
Alternatives to X.509

Michael Gielesberger
Supervisor: Ralph Holz

Future Internet Seminar - Winter Term 2012/2013
Chair for Network Architectures and Services

Faculty of Computer Science, Technische Universität München
Email: gielesbe@in.tum.de

ABSTRACT
Secure connections on the Internet are crucial to many ap-
plications. Nowadays infrastructure for securing connections
on the Internet heavily relies on the X.509 public-key infra-
structure (PKI), which is maintained by Certificate Author-
ities (CAs). Recent attacks on CAs showed the fragility of
the current X.509 system.
In order to alleviate or entirely fix problems with the X.509
system, different techniques and systems have been pro-
posed. The proposed systems can be categorized into 4 dif-
ferent concepts: DNS-based, Pinning-based, Notary-based,
and Transparency-based approaches. This paper gives an
overview over these concepts and outlines their advantages
and disadvantages. It also covers some of the best-known
representatives of the concepts.
Sovereign Keys, a Transparency-based approach, is discussed
in detail.

Keywords
X.509, PKI, Sovereign Keys, Certificate Transparency, Con-
vergence, Perspectives

1. INTRODUCTION
In nowaday’s widespread use of the Internet, problems have
arisen which were unforeseen when the core infrastructure
was developed between the 60s and the 80s. In the small
networks of those days attacks on the confidentiality or au-
thenticity of connections were at most a theoretical issue.
Today’s usage of the Internet includes applications with high
security requirements, such as e-commerce applications. Be-
cause of the ever growing need for secure communication,
different protocols were developed to allow secure connec-
tions over the Internet. In particular the Secure Socket
Layer/Transport Layer Security protocol suite (SSL/TLS)
is widely used nowadays to guarantee authentication, data
confidentiality, and data integrity. SSL/TLS is used in con-
junction with many different protocols but the best-known
domain is securing the Hypertext Transfer Protocol (HTTP)
with HTTPS.
Like most protocols which are used at the moment to secure
connections over the Internet, SSL/TLS is based on asym-
metric cryptography, at least for key exchange purposes.
This leads to a necessity of distributing public keys. As
an approach in which every host exchanges its public key
with every other host does not scale (there would be O

(
n2

)
needed key transfers) a hierarchical approach for key distri-
bution was introduced. The X.509 public-key infrastructure
(PKI) offers a solution where only a few root public keys

need to be transferred to the hosts. The root keys belong

Root StoreCA 1 CA 2

ICA 2

Host 
Cert 1

ICA 1

Host 
Cert 2

Host 
Cert 3

ICA 4

Host 
Cert 4

ICA 3

ICA 5

ICA 6

Host 
Cert 5

Host 
Cert 6

Intermediate 
CA 

Certificates

CA Root 
Certificates

End-Host 
Certificates

Legend:

Figure 1: The X.509 hierarchy

to Certificate Authorities (CAs). The CAs issue certificates
to other entities, in which they assert the binding of the en-
tity’s public key to their identity, in case of the WWW a
domain name. CAs may also delegate signing privileges to
other entities, which constitute an Intermediate Certificate
Authority. X.509 builds up a certificate hierarchy with the
CAs’ certificates as roots, some optional intermediate cer-
tificates, and the hosts’ certificates as leaves. The hierarchy
is depicted in Figure 1. This results in trust chains. Clients,
e.g. web browsers, have a so called root store, where they
store root certificates which they trust. With these trusted
root certificates, clients are able to verify a host’s certificate
by going through the chain of certificates until they reach
one which is in their root store. Commonly clients ship with
many root certificates: A common web browser trusts over
600 entities which are able to issue certificates [2].
The biggest problem with this approach is that every CA
is equally able to issue certificates for every entity. When
an attacker makes a CA assert the binding of the attacker’s
public key with another entity’s identity, he gains a rogue
certificate, which cannot be distinguished from real ones and
thus the whole security system is rendered useless. This
makes the whole system as weak as the weakest CA in the
hierarchy. Recent attacks on the existing PKI have shown
the fragility of the current system. With attacks on DigiNo-
tar [14] and Comodo [3] certificates for high profile sites such
as addons.mozilla.org or login.facebook.com have been
falsely issued and used. Such rogue certificates allow attack-

