the content of

this book, you may use Visual Studio 2012 Express for Desktop or check
whether you have a free licen se of the full Visual Studio from your University

or organization. Many academic institutions (like Sofia University and Telerik

Software Academy) provide free Microsoft Dream Spark accounts to their
students to get licensed Windows, Visual Studio, SQL Serv er and other

development tools. If you are student, ask your university administration

about the DreamSpark program. Most universities worldwide are members of

this program.

In this book we will take a look at only the most important functions of VS
Expres s 2012 i the ones related to coding. These are the functions for
creating, editing, compiling, executing and debugging programs.

Note that older Visual Studio versions such as VS 2010 and VS 2008 can
also be used for the examples in this book but their use r interface might look
slightly different. Our examples are based on VS 2012 on Windows 8

Before we continue with an example, | e ttédks a more detailed look of the
structure of Vi sual St udi wisud Interkades Windows are the main
part of it. Each of them has a different function tied to the development of
applications. L et 8 how Visual Studio 2012 looks after the default
installation and configuration:

http://microsoft.com/visualstudio/downloads

Chapter 1. Introduction to Programming

95

oJ

BLE EDIT VIEW DEBUG TEAM IOOLS
S@ W

Pl Start Page © X

Visual Studio
above and below):

- Start Page

TEST WINDOW HELP

P Attach.. - A

GET STARTED

Welcome

has several windows that we will explore (see the figure

i from the start page we can easily open any of our latest

projects or start a new one, to create our first C# program or to get

help how to use C#.

- Code Editor
editing multiple files.

- Err or List

i keeps t

he programds source

i it shows the errors in the program we develop (if any). We

learn how to use this window later when we compile C# programs in

Visual Studio.

- Solution Explorer

i when no project is loaded, this window is empty,

but it will become a part of our live
the structure of our project T

s as C# programmers. It will show

all the files it contains, regardless if they

are C# code, images or some other type of code or resources.

- Properties 1T hol ds a |
are used ma inly in the component

st of the current
-based programming, e.g. when we

develop WPF, Windows Store or ASP.NET Web Forms application.

S

code a

obj e

96 Fundamentals of Computer Programming with C#

D TestVS2012 - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0O X

EILE EDIT WVIEW PROJECT BUILD DEBUG TEAM 50L TOOLS TEST AMNALYZE
WINDOW HELP

e-0 B-akm b Stat - Debug - A _ N
§' Program.cs® ® X ~ Solution Bxplorer i v B0
E_ % Program - @ Main(string]] args) - &N e-2nd
. ; £
using System; _: Search Solution Explorer (Ctrl+; P =
—class Program fal Solution 'TestV52012' {1 project)
1 4 [TestVs2012
= static void Main(string[] args) b M Properties
{ [=B References
Console.WriteLine("Hello C#")_ ¢ App.config
3 P <* Program.cs
¥ w Sclution Explorer | Team Explorer
00% - 4 b

F'ru:uperties PR | I 4

.
=] 5

Search Error List 2~

Description | File Line Ceolumn Project «

sexpected Program.cs 7 TestV52012

There are many other windows with auxiliary functionality in Visual Studio but
we will not review them at this time.

Creating a New C# Proj ect

Before doing anything else in Visual Studio, we must create a new project
or load an existing one. The project groups many files, designed to implement

a software application or system, in a logical manner. It is recommended that

we create a separate p roject for each new program.

We can create a project in Visual Studio by following these steps:
- File -> New Project &

- The i Mw Project 0 dialog appears and lists all the different types of

projects we can create. We can choose a project type (e.g. Console
Application or WPF Application), programming language (e.g. C# or
VB.NET) and .NET Framework version (e.g. .NET Framework 4.5) and

give a name to our project (in our case filntroToCSharp 0):

Chapter 1. Introduction to Programming 97

e |

New Project

P Recent

MET Framework 4.5

i

s

~ Sort by: Default -

oy Search Installed Te 0 ~

Type: Visual C&F

4 |nstalled
Windows Forms Application Visual C#

4 Templates A project for creating a command-line

4 Visual C# WPF Application Visual C2 application
Windows Store i
Windows Console Application Visual C#
Web
- C#
b Office 2;’5! Class Library Visual C#
Cloud =
. C#
Reporting - gsi! Portable Class Library Visual C#
Name: IntroToCSharp
Location: Ch\Users\nakovi\DocumentsiVisual Studio 2012\Projects -
Solution: Create new solution -

Create directory for solution
[] Add to source control

Selution name: IntroToCSharp

| 0K || Cancel |

- We choose Console Application . Console applications are programs,
which use the console as a default input and output. Data is entered
with the keyboard and when a result needs to be printed it appears on
the console (as text on the screen in the program window). Aside from
console applications, we can create application s with a graphical user
interface (e.g. Windows Forms or WPF), Web applications, web services,
mobile applications, Windows Store apps, database projects and others.

- In the field "Name" we enter the name of the project. In our case we
choose the name IntroToCSharp .

[OK]

The newly created project is now shown in the Solution Explorer . Also, our
first file, containing the program code, is automatically added. It is named
Program.cs . It is very important to give meaningful names to ou r files,
classes, methods and other elements of the program, so that we can easily

- We press the button.

find them and navigate the code.

A meaningful name

means a hame that

answer s t he
variabl e?0
Problem3 for a name,
exercises. Name your

and

guestion fiwhat is the intent
hel ps devel opers to underst al
even if you are solving the problem 3 from the

project / class by its purpose . If your project is well

named, after few months or a year you will be able to explain what it is
intended to do without opening it and looking inside. Problem3 says nothing
about what this project actually does.

In order to rename the Program.cs file, we right click on it in the Solution
Explorer and select "Rename". We can name the main file of our C# program
Hello CSharp.cs . Renaming a file can also be done with the [F2] key when
the file is selected in the Solution Explore r:

98

Fundamentals of Computer Programming with C#

FILE

¥0g|oo|

WINDOW

5, IntroToCSharp.Pro

EDIT VIEW P € Open

HELP
- a-al e
%

View Code

Program.cs & X

Flusing Syst
using Syst
using Syst
using Syst
using Syst

3

Cut

Copy

Delete
EI['IEI'I'IESPECE

{

] i

Rename

Properties

I'# class | &

Open With...

View Class Diagram

Scopeto This

Mew Solution Explorer View

Exclude From Project

qu IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+Q)

B >

o

5 TEST AMNALYZE
F7 n-
»n Explorer
& o-eqa
Solution Explorer (Ctrl+: S =
olution ‘IntroToCSharp' (1 proje
Ctrl+X 4 IntroToCSharp
Chrl+ & Properties
Del 5-B References
w1 App.config
=2 Program.cs
Alt+Enter

A dialog window appears asking us if we want to rename class name as well

as the file name. We select "

Yes "

FILE EDIT VIEW PROJECT BUILD
WINDOW
g IntroTo
g *2. Intra
=
Fnamespace IntroTolSharp
1
=l class Program
1
G
W0% =~ 4
Error List oermin e b e D i
Y - 0 Errors 0 Warnings
Search Error List
Description | File Line

DEEUG TEAM

0 Messages

Column Project +

Col 1

qu IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+0)

50L

| >

o
TEST ANALVZE

TOOLS

You are renaming a file. Would you also like to perform a rename in this
project of all references to the code element 'Program'?

static void Main{string[] args) =

p-

B

n-B References

w1 App.config
P c# IntroToCSharp.cs

Solution Explorer | Team Explorer

Properties

Program.cs File Properties

=

Copy to Qutpu Do not copy
Build Action
How the file relates to the build an...

Ch1 N5

Chapter 1. Introduction to Programming 99

After we complete all these steps we have our first console application named
IntroToCSharp and containing a single class HelloCSharp (store d in the file
Hello CSharp.cs):

0 IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = B X
EILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST WINDOW HELP
O-0 B-aAEH 9- P Stat- Debug - A_ &IE 9% N L
g_| HelloCSharp.cs® R X = Solution Explorer iz w Q13
g “;9IntraTDCSharp.HeIIDCSharp - E’aMain(string[]args) - f;j B-a0
= =
= ?amespace IntroToCSharp _: Search Solution Explorer (Ctr JQ -
:"'5 - class HelloCSharp fad Solution 'IntroToCSharp' (1 pr
5 { 4 IntroToCSharp
E = static void Main(string[] args) P # Properties
{| [+ =B References
1 w1 App.config
} P o HelloCSharp.cs
T v
00% - 4 » 1 g
) Solution Explorer | Team Explorer
Error List =
Y - Properties ot w 1 x
Search Error List - .
Description File Line Column Project « n=-z
Error List | Code Coverage Results

Col 10

All we have to do is add code to the Main() method . By default, the
HelloCSharp.cs code should be loaded and ready for editing. If it is not, we

double click on the HelloCSharp.cs file in the Solution Explorer to load it. We
enter the following source code:

HelloCSharp.cs®™ +& X -
":aIntrDTu:uCSharp.HeIIDCSharp - &’Eh"lainl[string[] args) -
-inamespace IntroTolSharp +
{ -
- class Hello(Sharp
{
- static void Main(string[] args)
{
Console.Writeline("Hello CI|");
¥
¥ -
100% - 4]

100 Fundamentals of Computer Programming with C#

Compiling the Source Code
The compiling process in Visual Studio includes several steps:

- Syntax error check;

Error List * 0 X
T - ﬁ 2 Errors Search Error List D~

Descripticn Line | Column | Project

[%)1 The type or namespace name 'Systema’ HelloCSharp.cs 1 ri IntroToCSharp
could not be found (are you missing a
using directive or an assembly referencef)

€3 2 The name 'Console’ does not existinthe HelloCSharp.cs 13 4 IntroTeCSharp
current context

- A check for other errors, like missing libraries;

- Converting the C# code into an executable file (a .NET as sembly). For
console applications it isan .exe file.
To compile a file in Visual Studio, we press the [F6] key or [Shift+Ctrl+B]
Usually, errors are underlined in red,
while we are still writing or when compiling, a t the latest. They are listed in
the "Error List" window if it is visible (if it is not , we can show it from the

"View" menu of Visual Studio).

If our project has at least one error, it will be marked with a small red " X" in
the " Error List " window. Short info about the problem is displayed for each
error 1 filename, line number and project name. If we double click any of the

errors in the "Error List", Visual Studio will automatically take us to the file

and line of code where the error has occurred. In th e screenshot above the
probl em i s t hadingvsystegma;vée ifinst esang Systemd .

Starting the Project

To start the project, we press [CtrI+F5] (holding the [Ctrl] key pressed and
at the same time pressing the [F5] key).

The program will start and the result will be displayed on the console,
followed by the " Press any key to continue . . . " message:
X CAWindows\system32\cmd.exe ~— O -

Hello CH!

Press anv key to continue

e})

Chapter 1. Introduction to Programming 101

The last message is not part of the result produced by the program. It is a
reminder by Visual Studio that our program has finished its execution
and it gives us time to see the result. If we run the program by only pressing

[F5] , that message will not appear and the result will vanish instantly after
appearing because the program will have finished its execution, and the
window will be closed. That is why we should always start our console
applications by pressing [Ctrl+F5]

Not all project types can be executed. In order to execute a C# project, it
needs to have one class with a Main() method declared in the way described
earlier in this chapter

Debugging the Program

When our program contains errors, also known as bugs , we must find and
remove them, i.e. we need to debug the program. The debugging process
includes:

- Noticing the problem s (bugs);
- Finding the code causing the problems;
- Fixing the code so that the program works correctly;

- Testing to make sure the program works as expected after the changes
are made.

The process can be repeated several times until the program starts working
correctly. After we have noticed the problem, we need to find the code
causing it. Visual Studio can help by allowing us to check step by step
whether everything is working as planned.

To stop the execution of the program at designated positions we can pla ce
breakpoints . The breakpoint is associated with a line of the program. The
program stops its execution on the lines with breakpoints, allowing for the

rest of the code to be executed step by step. On each step we can check and

even change the values of t he current variables.

Debugging is a sort of step by step slow motion execution of the program. It
gives us the opportunity to easily understand the details of the code and see
where exactly and why the errors have occurred.

L et @eate an intentional err or in our program , to illustrate how to use
breakpoints. We will add a line to the program, which will create an exception

during the execution (we will take a detailed look at exceptions in the
"Exception H andling " chapter).

For now | e teditour program in the following way:

HelloCSharp.cs

class HelloCSharp

102 Fundamentals of Computer Programming with C#

{
static void Main()
{
throw new System. NotlmplementedException (
"Intended exception.");
System. Console .WriteLine("Hello C#!"),
}
}
When we start the program again with [Ctrl+F5] we will get an error and it

will be printed on the console:

B CAWindows\system32\cmd.exe

tion: Intended

L et des how breakpoints will help us find the problem. We move the
cursor to the line with the opening bracket of the Main() method and press
[F9] (by doing so we place a breakpoint on that line). A red dot appears,
indicating that the program will stop there if it is executed in debug mode:

HelloCSharp.cs & X -

' HelloCSharp - @ Main(string[] args) -

4k

-iclass HelloCSharp
{
- static void Main(string[] args)
®
throw new System.NotImplementedException(
"Intended exception.”);
System.Console Writeline("Hello C#!™);

i

¥

Now we must start the program in debug mode. We select Debug -> Start
Debugging or pr ess [F5] . The program will start and immediately stop at
the first breakpoint it encounters. The line will be colored in yellow and we

can execute the program step by step. With the [F10] key we move to the
next line.
When we are on a given line and it is colored in yellow , the code on that line

is not executed yet . It executes once we have passed that line. In this case

Chapter 1. Introduction to Programming 103

we have not received the error yet despite the fact that we are on the line we
added and should cause it

1

HelloCSharp.cs B & X
s HelloCSharp - &’E,Main(string[]argsj -

Elclass HelloCSharp
1

=] static void Main(string[] args)

L i
=

» ok

throw new System.NotImplementedException(
"Intended exception.”);
System.Console.Writeline("Hello C#!");

¥

We press [F10] one more timet o execute the current line. This time Visual
Studio displays a window specifying the line, where the error occurred as well
as some additional details about it:

0 IntroToCSharp (Debug... Quick Launch (Ctrl+Q) F = 0 X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST

e - -G M DT - P Continue-li 1l B ® 3

HelloCSharp.cs B + X
5 HelloCSharp |v E’E Main(string[] args)

L]

koo

® {
= fthr‘ow new System.NotImplementedException(
"Intended exception.");
System.Console.Writeline("Hello C#!™);

! NotlmplementedException was unhandled X

Intended exception.

10C Troubleshooting tips: b
Lo |Get general help for this exception. ~lrx

Search for more Help Online...

Exception settings:

[] Break when this exception type is thrown
Actions:

View Detail...

Copy exception detail to the clipboard

Lo, Open exception settings

104 Fundamentals of Computer Programming with C#

Once we know where exactly the problem in the program is, we can easily
correctit. Todo so, first, we need to stop the execution of the program before

it is finished. We select Debug 1> Stop Debugging or press [Shift+F5].
After that we delete the problem line and start the program in normal mode
(without debugging) by pressing) [Ctrl+F5].

Altern atives to Visual Studio

As we have seen, in theory, we can do without Visual Studio, but in practice
that is not a good idea. The work required compiling a big project, finding all
the errors in the code and performing numerous other actions would simply
take too much time without Visual Studio.

On the other hand, Visual Studio is not a free software developing
environment (the full version). Many people cannot afford to buy the
professional version (this is also true for small companies and some people

eng aged in programming).

This is why there are some alternatives to Visual Studio (except VS Express
Edition), which are free and can handle the same tasks relatively well.

SharpDevelop

One alternative is SharpDevelop (#Develop). We can find it at the followi ng
Internet address: http://www.icsharpcode.NET/OpenSource/SD/ . #Develop is
an IDE for C# and is developed as an open -source project. It supports the
majority of the functionalities offered in Visua | Studio 201 2 but also works in

Linux and other operating systems. We will not review it in details but you
should keep it in mind, in case you need a C# development environment and
Visual Studio is not available.

MonoDevelop

MonoDevelop is an integrated software development environment for the
.NET platform. It is completely free (open source) and can be downloaded at:
http://monodevelop.com . With MonoDevelop , we can quickly and easily write
fully functional desktop and ASP.NET applications for Linux, Mac OS X and
Windows. It also enables programmers to easily transfer projects created in
Visual Studio to the Mono platform and make them functional in other
platforms.

Decompiling Code

Sometimes progr ammers need to see the code of a given module or program,

not written by them and with no source code available. The process, which
generates source code from an existing executable binary fi le (NET
assembly 7 .exe or .dll)iscalled decompiling

We might need to decompile code in the following cases:

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

Chapter 1. Introduction to Programming 105

- We want to check how a given algorithm is implemented but we do not
have the source code, e.g. to check how Array.Sort() internally works.

- There are several options when using some .NET library, and we want t 0
find the optimal choice. We want to see how to use certain API
digging into some compiled code that uses it.

- We have no information how a given library works , but we have the
compiled code (.NET assembly), which uses it, and we want to find out
how exact ly the library works.

- We have lost our source code and we want to recover it. Code
recovery through decompilation will result in lost variable names,
comments, formatting, and others, but is better than nothing.

Decompiling is done with the help of tools, which are not standard part of
Visual Studio. The first popular .NET decompiler was Red Gat eReflector
(before it became commercial in early 2011).

Telerik is offering a good and completely free .NET decompiler called

JustDecompile . It can be downloaded from the companyos
http://www.telerik.com/products/decompiler.aspx . JustDecompile allows code
decompilation directly in Visual Studio and also has an external stand -alone

GUI applicat ion for browsing assemblies and decompile their code:

n . =l Open... [l Assembly List [Search [Tools | [&] Plugins | | C# A G @ | wtelerik
- WriteAsync(String) : Task - 7 [Fpublic virtual void WriteLine(sztring value) -
& WriteAsync(Charl]) : Task s |1 if (value 1= nuin)
ig WriteAsync(Char[], Int32, Int32) 10 {

& WriteLine() : Void 11 int length = walue.Length;
) L v 12 int num = ({int)this.CoreNewLine.Length;
& WriteLine(Char) : Void 13 char[] coreNewline = new char[length + num]
‘ip WriteLine(Char[]} : Yoid 14 value.CopyTeo (0, coreMNewLine, 0, length);
i WriteLine{Char[], Int32, Int32) : 12 ?f (num = 2}
-ip WriteLine(Boolean) : Void 17 if (num '= 1)
:ip WriteLine(Int32) : Vaoid 8 {
¢ WriteLine{UInt32) : Void 1.? } Buffer.InternalBlockCopy(this.CorelNg
20
‘ip WriteLine(Int6d) : Void 21 else
i WriteLine(UInt64) : Void y 22 {
& WriteLine(Single) : Void _ : Zf : coreNewline [length] = thisg.Coreliewl:
- WriteLine(Double) : Veid 25 ! =
i WriteLine(Decimal) : Void 26 else
————— = 27 {
g Ninte hineiStnng) o 28 coreNewline [length] = this.CoreNewLine[(
‘ig WriteLine(Object) : Void zg coreNewline[length + 1] = this.Coreliewl:
iy WriteLine(String, Object) : Void _ 30 }
31 this.Write {coreNewlLine, 0, length + num);
4 I ’ 32 return;
33 }
Assembly mscorlib, “ 34 else
Version=4.0.0.0, = 35 {
Culture=neutral, 36 this.WritelLine():
PublicKeyToken=bT77 =7 return;
35c561934e089 =i, :
Namespa System.IO - || — T R

http://www.telerik.com/products/decompiler.aspx

106

Fundamentals of Computer Programming with C#

Another good decompilation tool for .NET is the
SharpDevelop
. The program does not require installation. After we start it,

around the
http://ilspy.net

ILSpy , which is developed

project. ILSpy can be downloaded at:

ILSpy loads some of the standard .NET Framework libraries. Via the menu File
-> Open, we can open a certain .NET assembly. We can also load an assembly

from the GAC (Global Assembly Cache). Th

isis how ILSpy looks like:

P

53 ILSpy =RREN X
File View Help
QuEa cz - | A
% Internalk - Search ®
g% ISCOEnc String # | Search for: | “ii Type v|
% 4% 15020221 |3 stringComparison {} Systerr -
g% LatinlEn “i% StringBuilder {} System.Ted _
= j_g MLangC .fA [T R Sy P B — [T Y JR U S SRR JU S-S
* % Mormali !
=2 Normali {param name= *A character array. </param: 5
® &4 SBCSCol <{param name= *The starting position in <paramref nam:
; %2 m' <{param name= »The number of characters to append. </pz
T <exception cref= >
F % Surrogat <paramref name= /¥ is null, and <paramref name=
% Unicode <exception cref= 4
=t UTF32Er <paramref name= /> is less than zero.-or- <paramrei
% UTFTEnc I~ { «filterpriority:1</filterpriority:
“t% UTF8Enc [SecurltySafeCrltlcal]
® {} System.Thre = public unsafe StringBuilder Append(char[] wvalue, int startIndex, ini
#-{} System.Thre .
-3 System IF (startIndex < @)
= +3 System.Core throw new ArgumentOutOfRangeException(”startIndex”, Environn
[+ |«2] References
[Resources if (charCount < @)
w{} - ‘ m '
® 4} MicrosoftW || Analyzer =
Ifl {} Microsoft\\ # 5 System.Xml.XPath.XPathNavigator.get_Uniqueld() : string -
A} System - # =} System.Xml.XPath.XPathNodelterator.DebuggerDisplayProxy. ToString() : string
£} Suctem.Call = Ex
s m » sl posed By - _ _ _ -
In ILSpy there are two ways to find out how a given method is implemented.
For example, if we want to see how the static method
System.Currency.ToDecimal works, first we can use the tree on the left to
find the Currency class in the System namespace and finally select the
ToDecimal method. If we click on any method, we will be able to see its
source code in C#. Another way to find a given class is using the search
engine in ILSpy . It searches through the names of all classes, i nterfaces,
methods, properties etc. from the loaded assemblies. Unfortunately, the
version at the time of writing of this book (ILSpy 2.1) can decompile only the
languages C# , VB.NET and IL.
JustDecompile and ILSpy are extremely useful tools , Which can hel p almost

every day when developing .NET software and we should definitely download
at least one and play with it. When we are wondering how a certain method
works or how something is implemented in a given assembly, we can always

rely on the decompiler to

find out.

http://ilspy.net/

Chapter 1. Introduction to Programming 107

C# in Linux, iOS and Android

C# programming in Linux is not very developed compared to that in Windows.
We do not want to completely skip it, so we will give some guidelines on how
to start programming in C# in Linux, iOS and Android

The most im portant thing that we need in order to write C# code in Linux is a

.NET Framework implementation. Microsoft .NET Framework is not available

for Linux but there is an open -source .NET implementation called

fiMono 0. We can download Mono at its official website: http://www.mono -

project.com . Mono allows us to compile and execute C# programs in a Linux
environment and on other operating systems. It contains a C# compiler, a
CLR, a garbage collector, the standard .NET libraries and many of the libraries
available for .NET Framework in Windows like Windows Forms and ASP.NET.