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

51



ers to perform Man-in-the-middle (MitM) attacks. There
are also concerns that some state-run CAs, from which cer-
tificates are in root stores of clients, may issue rogue cer-
tificates for surveillance purposes [17]. Today’s approach
to deal with such attacks is to revoke compromised certifi-
cates, but the detection of a compromise may take several
days or may never be detected [14]. And the techniques for
revocation either do not scale well in the case of Certificate
Revocation Lists (CRLs) or are flawed in the case of the
Online Certificate Status Protocol (OCSP) [12], [9].
Many extensions or alternatives to the current X.509 system
have been proposed to alleviate and fix the current problems
before an attacker is able to use rogue certificates for a longer
period of time. There are different approaches, which can
be categorized into different categories: DNS-based (Domain
Name System based) approaches try to store additional se-
curity information directly with the DNS records of the do-
mains in order to prevent rogue certificates. Pinning-based
approaches anchor certificates by comparing the certificates
of a new connection with either already seen or out-of-band
distributed certificates. Notary-based approaches try to ex-
pose rogue certificates by viewing connections to a secured
server from different locations on the Internet and deter-
mine if there is a common consensus on the seen certifi-
cates. Transparency-based approaches force the publication
of certificates or another validating key in a way that makes
it possible for a client to compare and verify that the cer-
tificate it sees is the one the domain owner intended to use.
Domain owners are also able to check all existing certificates
or keys needed for validating a certificate for their domains
with that approach.
The Sovereign Keys (SK ) project by the EFF [6] belongs
to the Transparency-based approaches. It has some unique
features, which make it interesting to explore more in-depth.

The remainder of this paper is structured as follows: in sec-
tion 2 the four mentioned approaches are introduced in gen-
eral and some of the most important systems based on those
approaches are presented. The following section 3 presents
and analyses the unique features and techniques of the SK
project more in depth. The final section 4 concludes the
findings of this paper.

2. ALTERNATIVE CONCEPTS
In order to fix flaws in the current X.509 PKI system, sev-
eral different techniques have been proposed. This section
gives a brief overview of the most promising and common
techniques. The best-known systems, which implement the
technique, are named and some interesting specifics are ex-
plained for those systems.

2.1 DNS-based
DNS-based techniques take advantage of the fact that for ev-
ery connection to a domain on the web a DNS-server has to
be contacted in the first place to translate the domain name
to the corresponding IP. As this connection needs to be es-
tablished anyway (except for cached or locally assigned do-
main names), DNS servers seem to be a good place to store
additional security relevant data. To be able to securely
transfer data with the DNS the use of DNNSEC, which is
still not wide-spread, is a prerequisite for most of these sys-
tems. With the use of DNS servers it is unnecessary to build
up a whole new infrastructure to distribute certificates. The

general idea is to publish additional security information as
a new record type along with the other records in the DNS.
One can differentiate between client side checked records and
CA checked concepts:
For the client side concept a hash or a fingerprint of a pub-
lic key is stored in the DNS. The hash or fingerprint is then
compared with the actual certificate a client gets when con-
necting to the secured server. With this there is another
channel which needs to be compromised by an attacker in
order to conduct a MitM attack. The domain owner may
decide if the single hash of the certificate, which belongs to
the server’s domain should be directly stated or the hash of
a certificate further up on the certificate chain. By using the
latter it is possible to state the fingerprints of the public key
of the CA which issued the domain’s certificate. This allows
a domain owner to use different certificates but still narrow
down which CA may issue certificates for the domain. A con-
necting client would check if there is a certificate along the
certificate chain which matches the hash/fingerprint stated
in the DNS and just allow the connection if this check suc-
ceeds. If an attacker is able to compromise a CA it is just
possible to generate certificates for domains which have the
fingerprint of the compromised CA stated in their DNS secu-
rity record. When the attacker generates a rogue certificate
for a domain, which states another, not compromised CA’s
public key fingerprint in the DNS security record, the cer-
tificate will be detected as invalid.
For CA side checked concepts the information is just checked
by a CA which is asked to issue a certificate. If an attacker
tries to get a certificate issued from a CA, the CA should
look up the security information in the DNS for that domain
and check if it is allowed to issue a certificate for it. Such
a system does not offer any protection against CAs which
just do not check those entries as there is no concept how to
force CAs to check the entries.
DNS-based systems help against common attacks but have
the disadvantage that they offer no protection against state-
run attacks or surveillance activities. As states normally
control their country-code top-level domain (ccTLD) they
can completely change the DNS entries for domains in their
ccTLD. E.g. Libya controls the .ly ccTLD, and thus can
gain control over the domain bit.ly.
The best-known system, which belongs to the category of
client side checked DNS-based concepts is DANE (The DNS-
Based Authentication of Named Entities) [7].

2.2 Pinning-based
The general idea of pinning is to compare the certificate a
client sees during a current connection attempt with other
already seen certificates or hashes of certificates. From the
first connection on it should additionally be required to use a
secured connection, as otherwise simple attacks are possible,
where a secured connection just gets redirected to an unse-
cured one. The easiest implementation is to store the cer-
tificates when a client first connects to a SSL/TLS secured
server and compare the certificates seen in subsequent con-
nections with the already seen certificate. There are different
systems which use simple methods like this, e.g. Certificate
Patrol [16]. Another approach to pin certificates is to send
an additional header when connecting over SSL/TLS to a
server, which contains a hash of a public key in the certifi-
cate chain of the real certificate. This pin has a lifetime,
which is specified by the server the client got the pin from.

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

52



When a client connects to a server, it compares the certifi-
cates in the trust chain with the hash of the pin and just
allows the connection if the hash matches some certificate
in the chain. By using the hash of a certificate which is not
the certificate of the domain itself, but a certificate which is
further up the certificate chain, a server is able to just allow
certificates which belong to a specific intermediate CA or a
specific root CA.
A specific problem of this concept is the distribution of the
pins. As pre-sharing pins for all SSL/TLS secured domains
is not practical, the pins are normally sent to the client when
it first connects to the server. Thus an attacker which con-
trols the connection at the moment a client first connects to
a secured service will still be able to compromise the con-
nection.
Google’s Chrome browser uses public-key pinning by already
shipping some hard-coded pins for domains of Google and
the anonymization service Tor.

2.3 Notary-based
The concept of a Notary-based approach is to look at a se-
cured server from many different viewpoints on the network.

2.3.1 Concept
A way to find out about MitM attacks is to compare the
connection to a specific server with connections to the same
server from the perspective of different clients at different
positions on the Internet. Those other clients, which also
try to connect to the secured server, are called notaries.
This includes not just notaries which are just connected to
other Internet Service Providers (ISPs), but also in other
countries, or even on other continents. The reasoning is the
following: when many notaries on very different positions
on the network see the same certificate, it is very likely the
certificate the domain owner really intended to use. As at-
tackers are normally not able to compromise the whole net-
work, but just small parts of it, a rogue certificate used for
a MitM attack in just a fraction of the whole network will
lead to different views on the compromised domain and can
thus be detected by the notary concept. With the Notary-
based concept the whole checking of certificates boils down
to finding out if there is a consensus on the certificate of a
server throughout the whole network.
There are some problems with this concept: there are some
sites which have different certificates for each single server.
The best-known site employing such a scheme is Citibank
[16]. Sites like that will raise alerts with a Notary-based ap-
proach as there will be no consensus on the seen certificates.
Another deficiency is that the Notary-based approaches can-
not detect global attacks. An attack which would compro-
mise every connection to a server may be possible when there
is just one gateway connecting the server to the global net-
work. When this single connection point to the network is
controlled by an attacker, the attacker is able to compromise
every connection to the server. This is a general problem
with the concept as it does not check if the used certificate
is actually the one the domain owner uses but just if every-
one sees the same certificate [18].
Notary-based systems do not use an already established chan-
nel such as DNS. This is why they need to open a new chan-
nel, a side-channel, for their communication with the notary
servers. As with every technique which uses side-channels
there is also the practical problem with captive portals: nor-

mally when connecting through a pay-to-use portal to the
Internet, e.g. at a hotel, all requests get directed to the login
site and all services besides DNS are blocked until the user
paid for the usage and the connection is opened up for nor-
mal use. As the notary service runs through a side-channel,
at the time of connecting to the login site a user cannot val-
idate this secured connection with a notary system.
Unlike some other approaches, Notary-based approaches are
able to deal with self-signed certificates as it does not matter
for the notaries if there is a path to a (trusted) CA or not.