Mono supports compiling and running C# code not only in Linux but also in
Solaris, Mac OS X, iOS (iPhone / iPad) and Android . The iOS version
(MonoTouch) and the Android version of Mono (Mono for Android) are
commercial projects, while Mono for Linux is open -source free software.

Of course, Visual Studio does not work in Linux environment but we can use
the #Develop or MonoDevelop as C# IDE in Linux.

Other .NET Languages

C# is the most popular .NET language but there are few other languages that
may be used to write .NET programs:

- VB.NET 1 Visual Ba sic .NET (VB) is Basic language adapted to run in
.NET Framework. It is considered a successor of Microsoft Visual Basic 6
(legacy development environment for Windows 3.1 and Windows 95). It
has strange syntax (for C# developers) but generally does the sam e as
C#, just in different syntax. The only reason VB.NET exists is historical:
it is successor of VB6 and keeps most of its syntax. Not recommended
unless you are VB6 programmer.

- Managed C++ i adaptation of the C++ programming language to .NET
Framework . It can be useful if you need to quickly convert existing C++
code to be used from .NET. Not recommended for new projects. Not
recommended for the readers of this book, even if someone has some
C++ experience, because it makes .NET programming unnecessary
complicated.

- F# 1 an experiment to put purely functional programming paradigm in
.NET Framework. Not recommended at all (unless you are functional
programming guru).

- JavaScript 1 it may be used to develop Windows 8 (Windows Store)
applications through the WinJS technology. It might be a good choice
for skillful HTML5 developers who have good JavaScript skills. Not
recommended for the readers of this book because it does not support
Console applications.

http://www.mono-project.com/
http://www.mono-project.com/

108 Fundamentals of Computer Programming with C#
Exercises
1. Install and make yourself familiar with Micr osoft Visual Studio and

10.

11.

12.
13.

14.

Microsoft Developer Network (MSDN) Library Documentation.

Find the description of the System.Console class in the standard .NET
API documentation (MSDN Library).

Find the description of the System.Console.WriteLine() method and its
different possible parameters in the MSDN Library.

Compile and execute the sample program from this chapter using the
command prompt (the console) and Visual Studio.

Modify the sample program to print a different greeting, for example
"Good Day !".

Write a console application that prints your first and last name on the
console.
Write a program that prints the following numbers on the console 1,

101, 1001, each on a new line.
Write a program that prints on the console the current date and time
Write a progra m that prints the square root of 12345

Write a program that prints the first 100 members of the sequence 2, -
3,4, -5,6, -7,8.

Write a program that reads your age from the console and prints your
age after 10 years

Describe the difference between C# andthe .NET Framework

Make a list of the most popular programming languages. How are they
different from C#?

Decompile the example program from exercise 5.

Solutions and Guidelines

1.

If you have a DreamSpark account (www.dreamspark.com), or your
school or university offers free access to Microsoft products, install the

full version of Microsoft Visual Studio . If you do not have the
opportunity to work with the full version of Microsoft Visual Studio, you

can download Visual Studio Express for free from the Microsoft web
site; it is completely free and works well for educational purposes.

Use the address given in the .NET Documentation section of this
chapter. Open it and search in the tree on the left side. A Google search
will work just as well and is often the fastest way to find documentation

for a given .NET class.

Use the same approach as in the previous exercise.

http://www.dreamspark.com/

Chapter 1. Introduction to Programming 109

© © N o

11.

12.

13.

14.

Follow the inst ruction from the Compiling and Executing C# Programs
section.

Use the code from the sample C# program from this chapter and
change the printed message.

Find out how to use the System.Console.Write() method.
Use the System.Console.WriteLine() method.

Find out what features are offered by the System.DateTime class.
Find out what features are offered by the System.Math class.
Try to learn on your own how to use loops in C#. You may read about

for -l oops in thloopsh.apter

Use the methods System.Console.ReadLine() , int.Parse() and
System.DateTime.AddYears()

Research them on the Internet (e.g. in Wikipedia) and take a closer

look at the differences between them. You will find that C# is a
programming language while .NET Framework is development platform
and runtime for running .NET code TheB#

Lanquage and __the .NET Platform 0 form this chapter.

Find out which are the most popular languages and examine some
sample programs written in them. Compare them to C#. You might take
alook at C, C++ , Java, C#, VB.NET , PHP, JavaScript , Perl , Python
and Ruby .

First downl oad and install JustDecompile or ILSpy (more information
about them can befound i n t Gode D&compilation 0 s e c tAiftev yo
run one of them, open your prog rambés compi | enbeffouhdein
the bin \ Debug subdirectory of your C# project. For example, if your
project is named TestCSharp and is located in C:\ Projects , then the
compiled assembly (executable file) of your program will be the following

file C \ Projects \ TestCSharp\ bin \ Debugd TestCSharp.exe .

u

t

r

http://www.telerik.com/justdecompile.aspx

Chaptem®Pr2mitive
Types &Badi abl es

In This Chapter

In this chapter we will get familiar with primitive types and variables in

C# 1 what they are and how to work with them. First we will consider the
datatypes 1 integer types, real types with floating - point, Boolean, character,
string and object type. We will continue with the variables , with their
characteristics, how to declare them, how they are assigned a value and what

a variable initialization is. We will get familiar with the two major sets of data

types in C# 1 value types and reference types . Finally we will examine
different types of literals and their usage.

What Is a Variable?

A typical program uses various values that change during its execution .
For example, we create a program that performs some calculations on the
values entered by the user. The values entered by one user will obviously be

different from those entered in by another user. This means that when

creating the program, the programmer does not know what values will be
introduced as input, and that makes it n ecessary to process all possible values

a user may enter.

When a user enters a new value that will be used in the process of calculation,
we can preserve it (temporarily) in the random access memory of our

computer. The values in this part of memory change (vary) throughout
execution and this has led to their name I variables
Data Types

Data types are sets (ranges) of values that have similar characteristics. For
instance byte t ype specifies the set of integers

Characteristics
Data types are characterized by:
- Name 1 forexample, int ;
- Size (how much memory they use) i for example, 4 bytes;

- Default value i for example 0.

112

Fundamentals of Computer Programming with C#

Types

Basic data types in C# are distributed into the following

- Integer types

- Real floating - point types

- Real type with decimal precision T

- Boolean type
- Character type
- String T string ;
- Object type

These data types are called

i float , double :

decimal ;

i bool ;
i char;

i object .

primitive (built

-in types)

types :

i sbyte , byte, short , ushort , int , uint , long, ulong ;

, be cause they are

embedded in C# language at the lowest level. The table below represents the
above mentioned data types, their range and their default values:

_[?;;25 Szrsglt Minimum Value Maximum Value

sbyte 0 -128 127

byte 0 0 255

short 0 - 32768 32767

ushort 0 0 65535

int 0 - 2147483648 2147483647

uint Ou 0 4294967295

long oL - 9223372036854775808 | 9223372036854775807
ulong Ou 0 18446744073709551615
float 0.0f rBls Bdz rtet) 3¥sdz

double 0.0d rist dz 38 dz rist W 3%k dz

decimal 0.0m rist dzosdz PWt oy Bsdz

bool false Two possible values: true and false

char "\u0000" | '\ u0000 "\ uffff’

object null - -

string null - -

Chapter 2. Primitive Types and Variables 113

Correspondence between C# and .NET Types

Primitive data types in C# have a direct correspondence with the types of the

common type system (CTS) in .NET Framework. For instance, int typein C#
corresponds to System.Int32 type in CTS and to Integer type in VB.NET
language, while long type in C# corresponds to System.Int64 type in CTS
and to Long type in VB.NET language. Due to the common types system

(CTS) in .NET Framework there is compatibility between different prog -
ramming languages (like for instance, C#, Managed C++, VB.NET and F #).
For the same reason int , Int32 and System.Int32 types in C# are actually
different aliases for one and the same data type T signed 32 -bit integer.

Integer Types
Integer types represent integer numbers and are sbyte , byte, short ,

ushort , int , uint ,long and ulong. Let 6s examine them o

The sbyte type is an 8-bit signed integer . This means that the number of
possible values for it is 2 8, i.e. 256 values altogether, and they can be both,
positive and negative. The minimum value that can be stored in shyte is
SByte.MinValue = -128 (-27), and the maximum value is SByte.MaxValue
127 (2 7-1). The default value is the number 0.

The byte type is an 8-bit unsigned integer type. It also has 256 different

integer values (2 8) that can only be nonnegative. | ts default value is the
number 0. The minimal taken value is Byte.MinValue =0, and the maximum
is Byte.MaxValue =255 (2 82-1).

The short type is a 16 -bit signed integer . Its minimal value is
Int16.MinValue = -32768 (-2%%), and the maximum is Int16.MaxValue
32767 (2 '°-1). The default value for short type is the number O.

The ushort typeis 16 -bit unsigned integer . The minimum value that it can
store is UIntl6.MinValue = 0, and the minimum value is i
Ulntl6.MaxValue =65535 (2 6-1). Its default value is the number 0.

The next integer type that we will consider is int . Itis a 32-bit signed
integer . As we can notice, the growth of bits increases the possible values

that a type can store. The default value for int is 0. Its minimal value is

Int32.MinValue = -2,147,483,648 (-2%), and its maximum value is

Int32.MaxValue =2,147,483,647 (2 3!-1).

The int type is the most often used type in programming . Usually
programmers use int when they work with integers because this type is
natural for the 32 -bit microprocess or and is sufficiently "big" for most of the
calculations performed in everyday life.

The uint type is 32 -bit unsigned integer type. Its default value is the
number Ou or OU (the two are equivalent). The ' u' letter indicates that the
number is of type uint (otherwise it is understood as int). The minimum

114 Fundamentals of Computer Programming with C#

value that it can take is UInt32.MinValue = 0, and the maximum value is
Ulnt32.MaxValue =4,294,967,295 (2 32-1).

The long type is a 64 -bit signed type with a default value of 0l or OL (the
two are equivalen t but it is preferable to use ' L' because the letter* | 'is easily
mistaken for the digit one ' 1. The ' L' letter indicates that the number is of

type long (otherwise it is understood int). The minimal value that can be
stored in the long type is Int64.Mi nValue = -9,223,372,036,854,775,808
(-2%) and its maximum value is Int64.MaxValue = 9,223,372,036,854,
775,807 (2 ©-1).

The biggest integer type is the ulong type. It is a 64 -bit unsigned type,
which has as a default value i the number Ou, or OU (the two are equivalent).
The suffix ' U' indicates that the number is of type ulong (otherwise it is
understood as long). The minimum value that can be recorded in the ulong
type is UlInt64.MinValue = 0 and the maximum is Uint64.MaxValue =
18,446,744,073,7 09,551,615 (2 ©64-1).

Integer Types I Example

Consider an example in which we declare several variables of the integer
types we know, we initialize them and print their values to the console:

/I Declare some variables

byte centuries = 20;

ushort years =2000 ;

uint days = 730480;

ulong hours = 17531520;

/I Print the result on the console

Console .WriteLine(centuries + " centuries are " + years +
"years, or" +days + "days,or" +hours+ "hours.");

/I Console output:
/I 20 centuries are 2000 years, or 730480 days, or 17531520
/I hours.

ulong maxintValue = UlInt64 .MaxValue;
Console .WriteLine(maxIntValue); /1 18446744073709551615

You would be able to see the declaration and initialization of a variable in
detail in sections " Declaring Variables " and " Initialization of Variables " below,
and it would become clear from the examples.

In the code snippet above, we demonstrate the use of integer ty pes. For small
numbers we use byte type, and for very large i ulong . We use unsigned
types because all used values are positive numbers.

Chapter 2. Primitive Types and Variables 115

Real Floating - Point Types

Real types in C# are the real numbers we know from mathematics. They are
represented by a flo ating -point according to the standard IEEE 754 and are
float and double . Letbés <consider in details
understand what their similarities and differences are.

Real Type Float

The first type we will consider is the 32 -bitreal floating -pointtype float . It
is also known as a single precision real number . Its default value is 0.0f
or 0.0F (both are equivalent). The character ' f ' when put at the end explicitly
indicates that the number is of type float (because by default all real

numbers are considered double). More about this special suffix we can read
bellow in the " Real Literals " section. The considered type has accuracy up to
seven decimal places (the others are lost). For instance, if the number

0.123 456789 is stored as type float it will be rounded to 0.1234568 . The
range of values, which can be included in a float type (rounded with accuracy

of 7 significant decimal digits), range from r st 0% to + tet_fl038,

Special Values of the Real Types

The real data types have also several special values that are not real numbers
but are mathematical abstractions:

- Negative infinity -b (Single.Negativelnfinity) . It is obtained
when for instance we are dividing -1.0f by 0.0f .

- Positive infinity + D (Single.Posi tivelnfinity) . It is obtained
when for instance we are dividing 1.0f by 0.0f .

- Uncertainty (Single.NaN) 7 means that an invalid operation is

performed on real numbers. It is obtained when for example we divide
0.0f by 0.0f , as well as when calculating squar e root of a negative
number.

Real Type Double
The second real floating -point type in the C# language is the double type.

It is also called double precision real number and is a 64 -bit type with a
default value of 0.0d and 0.0D (the suffix ' d'is not mandatory because by
default all real numbers in C# are of type double). This type has precision of

15 to 16 decimal digits. The range of values, which can be recorded in double
(rounded with precision of 15 -16 significant decimal digits), is from
Folst_dz03%4to r st _W10308,

The smallest real value of type double is the constant Double.MinValue =
-1.79769e+308 and the largest is Double.MaxValue = 1.79769e+308. The
closest to 0 positive number of type double is Double.Epsilon = 4.94066€ -

324. As with the type float the variables of type double can take the special

116 Fundamentals of Computer Programming with C#

values: Double.Positivelnfinity (+ D), Double.Negativelnfinity (-D)
and Double.NaN (invalid number).

Real Floating -Point Types i1 Example

Here is an example in which we declare variab les of real number types, assign

values to them and print them:

float floatPl = 3.14f;

Console .WriteLine(floatPl); /1 3.14
double doublePI = 3.14;
Console .WriteLine(doublePl); /1 3.14

double nan = Double.NaN;

Console .WriteLine(nan); / NaN

double infinity = Double .Positivelnfinity;
Console .WriteLine(infinity); /1 Infinity

Precision of the Real Types

In mathematics the real numbers in a given range are countless (as opposed

to the integers in that range) as between any two real numbers a and b there
are countless other real numbers c where a < ¢ < b. This requires real
numbers to be stored in computer memory with a limited accuracy.

Since mathematics and physics mostly work with extremely large numbers
(positive and negative) and with extremely small numbers (very close to
zero), real types in computing and electronic devices must be stored and
processed appropriately. For example, according to the physics the mass of
electron is approximately 9.109389*10 31 kilograms and in 1 mole of
substance there are approximately 6.02*10 23 atoms. Both these values can
be stored easilyin float and double types.

Due to its flexibility, the modern floating - point representation of real
numbers allows us to work with a maximum number of significant digits for
very large numbers (for example, positive and negative numbers with
hundreds of digits) and with numbers very close to zero (for example, positive
and negative numbers with hundreds of zeros after the decimal point before
the first significant digit).

Accura cy of Real Types T Example
The real types in C# we went over 7 float and double 7 differ not only by
the range of possible values they can take, but also by their precision (the

number of decimal digits, which they can preserve). The first type has a
preci sion of 7 digits , the second 1 15-16 digits.

Consider an example in which we declare several variables of the known real
types, initialize them and print their values on the console. The purpose of the
example is to illustrate the difference in their accur acy:

Chapter 2. Primitive Types and Variables 117

/I Declare some variables
float floatPl = 3.141592653589793238f;
double doublePl = 3.141592653589793238;

/I Print the results on the console
Console .WriteLine("Float Pl is: " + floatPl);
Console .WriteLine("Double Pl is: " + doublePl);

/l Console output:
/I Float Pl is: 3.141593
/I Double Plis: 3.14159265358979

We see that the number A which we declared as float |, is rounded to the 7 -th
digit, and the one we declared double 7 to 15-th digit. We can conclude that
the real type double retains much greater precision than float , thus if we
need a greater precision after the decimal point, we will use it.

About the Presentation of the Real Types

Real floating -point numbers in C# consist of three components (according to

the standard |IEEE 754) : sign (1 or -1), mantissa and order (exponent),
and their values are calculated by a complex formula. More detailed
information about the representation of the real numbers is provided in the

chapter " Nume ral Systems " where we will take an in -depth look at the
representation of numbers and other data types in computing.

Errors in Calculations with Real Types

In calculations with real floating -point data types it is possible to observe
strange behavior , beca use during the representation of a given real number

it often happens to lose accuracy . The reason for this is the inability of some

real numbers to be represented exactly as a sum of negative powers of the

number 2. Examples of humbers that do not have an accurate representation

in float and double types are for instance 0.1, 1/3, 2/7 and other. Here is a

sample C# code, which demonstrates errors in calculations with floating -point
numbers in C#:

float f=0.1f;

Console .WriteLine(f); /1 0.1 (correct due to rounding)
double d=0.1f;

Console .WriteLine(d); // 0.100000001490116 (incorrect)

float ff=1.0f/3;

Console .WriteLine(ff); /1 0.3333333 (correct due to rounding)
double dd = ff;

Console .WriteLine(dd); /1 0.333333343267441 (incorrect)

118 Fundamentals of Computer Programming with C#

The reason for the unexpected result in the first example is the fact that the

number 0.1 (i.e. 1/10) has no accurate representation in the real floating -
point number format IEEE 754 and its approximate value is recorded. When

printed directly the result | ooks correct because of the rounding . The rounding
is done during the conversion of the number to string in order to be printed

on the console. When switching from float to double the approximate
representation of the number in the IEEE 754 format is more noticeable.
Therefore, the rounding does no longer hide the incorrect representation and

we can observe the errors in it after the eighth digit.

In the second case the number 1/3 has no accurate representation and is
rounded to a number very close to 0.3333333. The value of this number is
clearly visible when it is written in double type, which preserves more

significant digits.

Both examples show that floating - point number arithmetic can produce
mistakes , and is therefore not appropriate for precise financial calculations.
Fortunately, C# supports decimal precision arithmetic where numbers like 0.1

are presented in the memory without rounding.

Not all real numbers have acc urate representation in float
& and double types. For example, the number 0.1 is represent -
ted rounded in float typeas 0.099999994 .

Real Types with Decimal Precision

C# supports the so -called decimal floating -point arithmetic, where
numbers are represented via the decimal numeral system rather than the
binary one. Thus, the decimal floating point -arithmetic type in C# does not
lose accuracy when storing and processing floating - point numbers.

The type of data for real numbers with decimal precision in C#is the 128 -
bit type decimal . It has a precision from 28 to 29 decimal places. Its minimal

value is -W t y ol its maximum value is 1 Wt y?8 shdzdefault value is
0.0m or 0.0M. The ' m character at the end indicates explicitly that the number

is of type decimal (because by default all real numbers are of type double).
The closest to O numbers, which can be recorded in decimal, are r tst_dz0 28,
It is obvious that decimal can store neither very big positive or negative
numbers (for example, with hundreds of digits), nor values very close to 0.

However, this type is almost perfect for financial calculations because it
represents the numbers as a sum of powers of 10 and losses from rounding

are much smaller than when using binary representation. The real number s of
type decimal are extremely convenient for financial calculations |
calculation of revenues, duties, taxes, interests, payments, etc.

Here is an example in which we declare a variable of type decimal and assign
its value:

Chapter 2. Primitive Types and Variables 119

decimal decimalPIl = 3.14159265358979323846m;
Console .WriteLine(decimalPl); /1 3.14159265358979323846

The number decimalPIl , which we declared of type decimal , is not rounded
even with a single position because we use it with precision of 21 digits
which fits in the type ~ decimal without being rounded.