2.3.2 Perspectives
One of the first and best-known systems using the Notary-
based approach, is the Perspectives project by Carnegie Mel-
lon University [19]. Perspectives was already published in
2008 and came with a proof of concept in the form of a Fire-
fox Add-On.
The notary servers are the most important entities of Per-
spectives. Notary servers are decentrally organized and gen-
erally independent of each other. Notaries either already
have a key history of the requested service and are able to
answer with that key history or if the client requests the
key history for a service the first time, the domain is added
to the list of monitored services. Either way, the notary
will get the certificate from the domain’s service and answer
with that key. A host running the Perspectives client asks
a number of notaries when connecting to a secured service
and asks them for the key history they have seen for the
server. The list of monitored servers is periodically probed
by each notary and all witnessed certificates are stored with
a timestamp. This results in a key history for all monitored
services. The key history includes all previously witnessed
certificates, and with the timestamps, how long they have
been seen. The connection to the notary servers is secured
by public key cryptography where the notary servers’ public
keys need to be distributed to the Perspectives clients by an
out-of-band mechanism.
As a notary server knows about all connection attempts of
a client to secured services, the Perspectives system raises
some privacy issues. This is one of the issues of Perspectives,
which Convergence tries to fix.

2.3.3 Convergence
Moxie Marlinspike presented Convergence at the BlackHat
USA conference in 2011 [13]. Convergence uses the same
idea as the Perspectives project, but it tries to tackle a few
deficiencies of the Perspectives system. In order to fix the
privacy issues, Convergence locally caches certificates which
have already been validated by the Convergence system for
some time. This brings the advantage that notary servers
will not find out about every connection attempt to a secure
service. But on the other hand it introduces a time frame,
where a previously validated certificate may get compro-
mised, but still be trusted by the Convergence client. An-
other mechanism for the improvement of a client’s privacy
is the introduction of notary bouncers. A client may ask a
notary to proxy its request to another notary server. This
is an onion-style routing mechanism where the proxying no-
tary knows which client requested a key history, but as it
cannot read the request message it does not know for which
service. The notary server, which gets contacted by the
proxy notary, knows for which service the request was for
but does not know which client requested that information.

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

53



However as soon as an attacker controls the proxying notary
and the second notary the client’s requests are known to the
attacker.
In contrast to Perspectives, Convergence is designed to be
highly extensible. While Perspectives uses the current X.509
PKI to validate certificates, Convergence is able run notaries
with different ways of validating certificates. It is possible
to run notary servers which validate the certificates with
just a certain set of trusted CAs or even with a completely
different system, e.g. DANE or the OpenPGP Web of Trust.
Convergence is the only system presented in this paper which
views itself as a replacement rather than an extension for the
existing X.509 PKI.

2.4 Transparency-based
The recent attacks on the X.509 PKI took a few days to be
detected. This is due to the fact that there is no mechanism
to look up all certificates issued for a certain domain. A do-
main owner may never find out about the existence of rogue
certificates for the domain which were generated by some
attacker. Such rogue certificates are just detected when a
suspicious user finds out about such a certificate, or when
a CA finds out that it got compromised and issued rogue
certificates. The concept of Transparency-based approaches
is to fix the existing X.509 PKI by publishing issued certifi-
cates or keys needed to validate a certificate in such a way
that it is possible to find all valid certificates or keys needed
to validate certificates for a certain domain. Transparency-
based systems are a very promising approach, as they focus
on the idea of clients being able to check if the certificate
they see is really the one the service operator intends to be
seen.

2.4.1 Concept
The general concept involves an infrastructure in which a
certificate must be published before it becomes valid. One
could describe the Transparency-based approaches as pub-
lic log based approaches. This relatively easy idea brings up
technical problems, which need to be solved to be usable in
real world environments. Public logs need not just serve the
currently valid certificates or keys needed to validate certifi-
cates but need to be able to give a history of the used certifi-
cates or keys for a specific domain. Otherwise trivial attacks
are feasible where an attacker adds a rogue certificate to the
log for a short period of time and deletes it from the log when
the attack is over. Because of that Transparency-based sys-
tems use append-only data structures which ensure that all
certificates ever issued for a specific domain are stored in the
log. The result is that domain owners and other interested
parties are always able to find out about all valid certificates
or keys needed to validate a certificate for their domains. If
an attacker is somehow able to add a rogue certificate to the
log the real domain owner is at least able to easily find out
about it and revoke it.

2.4.2 Certificate Transparency
Certificate Transparency [11] is a system currently devel-
oped by Google. Since the original proposal some details
have been altered and the current design paper version 2.1a
was recently released [10]. With Certificate Transparency
all certificates have to be registered with public log servers.
The log servers save the domains’ certificates in an append-
only data structure. This is done using an ever-growing

Merkle Tree which is a cryptographic primitive offering the
possibility to easily and continuously check the append-only
property of the data structure and to ensure integrity.
When a domain owner registers a certificate with a log server,
the hash of the certificate together with a timestamp of the
registration is signed by the log server and sent back to the
domain owner. This signature is the so called Signed Certifi-
cate Timestamp (SCT). The secured server has to send the
SCT together with the actual certificate at every SSL/TLS
connection attempt to the connecting client. For clients the
SCT works as a proof that the certificate is registered with a
log server. In addition to validating the certificate itself, like
it is done in the current X.509 PKI system, the client checks
if the SCT is correctly signed by a log server. Clients will
get the log servers’ public keys using out-of-bands mecha-
nisms, like shipping them hard-coded in the client software.
The system ensures that every certificate has to be regis-
tered with the log servers, because otherwise clients will not
accept the connection. Domain owners should monitor the
certificates which are registered for their domains and make
sure that the rogue certificates get revoked.
To ensure that the log servers are not compromised and work
honestly there are monitors and auditors. Monitors check
that logged certificates are promptly visible on the log and
that they are on the log legitimately. Domain owners should
either take this role or use some service, which does it on
their behalf. A domain owner is able to check if a new cer-
tificate gets added to the log after submission and to check
if there are any certificates for the domain not created by
himself.
Auditors can check that partial data on the logs is consistent
with the current state of the log. E.g. clients can implement
an auditor, which checks that all certificates they encounter
are visible in the log. Both can be efficiently implemented
because of attributes of the Merkle Tree.
Certificate Transparency has the advantage that it does not
depend on side-channels, like many other systems do. The
secured servers themselves send the needed data to the clients
and they are able to verify the signature of a log server of-
fline. The usage of side-channels is limited to additional
checks, which are not necessary for every client for the sys-
tem to work. As of today the proposal does not include
any mechanisms for revocation of keys. However, the initial
proposal brought up the idea of having another log for re-
vocations together with a proof of non-existence similar to
DNSSEC’s NSEC records.
Although Certificate Transparency is meant to be deployed
over a period of time, it is meant to be required for every
domain certificate in the end. The authors suggest that a
complete transition may be enforced by not allowing the is-
suance of any new certificates without their publication by
the Certificate Transparency system after a certain date [8].
As certificates automatically expire and need to be renewed,
this enforcement would gradually reach every certificate.

3. SOVEREIGN KEYS
Sovereign Keys is a project by the Electronic Frontier Foun-
dation (EFF) [6] and is categorized as a Transparency-based
system. Unlike Certificate Transparency, the SK system
does not publish the certificates themselves but another type
of key, the Sovereign Key. It still fulfills the classic definition
of Transparency-based approaches as no certificate is consid-
ered valid without being cross-signed with a Sovereign Key

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

54



and the Sovereign Keys themselves are indeed published.
Note that there is no working prototype yet. This paper
takes information from the proposal, which was first pub-
lished in November 2011 and last updated in June 2012 [4]
and the specifications writeup from July 2012 [20]. Those
are still subject to change and a final implementation may
differ in specifics. However, source code is already publicly
available in the project’s git repository.