Because of the high precision and the absence of anomalies during
calculations (which exist for float and double), the decimal type is
extremely suitable for financial calculations where accuracy is ¢ ritical.

Despite its smaller range, the decimal type retains precision

& for all decimal numbers it can store! This makes it much
more suitable for precise calculations, and very appropriate
for financial ones.

The main difference between real floating -point numbers and real
numbers with decimal precision is the accuracy of calculations and the
extent to which they round up the stored values. The double type allows us
to work with very large values and values very close to zero but at the

expens e of accuracy and some unpleasant rounding errors. The decimal type
has smaller range but ensures greater accuracy in computation, as well as
absence of anomalies with the decimal numbers.

If you perform calculations with money use the decimal type

& inste ad of float or double. Otherwise, you may encounter
unpleasant anomalies while calculating and errors as a

result!

As all calculations with data of type decimal are done completely by software,
rather than directly at a low microprocessor level, the calcu lations of this type
are from several tens to hundreds of times slower than the same
calculations with double , so use this type only when itisreally necessary.

Boolean Type

Boolean type is declared with the keyword bool . It has two possible values:
true and false . Its default value is false . It is used most often to store the
calculation result of logical expressions

Boolean Type 1 Example

Consider an example in which we declare several variables from the already
known types, initialize them, compare the m and print the result on the
console:

/I Declare some variables

120 Fundamentals of Computer Programming with C#

int a=1;

int b=2;

/' Which one is greater?

bool greaterAB = (a > b);

/l'ls 'a" equal to 1?

bool equalAl =(a==1);

/l Print the results on the console
if (greaterAB)

Console .WriteLine("A>B");

}
else
{
Console .WriteLine("A<=B");
}
Console .WriteLine("greaterAB =" + greaterAB);
Console .WriteLine("equalAl ="+ equalAl);

/I Console output:
IIA<=B

/I greaterAB = False
/I equalAl = True

In the example above, we declare two variables of type int , compare them
and assign the result to the bool variable greaterAB . Similarly, we do the
same for the variable equalAl. If the variable greaterAB is true ,then A>B
is printed on the console, otherwise A <=B is printed.

Character Type

Character type is a single character (16 -bit number of a Unicode table
character). It is declared in C# with the keyword char. The Unicode table is
a technological standard that represe nts any character (letter, punctuation,

etc.) from all human languages as writing systems (all languages and
alphabets) with an integer or a sequence of integers. More about the Unicode
table can be found in the chapter " Strings and Text Processing ". The smallest
possible value of a char variable is 0, and the largest one is 65535. The
values of type char are letters or other characters, and are enclosed in
apostrophes.

Character Type i Example
Consider an example in which we declare one variable of type char , initialize
it with value 'a’ , then 'b' ,then 'A' and print the Unicode values of these

letters to the console:

Chapter 2. Primitive Types and Variables 121

/I Declare a variable
char ch= 'a' ;
/l Print the results on the console
Console .WriteLine(
"The code of " +ch+ "is:" + (int)ch);
ch= b ;
Console .WriteLine(
"The code of ™ +ch+ "is:" + (int)ch);
ch= "A";
Console .WriteLine(
"The code of ™ +ch+ ™is:" + (int)ch);

/I Console output:

/l The code of 'a’ is: 97
/I The code of 'b' is: 98
/l The code of 'A'is: 65

Strings

Strings are sequences of characters . In C# they are declared by the
keyword string . Their default valueis null . Strings are enclosed in quotation
marks. Various text -processing operations can be pe rformed using strings:
concatenation (joining one string with another), splitting by a given separator,
searching, replacement of characters and others. More information about text

processing can be found in the chapter " Strings and Text Processing ", where
you will find detailed explanation on what a string is, what its applications are

and how we can use it.

Strings 17 Example

Consider an example in which we declare several variables of type string ,

initialize them and print their values on the console:

/I Declare some variables

string firstName = "John" ;

string lastName = "Smith" ;

string fullName = firstName + """+ lastName;

/I Print the results on the console

Console .WriteLine("Hello, " + firstName + "I");

Console .WriteLine("Your full name is " + fullName + """);

/I Console output:
/I Hello, John!
/I Your full name is John Smith.

122 Fundamentals of Computer Programming with C#

Object Type

Object type is a special type, which is the parent of all other types in the .NET
Framework. De clared with the keyword object , it can take values from any
other type . It is a reference type, i.e. an index (address) of a memory area

which stores the actual value.

Using Objects T Example

Consider an example in which we declare several variables of typ e object ,
initialize them and print their values on the console:

/I Declare some variables
object containerl = 5;
object container2= "Five" ;

/I Print the results on the console
Console .WriteLine("The value of containerl is: " + containerl);
Console .WriteLine("The value of container2 is: " + container2);

/I Console output:
/I The value of container 1is:5
/I The value of container?2 is: Five.

As you can see from the example, we can store the value of any other type in
an object type variable. This makes the object type a universal data
container.

Nullable Types

Nullable types are specific wrappers around the value types (as int |
double and bool) that allow storing data with a null value. This provides
opportunity for types that generally do not allow lack of value (i.e. value

null) to be used as reference types and to accept both normal values and the
special one null . Thus nullable types hold an optional value

Wrapping a given type as nullable can be done in two ways:

Nullable <int >i1= null ;

int 212 =1i1;
Both declarations are equivalent. The easiest way to perform this operation is
to add a question mark (?) after the type, for example int? , the more difficult

istousethe . O 1 A AlsyhtaxA |

Nullable types are referencetyp es i.e.they are reference to an object in the
dynamic memory, which contains their actual value. They may or may not
have a value and can be used as normal primitive data types, but with some
specifics, which are illustrated in the following example:

Chapter 2. Primitive Types and Variables 123

int i=5;

int ?2ni=i;

Console .WriteLine(ni); II'5

/['i = ni; /I this will fail to compile

Console .WriteLine(ni.HasValue); /Il True

i = ni.Value;

Console .WriteLine(i); I1'5

ni= null ;

Console .WriteLine(ni.HasValue); /I False

/li = ni.Value; // System.InvalidOperationException

i = ni.GetValueOrDefault();

Console .WriteLine(i); /10
The example above shows how a nullable variable (int?) can have a value
directly added even if the value is non-nullable (int). The opposite is not
directly possible. For this purpose, the nullable t ypes 6 p Nalgeecart bg
used. It returns the value stored in the nullable type variable, or produces an
error (InvalidOperationException) during program execution if the value is
missing (null). In order to check whether a variable of nullable type has a
value assigned, we can use the Boolean property HasValue. Another useful
method is GetValueOrDefault() . If the nullable type variable has a value,
this method will return its value, else it will return the default value for the

nullable type (most commonly 0).

Nullable types are used for storing information, which is not mandatory . For
example, if we want to store data for a student such as the first name and
last name as mandatory an d age as not required, we can use type int? for

the age variable:

string firstName = "John" ;
string lastName = "Smith" ;
int ?age= null ;

Variables

Af ter reviewing the main data types in C# |
order to work with data we should use variables . We have already seen their

usage in the exampl es, but now | dtds | ook at
A variable is a container of informati on, which can change its value. It

provides means for:
- storing information;

- retrieving the stored information;

124 Fundamentals of Computer Programming with C#

- modifying the stored information.
In C# programming, you will use variables to store and process information
all the time.
Characteristics of Var iables

Variables are characterized by:

- name (identifier), for example age;

- type (of the information preserved in them), for example int ;
- value (stored information), for example 25.
A variable is a named area of memory , Which stores a value from a

particular data type, and that area of memory is accessible in the program by
its name. Variables can be stored directly in the operational memory of the
program (in the stack) or in the dynamic memory in which larger objects are
stored (such as character strings and arrays).

Primitive data types (numbers, char, bool) are called value types because
they store their value directly in the program stack.

Reference data types (such as strings, objects and arrays) are an address,
pointing to the dynamic memory where their value is stored. They can be
dynamically allocated and released i.e. their size is not fixed in advance
contrary to the case of value types.

More information about the value and reference data types is provided in the
section " Value and Reference Types "

Naming Variables i Rules

When we want the compiler to allocate a memory area for some information
which is used in our program we must provide a name for it. It works like an
identifier and allows referring to the relevant memory area.

The name of the variable can be any of our choice but must follow certain
rules defined in the C# language specification:

- Variable names ca n contain the letters a-z, A-Z the digits 0-9 as well as
the character* '

- Variable names cannot start with a digit.

- Variable names cannot coincide with a keyword of the C# language.
For example, base, char, default , int , object , this , null and many
othe rs cannot be used as variable names.

A list of the C# keywords can be found in the section " Keywords " in chapter
"Introduction to Programming ". If we want to name a variable like a keyword,
we can ad d a prefix to the name T "@. For example, @charand @null are

valid variable names while char and null are invalid.

Chapter 2. Primitive Types and Variables 125

Naming Variables i Examples
Proper names:
- hame
- first. Name
- _namel
Improper names (will lead to compilation error):
- 1 (digit)
- if (keyword)
- lname(starts with a digit)

Naming Variables I Recommendations

We will provide some recommendations how to name your variables, since not
all names, allowed by the compiler, are appropriate for the variables.

- The names should be descriptive and explain what the variable is used
for. For exampl e, an appropriate name fo
name is personNameand inappropriate name is a3’.

- Only Latin characters should be used. Although Cyrillic is allowed b y
the compiler, it is not a good practice to use it in variable names or in
the rest of the identifiers within the program.

- In C# itis generally accepted that variable names should start with a
small letter and include small letters, every new word, howev er, starts
with a capital letter. For instance, the name firstName is correct and

better to use than firsthame or first_ nhame . Usage of the character
in the variable names is considered a bad naming style.

- Variable names should be neither too long nor too short i1 they just
need to clarify the purpose of the variable within its context.

- Uppercase and lowercase letters should be used carefully as C#

distinguishes them. For instance, age and Age are different variables.
Here are some examples of well -named va riables:
- firstName
- age
- startindex

- lastNegativeNumberindex

And here are some examples for poorly named variables (although the names

are correct from the C# compilerds perspecti
- _firstName (starts with)

126 Fundamentals of Computer Programming with C#

- last_name (contains)

- AGHK(is written with capi tal letters)

- Start_Index (starts with capital letter and contains)

- lastNegativeNumber_Index (contains)

- a37 (the name is not descriptive and does not clearly provide the
purpose of the variable)

- fullName23 , fullName24 , etc. (it is not appropriate for a variable name
to contain digits unless this improves the clarity of the variable used; if
you need to have multiple variables with similar names ending in a
different number, storing the same or similar type of data, it may be

more appropriate to create a single collection or array variable and
name it fullNamesList , for example).

Variables should have names, which briefly explain their purpose . When a
variable is named with an inappropriate name, it makes the program very
difficult to read and modify later (after a while, when we have forgotten how

it works). For further explanation on the proper naming of variables refer to
chapter " High - Quality Programming Code "

Always try to use short and precise names when naming the
variables. Follow the rule that the variable name should state
& what it is used for, e.g. the name should answer the question

"what value is stored in this variable". When this condition is
not fulfi lled then try to find a better name. Digits are not
appropriate to be used in variable names.

Declaring Variables
When you declare a variable, you perform the following steps:
- specify its type (suchas int);
- specifyits name (identifier, suchas age);
- optionally specify initial value (such as 25) but this is not obligatory.

The syntax for declaring variables in C# is as follows:

<data type> <identifier> [= <initialization>] :

Here isan example of declaring variables:

string name;
int age;

Chapter 2. Primitive Types and Variables

127

Assigning a

Value

Assigning a value to a variable is the act of providing a value that must be
stored in the variable. This operation is performed by the assignment operator
"=". On the left side of the operator we put the variable name and on the right
side i itsnew value.

Here is an example of assigning values to variables:

age = 25;

name = "John Smith" ;

Initialization of Variables

The word

initialization

When setting value to variables at the time of their declarat

initialize them.

Default Variable Values

Each data type in C# has a

following table to see the default values of

familiar with:

default value

in programming means specifying an initial value.

ion we actually

(default initialization) which is used
when there is no explicitly set value for a given variable. We can use the

the types, which we already got

Data Type Default Value Data Type Default Value

shyte 0 float 0.0f

byte 0 double 0.0d

short 0 decimal 0.0m

ushort 0 bool false

int 0 char "\ u0000

uint Ou string null

long oL object null

ulong Ou

Letdbs summari ze how to declare variabl es
them with the following example:

/I Declare and initialize some variables

byte centuries = 20;

ushort years = 2000;

decimal decimalPIl = 3.141592653589793238m;

bool isEmpty = true ;

char ch=

128 Fundamentals of Computer Programming with C#

string firstName = "John" ;

ch =(char)5;
char secondChar;

/l Here we use an already initialized variable and reassign it
secondChar = ch;

Value and Reference Types

Data types in C# are two types: value and reference

Value types are stored in the program execution stack and directly contain

their value. Value types are the primitive numeric types, the character type

and the Boolean type: sbyte , byte, short , ushort , int , long, ulong,
float , double, decimal , char, bool. The memory allocated for them is
released when the program exits their range, i.e. when the block of code in

which they are defined completes its execution. For example, a variable

declared in the method Main() of the program is stored in the stack until t he
program completes execution of this method, i.e. until it finishes (C#

programs terminate after fully executing the Main() method).

Reference types keep a reference (address), in the program execution
stack, and that reference points to the dynamic memo ry (heap), where
their value is stored. The reference is a pointer (address of the memory cell)
indicating the actual location of the value in the heap. An example of a value

at address in the stack for execution is OXx00AD4934 The reference has a
type. Th e reference can only point to objects of the same type, i.e. it is a
strongly typed pointer. All reference types can hold a null value. This is a
special service value, which means that there is no value.

Reference types allocate dynamic memory for their ¢ reation. They also
release some dynamic memory for a memory cleaning (garbage
collector), when it is no longer used by the program. It is unknown exactly

when a given reference variable will be released of the garbage collector as

this depends on the memor vy load and other factors. Since the allocation and
release of memory is a slow operation, it can be said that the reference types

are slower than the value ones.

As reference data types are allocated and released dynamically during
program execution, their size might not be known in advance. For example, a
variable of type string can contain text data which varies in length. Actually

the string text value is stored in the dynamic memory and can occupy a
different volume (count of bytes) while the string variable stores the address
of the text value.

Reference types are all classes , arrays and interfaces such as the types:
object , string , byte[] . We will learn about classes, objects, strings, arrays
and interfaces in the next chapters of this book. For now, it is enough to know

Chapter 2. Primitive Types and Variables 129

that all types, which are not value, are reference and their values are stored
inthe heap (the dynamically allocated me mory).

Value and Reference Types and the Memory

In this example we will illustrate how value and reference types are
represented in memory . Consider the execution of the following
programming code:

int i=42;

char ch= "A' ;

bool result= true ;
object obj=42;

string str= "Hello" ;

byte [bytes={1, 2,3},

At this point the variables are located in the memory as follows:

Stack Heap

42 | (4 bytes)

ch
A | (2 bytes)

result

true (1 byte)

obj

int
Int32 @ae764 > | 42 (4 bytes)
str

String @cdaf2 Hello string

v

bytes
byte[]@190d11

2 | 3| byte[]

v
[EEN

If we now execute the following code, which changes the values of the
variables, we will see what happens to the memory when changing the
value and reference types:

130 Fundamentals of Computer Programming with C#

i=0;
ch= 'B' ;
result= false ;
obj= null ;
str= "Bye";
bytes[1] = 0;
After these changes the variables and their values are located in the
memory as follows:
Stack Heap
i
0 | (4 bytes)
ch
B | (2 bytes)
result
false (1 byte) Bye | string
obj
int
null 42 (4 byteS)
str
String @a787b Hello string
bytes
byte[]@190d11 > 1|10 3| byte[]
As you can see from the figure, a change in a value type (i = 0) changes its
value directly into the stack . When changing a reference type , things are
different: the value is changed in the heap (bytes[1] = 0). The variable

that keeps the array reference remains unchanged (0x00190D11). When
assigning a null value in a reference type, that reference is disconnected
from its value and the variable remains with no value (obj =null).

When assigning new value to an object (a reference type variable) the new
object is allocated in the heap (the dynamic memory) while the old object
remains free (unreferenced). The reference is redirected to the new object
(str ="Bye") while the old objects ("Hello ") will be cleaned at some moment

Chapter 2. Primitive Types and Variables 131

by the garbage collector (the .NET Framework 0 sinternal system for
automatic memory cleaning) as they are not in use anymore.

Literals

Primitive types, which we already met, are special data types built into the C#
language. Their values specified in the source code of the progra m are called
literals . One example will make this clearer:

bool result= true ;
char capitalC= 'C';
byte b =100;

short s =20000;

int i =300000;

In the above example, literals are true , 'C' , 100, 20000 and 300000. They
are variable values set directly in the source code of the program.
Types of Literals

In C# language, there are several types of literals:

- Boolean

Integer

- Real

- Character

- String

- Object literal null

Boolean Literals

Boolean literals are:

- true

- false
When we assign a value to a variable of type bool we can use only one of
these two values or a Boolean expression (which is calculated to true or
false).
Boolean Literals T Example
Here is an example of a declaration of a variable of type bool and assignin g a
value, which represents the Boolean literal true :

bool result = true ;

132 Fundamentals of Computer Programming with C#

Integer Literals

Integer literals are sequences of digits , asign (+, -), suffixes and prefixes.
Using prefixes we can present integers in the program source in decimal or
hexadecimal format. More information about the different numeral systems

we can find in the chapter " Numeral Systems ". In the integer literals the
following prefixes and suffixes may take part:

- "Ox" and " OX' as prefix indicates hexadecimal values, for example
OxA8F1;

- 'I''and 'L' as suffix indicates long type data, for example 357L.
- 'u"and 'U as suffix indicates uint or ulong data type, for example 112u.

By default (if no suffix is used) the integer literals are of type int .

Integer Literals i Examples

Here are some examples of using integer literals:

/I The following variables are initialized with the same value
int numberinDec = 16;
int numberinHex = 0x1 O;

/I This will cause an error, because the value 234L is not int
int longint = 234L;

Real Literals
Real literals are a sequence of digits ,asign (+, -), suffixes and the decimal
point character. We use them for values of type float , double and decimal .

Real literals can be represented in exponential format. They also use the
following indications:

- 'f'and 'F as suffixes mean data of type float ;
- 'd" and 'D as suffixes mean data of type double ;

- 'mand 'm as suffixes mean data of type decimal ;

- 'e' is an exponent, for example, " e- 5" means the integer part multiplied
by 10 -5.
By default (if there is no suffix), the real numbers are of type double .
Real Literals i Examples

Here are some examples of real literals' usage:

/I The following is the correct way of assigning a value:
float realNumber = 12.5f;

Chapter 2. Primitive Types and Variables 133

/] This is the same value in exponential format:
realNumber = 1.25e+1f;

/I The following causes an error, because 12.5 is double
float realNumber = 12.5;

Character Literals

Character literals are single characters enclosed in apostrophes (single
quotes). We use them to set the values of type char . The value of a character
literal can be:

- acharacter, for example ‘A
- acharacter code, for example "\ u0065' ;

- an escaping sequence;

Escaping Sequences

Sometimes it is necessary to work with characters that are not displayed on

the keyboard or with characters that have special meaning s, such as the finew
line 0 character. They cannot be represented directly in the source code of
the program and in order to u se them we need special techniques, which we

will discuss now.

Escaping sequences are literals. They are a sequence of special characters,
which describe a character that cannot be written directly in the source code.
This is, for instance, the finew line 0 character.

There are many examples of characters that cannot be represented directly in
the source code: a double quotation mark, tab, new line, backslash and
others. Here are some of the most frequently used escaping sequences

- \'" 1 single quote

- \" 1 double quotes
- \\ 7 backslash

- \ni newline

-\t 1 offset (tab)

- VUXXXX char specified by its Unicode number, for example \ UO3A7.
The character \ (backslash) is also called an escaping character because it
allows the display on screen (or other output device) o f characters that have

special meaning or effect and cannot be represented directly in the source
code.

134 Fundamentals of Computer Programming with C#

Escaping Sequences T Examples

Here are some examples of character literals:

/I An ordinary character
char character= ‘'a' ;
Console .WriteLine(character);

/I Unicode character code in a hexadecimal format
character= '\ uOO3A';
Console .WriteLine(character);

/I Assigning the single quotiation character (escaped as \)
character= '"\" ;
Console .WriteLine(character);

/I Assigning the backslash character (escaped as \\)
character= "\\';
Console .WriteLine(character);

/I Console output:
Ila

I

I

I\

String Literals

String literals are used for data of type string . They are a sequence of
characters enclosed in double quotation marks.

All the escaping rules for the char type discussed above are also valid for
string literals.

Strings can be preceded by the @character that specifies a quoted string

(verbatim string). In quoted strings the rules for escaping are not valid, i.e.
the character \ means \ and is not an escaping character. Only one character
needs to be escaped in the quoted strings i the character " (double -quotes)
and it is escaped in the following way T by repeating it "™ (double double -

quotes). All other characters are treated literally, even the new line. Quoted
strings are often used for the file system paths naming.