3.1 The basic design
The major problem with the existing X.509 system is that
CAs are able to issue valid certificates for a domain with-
out needing any information or consent of the real domain
owner. With SK, certificates are not valid without being
cross-signed with a special private key of the domain owner,
the so called Sovereign Key. This private key is supposed to

Standard X.509

Host Certificate CA Certificate Sovereign Key

signs

optional 
Intermediate CA 

Certificate
signs signs

Figure 2: Relation between Certificates and
Sovereign Keys

be secret and just known to the real domain owner. Because
of that no one besides the real domain owner is able to carry
out the final step of making a certificate valid.
In order for clients to be able to check the cross-signatures,
the corresponding public keys need to be made available in
some form. This is where the transparency aspect of the SK
design comes in: all public keys of domain owners’ Sovereign
Keys need to be published in so called Timelines in order to
be valid.
Timelines offer an append-only data structure for storing all
Sovereign Keys ever used for domains. The integrity of the
timelines can be cryptographically checked. When register-
ing a domain name as a Sovereign Key in a Timeline, the
Timeline server checks if the registration is authorized (see
section 3.2.1). This relatively easy concept becomes quite
complex when one addresses some real-world problems like
the possibility of compromised Sovereign Keys or scalability.

3.2 Architecture
SK sees itself as an extension to the current X.509 PKI
and keeps that infrastructure at least for bootstrapping.
The system however introduces some new entities: Time-
line servers, Mirrors and clients.

3.2.1 Timelines
The Timelines are the backbone of the SK system. They
hold mappings between a (domain) name and Sovereign
Keys. The concept envisages a semi-centralized data struc-
ture with the use of 10 to 30 Timeline servers [4]. The rea-
son to use not just a single centralized server is to provide a
Śdiversity of jurisdictions, operational philosophies and se-
curity implementations, and ideally to provide these proper-
ties even if some of the servers are compromised/disabledŠ
[4]. Timeline servers may be identified with their Time-
line Address (TADDR). The TADDR consists of the do-
main name and a port, by which they can be reached, and

Timeline Servers

Webservers
Mirrors

Clients

Bind domains to Sovereign Keys

Download Timelines

Query for Timeline entries

Figure 3: The Sovereign Keys architecture

a public key, which is used for secure connections to them
using SSL/TLS. Besides that they have a unique Timeline
ID (TID), which should only be used for a specific Timeline
server. Even when a Timeline server gets shut down and
removed from the system, the TID must never be assigned
to another Timeline server. Each entry in the Timeline in-
cludes the Timeline server’s TID so that it is possible to
distinguish from which Timeline server an entry came from
when they are merged into a single dataset.

Registration of a Sovereign Key: When a domain owner
registers a Sovereign Key, a master-write is done to one
Timeline server. However entries should be written to many
Timeline servers, preferably in different geographic regions,
to be safe in case a Timeline fails. The registrations to addi-
tional Timeline servers is done by reference where just a hash
of the entry at the other Timeline server and that server’s
TID is saved. However when a Timeline server just adds a
reference it has to cache a copy of the entry from the other
Timeline server. This is done in order to have copies in case
of a failure of the referenced Timeline server but to still have
a globally unique entry.
In order to register or bind a domain name to a Sovereign
Key, a domain owner sends a Bind message to a Timeline
server. A Bind message includes the domain name for which
the entry should be created. To prove the authorization, a
domain owner must present a claim proof for the domain.
This may be a CA-signed certificate from the current X.509
system or a key published with DNSSEC using DANE [7].
This proof of claim includes the whole certificate chain from
the host certificate to the trusted CAs certificate, in order
to be able to reproduce the trust decision later. The claim
proof is also appended to the Bind entry in the Timeline.
In order to not be fooled by compromised, but revoked keys
Timeline servers have to verify the OCSP status of the cer-
tificates.

Cryptographic features of the Timelines: Timeline
servers are not able to create fake entries as the data struc-
ture of the Timelines allows a cryptographic verification of
the entries. All entries have an incrementing serial number
which is local to every Timeline server and a monotonically
non-decreasing timestamp. Every Timeline server has to

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

55



sign every entry in its Timeline with its private key. All the
listed properties may be checked easily:

• If there is an entry which is not correctly signed with
the Timeline’s private key, every checking party will
notice and the entry will not be processed.