String Literals T Examples

Here are few examples for string literals usage:

string quotation= "\ "Hello, Jude \", he said." ;

Chapter 2. Primitive Types and Variables 135

Console .WriteLine(quotation);

string path = "C:\\Windows \ Notepad.exe" ;
Console .WriteLine(path);

string verbatim= @"The\ is not escaped as \\.
| am at a new line." :

Console .WriteLine(verbatim);

/I Console output:

/I "Hello, Jude", he said.

/I C:\'Windows Notepad.exe

/I The \ isnot escaped as \\.

/'l am at a new line.

More about strings we will find in the chapter " Strings and Text Processing "

Exercises

1. Declare several variables by selecting for each one of them the most
appropriate of the types sbyte , byte, short , ushort , int , uint , long
and ulong in order to assign them the following values: 52,130; -115;
4825932; 97; -10000; 20000; 224; 970,700,000; 112; -44; -1,000,000;

1990; 123456789123456789.

2. Which of the following values can be assigned to variables of type float ,
double and decimal : 5, -5.01, 34.567839023; 12.345; 8923.1234857 ;
3456.0911248759565421512566834677?

3. Write a program, which compares correctly two real numbers with
accuracy atleast 0.000001

4. Initialize a variable of type int with a value of 256 in
hexadecimal format (256 is 100 in a numeral system with base 16).

5. Declare a variable of type char and assign it as a value the character,
which has Unicode code, 72 (us e the Windows calculator in order to find
hexadecimal representation of 72).

6. Declare avariable isMale oftype bool and assign a value to it depending
on your gender.

7. Declare two variables of type string with values "Hello" and "World".
Declare a variable of type object . Assign the value obtained of
concatenation of the two string variables (add space if necessary) to this
variable. Print the variable of type object .

8. Declare two variables of type string and give them values "Hello" and
"World". Assign the value obtained by the concatenation of the two
variables of type string (do not miss the space in the middle) to a
variable of type object . Declare a third variable of type string and
initialize it with the value of the variable of type object (you should use
type casting).

136 Fundamentals of Computer Programming with C#

9. Declare two variables of type sting and assign theffhea Vv
"use" of quotations causes difficulties. 0 without the outer quotes).

In one of the variables use quoted string and i n the other do not use it.

10. Write a program to print a figure in the shape of a heart by thesign" 0"

11. Write a program that prints on the console isosceles triangle which
sides consist of the copyright character " E"

12. A company dealing with marketing wants t 0 keep a data record of its
employees . Each record should have the following characteristic T first
name, |l ast name, age, gender (6mdé or of 6]
(27560000 to 27569999). Declare appropriate variables needed to

13.

maintain the informatio n for an employee by using the appropriate data
types and attribute names.

Declare two variables of type int . Assign to them values 5 and 10
respectively. Exchange (swap) their values and print them.

Solutions and Guidelines

© N o G

10.
11.

Look at the ranges of the numerical types in C# described in this chapter.

Consider the number of digits after the decimal point. Refer to the table
that describes the sizes of the types float , double and decimal .

Two floating -point variables are considered equal if their difference is less
than some predefined precision (e.g. 0.000001):

bool equal = Math.Abs(a - b)<0.000001 ;

Look at the section about Integer Literals . To easily convert numbers to a
different numeral system use the built -in. Windows calculator. For a
hexadecimal representation of the literal use prefix OX.

Look at the section about Character Literals

Look at the s ection about Boolean Literals

Look at the sections about Strings and Object Data Type

Look at the sections about Strings and Object Data Type . To cast from
object to string use typecasting

string str=(string)obj;

Look at the section about Character Literals . It is necessary to use the
escaping character \'" or verbatim strings

use# 1 T OT 1 At 7 OE Qnk chardctdr s Jotand spaces.

use #1 1 OT 1 At 7 OE Ofe cHarhers AES and spaces . Use Windows
Character Map in order to find the Unicode code of the sign " E"
Note that the console may display " c" instead of "E" if it does not

Chapter 2. Primitive Types and Variables 137

12.

13.

support Unicode. If this happens, you might be unable to do anything to
fix it. Some versions of Windows just do not support Unicode in the
console even when you explicitly set the character encoding to UTF -8:

Console .OutputEncoding = System.Text. Encoding .UTFS;

You may need to change the font of your console to some font that
support €0t e mib ol Conswlasgd0 délucida Console o0 .

For the names use type string , for the gender use type char (only one
char mif), a nd for the unique number and age use some integer type.

Use third temporary variable for exchanging the variables:

int a=25;
int b=10;

int oldA = a;
a=b;

b = oldA;

To swap integer variables other solutions exist which do not use a third
variable. For example, if we have two integer variables aand b:

int a=5;
int b=10;

+ b;

O T WD
I
SV o]

b;
b;

You might also use the XOR swap algorithm for exchanging integer
values: http://en.wikipedia.org/wiki/XOR_swap_algorithm

http://en.wikipedia.org/wiki/XOR_swap_algorithm

Chaptei©Ope&rators
and EXpressi ons

In This Chapter

In this chapter we will get acquainted with the operators in C# and the
actions they can perform when used with the different data types. In the
beginning, we will explain which operators have higher priority and we will
analyze the different types of operators, according to the number of the
arguments they can take and the actions they perform. In t he second part,
we will examine the conversion of data types . We will explain when and
why it is needed to be done and how to work with different data types. At the

end of the chapter, we will pay special attention to the expressions and how
we should work with them. Finally, we have prepared exercises to strengthen

our knowledge of the material in this chapter.

Operators
Every programming language uses operators , through which we can perform
di fferent actions on the data. LenG@tandseak e a

what they are for and how they are used.

What Is an Operator?

After we have learned how to declare and set a variable in the previous
chapter , we will discuss how to perform various operations with them. For this

purpose we will get familiar with operators.

Operators allow processing of primitive data types and objects. They take as

an input one or more operands and return some value as a result. Operators

in C# are special character s (suchas" +", ".", """ etc.) and they perform
transformations on one, two or three operands. Examples of operators in C#

are the signs for adding, subtracting, multiplication and division from math

(+, -, *, /') and the operations they perform on the int egers and the real
numbers.

Operators in C#

Operators in C# can be separated in several different categories:

- Arithmetic operators 1 they are used to perform simple mathematical
operations.

140 Fundamentals of Computer Programming with C#

- Assignment operators 1 allow assigning values to variables.

- Compar ison operators 1 allow comparison of two literals and/or
variables.

- Logical operators 1 operators that work with Boolean data types and

Boolean expressions.

Binary operators 1 used
representation of numerical data.

to perform operations on the binary

Type conversion
another.

operators 1 allow conversion of data from one type to

Operator Categories

Below is a list of the operators, separated into categories:

Category Operators
arithmetic -oH L %+ -
logical && || !, "
binary & |, N~ << >
comparison ===, > < >= <=
assignment = 4= -5 %=, =, %5 &S |5, =, <<=, >>=
string concatenation +
type conversion (type) , as, is, typeof , sizeof
other ohew ()L, 7?7, ??

Types of Operators by Number of Arguments

Operators can be separated into different types according to the number of
arguments they could take:

Operator type Number of arguments (operands)
unary takes one operand
binary takes two operands
ternary takes three operands

All binary operators in C# are left -associative , i.e. the expressions are
calculated from left to right, except for the assignment operators. All
assignment operators and conditional operators ?:. and ?? are
associative, i.e. the expressions are calculated from right to left. The u
operators are not associative.

right -
nary

Some of the operators in C# perform different operations on the different
data types. For example the operator +. When it is used on numeric data

Chapter 3. Operators and Expressions 141

types (int , long, float , etc.), the operator performs mathematical additio n.
However, when we use it on strings, the operator concatenates (joins
together) the content of the two variables/literals and returns the new string.

Operators I Example

Here is an example of using operators:

int a=7+9;
Console .WriteLine(a); /1116

string firstName = "John" ;
string lastName = "Doe";

/I Do not forget the space between them

string fullName = firstName + "' +lastName;
Console .WriteLine(fullName); /I John Doe
The example shows how, as explained above, when the operator + is used on

numbers it returns a numerical value, and when it is used on strings it returns
concatenated strings.

Operator Precedence inC#

Some operators have precedence (priority) over others. For example, in

math multiplication has precedence over addit ion. The operators with a higher
precedence are calculated before those with lower. The operator () isusedto
change the precedence and like in math, it is calculated first.
The following table illustrates the precedence of the operators in C#:
Priority Operators
Highest ()
priority ++, -- (as postfix), new, (type) , typeof , sizeof
++, -- (as prefix), +, - (unary), !, ~
* 1, %

+ (string concatenation)

+, -

<<, >>

<, >, <=, >z is, as

& " |

142 Fundamentals of Computer Programming with C#

Lowest &&
priority
|
2., 7?7
=| *=1 /=1 %=! +:! _:1 <<=1 >>=! =1 A=1 |:
The operators located upper in the table have higher precedence than
those below them, and respectively they have an advantage in the calculation
of an expression. To change the precedence of an operator we can use
brackets.

When we write expressions that are more complex or have many operators, it
is recommended to use brackets to avoid difficulties in reading and
understanding the code. For example:

/I Ambiguous
X +y /100

/I Unambiguou s, recommended
X + (y / 100)

Arithmetical Operators

The arithmetical operators in C# +, -, * are the same like the ones in math.
They perform addition, subtraction and multiplication on numerical values and
the result is also a numerical value.

The division operator [has different effect on integer and real numbers.

When we divide an integer by an integer (like int , long and shyte) the
returned value is an integer (no rounding, the fractional part is cut). Such
division is called an integer division . Example of integer division : 7/ 3=2.

Integer division by 0 is not allowed and causes a runtime exception
DivideByZeroException . The remainder of integer division of integers can be
obtained by the operator % For example,7 %3 =1,and 110 %2 =0.

When dividing two real numbers or two numbers, one of which is real (e.g.

float , double , etc.), a real division is done (not integer), and the result is a
real number with a whole and a fractional part. For example: 5.0/ 2 = 2.5. In

the division of real N umbers it is allowed to divide by 0.0 and respectively
theresultis +b Ipfinity), -B AInfinity) or NaN(invalid value).

The operator for increasing by one (increment) ++ adds one unit to the
value of the variable, respectively the operator -- (decrement) subtracts one
unit from the value. When we use the operators ++ and -- asa prefix (when

we place them immediately before the variable), the new value is calculated
first and then the result is returned. When we use the same operators as
post -fix (meanin g when we place them immediately after the variable) the

Chapter 3. Operators and Expressions 143

original value of the operand is returned first, then the addition or subtraction
is performed.

Arithmetical Operators i Example

Here are some examples of arithmetic operators and their effect:

int squarePerimeter= 17;

double squareSide = squarePerimeter / 4.0;
double squareArea = squareSide * squareSide;
Console .WriteLine(squareSide); I14.25
Console .WriteLine(squareArea); /11 18.0625
int a= 5;

int b= 4;

Console .WriteLine(a + b); 119
Console WriteLine(a+ (b++)); /9
Console .WriteLine(a + b); /110
Console .WriteLine(a + (++b)); 1111
Console .WriteLine(a + b); 1111
Console .WriteLine(14 / a); 12
Console .WriteLine(14 % a); INa

int one= 1;
int zero= O;
/I Console.WriteLine(one / zero); // DivideByZeroException

double dMinusOne= -1.0;

double dZero= 0.0;

Console .WriteLine(dMinusOne / zero); Il - Infinity
Console .WriteLine(one / dZero); /I Infinity

Logical Operators

Logical (Boolean) operators take Boolean values and return a Boolean result

(true or false). The basic Boolean operators are " AND " (&&, "OR" (||).
"exclusive OR " (”)and logical negation M.
The following table contains the logical operators in C# and th e operations

that they perform:

X y IX X && Yy x|y XNy
true true false true true false
true false false false true true

false true true false true true

144 Fundamentals of Computer Programming with C#

false false true false false false
The table and the following example show that the logical "AND" (&& returns
true only when both variables contain truth. Logical "OR" ([|) returns true
when at least one of the operands is true. The logical negation operator (N
changes the value of the argument. For example, if the operand has a value
true and a negation operator is applied, the new value will be false . The

negation operator is a unary operator and it is placed before the argument.
Exclusive "OR" () returns true if only one of the two operands has the value

true . If the two operands have differ ent values, exclusive "OR" will return the
result true , if they have the same values it will return false .
Logical Operators I Example

The following example illustrates the usage of the logical operators and their
actions:

bool a= true ;
bool b= false ;

Console .WriteLine(a && b); Il False
Console .WriteLine(a || b); Il True
Console .WriteLine(!b); Il True
Console .WriteLine(b || true); Il True
Console .WriteLine((5 > 7)"(a==b)); Il False

Laws of De Morgan

Logical operations fall under the laws of De Morgan from the mathematical
logic:

I(a && b) == ('a || 'b)
I(a || b) == ('a && 'b)

The first law states that the negation of the conjunction (logical AND) of two
propositions is equal to the disjunction (logical OR) of their negations.

The second law states that the negation of the disjunction of both statements
is equivalent to the conjunction of their negations.

Operator for Concatenation of Strings

The operator + is used to join strings (string). It ¢ oncatenates (joins) two
or more strings and returns the result as a new string. If at least one of the
arguments in the expression is of type string , and there are other operands
of type different from string , they will be automatically converted to type
string , which allows successful string concatenation.

It is fantastic how .NET runtime handles such operation incompatibilities for
us on the fly, saving us some coding time and allowing us to concentrate on

Chapter 3. Operators and Expressions 145

the main objectives of our programming task! Howe ver, it is a good practice
to not miss to cast the variables on which we wish to apply an operation; we

should instead have them converted to the appropriate type for each
operation, so that we are in full control of the end result and prevent implicit

typ e casts. We will provide more detailed information on casting operations
further down in the section " Type Conversion " of this chapter.

Operator for Concatenation of Strings T Example

Here is an example, which shows conc atenations of two strings and a string
with a number:

string csharp= "C#";

string dotnet= ".NET";

string csharpDotNet = csharp + dotnet;

Console .WriteLine(csharpDotNet); Il CH#NET

string csharpDotNet4 = csharpDotNet + """+ 5

Console .WriteLine(csharpDotNet4); Il C#.NET 5
In the example we initialize two variables of type string and assign them

values. On the third and fourth row we concatenate both strings and pass the
results to the method ~ Console.WriteLine() to print it on the console. On the

next line we join the resulting string with a space and the number 5. We
assign the returned value to the variable csharpDotNet5 , which will
automatically be converted to type string . On the last row we print the
result.

Concatenation (joining, gluing) of strings is a slow operation
and should be used carefully. It is recommended to use the
StringBuilder class for iterative (repetitive) operations on

strings.

In the chapter " Strings " we will explain in detail why the StringBuilder class
must be used for join operations on strings performed in a loop.

Bitwise Operators

A bitwis e operator is an operator that acts on the binary representation of
numeric types. In computers all the data and particularly numerical data is
represented as a series of ones and zeros. The binary numeral system is
used for this purpose. For example, numb er 55 in the binary numeral system

is represented as 00110111.

Binary representation of data is convenient because zero and one in
electronics can be implemented by Boolean circuits, in which zero is
represented as "no electricity" or for example with a vo Itage of -5V and the
one is presented as "have electricity" or say with voltage +5V.

146 Fundamentals of Computer Programming with C#

We will examine in depth the binary numeral system in the chapter
"Numeral Systems ", but just for now we can consider that th e numbers in
computers are represented as ones and zeros, and bitwise operators are used

to analyze and change those ones to zeros and vice versa.

Bitwise operators are very similar to the logical ones. In fact, we can
imagine that the logical and bitwise operators perform the same thing but
using different data types. Logical operators work with the values true and
false (Boolean values), while bitwise operators work with numerical values

and are applied bitwise over their binary representation, i.e., they work with
the bits of the number (the digits 0 and 1 of which it consists). Just like the
logical operators in C#, there are bitwise operators "AND" (&), bitwise "OR"

(|), bitwise negation (~) and excluding "OR" (™).

Bitwise Operators and Their Performanc e
The bitwise operators' performance on binary digits 0 and 1 is shown in the
following table:

X y ~X X&Yy X|y XNy

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

As we see bitwise and logical operators are very much alike. The difference in
the writing of "AND" and "OR" is that the logical operators are written with

double ampersand (&& and double vertical bar (||), and the bitwise T with a
single ampersand or vertical bar (& and |). Bitwise and logical operators for
exclusive "OR" are the same "A" For logical negation we use " I'", while for
bitwise negation (inversion) the " ~" operator is used.

In programming there are two bitwise operators that have no analogue in

logical operators. These are the bit shift left (<<) and bit shift right (>>).
Used on numerical values, they move all the bits of the value to the left or

right. The bits that fall outside the number are lost and replaced with 0.

The bit shifting operators are used in the following way: on the left side of

the operator we place the va riable (operand) with which we want to use the
operator, on the right side we put a numerical value, indicating how many bits

we want to offset. For example, 3 << 2 means that we want to move the bits

of the number three, twice to the left. The number 3 pr esented in bits looks
like this: * 0000 0011 ". When you move twice left, the binary value will look

like this: " 0000 1100 ", and this sequence of bits is the number 12. If we look

at the example we can see that actually we have multiplied the number by 4.

Bit shifting itself can be represented as multiplication (bitwise shifting left) or

division (bitwise shifting right) by a power of 2. This occurrence is due to the

Chapter 3. Operators and Expressions 147

nature of the binary numeral system. Example of moving to the right is 6 >>
2, which means to move the binary number " 0000 0110" with two positions to
the right. This means that we will lose two right -most digits and feed them
with zeros on the left. The end result will be " 0000 0001" which is 1.

Bitwise Operators I Example

Here is an example of using bitwise operators. The binary representation of
the numbers and the results of the bitwise operators are shown in the
comments (green text):

byte a= 3; // 0000 0011 =3
byte b= 5; // 0000 0101 =5
Console .WriteLine(a | b); // 0000 0111 =7
Console .WriteLine(a & b); // 0000 0001 =1
Console .WriteLine(a ™ b); // 0000 0110 =6
Console .WriteLine(~a & b); // 0000 0100 =4

Console .WriteLine(a << 1); // 0000 0110 =6
Console .WriteLine(a << 2); //000011 00=12
Console .WriteLine(a >> 1); // 0000 0001 =1

In the example we first create and initialize the values of two variables a and
b. Then we print on the console the results of some bitwise operations on the

two variables. The first operation that we apply is "OR". The example shows

that for all positions where there was 1 in the binary representation of the

variables a and b, there is also 1 in the result. The second operation is "AND".

The result of the operation contains 1 only in the right -most bit, because the
only place where a and b have 1 at the same time is their right -most bit.
Exclusive "OR" returns ones only in positions whe re a and b have different

values in their binary bits. Finally, the logical negation and bitwise shifting:
left and right, are illustrated.

Comparison Operators

Comparison operators in C# are used to compare two or more operands. C#
supports the following comparison operators:

- greaterthan (>)

- lessthan (<)

- greater than or equal to (>=)
- lessthanorequalto(<9

- equality (==

- difference (=)

148 Fundamentals of Computer Programming with C#

All comparison operators in C# are binary (take two operands) and the
returned result is a Boolean value (true or false). Comparison operators
have lower priority than arithmetical operators but higher than the
assignment operators.

Comparison Operators T Example

The following example demonstrates the usage of comparison operators in
C#:

int x= 10,y= 5;

Console .Wri teLine("x>y:" + (X>y)); Il True

Console .WriteLine("x<y:" +(X<Yy)), Il False

Console .WriteLine("x>=y:" + (X >=Y)); Il True

Console .WriteLine("x<=y:" + (X <=Yy)); Il False

Console .WriteLine("x==y:" + (X ==Y)), Il False

Console .WriteLine("x!=y:" +(x!=y)), Il True
In the example, first we create two variables X and y and we assign them the
values 10 and 5. On the next line we print on the console using the method
#1171 O1T 1 At 7 OE Ot rekiit flra dorkparing the two variables x and y

using the operator >. The returned value is true because X has a greater
value than Y. Similarly, in the next rows the results from the other 5
comparison operators, used to compare the variables X and Yy, are printed.

Assignment Operators

The operator for assigning value to a variable is " =" (the character for
mathematical equation). The syntax used for assigning value is as it follows:

operandl = literal, expression or operand2;

Assignment Operators T Example

Here is an example to show the usage of the assignment operator:

int x= 6
string helloString = "Hello string." ;
int y=x;

In the example we assign value 6 to the variable x. On the second line we
assign a text literal to the variable helloStrin g, and on the third line we
copy the value of the variable X to the variable .

Chapter 3. Operators and Expressions 149

Cascade Assignment

The assignment operator can be used in cascade (more than once in the
same expression). In this case assignments are carried out consecutively from
rightto | eft. Hereds an exampl e:

int x,v, z;
X=y=2z= 25;

On the first line in the example we initialize three variables and on the second
line we assign them the value 25.

The assignment operator in C# is " =", while the comparison
operator is " ==". The exchange of the two operators is a
& common error when we are writing code. Be careful not to
confuse the comparison operator and the assignment
operator as they look very similar.

Compound Assignment Operators

Except the assignment operator there are also compound assignment
operators . They help to reduce the volume of the code by typing two
operations together with an operator: operation and assignment. Compound
operators have the following syntax:

operandl operator = operand2;

The upper expression is like the following:

operandl = operandl operator operand2;

Here is an example of a compound operator for assignment:

int x= 2;
int y= 4

X*=y; [/Sameasx=X*y;
Console .WriteLine(x); /18

The most commonly used compound assignment operators are += (adds value
of operand2 to operandl), - = (subtracts the value of the right operand from

the value of the left one).Other compound assignment operators are *=, /=
and %=

The following example gives a good idea of how the compound assignment
operators wo rk:

150 Fundamentals of Computer Programming with C#

int y= 4;

Console .WriteLine(y *= 2);, 118

int z=y=3; /' y=3 and z=3

Console .WriteLine(2); /13

Console .WriteLine(x |= 1); 17

Console .WriteLine(x += 3), /110

Console .WriteLine(x /= 2);, II5
In the example, first we create the variables X and Yy and assign them values
6 and 4. On the next line we print on the console y, after we have assigned it
a new value using the operator *= and the literal 2.The result of the operation

is 8. Further in the example we apply the other compound assignment
operators and print the result on the console.

Conditional Operator ?:

The conditional operator ?: uses the Boolean value of an expression to
determine which of two other expressions must be calculated and returned as

a result. The operator works on three operands and that is why it is called

ternary operator. The character " ?" is placed between the fi rst and second
operand, and " :" is placed between the second and third operand. The first
operand (or expression) must be Boolean , and the next two operands must
be of the same type , such as numbers or strings.

The operator ?: has the following syntax:

operandl ? operand?2 : operand3

It works like this: if operandl is setto true , the operator returns as a result
operand2 . Otherwise (if operandl is setto false), the operator returns as a
result operand3.

During the execution, the value of the first argumen t is calculated. If it has
value true , then the second (middle) argument is calculated and it is
returned as a result. However, if the calculated result of the first argument is

false , then the third (last) argument is calculated and it is returned as a

re sult.

Conditional ~ Operator "?:" T Example

The following example shows the usage of the operator "
int a= 6
int b= 4;

Console .WriteLine(a> b ? "a>b" : "b<=a"); /la>b

Chapter 3. Operators and Expressions 151

int num=a==b? 1 : -1; //num will have value -1

Other Operators

So far we have examined arithmetic, logical and bitwise operators, the
operator for concatenating strings, also the conditional operator ?:.. Besides
them in C # there are several other operators worth mentioning.

The"." Operator

The access operator "." (dot) is used to access the member fields or
methods of a class or object. Example of usage of point operator:

Console .WriteLine(DateTime.Now); // Prints the date + time

Square Brackets [] Operator

Square brackets [] are used to access elements of an array by index ,
they are the so -called indexer . Indexers are also used for accessing
characters in a string. Example:

int [Jarr={ 1, 2, 3}
Console .WriteLine(arr[), /1
string str="Hello" ;

Console .WriteLine(str[1]); /e

Brackets () Operator

Brackets () are used to override the priority of execution of expressions
and operators. We have already seen how the brackets work.

Type Conversion Operator

The operator for type conversion (type) is used to convert a variable from
one type to another. We will examine it in details in the section " Type
Conversion ".

Operator "as"

The operator as also is used for type conversion but invalid conversion
returns null, not an exception.

Operator "new"

The new operator is used to create and initialize new objects . We will

examine it in details in the chapter " Creating and Using Objects

152 Fundamentals of Computer Programming with C#

Operator "is"

The is operator is used to check whether an object is compatible with a given
type (check object's type).

Operator "?7?"

The operator ?7? is similar to the conditional operator ?:. The difference is that
it is placed between two operands and returns the left operand only if its
value is no t null, otherwise it returns the right operand. Example:

int 2a= 5;

Console .WriteLine(a ?? -1); /15

string name = null ;

Console .WriteLine(name ?? "(no name)"); // (no name)

Other Operators I Examples

Here is an example that shows the operators we just explained:
int a= 6
int b= 3;
Console .WriteLine(a + b / 2); 7
Console .WriteLine((a + b) / 2); N4

string s= "Beer";
Console .WriteLine(s is string); Il True

string notNullString = s;

string nullString = null ;
Console .WriteLine(nullString ?? "Unspecified"); // Unspecified
Console .WriteLine(notNullString ?? "Specified"); // Beer

Type Conversion and Casting

Generally, operators work over arguments with the same data type. However,
C# has a wide variety of data types from which we can choose the most
appropriate for a particular purpose. To perform an operation on variables of

two different data types we need to convert both to the same data type. Type

conversion (typecasting)canbe explicit and implicit

All expressions in C# have a type. This type can derive from the expression
structure and the types, variables and literals used in it. It is possible to wri

an expression which type is inappropriate for the current context. In some
cases this will lead to a compilation error, but in other cases the context can
get a type that is similar or related to the type of the expression. In this case
the program perf orms a hidden type conversion

te

Chapter 3. Operators and Expressions 153

Specific conversion from type Stotype T allows the expression of type Sto be

treated as an expression of type T during the execution of the program. In
some cases this will require a validation of the transformation. Here are some
examples:

- Conversion of type object to type string will require verification at
runtime to ensure that the value is really an instance of type string

- Conversion from string to object does not require any verification. The
type string is an inheritor of the type object and can be converted to
its base class without a risk of an error or data loss. We shall examine
inheritance in details in the chapter "Object -Oriented Programmin g
Principles ".

- Conversion of type int to long can be made without verification during
the execution, because there is no risk of data loss since the set of
values of type int is a subset of values of type long .

- Conversion from type double to long requires conversion of 64 -bit
floating -point value to 64 -bit integer. Depending on the value, data loss
is possible and therefore it is necessary to convert the types explicitly

In C# not all types can be converted to all other types, but only to some of
them. For convenience, we shall group some of the possible transformations
in C# according to their type into three categories:

- implicit conversion ;
- explicit conversion

- conversionto or from string ;

Implicit Type Conversion

Implicit (hidden) type conversion is pos sible only when there is no risk of data
loss during the conversion, i.e. when converting from a lower range type to a

larger range (e.g. from int to long). To make an implicit conversion it is not
necessary to use any operator and therefore such transform ation is called
implicit. The implicit conversion is done automatically by the compiler when

you assign a value with lower range to a variable with larger range or if the
expression has several types with different ranges. In such case the
conversion is ex ecuted into the type with the highest range.

Implicit Type Conversion T Examples

Here is an example of implicit type conversion:

int myint=5;

Console .WriteLine(myInt); 115
long myLong = myint;

Console .WriteLine(myLong); I1'5

154 Fundamentals of Computer Programming with C#

Console .WriteLine(myLong + myint); /1 10
In the example we create a variable mylint of type int and assign it the value
5. After that we create a variable myLongof type long and assign it the value

contained in mylnt . The value stored in myLong is automatically converted
from type int totype long . Finally, we output the result from adding the two
variables. Because the variables are from different types they are
automatically converted to the type with the greater range, i.e. to type long
and the result that is printed on the console is long again. Indeed, the given
parameter to the method Console.WriteLine() is of type long, but inside
the method it will be converted again, this time to type string , so it can be
printed on the console. This transformation is performed by the method
Long.ToString()
Possible Implicit Conversions
Here are some possible implicit conversions of primitive data types in C#:

- shyte Y short , int , long, float , double, decimal ;

- byte Y short, ushort, int, uint , long, ulong, float , double,
decimal ;

- short Y int , long, float , double, decimal ;
- ushort Y int , uint , long, ulong, float , double, decimal ;

- char Y wushort , int , uint , long, ulong, float , double, decimal
(although char is a character type in some cases it may be regarded as
a number and have a numeric type of behavior, it can even participate
in numeric expressions);

- uint Y long, ulong, float , double, decimal ;
- int Y long, float , double, decimal ;

- long Y float , double, decimal ;

- ulong Y float , double, decimal ;

- float Y double.

There is no data loss when converting types of smaller range to types

with a larger range . The numerical value remains the same after
conversion. There are a few exceptions. When you convert type int to type
float (32 -bit values), the difference is that int uses all bits for a whole

number, whereas float has a part of bits used for representation of a
fractional part. Hence, loss of precision is possible because of rounding when
conversion from int to float is made . The same applies for the conversion of
64 -bit long to 64 -bit double .

Chapter 3. Operators and Expressions 155

Explicit Type Conversion

Explicit type conversion is used whenever there is a possibility of data loss.

When converting floating point type to integer type there is always a loss of
data coming from the elimination of the fractional part and an explicit
conversion s obligatory (e.g. double to long). To make such a conversion it

is necessary to use the operator for data conversion (type). There may also
be data loss when con verting a type with a wider range to type with a
narrower one (double to float or long to int).

Explicit Type Conversion T Example

The following example illustrates the use of explicit type conversion and data
loss that may occur in some cases:

double myDable = 5.1d;
Console .WriteLine(myDouble); 115.1

long myLong = (long)myDouble;
Console .WriteLine(myLong); I1'5

myDouble = 5e9d; //5* 1079
Console .WriteLine(myDouble); /1 5000000000

int myint=(int)myDouble;
Console .WriteLine(myint); Il -2147483648
Console .WriteLine(int .MinValue); /| -2147483648

In the first line of the example we assign a value 5.1 to the variable

myDouble. After we convert (explicitly) to type long using the operator
(long) and print on the console the variable myLongwe see that the variable
has lost its fractional part, because long is an integer. Then we assign to the
real double precision variable myDouble the value 5 billion. Finally, we convert
myDouble to int by the operator (int) and print variable mylnt . The r esult is
the same like when we print int.MinValue because myDouble contains a
value bigger than the range of int .

It is not always possible to predict what the value of a
& variable will be after its scope overflows! Therefore, use

sufficiently large types and be careful when switching to a
"smaller” type.

Data Loss during Type Conversion

We will give an example for data loss during type conversion:

long myLong = long .MaxValue;

156 Fundamentals of Computer Programming with C#

int myint=(int)myLong;

Console .WriteLine(myLong); 1/ 9223372036854775807
Console .WriteLine(myInt); N -1

The type conversion operator may also be used in case of an intentional
implicit conversion. This contributes to the readability of code, reducing the
chance for errors and it is considered good practice by many programmers.

Here are some more examples for type conversions:

float heightinMeters = 1.74f ; [/ Explicit conversion
double maxHeight = heightinMeters; /I Implicit

double minHeight = (double)heightinMeters; Il Explicit
float actualHeight=(float)maxHeight; // Explicit

float maxHeightFloat = maxHeight; /I Compilation error!

In the example above at the last line we have an expression that will generate

a compilation error. This is because we try implicitly to convert type double to
float , which can cause data loss. C# is a strongly typed programming
language and does not allow such appropriation of values.

Forcing Overflow Exceptions during Casting

Sometimes it is convenient, instead of getting the wrong result, when a type
overflows during switching from larger to smaller type, to get notification of

the problem. This is done by the keyword checked which includes a check for
overflow in integer types

double d=5e9d; //5*10"9

Console .WriteLine(d); // 5000000000

int i= checked((int)d); // System.OverflowException
Console .WriteLine(i);

During the execution of the code fragment above an exception (i.e.

notification of an error) of type OverflowException is raised. More
information about the exceptions and the methods to catch and handle them
can be found in the chapter " Exception Handling

Possible Explicit Conversions

The explicit conversions between numeral types in C# are possible between
any couple among the following types:

sbyte , byte , short , ushort , char, int , uint , long, ulong, float , double ,
decimal

Chapter 3. Operators and Expressions 157

In these conversions data can be lost, like data about the number size or
information about its precision.

Notice that conversion to or from string is not possible through typecasting.

Conversion to String

If it is necessary we can convert any type of data, including the value null ,to
string . The conversion of strings is done automatically whenever you use the
concatenation operator (+) and one of the arguments is not of type string. In

this case the argument is converted to a string and the operator returns a
new string representing the concatenation of the two strings.

Another way to convert different objects to type string is to call the method
ToString() of the variable or the value. | t is valid for all data types in .NET
Framework. Even calling ~ 3.ToString() s fully valid in C# and the result will
return the string "3" .

Conversion to String I Example

Letdés take a |l ook on several exampl es f
string:

int a= 5;

int b= 7;

string sum= "Sum=" + (a+ b);

Console .WriteLine(sum);

String incorrect = "Sum=" +a+b;
Console .WriteLine(incorrect);

Console .WriteLine(
"Perimeter =" + 2 *(@a+b)+ ". Area =" +(@*h)+ ")

The result from the example is as follows:

Sum =12
Sum =57
Perimeter = 24. Area = 35.

From the results it is obvious, that concatenating a number to a character

string returns in result the string followed by the text representation of the

number. Note that the " +" for concatenating strings can cause unpleasant
effects on the addition of numbers, because it has equal priority with the
operator " +" for mathematical addition. Unless the priorities of the operations

are changed by placing the brackets, they will alway s be executed from left to
right.

or

158 Fundamentals of Computer Programming with C#

More details about converting from and to string we will look at the chapter
"Console Input and Qutput "

Expressions

Much of the programbs wor k xpressions.h Expressidn ul at |
are sequences of operators, literals and variables that are calculated to

a value of some type (number, string, object or other type). Here are some

examples of expressions:

int r=(150-20)/ 2 + 5;

/I Expression for calculating the surface of the circle
double surface= Math.Pl*r*r;

/I Expression for calculating the perimeter of the circle
double perimeter= 2 * Math.Pl *r;

Console .WriteLine(r);
Console .WriteLine(surface);
Console .WriteLine(perimeter);

In the example three expressions are defined. The first expression calculates
the radius of a circle. The second calculates the area of a circle, and the last
one finds the perimeter. Here is the result from the fragment above:

70
15393.80400259
439.822971502571

Side Effects of Expressions

The calculation of the expression can have side effects , because the
expression can contain embedded assignment operators, can cause increasing

or decreasing of the value and calling methods. Here is an example of such a

side effect:

int a= b5;
int b=++a;

Console .WriteLine(a); 116
Console .WriteLine(b); 116

Chapter 3. Operators and Expressions 159

Expressions, Data Types and Operator Priorities

When writing expressions , the data types and the behavior of the used
operators should be considered. Ignoring this can lead to unexpected results.
Here are some simple examples:

/I First example
double d=1/2;
Console .WriteLine(d); /10, not 0.5

/I Second example
double half=(double)l/2;
Console .WriteLine(half); 110.5

In the first example, an expression divides two integers (written this way, 1

and two are integers) and assigns the result to a variable of type double . The
result may be unexpected for some people, b ut that is because they are
ignoring the fact that in this case the operator " /" works over integers and the
result is an integer obtained by cutting the fractional part.

The second example shows that if we want to do division with fractions in the

result, it is necessary to convert to float or double at least one of the
operands. In this scenario the division is no longer integer and the result is

correct.

Division by Zero

Another interesting example is division by 0. Most programmers think that
division b y 0 is an invalid operation and causes an error at runtime
(exception) but this is actually true only for integer division by 0. Here is an
example, which shows that fractional division by O is Infinity or NaN

int num=1;
double denum =0; // The value is 0.0 (real number)
int zerolnt=(int)denum; // The value is O (integer number)

Console .WriteLine(num / denum); /I Infinity

Console .WriteLine(denum / denum); // NaN

Console .WriteLine(zerolnt / zerolint); // DivideByZeroException
Using Brackets to Make t he Code Clear
When working with expressions it is important to use brackets whenever

there is the slightest doubt about the priorities of the operations. Here is an
example that shows how useful the brackets are:

double incorrect = (double)((1 + 2) / 4);
Console .WriteLine(incorrect); /10

160 Fundamentals of Computer Programming with C#

double correct=((double)(1 + 2))/4;

Console .WriteLine(correct); 110.75
Console .WriteLine("2+3=" +2+3); I12+3=23
Console .WriteLing("2+3=" +(2 + 3)); I/2+3=5
Exercises
1. Write an expression that checks whether an integer is odd or even
2. Write a Boolean expression that checks whether a given integer is
divisible by both 5 and 7 , Without a remainder.
3. Write an expression that looks for a given integer if its third digit (righ t
to left) is 7.
4. Write an expression that checks whether the third bit in a given integer
is1orO.
5. Write an expression that calculates the area of a trapezoid by given

sides a, b and height h.

6. Write a program that prints on the console the perimeter and the area
of a rectangle by given side and height entered by the user.

7. The gravitational field of the Moon is approximately 17% of that on the
Earth. Write a program that calculates the weight of a man on the
moon by a given weight on the Earth.

8. Write an ex pression that checks for a given point {x, y} if it is within
the circle K({0, 0}, R=5) . Explanation: the point {0, O} is the center of
the circle and 5 is the radius.

9. Write an expression that checks for given point {x, y} if it is within the
circle K({0, 0}, R=5) and out of the rectangle [{-1, 1}, {5, 5} 1.
Clarification: for the rectangle the lower left and the upper right corners
are given.

10. Write a program that takes as input a four -digit number in format abcd
(e.g. 2011) and performs the following action S:

- Calculates the sum of the digits (in our example 2+0+1+1 = 4).

- Prints on the console the number in reversed order:; dcba (in our
example 1102).

- Puts the last digit in the first position: dabc (in our example 1201).

- Exchanges the second and the third digits: acbhd (in our example
2101).

Chapter 3. Operators and Expressions 161

11.

12.

13.

14.

15.

16.

We are given a number n and a position p. Write a sequence of

operations that prints the value of the bit on the position p in the
number (0O or 1). Example: n=35, p=5 -> 1. Another exam ple: n=35,
p=6 ->0.

Write a Boolean expression that checks if the bit on position p in the
integer V has the value 1. Example v=5, p=1 -> false .

We are given the number n, the value Vv (v =0 or 1) and the position p.
write a sequence of operations that changes the value of n, so the bit on
the position p has the value of v. Example: n=35, p=5, v=0 -> n=3.
Another example: n=35, p=2, v=1 ->n=39.

Write a program that checks if a given number nN@< n<100)is a
prime number (i.e. itis divisible without remainder only to itself and 1).

* Write a program that exchanges the values of the bits on positions
3, 4 and 5 with bits on positions 24, 25 and 26 of a given 32 - bit unsigned
integer.

* Write a program that exchanges bhits { p, p+1, -8B, withpbitsk {q,

g+1, ¢é,-1}qofrakgiven 32 -bit unsigned integer.

Solutions and Guidelines

1.

Take the remainder of dividing the number by 2 and check ifitis 0 or
1 (respectively the number is odd or even). Use %operator to calculat e
the remainder of integer division.

Use a logical "AND" (&& operator) and the remainder operation % in
division. You can also solve the problem by only one test: the division of
35 (think why).

Divide the number by 100 and save it in a new variable, which then
divide by 10 and take the remainder. The remainder of the division by 10
is the third digit of the original number. Check if it is equal to 7.

Use bitwise "AND" on the current number and the number that has 1
only in the third bit (i.e. number 8, if bits start counting from 0). If the
returned result is different from 0 the third bit is 1:

int num = 25;
bool bit3 = (num & 8) 1= 0;

The formula for trapezoid surface is: S=(a+b)*h/2

Search the Internet for how to read integers from the console and use
the formula for rectangle area calculation. If you have difficulties see
instructions on the next problem.

Use the following code to read the number from the console

162 Fundamentals of Computer Programming with C#

Console .Write("Enter number: ");
int number = Convert .ToInt32(Console .ReadLine());

Then multiply by 0.17 and print it.

8. Usethe Pythagorean Theorem a2 + b2 = ¢2 The point is inside the circle
when (x*x) + (y*y) 05*5.

9. Use the code from the previous task and add a check for the
rectangle . A point is inside a rectang| e with walls parallel to the axes,
when in the same time it is right of the left wall, left of the right wall,
down from the top wall and above the bottom wall.

10. To get the individual digits of the number you can divide by 10 and
take the remainder of the division by 10:

int a=num % 10;

int b= (num/10) % 10;
int ¢ =(num/100) % 10;
int d=(num/1000) % 10;

11. Use bitwise operations

int n= 35; //00100011

int p= 6;

int i= 1; //00000001

int mask =i<<p; /[Move the 1 - st bit left by p positions
/l'If i & mask are positive then the p -thbitofnis 1
Console .WriteLine((n & mask) != 0?1: 0)

12. The task is similar to the previous one.

13. Use hitwise operations by analogy with the previous two problems. You
can reset the bit at position p in the number n as follows:

n=né&(~(1<<p));

You can set bits inthe unit at position p in the number n as follows:

n=n|(l<<p)

Think how you can combine the above two hints.

14. Read about loops in the Internet or in the chapterUsééaloopps o
and check the number for divisibility by all integers from 1 to the square
root of the number. Since n < 100 , you ca n find in advance all prime
numbers from 1 to 100 and checks the input over them. The prime

Chapter 3. Operators and Expressions 163

numbers in the range [1é6100] ar e: 2, 3, 5,
31, 37,41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

Use 3 times a combination of ge tting and setting a bit at a given
position . The first exchange is given below:

int bit3 = (num >> 3) & 1;

int bit24 = (hum >> 24) & 1,

num = num & (~(1 << 24)) | (bit3 << 24),
num = num & (~(1 << 3)) | (bit24 << 3);

Extend the solution of the previous problem to perform a sequence of
bit exchanges in a loop .Read aboutloopsin t he chapter fALoop

ChapterCohsol e
|l nput and Out pu

In This Chapter

In this chapter we will get familiar with the console as atool for data input
and output . We will explain what it is, when and how to use it, and how most
programming languages access the console. We will get familiar with some of

the features in C# for user interaction . reading text and numbers from the
console and printing text and numbers . We will also examine the main
streams for input -output operations Console.lIn , Console.Out and
Console.Error , the Console and the usage of format strings for printing

data in various formats.

What | s the Console?

The Console is a window of the operating system through which users ¢ an
interact with system programs of the operating system or with other console
applications. The interaction consists of text input from the standard input
(usually keyboard) or text display on the standard output (usually on the
computer screen). These ac tions are also known as input - output
operations . The text written on the console brings some information and is a
sequence of characters sent by one or more programs.

For each console application the operating system connects input and output
devices. By d efault these are the keyboard and the screen but they can be
redirected to a file or other devices.

Communication between the User and the Program

A lot of programs communicate in some way with the user. This is necessary

for the user in order to give inst ructions to them. Modern communication
methods are many and various: they can be through graphical or web -
based interface , console or others. As we mentioned one of the tools for
communication between programs and users is the console, which s
becoming le ss and less used. This is because the modern user interface
concepts are more convenient and intuitive to work with, from a user 0s
perspective.

166 Fundamentals of Computer Programming with C#

When to Use the Console?

In some cases the console remains an irreplaceable tool for communication

with the user . One of these cases is when writing small and simple
programs where it is necessary to focus the attention on the specific problem

to be solved, rather than the elegant representation of the result to the user.

Then a simple solution is used for entering or printing a result, such as input -
output console. Another use case is when we want to test a small piece of

code for a larger application. Due to simplicity of the operation of the console
application we can isolate this part of the code easily and comfo rtably without
having to go through a complex user interface and a number of screens to get

to the desired code for testing.

How to Launch the Console?

Each operating system has its own way to launch the console. On Windows for
example, it can be done in t he following way:

Start -> (All) Programs -> Accessories -> Command Prompt
After starting the console a black screen (this color can be changed) like th e
following should appear:
) Command Prompt - o IEM |

icroszoft Windows [Uersion 6.2.92001
Cc>» 20112 Microsoft Corporation. All rights rezerved.

sslzerssnakow >

When starting the console the home directory of the current user (in this ¢ ase
the username is nakov) is used as a current directory and this is displayed as
a guide for the user.

Console can be launched through pressing the Start button

and typing "cmd in the search box and pressing [Enter] (on
& Windows Vista, Windows 7 and later). For Windows XP, go

through the sequence Start -> Run é> type in "cmd and
press [Enter].

For simplified visualization of the results from now on in this chapter instead
of a console screenshot we will use the form:

Results from console

Chapter 4. Console Input and Output 167

More about Consoles

The system console is the black window shown above which displays text
information . It can display text strings and has a cursor, which moves to the
right after each character is printed. After the cursor passes through the last

column of the console (usually it has 80 columns), it moves to the beginning

of the next line. If the cursor passes through the last line, the console scrolls

its content upwards and shows a new empty line below the last line.

Programs in Windows can be console -based, desktop -based, Web -based and
other. The console -based programs use the console for their input and
output. The desktop -based programs use graphical u ser interface (GUI). The
Web-based programs have Web -based user interface. In this book we will
write console -based programs almost all the time, so their input will be read

from the keyboard and their output will be printed in the console.

Some console -based programs expect the users to enter text, numbers and
other data, and this is usually done through the keyboard

The console in Windows is often associated with the system command
interpreter , also called the * Command Prompt " or " shell " or which is a
console -based program in the operating system, which provides access to
system commands as well as a wide range of programs, which are part of the

operating system or are additionally installed to it.

The word " shell " means "wrap" and has a meaning of a wrap per between the
user and the inside of the operating system.

The so called operating system "shells" can be split into two main categories
according to the type of interface they can provide to the operating system:

- CLI T Command Line Interface i is a cons ole for commands (such as
cmd.exe in Windows and bash in Linux).

- GUI T Graphical User Interface T is a graphical work environment (such
as Windows Explorer).

For both types the main purpose of the shell is to run other programs with
which the user works although most of the interpreters also support some
advanced features such as the opportunity to examine the content of
directories with files.

Each operating system has its own command interpreter that
has its own commands.

For example, when starting Windows console, we run the so -called Windows
command interpreter in it (cmd.exe) that executes system programs and
commands in interactive mode. For example, the command dir shows the

files in the current directory:

168 Fundamentals of Computer Programming with C#

tsdir
Uolume Serdial Humher is

Directory of C:o

0 File<s>
? Dirisd

=N Command Prompt

Uolume in drive C is Windows 2003

CCAB-5301

A0.02.2013 0O4:47 <DIR> inetpub
17.03.2013 23:47 <DIR> IntroCSharp
24 _02_.2013 12:55 <DIR> Program Files

13.03.2013 23:57 <DIR> Program Files (xBG62>
A7.03.2013 22:49 <DIR> Trash

2. .03.2013 01:21 <DIR> Uzers

13.03.2013 0O8:00 <DIR> Windows

M hytes
17 574 104 064 bytes free

Basic Cons ole Commands

We will take a look at some basic commands in the Windows standard
command prompt , which is useful for finding and launching programs.

Windows Console Commands

The command interpreter running in the console is also called "

Prompt" or * MSDOS Prompt' (in older versions of Windows). We will take a
look at some basic commands for this interpreter:

Command

Command

Description

dir

Displays the content of the current directory.

cd <directory name>

Changes the current directory.

mkdir <directory name>

Creates a new directory in the current one.

rmdir <directory name>

Deletes an existing directory.

type <file name>

Prints file content.

copy <src file>
<destination file>

Copies one file into another.

Here is an example of multiple commands executed in the Windows command

shel | . The resul

t of the commandsédé execut.i

C:\ Documents and Settings

C:\ Documents and Settings

\ Userl>cd "D: \ Project2009 \ C# Book"

\ User1>D:

or

Chapter 4. Console Input and Output 169

D:\ Project2008 \ C# Book>dir
Volume in drive D has no label.
Volume Serial Number is B43A - B0OD6

Directory of D: \ Project2009 \ C# Book

26.12.2009 12:24 <DIR>
26.12.2009 12:24 <DIR>

26.12.2009 12:23 537 600 Chapter -4- Console - Input -
Output.doc
26.12.2009 12:23 < DIR> Test Folder
26.12.2009 12:24 0 Test.txt
2 File(s) 537 600 bytes

3 Dir(s) 24 154 062 848 bytes free

D:\ Project2009 \ C# Book>

Standard Input - Output

The standard input -output also known as " Standard I/O " is a system input -
output mechanism created since the UNIX operating systems was developed

many years ago. Special peripheral devices for input and output are used,

through which data can be input and output.

When the program is in mode of accep ting information and expects action by
the user, there is a blinking cursor on the console showing that the system is
waiting for command entering.

Later we will see how we can write C# programs that expect input data to be
entered from the console.

Printi ng to the Console

In most programming languages printing and reading the information from
the console is implemented in similar ways and the most of the solutions are

based on the concept of " standard input " and " standard output
Standard Input and Standa rd Output
The operating system is required to define standard input - output

mechanisms for user interaction. When starting a given console program,
system code running at the initialization of the program is responsible for
opening (closing) of streams to the allocated by the operating system
mechanisms for input -output. This system code in itializes the program
abstraction for user interaction embedded in the respective programming
language. In this way, the application started can automatically read the user

170 Fundamentals of Computer Programming with C#

input from the standard input stream (in C# this is Console.In), print
information on the standard output stream (in C#thisis Console.Out) and
can signal for problem situations in the standard error stream (in C# this is

Console.Error).

The concept of the streams will be later examined in details. For now we will
focus on the theoretical basis related to the program input and output in C#.

Devices for Console Input and Output

Besides the keyboard an application input can come from many other places,
such as file, microphone, barcode reader and others. The output of a
program ma Yy be on the console (on the screen), as well as in a file or another

output device, such as a printer:

[Keyboard .
Printing to the

Program screen

L 4

We will show a basic example that illustrates text printing to the console
through the abstraction for access ing the standard input and standard output
provided to us by C#:

Console .Out.WriteLine("Hello World");

The result of the above code execution would be the following:

Hello World

Console.Out Stream

System.Console class has different properties and methods (classes are
considered in details in the chapter " Creating and Using Objects ") which are
used to read and display text on the console as well as its formatting. Among

them there are three properties that make impression and they are related to

data entering and displaying, namely the Console.Out , Console.In and
Console.Error . They p rovide access to the standard streams for printing on

the console, for reading from the console and to the error messages reporting

stream accordingly. Although we could use them directly, the other methods

of System.Console give us the convenience for wor king with input -output
console operations and actually most often these properties are ignored.
However it is good to remember that this part of the console functionality is

working on these streams. If needed, we can replace the default input /
output/ e rror streams at runtime by using the methods Console.SetOut(A),
Console.Setin(A) and Console.SetError(A) respectively .

Chapter 4. Console Input and Output 171

Now we will examine the most commonly used methods for text printing on
the console.

Using Consol e. Wr iahdeC@&nsol e. WritelLine

Work with these methods is easy because they can print all the basic types
(string, numeric and primitive types).

Here are some examples of printing various types of data:

// Print String
Console .WriteLine("Hello World");

/I Print int
Console .WriteLine(5);

/I Print double
Console .WriteLine(3.14159265358979);

The result of this code execution looks like this:

Hello World
5
3. 14159265358979

Asweseebyusing #1 1 OT 1 At 7 OE G4 poksibldts pkirk various data
types because for each type there is a predefined version of the
method 7 OE OA, E inke Kdénsole class.

The difference between 7 OEOA mnis7 OEOA, Eishatind 7 OEOAs A &

method prints on the console what it is pr ovided between the parentheses but
does nothing in addition while the method I OE OA, E imdassAdisectly
Awrite lined. This mef IOED Adudaises buhia additiorh e

goes to a new line. In fact the method does not print a new line but simply
putsa icommando f or aweov to thg position where the new line
starts (this command consists of the character \'r followed by \n).

Here is an example, which illustrates the difference between 7 OEOAand &
70EOQOA, ET As A%

Console .WriteLine("l love");
Console .Write("this");
Console .Write("Book!");

The output of this example is:

| love
this Book!

172 Fundamentals of Computer Programming with C#

We natice that the output of this example is printed on two lines, even though

the code is on three. This happens because on the first line of code we use

WIE OA, ET nhihiplints " | love " and then goes to a new line. In the next
two lines of the code uses the Write 5 A #nethod, which prints without going
on a new line and thus the words " this " and " Book!" remain on the same
line.

Concatenation of Strings

In general C# does not allow the use of operators over string objects. The

only exception to this rule is the addition operation (+) which concatenates
(joins) two strings and returns as result a new string. This allows chaining

of concatenate (+) operations one after another in a sequence. The next
example represents concatenation of three strings.

string age = "twenty six"
string text= "Heis" +age+ "yearsold." ;
Console .WriteLine(text);

The result of this code execution is again a string:

Heis twenty six years old.

Concatenation of Mixed Types

What happens when we want to print larger and more complex text, which
consists of different types? Until nhow we used versions of the method

7 OE OA, E o= spekcific type. Is it necessary when we want to print
different types at once to use different versions of the method 70EOA, ET A
for each of these types? The answer to thi
can unite text and other data (for instance, numeric) by using the " +"
operator. The followi ng example is like the previous but in it the years (age)

are from integer type:

int age = 26;
string text= "Heis" +age+ "yearsold." ;
Console .WriteLine(text);

In the example is concatenation and printing on the screen performed. The
result of the example is the following:

He is 26 years old.

On the second line of the example code we see that a concatenation of the

string " He is " and the integer type " age" is performed. We are trying to
combine two different types . This is possible because of the presence of
the following important rule.

5
S

Chapter 4. Console Input and Output 173

When a string is involved in concatenation with any other
type the result is always a string.

From the rule it is clear that the result of "Heis" + age is again a string and
then the result is added to the last part of the expression " years old." . So
after calling a chain of + operators ultimately the result is a string and thus

the string version of the method 7 O0EOA, Eishwked

For short the abo ve example can be written as follows:

int age = 26;
Console .WriteLine ("Heis" +age+ "yearsold.");

Some Features of String Concatenation

There are some interesting situations with concatenation (addition) of strings
that you need to know and be careful about because they lead to errors. The
following example represents a surprising behavior of the code:

string s= "Four:" +2+2;
Console .WriteLine(s);
/I Four: 22

string sl1= "Four:" +(2+2);
Console .WriteLine(s1);
/l Four: 4

As seen from t he exampl e t he operatorso executi
"Operator and Expressions ") is of great importance! In our example first the

concatenation of " Four: " to " 2" is performed and the result of the

operation is string . After that, another concatenation with the second

number is performed and the obtained unexpected result is " Four: 22 "
instead of the expected " Four: 4 ". This is because the operations are

performed from left to right and in this scen ario a string participates in each

of them.

In order to avoid this unpleasant situation we can use parentheses that will
change the order of operatorsdéd execution ca
result. Parentheses are operators with highest priority and make the

execution of the operation "addition" of the two numbers happen before the
concatenation with the string on the left. Thus first the addition of the two
numbers is done and then they are concatenated with the string.

This mistake is very common f or beginner programmers because they do not
consider that string concatenation is performed from left to right because the
addition of numbers is of the same priority than as concatenation.

174 Fundamentals of Computer Programming with C#

parentheses to specify the correct order of operations.

2 When you concatenate strings and also sum numbers, use
Otherwise they are executed from left to right.

Formatted Output with Write(€) and WriteLine(€)

For printing long and elaborate series of elements, special options (also
known as overloads) of the me thods 7 OE OAand Z OE O A, E thakesbdes
introduced. These options have a completely different concept than the
standard methods for printing in C#. Their main idea is to adopt a special

string, formatted with special formatting characters and list of val ues, which
shoul d be substituted i n pl ace of it he
7 O E O Ais defined in the standard C# libraries:

public static void Write(string format, object argO,

object argl, object arg2, object arg3, A%

Formatted Output T Examples

The following example prints twice the same thing but in different ways:

string str= "Hello World!" ;

/I Print (the normal way)
Console .Write(str);

/I Print (through formatting string)
Console .Write("{0}" , str);

The result of this example execution is:

Hello World!Hello World!

We see as a result " Hello, World! " twice on one line. This is because there
is no printing of a new line in the program.

First we print the string in a well -known way in order to see the difference

with the other approach. The second printing is the formatting 7 0OEOAad &
the first argument is the format string. In this case {0} means to put the first
argument after the for ~ matting string in ~ the place of {0} . The expression {0}

is called a placeholder , i.e. a place that will be replaced by a specific value

while printing.

The next example will further explain th is concept:

string name = "John" ;
int age =18;

Chapter 4. Console Input and Output 175

string town = "Seattle" ;
Console .Write(
"{0} is {1} years old from {2}! \'n", name, age, town);

The result of this example execution is as follows:

John is 18 years old from Seattle!

From the signature of this 7 O E O A gekidn we saw that the first argument is

the format string. Following is a series of arguments, which are placed where
we have a number enclosed in curly brackets. The expression {0} means to
put in its place the first of the arguments submitted after the format string
(in this case nam@. Next is {1} which means to replace with the second of

the arguments (age). The last placeholder is {2} , which means to replace with
the next parameter (town). Last is \n, which is a special character that
indicates movin g to a new line.

It is appropriate to mention that actually the new line command on Windows
is \r\n, and on Unix -based operating systems 7 \'n. When working with
the console it does not matter that we use only \ n because the standard input

stream considers \ n as \ r\ n but if we write into a file, for example, using only
\ n is wrong (on Windows).

Composite Formatting

The methods for formatted output of the Console class use the so -called
composite formatting feature . The composite formatting is used for
consol e printing as well as in certain operations with strings. We examined the
composite formatting in the simplest of its kind in the previous example but it

has significantly bigger potential than what we have seen so far. Basically the
composite formatting u ses two things: composite formatting string and
series of arguments , Which are replaced in certain places in the string.

Composite Formatting String

The composite formatting string is a mixture of normal text and formatting
items . In formatting the normal text remains the same as in the string and
the places of formatting items are replaced by the values of the respective
arguments printed according to certain rules. These rules are specified using

the syntax of formatting items.

Formatting Items

The format ting items provide the possibility for powerful control over the
displayed value and therefore can obtain very complicated form. The following
formation scheme represents the general syntax of formatting items

{index[,alignment][:formatString]}

176 Fundamentals of Computer Programming with C#

As we not ice the formatting item begins with an opening curly bracket { and
ends with a closing curly bracket }. The content between the brackets is
divided into three components of which only the index component is
mandatory. Now we will examine each of them separ ately.

Index Component

The index component is an integer and indicates the position of the
argument from the argument list. The first argument is indicated by " 0", the

second by " 1", etc. The composite formatting string allows having multiple
formatting it ems that relate to one and same argument. In this case index
component of these items is one and the same number. There is no restriction

on t he sequence of argument sé calling. Fo

following formatting string:

Console .Write(
"{1} is {0} years old from { 3" ,18, "John", 0, "Seattle");

In cases where some of the arguments are not referenced by any of the
formatting items, those arguments are simply ignored and do not play a role.
However it is good to remove such arguments from the list of arguments
because they introduce unnecessary complexity and may lead to confusion.

In the opposite case , when a formatting item refers an argument that does

not exist in the list of arguments , an exception is thrown . This may occur,
for example, if we have formatting placeholder {4} and we submitted a list of
only two arguments.

Alignment Component

The alignment componentis optional and indicates the string alignment Lt
is a positive or negative integer and the positive values indicate alignment
to the right and the negative T alignment to the left. The value of the number

indicates the number of positions in which to align the number. If the string
we want to represe nt has a length greater than or equal to the value of the
number, then this number is ignored. If it is less, however, the unfilled
positions are filled in with spaces.

For example, | et 6 ghe following formatting:

Console .WriteLine("{0,6}" , 123);
Consde .WriteLine("{0,6}" , 1234);
Console .WriteLine("{0,6}" , 12);
Console .Write("{0, -6}",123);
Console .WriteLine("-- end");

It w ill output the following result:

123

Chapter 4. Console Input and Output 177

1234
12
123 -- end

If we decide to use the alignment component, we must separate it from the
index component by a comma as it is done in the example above.
The "formatString" Component

This component specifies the specific formatting of the string. It varies
depending on the type of argument. There are three main types of
formatString components:

- for numerical types of arguments
- for arguments of type date (DateTime)

- for arguments of type enumeration (listed types)

Format String Components for Numbers

This type formatString component has two subtypes: standard -defined
formats and user -defined formats (custom format strings).

Standard Formats for Numbers

These formats are defined by one of several format specifiers , Which are
letters with particular importance. After the format specifier there can be a

positive integer called precision , which has a different meaning for the
different specifiers. When it affects the number of decimal places after the

decimal point, the result is rounded. The following table describes specifiers

and their precision meaning:

Specifier Description

Indicates the currency and the result will be displayed

"C" or e along with the currency sign
(for example, English). The precision indicates the
number of decimal places after the decimal point.
An integer number . The precision indicates the

"D" or "d" minimum number of characters for representing the
string and, if necessary, zeroes are supplemented in the
beginning.

"E" or "e" Exponential notation . The precision indicates the
number of places after the decimal point.

"E" or " Integer or decimal number . The precision indicates
the number of signs after the decimal point.

178 Fundamentals of Computer Programming with C#

Equivalent to "F" but represents also the corresponding
separator for thousands, millions, etc. (for example, in

"N" or "n" the English language often the number " 1000" is
represented as " 1,000" 7 with comma between the
number 1 and the zeroes).

Percentage: it w ill multiply the number by 100 and will
"P" or "p" display the percent character upfront . The precision
indicates the number of signs after the decimal point.

Displays the number in hexadecimal numeral system.
It works only for integer numbers. The precision
"X"or"X" indicates minimum numbers of signs to display the
string as the missing ones are supplemented with zeroes

at the beginning.

Part of the formatting is determined by the current fisettingst ur e o
which are taken by default from the regional settings of the operating system.

"The cultures” are set of rules that are valid for a given language or a given

country and that indicate which character is to be used as decimal separator,

how the cu rrency is displayed, etc. For example, for the Japanese "culture"

the currency is displayed by adding " " after the amount, while for the

American "culture", the character "$" is displayed before the amount. For
Bulgarian currency is suffixed by" 39"

St andard Formats for Numbers T Example

Letd see a few examples of usage of the specifiers represented in the table
above . In the code below we assume the regional settings are Bulgarian so
the currency will be printed in Bulgarian , the decimal separator wil Ibe" ," and
the thousands separator will be space (the regional settings can be changed

from Control Panel in Windows):

StandardNumericFormats.cs

class StandardNumericFormats

{

static void Main()

{
Console .WriteLine("{0:C2}" , 123.456);
/[Output: tsff tet Mz 30t
Console .WriteLine("{0:D6}" , -1234);
/[Output: -001234
Console .WriteLine("{0:E2}" , 123);
/[Output: 1,23 E+002
Console .WriteLine("{0:F2}" , -123.456);
//Output: - 123,46

Chapter 4. Console Input and Output

179

Console .WriteLine("{0:N2}" , 1234567.8);
//Output: 1 234 567,80

Console .WriteLine("{0:P}" , 0.456);
/[Output: 45,60 %

Console .WriteLine("{0:X}" , 254);
/[Output: FE

}
}

If we run the same code with English (United States) culture, the output will
be as follows:

$123.46
-001234
1.23E+002
-123.46
1,234,567.80
45.60 %

FE

Custom Formats for Numbers

All formats that are not standard are assigned to the user (custom) formats.

For the custom formats are again defined a set of specifiers and the
difference with the standard formats is that a number of specifiers can be
used (in standard formats only a single specifier is used). The following table

lists various specifiers and their meaning:

Specifier Description
0 Indicates a digit. If at this position of the result a digit is
missing, a zero is written instead.
Indicates a digit. Does not print anything if at this
position in the result a digit is missing.
Decimal separator for the respective Acul tureo.
) Thousands separator for the raeé
% Multiplies the result by 100 and prints the character for
percent.
Indicates an exponential notation. The number of zeroes
indicates the number of signs of the exponent. The sign
EOor E+Oor E-0 | "+" means that we always want to represent also the
number 6 ssign while minus means to display the sign
only if the value is negative.

180 Fundamentals of Computer Programming with C#

There are many characteristics regarding the use of custom formats for
numbers, but they will not be discussed here. You may find more information
in MSDN . Here are some simple examples that illustrate how to use custom
formatting strings (the output is given for the U.S. culture)

CustomNumericFormats.cs
class CustomNumericFormats
{
static void Main()
{
Console .WriteLine("{0:0.00}" , 1);
/[Output: 1 .00
Console .WriteLine("{O:#.##}" , 0.234);
/[Output: . 23
Console .WriteLine("{O:#####}" , 12345.67);
/[Output: 12346
Console .WriteLine("{0:(0#) ### ## ##}" , 29342525);
/[Output: (02) 934 25 25
Console .WriteLine("{0:%##}" , 0.234);
/[Output: %23
}
}

Format String Components for Dates

When formatting dates we again have separation of standard and custom
formats.

Standard Defined Date Formats

Since the standard defined formats are many we will list only few of them.
The rest can be easily checked on MSDN.

Specifier Format (for English (United States) "culture™)
d 2/27/2012
D February 27, 2012
t 17:30 (hour)
T 17:30:22 (hour)
Yory February 2012 (only month and year)

Custom Date Formats

Similar to custom formats for numbers here we have multiple format
specifiers and we can combine several of them. Since here are many

Chapter 4. Console Input and Output 181

specifiers we will show only some of them, which we will use to demonstrate

how to use custom formats for dates . Consider the following table:
Specifiers Format (for English (United States) "culture™)

d Day i from 1 to 31

dd Day i from0 1 to31

M Month i from 1 to 12

MM Month i from O 1 to 12

vy The last two digits of the year (from 00 to 99)
yyyy Year written in 4 digits (e.g. 2012)

hh Hour 7 from 00 to 11

HH Hour i from 00 to 23

m Minutes 1 from O to 59

mm Minutes i from 00 to 59

S Seconds i from O to 59

Ss Seconds i from 00 to 59

When using these specifiers we can insert different separators between the
different parts of the date, such as " "or" /". Here are few examples:

DateTime d= new DateTime(2012, 02, 27, 17, 30, 22);
Console .WriteLine("{0:dd/MM/yyyy HH:mm:ss}' , d);
Console .WriteLine("{0:d.MM.yy}" , d);

Execution of these examples gives the following result for the U.K. culture:

27/02/2012 17:30:22
27.02.12

Note that the result can vary depending on the current culture. For example if
we run the same code in the Bulgarian culture, the result will be different

27.02.2012 17:30:22
27.02.12

Format String Enumeration Components

Enumerations (listed types) are data types that can take as value one of
several predefined possible values (e.g. the seven days of the week). We will
examine them in details in the chapter " Defining Classes ".

182 Fundamentals of Computer Programming with C#

In enumerations there is very little to be formatted. Four standard format
specifiers are defined:

Specifier Format
Gorg Represents enumeration as a string.
Dord Represents enumeration as a number.

Represents enumeration as a number in hexadecimal

Xorx numeral system and with eight digits.

Here are some examples:

Console .WriteLine("{0:G}" , DayOfWeelWednesday);
Console .WriteLine("{0:D}" , DayOfWeelWednesday);
Console .WriteLine("{0:X}" , DayOfWeekWednesday);

While executing the above code we get the following result:

Wednesday
3
00000003

Formatting Strings and Localization

When using format strings it is possible one and same program to print

different values depending on the localization settings for the operating
system. For example, when printing the month from a given date if the
current |l ocalization is English it wildl
while if the localization is French it will print in French, for example " Ao Yt

When launching a console application it automatically retrieves the operating
system localization (culture settings) and uses it for reading and writing
formatted data (like numbers, dates, currency, etc.).

Localization in .NET is also called "culture" and can be changed manually by
the class System.Globalization.Culturelnfo . Here is an example in which
we print a number and a date by the U.S. and Bulgarian localization:

CulturelnfoExample.cs

using System;
using System.Threading;
using System.Globalization;

class CulturelnfoExample

{

static void Main()

Chapter 4. Console Input and Output 183

DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);

Thread .CurrentThread.CurrentCulture =

Culturelnfo .GetCulturelnfo("en-US");
Console .WriteLine("{0:N}" , 1234.56);
Console .WriteLine("{0:D}" , d);

Thread .CurrentThread.CurrentCulture =

Culturelnfo .GetCulturelnfo("bg - BG");
Console .WriteLine("{O:N}" , 1234.56);
Console .WriteLine("{0:D}" , d);

}
}

When starting the example the following result is obtained:

1,234.56

Monday, February 27, 2012

1 234,56

fW Ydocecypneco f dzstf ot

Console Input

As in the beginning of th is chapter we explained, the most suitable for small
applications is the console communication because it is easiest to implement.

The standard input device is the part of the operating system that controls
from where the program will receive its input data. By defa ult "the standard
input device" reads its input from a driver "attached" to the keyboard. This

can be changed and the standard input can be redirected to another location,

for example to a file, but this is rarely done.

Each programming language has a mech anism for reading and writing to the
console. The object that controls the standard input stream in C# is
Console.In

From the console we can read different data:
- text;
- other types after parsing the text;

Actually for reading the standard input stream Console.In is rarely used
directly. The class Console provides two methods Console.Read() and
Console.ReadLine() that run on this stream and usually reading from the
console is done by them.

184 Fundamentals of Computer Programming with C#

Reading through Console.ReadLine()

The method Console.ReadLine() provides great convenience for reading
from console. How does it work? When this method is invoked, the program
prevents its work and wait for input from the console. The user enters some
string on the console and presses the [Enter] key. At this moment th
console understands that the user has finished entering and reads the string.

The method Console.ReadLine() returns as result the string entered by the
user. Now perhaps it is clear why this method has this name

The following example demonstrates the op eration of Console.ReadLine()

e

UsingReadLine.cs

class UsingReadLine

{
static void Main()
{
Console .Write("Please enter your first name: ")
string firstName = Console .ReadLine();
Console .Write("Please enter your last name: ");
string lastName = Console .ReadLine();
Console .WriteLine("Hello, {0} {1}!" , firstName, lastName);
}
}
/I Output: Please enter your first name: John
1 Please enter your last name: Smith
1 Hello, John Smith!

We see how easy it is to read text from the console by using the method
Console.ReadLine()

- We print some text in the console, which asks for a user name (this is
only for the convenience of the user and is not obligatory).

- We execute reading of an entire line from the console using the method
ReadLine() . This leads to blocking the program until the user enters
some text and presses [Enter].

- Then we repeat these two steps for the last name.

- Once we have gathered the necessary information we print it on the
console.

Chapter 4. Console Input and Output 185

Reading through Console.Read()

The method Read() behaves slightly different than ReadLine() . As a
beginning it reads only one character and not the entire line. The other
significant difference is that the method do es not return directly the read
character but its code. If we want to use the result as a character we must
convertittoa character or use the method Convert.ToChar() onit. Thereis
one important characteristic: the character is read only when the [Ente r]
key is pressed . Then the entire string written on the console is transferred to

the buffer of the standard input string and the method Read() reads the first
character of it. In subsequent invocations of the method if the buffer is not

empty (i.e. there are already entered in but still unread characters) then the
program execution will not stop and wait, but will directly read the next

character from the buffer and thus until the buffer is empty. Only then the
program will wait again for a user input if Read() is called again. Here is an
example:

UsingRead.cs

class UsingRead

{

static void Main()

{

int codeRead =0;
do

{

codeRead = Console .Read();
if (codeRead !=0)

{

}
}
while (codeRead != 10);
}

Console .Write((char)codeRead);

}

This program reads one line entered by the user and prints it character by
character . This is possible due to a small trick I we are previously aware that
the [Enter] key actually enters two characters in the buffer. These are the
"carriage return " code (Unicode 13) followed by the " linefeed " code
(Unicode 10). In order to understand that one line is finished we are looking

for a character with code 10 in the Unicode table . Thus the program reads
only one line and exits the loop .

We should mention that the method Console.Read() is rarely used in
practice if there is an alternative to use Console.ReadLine() . The reason for
this is that the possibility of mistaking with Console.Read() is much greater

186 Fundamentals of Computer Programming with C#

than if we choose an alternative approach and the code will most likely be
unnecessarily complicated.

Reading Numbers

Reading numbers from the console in C# is not done directly . In order to
read a number we should have previously read the input as a string (using
ReadLine()) and then convert this string to a number. The operation of
converting a string into another type is called parsing . All pr imitive types
have methods for parsing. We will give a simple example for reading and

parsing of numbers:

ReadingNumbers.cs

class ReadingNumbers

{

static void Main()

{
Console .Write("a="),
int a= int .Parse(Console.ReadLine());
Console .Write("b =");
int b= int .Parse(Console.ReadLine());
Console .WriteLine("{0} + {1} = {2}" , &, b,a+b);
Console .WriteLine("{0} * {1} = {2}" ,a,b,a*hb);
Console .Write("f="),
double f= double .Parse(Console .ReadLine());
Console .WriteLine("{0}* {1}/ {2} = {3}" ,

a, b, f,a*b/f),;
}

}

The result of program execution might be as follows (provided that we enter
5, 6 and 7.5 as input):

a=5
b=6
5+6=11
5*6=30
f=7 .5

5*6/7 .5=4

In this particular example the specific thing is that we use parsing methods
of numerical types and when wrong a result is passed (such as text) this

Chapter 4. Console Input and Output 187

will cause an error (exception) System.FormatException . This is especially
true when reading real numbers, because the delimiter used between the
whole and fractional part is different in various cultures and depends on
regional settings of the operating system.

The separator for floating point numbers depends on the

current language settings of the operatin g system (Regional
and Language Options in Windows). In some systems as

& separator the character comma can be used, in others i point
(dot). Entering a point (dot) instead of a comma will cause
System.FormatException when the current language settings

use C omma.

The exceptions as a mechanism for reporting errors wi Il be discussed in the
chapter "Exception Handling ". For now you can consider that when the
program provides an error this is associated with the o ccurrence of an
exception that prints detailed information about the error on the console. For
example, | et duppose that the regional settings of the computer are
Bulgarian and we execute the following code:

Console .Write("Enter a floating - point number: ");

string line= Console .ReadLine();

double number = double .Parse(line);

Console .WriteLine("You entered: {0}" , humber);

If we enter the number "3.14" (with a wrong decimal separator for the
Bulgarian settings) we will get the following exception (error message):

Unhandled Exception: System.FormatException: Input string was
not in a correct format.

at System.Number.StringToNumber(String str, NumberStyles
options, NumberBuffer& number, NumberFormatinfo info, Boolean
parseDecimal)

at System.Number.ParseDouble(String value, NumberStyles
options, NumberFormatinfo numfmt)

at System.Double.Parse(String s, NumberStyles style,
NumberFormatinfo info)

at System.Double.Parse(String s)

at ConsoleApplication.Program.Main() in
C:\ Projects \lIntro CSharpBook ConsoleExample\ Program.cs:line 14

Parsing Numbers Conditionally

When parsing a string to a number using the method Int32.Parse(string)
or by Convert.Tolnt32(string) if the submitted string is not a number we

188 Fundamentals of Computer Programming with C#

get an exception. Sometimes it is ne cessary to catch the failed parsing and to
print an error message or to ask the user to enter in a new value.

Interception of an incorrectly entered number when parsing a sting can be
done in two ways:

- by catching exceptions (see the chapter "Exception Handling ");

- by conditional parsing (usingthe method 4 OUO AOPAs A S
L e t dorssider the conditional parsing of numbers in .NET Framework. The
method) T Otctf t 4 OU 0akoept3 Ave jatameters i a parsing string and a

variable to record the result of parsing. If the parsing is successful the method
returns value true . For greater clarity, | e tcénsider an example:

string str = Console.ReadLine();

int intValue;
bool parseSuccess = Int32.TryParse(str, out intValue);
Console.WriteLine(parseSuccess ?
"The square of the number is " +intValue * intValue +" "
"Invalid number!");

In the example, conditional parsing of a string entered from the console to the

integer type Int32 is performed. If we enter as input " 2", parsing will be
successful so the result of TryParse() will be true , and the parsed number
will be recorded in the variable intValue and on the console the squared

number will be printed:

Result: The square of the number is 4.

If we try to parse an invalid number such as "abc", TryParse() will return
false as a result and the user that will be notified that he has entered an
invalid number:

Invalid number!

Note that the method TryParse() as a result of its work returns
simultan eously two values : the parsed number (as an output parameter)

and a Boolean value as a result of the method invocation. Returning multiple

values at once is possible because one of the values is returned as an output
parameter (out parameter). The output parameters return value in a
predefined for the purpose variable coinciding with their type. When calling a

method the output parameters must be preceded by the keyword out .

Reading by Console.ReadKey()

The method Console.ReadKey() waits for key pressing on the console and
reads its character equivalent without the need of pressing [Enter] . The
result of invoking ReadKey() is information about the pressed key (or

Chapter 4. Console Input and Output 189

more accurately a key combination) as an object of type ConsoleKeylinfo .

The obtained object contains the character that is entered by the pressed key
combination (property KeyChar) along with information about the keys
[Shift], [Ctr]] and [Alt] (property Modifiers). For example, if we press

[Shift+A] we will read a capital le tter ' A while in the Modifiers property we will
have the Shift flag. Here is an example:

ConsoleKeyInfo key = Console .ReadKey();
Console .WriteLine();

Console .WriteLine("Character entered: " + key.KeyChar);

Console .WriteLine("Special keys: " + key.Modifiers);
If we execute the program and press [Shift+A] , we will obtain the following
result:

A

Character entered: A
Special keys: Shift

Simplified Reading of Numbers through Nakov.|0.Cin

There is no standard easy way to read several numbers, located on the same
line, separated by a space. In C# and .NET Framework we need to read a

string, split it into tokens using the space as separator and parse the obtained

tokens to extract the numbers. In other languages and platforms like C++ we

can dire ctly read numbers, characters and text from the console without
parsing. This is not available in C# but we can use an external library or class.

The standard library Nakov.lO.Cin provides a simplified way to read
numbers from the console. You can read about it from the blog of its author
Svetlin Nakov: http://www.nakov.com/blog/2011/11/23/cin -class -for -csharp -

read -from -console -nakov -io-cin/. Once we have copied the file Cin.cs from
Nakov.lO.Cin into our Visual Studio C# project, we could write code like this:

using Nakov.IO;

A

int x= Cin.NextInt();

double y= Cin.NextDouble();

decimal d= Cin.NextDecimal();

Console .WriteLine("Result: {0} {1}{2}" ,Xx,y,d);

If we execute the code, we can enter 3 numbers by putting any amount of
whitespace separators between them. For example we can enter the first
number, two spaces, the second number, a new line + space and the last
number + space. The numbers will be read correctly and the output will
be as follows:

http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/
http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/

190 Fundamentals of Computer Programming with C#

3 25
3.58
Result: 3 2.5 3.58

Console Input and Output T Examples

We will consider few more examples of console input and output that will
show us some interesting techniques.

Printinga Letter

Next is a practical example representing console input and formatted text in
the form of a letter:

PrintingLetter.cs

class PrintingLetter

{
static void Main()
{
Console .Write("Enter person name: ");
string person = Console .ReadLine();
Console .Write("Enter book name: ");
string book = Console .ReadLine();
string from = "Authors Team" ;
Console .WriteLine(" Dear {0}," , person);
Console .Write("We are pleased to inform " +
"you that \"{1} \"is the best Bulgarian book. {2}"
"The authors of the book wish you good luck {0}!{2}"
person, book, Environment .NewLine);
Console .WriteLine(" Yours,"”),
Console .WriteLine(" {0}* , from);
}
}

The result of the execution of the above program could be the following:

Enter person name: Readers
Enter book hame: Introduction to programming with C#
Dear Readers,
We are pleased to inform you that "Introduction to programming

Chapter 4. Console Input and Output

191

with C#" is the best Bulgarian book.

The authors of the book wish you good luck Readers!
Yours,
Authors Team

In this example we have a letter template. The program "asks" a few
guestions to the user and reads from the console information needed to print
the letter by replacing the formatting specifiers with the data filled in by the
user.

Area of a Rectangle or a Triangle

We will consider another example: calculating of an area of a rectangle or a
triangle.

CalculatingArea.cs

class CalculatingArea

{

static void Main()

{
Console .WriteLine("This program calculates " +
"the area of a rectangle or a triangle");

Console .WriteLine("Enter a and b (for rectangle) " +
"or a and h (for triangle): ");

int a= int .Parse(Console.ReadLine());
int b= int .Parse(Console .ReadLine());

Console .WriteLine("Enter 1 for a rectangle or " +
"2 fora triangle: ");

int choice = int .Parse(Console .ReadLine());
double area=(double) (a* b)/ choice;
Console .WriteLine("The area of your figure is " + area);

}
}

The result of the above example 06 ®xecution is as follows:

This program calculates the area of a rectangle or a triangle
Enter a and b (for rectangle) or a and h (for triangle):

5

4

192 Fundamentals of Computer Programming with C#

Enter 1 for a rectangle or 2 for a triangle:
2
The area of your figure is 10

Exercises

1. Write a program that reads from the console three numbers of type int
and prints their sum.

2. Write a program that reads from the console the radius "r" of a circle

and printsits perimeter and area

3. A given company has name, address, phone number, fax number, web
site and manager. The manager has name, surname and phone number.
Write a program that reads information about the company and its
manager and then printsit on the console.

4. Write a program that prints three numbers in three virtual columns

on the console. Each column should have a width of 10 characters and
the numbers should be left aligned . The first number should be an
integer in hexadecimal ; the second should be fractional positive ; and
the third T a negative fraction . The last two numbers have to be
rounded to the second decimal place.

5. Write a progra m that reads from the console two integer numbers (int)
and prints how many numbers between them exist, such that the
remainder of their division by 5 is 0 . Example: in the range (1 4, 25)
there are 3 such numbers : 15, 20 and 25

6. Write a program that reads two numbers from the console and prints the
greater of them . Solve the problem without using conditional
statements.

7. Write a program that reads five integer numbers and prints their
sum . If an invalid number is entered the program should prompt the user
to enter another number.

8. Write a program that reads five numbers from the console and prints the
greatest of them.

9. Write a program that reads an integer number n from the console. After
that reads N numbers from the console and prints their sum .

10. Write a prog ram that reads an integer number n from the console and
prints all numbers in the range I s A leakh on a separate line.

11. Write a program that prints on the console the first 100 numbers in the
Fibonacci sequence :0,1,1,2,3,5, 8, 13, 21, 34, 55, 89, 144 , 233, é

12. Write a program that calculates the sum (with precision of 0.001) of

the following sequence : 1+1/2 -1/3+1/4 -1/5 + é

Chapter 4. Console Input and Output 193

Solutions and Guidelines
1. Usethe methods Console.ReadLine() and Int32.Parse()
2. Use Math.Pl constant and the well -known geome tric formulas

3. Format the text with 70EOAa NYOE OA, E Eindilar fo $he example
with the letter that we looked at.

4. Use the format strings explained in the AfComposite Formattin
and the method Console.WriteLine() . Below is a piece of the code:

int hexNum = 2013;

Console .WriteLine("| 0x{0, - 8:X}|" , hexNum);
double fractNum = -1.856;

Console .WriteLine("|{0, -210:f2}/" , fractNum);

5. There are two approaches for solving the problem:

First approach : Use mathematical tricks for optimized calculation based
on the fact that every fifth number is divisible by 5 . Think how to
implement this correctly and about the borderline cases.

The second approach is easier but it works slower. With a for -loop
each n umber within the given range can be checked. You should read in
Internet or in the chapter "Loops" how to use for -loops.

6. Since the problem requires a solution, which does not use conditional
statements , you should use a different approach. Two possible solutions

of the problem include the use of functions of class Math. The greater of
the two numbers you can find with the function Math.Max(a, b) and the
smaller with Math.Min(a, b).
Another solution to the pr oblem includes usage of the function for
taking the absolute value of a number Math.Abs(a) :

int a=2011;

int b =1990;

Console .WriteLine("Greater: {0}" , (a + b + Math.Abs(a - b)) /2);

Console .WriteLine("Smaller: {0}" , (@ +b- Math.Abs(a - b)) /2);

The third solution uses bitwise operations

int a=1990;

int b=2011;

int max=a - (@ - b)&((@a - b)>>31));
Console .WriteLine(max);

There is another solution which is partially correct because it uses a
hidden conditional statement (the ternary ?:. operator) :

194 Fundamentals of Computer Programming with C#
int a=1990;
int b=2013;
int max=a>b?a:b;
Console .WriteLine(max);
7. You can read the numbers in five different variables and finally sum
them and print the obtained sum . Note that the sum of 5 int values may

10.

11.

12.

not fitin the int type so you shoulduse long .

Another approach is using loops . When parsing the consecutive numbers
use conditional parsing with 4 OU 0 A O OvlnenAas invalid number is
entered, repeat reading of the number. You can do this through while
loop with an appropriate exit condition. To avoid repetitive code you can
explore the for -loops from the chapter" Loops".

You can use the comparison statement "if " (you can read aboutit on
the Internet or from the chap ter " Conditional Statements "). To avoid
repe ating code you can use the loop ing construct " for " (you could read
about it online or in the chapter " Loops").

You should u se a for -loop (see the chapter "Loops"). Read the numbers
one after another and accumulate their sum in a variable, which then
display on the console at the end.

Use a combination of loops (see the chapter "Loops") and the methods
Console.ReadLine() , Console.WriteLine() and Int32.Parse()

More about the Fibonacci sequence can be found in Wikipedia at:
http://en.w__ikipedia.org/wiki/Fibonacci_sequence . For the solution of the
problem use 2 temporary variables in which store the last 2 calculated
values and with a loop calculate the rest (each subsequent number in the

sequence is a sum of the last two). Use a for -loop to implement the

repeating logic (see the chapter "Loops").

Accumulate the sum of the sequence in a variable inside a while -loop
(see the chapter " Loops"). At each step compare the old sum with the
new sum . If the difference between the two sums Math.Abs(current_sum

Z old_sum) is less than the required precision (0.001), the calculation
should finish because the difference is constantly decreasing and the
precision is constantly incr easing at each step of the loop . The expected
resultis 1.307 .

http://en.wikipedia.org/wiki/Fibonacci_sequence

ChaptercComdi ti ona

Statement s

In This Chapter

In this chapter we will cover the conditional statements in C# , which we
can use to execute different actions depending on a given condition. We will
explain the syntax of the conditional operators if and if -else with suitable

examples and explain the prac tical application of the operator for selection
switch - case.

We will focus on the best practices to be followed in order to achieve a
better programming style when using nested or other types of conditional
statements.

Comparison Operators and Boolean Expressions

In the following section we will recall the basic comparison operators in the
C# language. They are important, because we use them to describe
conditions in our conditional statements.

Comparison Operators

There are several comparisons operator s in C#, which are used to compare
pairs of integers, floating -point numbers, characters, strings and other types:
Operator Action

== Equal to

1= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Comparison operators can be used to compare expressions such as two
numbers, two numerical expressions, or a humber and a variable. The result
of the comparison is a Boolean value (true or false).

Letd $ook at an example of using comparisons:

196 Fundamentals of Computer Programming with C#

int weight = 700;

Console .WriteLine(weight >= 500); Il True
char gender= 'm;
Console .WriteLine(gender <= f); [/l False

double colorWavelLength = 1.630;

Console .WriteLine(colorWavelLength > 1.621); Il True
int a=25;

int b=7,

bool condition=(b>a)&& (a+b< a*h);

Console .WriteLine(condition); /Il True

Console .WriteLine('B' =="A" +1); [/ True

In the sample code we perform a comparison between numbers and between
characters. The numbers are compared by size while characters are compared
by their lexicogra phical order (the operation uses the Unicode numbers for the
corresponding characters).

As seen in the example, the type char behaves like a number and can be
subtracted, added and compared to nhumbers freely. However, this should be
used cautiously as it could make the code difficult to read and understand.

By running the example we will produce the following output:

True
False
True
True
True

In C# several types of data that can be compared:
- numbers (int , long, float , double, ushort , decimal , ¢é)
- characters (char)
- Booleans (bool)

- References to objects, also known as object pointers (string , object ,
arrays and others)

Every comparison can affect two nu mbers, two bool values, or two object
references. It is allowed to compare expressions of different types , like
an integer with a floating -point number for example. However, not every pair

of data types can be compared directly. For example, we cannot comp are a
string with a number.

Chapter 5. Conditional Statements 197

Comparison of Integers and Characters

When comparing integers and characters, we directly compare their binary
representation in memory i.e. we compare their values . For example, if we
compare two numbers of type int , we will co mpare the values of their
respective series of 4 bytes. Here is one example for integer and character
comparisons:

Console .WriteLine("char'a’'=='a'? " +('a" =='a)), [/l True
Console .WriteLine("char'a' =='b"?" +('a =="D")); /I False
Console .WriteLine("5!=62" + (5= 6)); /[True
Console .WriteLine("5.0 ==5L?" + (5.0 ==5L)); /[True
Console .WriteLine("true == false? " + (true == false)); // False

The result of the example is as follows:

char'a' =="'a'? True
char 'a'=='b'? False
51=67? True
5.0==5L7? True

true == false? False

Comparison of References to Objects

In .NET Framework there are reference data types that do not contain their

value (unlike the value types), but contain the address of the memory in the

heap where their value is located. Strings, arrays and classes are such types.

They behave like a pointer to some value and can have the value null ,i.e.no
value. When comparing reference type variables, we compare the
addresses they hold, i.e. we check whether they point to the same location

in the memory, i.e. to the same object.

Two object pointers (references) can refer to the same object or to different

objects, or one of them can point to nowhere (to have null value). In the
following example we cre ate two variables that point to the same value
(object) in the heap.

string str= "beer" ;
string anotherStr = str;

After executing the source code above, the two variables str and anotherStr
will point to the same object (string with value "beer"), which is located at
some address in the heap (managed heap).

We can check whether the variables point to the same object with the
comparison operator (==). For most reference types this operator does not
compare the content of the obje cts but rather checks if they point at the same

198 Fundamentals of Computer Programming with C#

location in memory, i.e. if they are one and the same object. The size
comparisons (<, >, <= and >=) are not applicable for object type variables.

The following example illustrates the comparison of reference s to objects:
string str= "beer" ;

string anotherStr = str;

string thirdStr = "bee";

thirdStr = thirdStr +'r

Console .WriteLine("str = {0}" , Str);

Console .WriteLine("anotherStr = {0}" , anotherStr);

Console .WriteLine("thirdStr = {0}" , thirdStr);

Console .WriteLine(str == anotherStr); Il True - same object
Console .WriteLine(str == thirdStr); /[True - equal objects
Console .WriteLine((object)str == object)anotherStr); Il True
Console .WriteLine((object)str == object)thirdStr); /I False

If we execute the sample code, we will get the following result:

str = beer
anotherStr = beer
thirdStr = beer
True

True

True

False

Because the strings used in the example (instances of the class
System.String , defined by the keyword string in C#) are of reference type,
the ir values are set as objects in the heap. The two objects str and thirdStr
have equal values, but are different objects, located at separate addresses in

the memory. The variable anotherStr is also reference type and gets the
address (the reference) of str , i.e. points to the existing object str . So by
the comparison of the variables str and anotherStr , it appears that they are
one and the same object and are equal. The result of the comparison between

str and thirdStr is also equality, because the operator == compares the
strings by value and not by address (a very useful exception to the rule for
comparison by address). However, if we convert the three variables to objects

and then compare them, we will get a comparison of the addresses in the

heap where t heir values are located and the result will be different.

This above example shows that the operator == has a special behavior
when comparing strings , but for the rest of the reference types (like arrays
or classes) it applies comparison by address.

You will learn more about the class String and the comparison of strings in
the ¢ hapter about "Strings ".

Chapter 5. Conditional Statements 199

Logical Operators

Letd srecall the logical operators in C#. They are often used to construct
logical (Boolean) expressions. The logical operators are: && || ,! and ~.

Logical Operators && and ||

The logical operators && (logical AND) and || (logical OR) are only used on
Boolean expressions (values of type bool). In order for the result i of
compa ring two expressions with the operator && 1 to be true (true), both

operands must have the value true . For instance:

bool result= (2 <3) && (3 <4);

This expression is "true", because both the operands: (2 < 3) and (3 < 4) are
"true". The logical operator && is also called short -circuit , because it does
not lose time in additional unnecessary calculations. It evaluates the left part

of the expression (the first operand) and if the result is false , it does not lose
time f or evaluating the second operand T itd sot possible the end result to be
"true" when the first operand is not "true". For this reason it is also called

short -circuit logical operator "and"

Similarly, the operator || returns true if at least one of the tw 0 operands has
the value "true". Example:

bool result=(2<3)|| (1==2);

This example is "true", because its first operand is "true". Just like the &&
operator, the calculation is done fast 1 if the first operand is true , the second
is not calculated at all, as the result is already known. It is also called short -

circuit logical operator "or"

Logical Operators & and |

The operators for comparison & and | are similarto &&and || , respectively .
The difference lies in the fact that both operands are calculated one after the
other, although the final result is known in advance. That 0 swhy these
comparison operators are also known as full -circuit logical operators and
are used very rarely.

For instance, when two operands are compared with & and the firs t one is
evaluated "false", the calculation of the second operand is still executed. The

result is clearly "false". Likewise, when two operands are compared with | and

the first one is "true", we still evaluate the second operand and the final result
is ne vertheless "true".

We must not confuse the Boolean operators & and | with the bitwise
operators & and |. Although they are written in the same way, they take
different arguments (Boolean or integer expressions) and return different

result (bool orinteger) and their actions are not identical.

200 Fundamentals of Computer Programming with C#

Logical Operators Nand !

The " operator, also known as exclusive OR (XOR) , belongs to the full -
circuit operators, because both operands are calculated one after the other.

The result of applying the operator is true if exactly one of the operands

is true, but not both simultaneously . Otherwise the result is false . Here

is an example:

Console. WriteLine ("Exclusive OR:" +((2<3)" (4> 23)));

The result is as follows:

Exclusive OR: False

The previous expression is evaluated as false, because both operands: (2 <3)
and (4>3) aretrue.

The operator ! returns the reversed value of the Boolean expression to
which itis attached. Example:

bool value = (7 ==5); /I True
Console .WriteLine(value);

The above expression can be read as "the opposite of the truth of the phrase
"7 ==5". The result of this patternis True (the opposite of False). Note that
when we print the value true it is displayed on the console as " True" (with
capital letter). This "defect" comes from the VB .NET language that also runs
in .NET Framework.

Conditional Statements "if" and "if - else"

After reviewing how to compare expressions, we will continue with conditional
statements, which will allow us to implement programming logic.

Conditional statements if and if -else are conditional control statements.
Because of them the program can behave differently based on a defined
condition checked during the execution of the statement

Conditional Statement "if"

The main format of the conditional statements if is as follows:

if (Boolean expression)

{
}

Body of the conditional statement;

It includes: if-clause, Boolean expression and body of the conditional
statement.

Chapter 5. Conditional Statements 201

The Boolean expression can be a Boolean variable or Boolean logic al
expression. Boolean expressi ons cannot be integer (unlike other programming
languages like C and C++).

The body of the statement is the part locked between the curly brackets:
{} . It may consist of one or more operations (statements). When there are
several operations, we have a comp lex block operator, i.e. series of
commands that follow one after the other, enclosed in curly brackets

The expression in the brackets which follows the keyword if must return the
Boolean value true or false . If the expression is calculated to the value
true , then the body of a conditional statement is executed. If the result is

false , then the operators in the body will be skipped

Conditional Statement "if" i Example

Letd sake a look at an example of using a conditional statement if :

static void Main()
{
Console .WriteLine("Enter two numbers.");
Console .Write("Enter first number: ");
int firstNumber = int .Parse(Console .ReadLine());
Console .Write("Enter second number: ");
int secondNumber = int .Parse(Console .ReadLine());
int biggerNumber = firstNumb er;
if (secondNumber > firstNumber)

{

}
Console .WriteLine("The bigger number is: {0}" , biggerNumber);

biggerNumber = secondNumber;

}

If we start the example and enter the numbers 4 and 5 we will get the
following result:

Enter two numbers.
Enter first number: 4
Enter second number: 5
The bigger number is: 5

Conditional St atement "if" and Curly Brackets

If we have only one operator in the body of the if -statement, the curly
brackets denoting the body of the conditional operator may be omitted, as

shown below. However, it is a good practice to use them even if we have only

one operator. This will make the code is more readable

Here is an example of omitting the curly brackets which leading to confusion:

202 Fundamentals of Computer Programming with C#

int a=o6;

if (@a>5)
Console .WriteLine("The variable is greater than 5.")
Console .WriteLine("This code will always execute!");

/l Bad practice: misleading code

In this example the code is misleadingly formatted and creates the impression
that both printing statements are part of the body of the if -block. In fact,
this is true only for the first one.

& Always put curly brackets {}for the badfdoy bolfo cik s
if they consist of only one operator!

Conditional Statement "if - else"

In C#, as in most of the programming languages there is a conditional
statement with else clause: the if -else statement. Its format is the
following:

if (Boolean expression)

Body of the conditional statement;

}

else

{

Body of the else statement;

}
The format of the if -else structure consists of the reserved word if
Boolean expression, body of a conditional statement, reserved word else and
else -body statement. The body of else -structure may consist of one or more

operators, enclosed in curly bracke ts, same as the body of a conditional
statement.

This statement works as follows: the expression in the brackets (a Boolean
expression) is calculated. The calculation result must be Boolean i true or
false . Depending on the result there are two possible ou tcomes. If the
Boolean expression is calculated to true , the body of the conditional
statement is executed and the else -statement is omitted and its operators

do not execute. Otherwise, if the Boolean expression is calculated to false ,
the else -body is exe cuted , the main body of the conditional statement is
omitted and the operators in it are not executed.

Conditional Statement "if -else" 1 Example

Letd stake a look at the next example and illustrate how the if -else
statement works:

Chapter 5. Conditional Statements 203

static void Main()

b
int x=2;
if (x>3)
{ - |
Console .WriteLine("x is greater than 3");
}
else
{ . . -
Console .WriteLine("x is not greater than 3");
}
}
The program code can be interpreted as follows: if x>3, the result at the end
is: " X is greater than 3 ", otherwise (else) the resultis: " x is not greater
than 3 ". In this case, since x=2, after the calculation of the Boolean
expression the operator of the else structure will be executed . The result of

the example is:

X is not greater than 3

The following scheme illustrates the process flow of this example:

\V4

Variable X with a
starting value of 2

Boolean
X is not condition: Is X is greater
greater than 3 the value of X than 3
greater than 3?
Y \V4

(" end)

End

Y
AN

204 Fundamentals of Computer Programming with C#

Nested "if" Statements

Sometimes the programming logic in a program or an application needs to be
represented by multiple if -structures contained in each other. We call them
nested if or nested if -else structures

We call nesting the placement of an if or if -else structure in the body of
another if or else structure. In such situations every else clause
corresponds to the closest previous if clause. This is how we understand

which else clause relates to which if clause.

It 6 s10t a good practice to exceed three nested levels, i.e. we should not nest
more than three conditional statements into one another. If for some reason

we need to nest more than three structures, we should export a part of the

code in a separate m ethod (see chapter Methods).

Nested "if" Statements I Example
Here is an example of using nested if structures:
int first=>5;

int second = 3;

if (first == second)

{
Console .WriteLine("These two numbers are equal.")i
}
else
{
if (first > second)
{
Console .WriteLine("The first number is greater.");
}
else
{ - |
Console .WriteLine("The second number is greater.");
}
}
In the example above we have two numbers and compare them in two steps:
first we compare whether they are equal and if not, we compare again, to

determine which one is the greater. Here is the result of the execution of the
code above:

The first number is greater.

Chapter 5. Conditional Statements 205

Sequences of "if -else -if-else -é "

Sometimes we need to use a sequence of if structures , where the else
clause is a new if structure. If we use nested if structures, the code would
be pushed too far to the right. That 6 swhy in such situations it is allowed to

use a new if right afterthe else . It 6 £ven considered a good practice. Here
isan example:

char ch= X' ;
if (ch== "A" |lch== 'a)
{
Console .WriteLine("Vowel [ei]");
else if (ch== 'E' |[[ch== ‘e)
{
Console .WriteLine("Vowel [i:]")i
}
else if (ch== "1 |[ch== """)
{
Console .WriteLine("Vowel [ai]");
}
else if (ch== 'O ||[ch== "0")
{
Console .WriteLine("Vowel [ou]");
else if (ch== 'U |[ch== '"u)
{
Console .WriteLine("Vowel [ju:]*);
}
else
{
Console .WriteLine("Consonant”);
}
The program in the example makes a series of comparisons of a variable to
check if it is one of the vowels from the English alphabet . Every following
comparison is done only in case that the previous comparison was not true. In
the end, if none of the if -conditions is not fulfilled, the last else clause is

executed. Thus, the result of the example is as follows:

Consonant

Conditional "if* Statements T Good Practices

Here are some guidelines, which we recommend for writing if, structures:

206 Fundamentals of Computer Programming with C#

- Use blocks, surr ounded by curly brackets {} after if and else in order
to avoid ambiguity

- Always format the code correctly by offsetting it with one tab inwards
after if and else , for readability and avoiding ambiguity.

- Prefer switch -case structure to of a series of if -el se-if -else -A
structures or nested if -else statement, if possible. The construct
switch - case we will cover inthe next section .

Conditional Statement "switch -case"

In the following section we will co ver the conditional ~ statement switch . It is
used for choosing among a list of possibilities.

How Does the "switch -case" StatementWork?

The structure switch -case chooses which part of the programming code to
execute based on the calculated value of a certa in expression (most often of
integer type). The format of the structure for choosing an option is as follows:

switch (integer _selector)
{
case integer _value _1:
statement s;
break :
case integer _value _2:
statement s;
break :
YY A
default
statement s;
break ;

}

The selector is an expression returning a resulting value that can be
compared, like a number or string . The switch operator compares the result
of the selector to every value listed in the case labels in the body of the
switch structure. If a match is found in a case label, the corresponding
structure is executed (simple or complex). If no match is found, the default
statement is executed (when such exists). The value of the selector must be
calculated before comparing it to the values inside the switch structure. The
labels should not have repeating values, they must be unique.

As it can be seen from the definition above, every case ends with the
operator break, which ends the body of the switch struct ure. The C#
compiler requires the word break at the end of each case-section containing
code. If no code is found after a case-statement, the break can be omitted

Chapter 5. Conditional Statements 207

and the execution passes to the next case-statement and continues until it
finds a break oper ator. After the default structure break is obligatory.

It is not necessary for the default clause to be last, butit & secommended to
put it at the end, and not in the middle of the switch structure.

Rules for Expressions in Switch

The switch statement is a clear way to implement selection among many

options (namely, a choice among a few alternative ways for executing the

code). It requires a selector, which is calculated to a certain value. The

selector type could be an integer number , char, string or enum If we want
to use for example an array or a float as a selector, it will not work. For non -
integer data types, we should use a series of if statements.

Using Multiple Labels

Using multiple labels is appropriate, when we want to execute the same
structure in more than one case. Let 6 ook at the following example:

int number = 6;
switch (number)

{
case 1.
case 4:
case 6:
case 8:
case 10:
Console .WriteLine("The number is not prime!"); break;
case 2:
case 3:
case 5:
case 7.
Console .WriteLine("The number is prime!"); break;
default
Console .WriteLine("Unknown number!"); break ;
}
In the above example, we implement multiple labels by using case
statements without break after them. In this case, first the integer value of
the selector is calculated T thatis 6, and then this value is compared to every
integer value in the case statements. When a match is found, the code block
after it is executed. If no match is found, t he default block is executed. The

result of the example above is as follows:

The number is not prime!

208

Fundamentals of Computer Programming with C#

Good Practices When Using "switch -case"

A good practice when using the switch statement is to put the default
statement at the end , inorder to have easier to read code.

It 6 sgood to place first the cases, which handle t he most common
situations . Case statements, which handle situations occurring rarely,
can be placed at the end of the structure.

If the values in the case labels are integer, it 6 gsecom mended that they
be arranged in ascending order

If the values in the case labels are of character type, it 6 secommended
that the case labels are sorted alphabetically

It & sadvisable to always use a default block to handle situations that
cannot be proce ssed in the normal operation of the program. If in the

normal operation of the program the default block should not be
reachable, you could putinita code reporting an error

Exercises

1. Wirite an if -statement that takes two integer variables and exchanges
their values if the first one is greater than the second one.

2. Write a program that shows the sign (+ or -) of the product of three real
numbers, without calculating it. Use a sequence of if operators.

3. Write a program that finds the biggest of three integers , using nested
if statements.

4. Sort 3 real numbers in descending order. Use nested if statements.

5. Write a program that asks for a digit (0 -9), and depending on the input,
shows the digit as a word (in English). Use a switch statement.

6. Write a program that gets the coefficients a, b and c¢ of a quadratic
equation: ax? + bx + c, calculates and prints its real roots (if they exist).
Quadratic equations may have 0, 1 or 2 real roots.

7. Write a program that finds the greatest of given 5 numbers

8. Write a program that, depending on the user 0 =hoice, inputs int , double
or string variable. If the variable is int or double, the program
increases it by 1. If the variable is a string , the program appends " *" at
the end. Print the result at the console . Use switch statement.

9. We are given 5 integer numbers. Write a program that finds those

subsets whose sum is 0 . Examples:
- If we are given the numbers {3, -2,1,1,8}, thesumof -2,1and1
is 0.
- If we are given the numbers {3,1, -7,35,22}, there are no subsets

with sum 0.