• If two correctly signed entries with the same serial
number exist, a checking party can notice and has
signed evidence of the violation of the incrementing
serial number property.

• If there is a signed entry with a lower serial number
but a higher timestamp, a checking party has signed
evidence of the violation of the monotonicity of the
timestamps.

• If a correctly signed entry with non-self-consistent data
exists (like a non-verifiable certificate chain for a CA
signed domain claim proof), a checking party has signed
evidence of that inconsistency.

Because there is always signed proof for dishonest entries
it is easy to verify the claim of a Timeline’s misbehaviour.
The design offers a mechanism to distribute the information
of Timelines’ misbehaviour and a Timeline server which dis-
tributes false data will be blacklisted in the system.

3.2.2 Mirrors
To have a scalable system and in order to decrease privacy is-
sues, clients do not directly query the Timeline servers them-
selves, but Mirrors.
Mirrors store the whole Timelines data structure, collected
from all trusted Timeline servers. For an easy initial deploy-
ment process Mirrors may be bootstrapped by downloading
a set of Timeline entries up to a specific timestamp. As
this might be a huge dataset (up to a few hundred gigabytes
[5]) it is envisaged to be done with bittorrent or sending a
hard disk with the dataset on it via conventional parcel ser-
vices (disk-over-snailmail). The dataset is then updated to
the current state by querying each trusted Timeline server
for all entries since the last serial number in the dataset,
that the mirror already holds. With this process, the mir-
rors gather the complete Timelines data structure, which
is semi-centrally spread across the Timeline servers. Using
this data set, the Mirrors are also able and supposed to check
if all Timeline servers are behaving correctly. In case of a
misbehaviour the misbehaving Timeline server gets flagged
as rogue and this information is then passed to clients and
other mirrors. In the end, misbehaving servers get removed
from the list of trusted Timeline servers.
To create a complete view of the semi-centralized Timeline
data structure, mirrors combine all entries from the different
Timeline servers to produce a complete view on the Time-
lines. This is the view a client gets when querying Timelines
for a specific domain. This set of entries is first ordered by
their timestamps and, for entries which have the same times-
tamp, by the entry’s TID.
Clients are able to choose which Mirror they want to use, just
like DNS servers. The EFF envisages that Mirrors will also
be run by ISPs just like they run DNS servers today. This
would decrease the risk of privacy concerns as the queries

would not get out of the ISP’s network and the ISP is sup-
posed to know to which domains a client connects to anyway
because of DNS lookups. In addition, the design introduces
an onion-routing style proxy feature for mirrors, where a
client can ask a mirror to proxy a query to another mirror.
Although the mirror knows which domains a client connects
to, no other party on the network is able to read the commu-
nication between the client and the mirror as this connection
is secured with SSL/TLS.

3.2.3 Clients
When a secured server is uses SK, the client connecting to it
will bypass the X.509 certificate chain checking, as this has
already been done by the Timeline server. The client will
just need to get the Sovereign Key for that server from a
Mirror and then check if the server’s certificate has correctly
been signed with the current Sovereign Key.
One thing to note about the cross-signature of the Sovereign
Key is that the X.509 data format does not offer the ability
to sign a certificate with more than one key. To be able
to add the Sovereign Key signature to a host’s certificate,
which should already be signed by a CA, an extension to
the X.509 data format is needed. However, clients which
do not know about SK should not be affected because the
extension is done in a way that legacy clients will ignore the
SK part.

Trust towards Mirrors: When connecting to a secured
server, clients query Mirrors for all Timeline entries regard-
ing the server’s domain name since the last entry that the
client still has in its cache. Mirrors answer those requests
with a list of all entries since the last entry of the client’s
cache together with a Timeline Freshness Message (TFM)
of all involved Timeline servers. A TFM includes a times-
tamp, the highest serial number to that point in time, the
serial number of the last CA update entry to that time, and
a signature of the timeline server. All this is additionally
signed by the mirror so that the mirror is liable for it. The
TFMs are used to check the honesty of Mirrors. Like Mirrors
check Timeline servers’ integrity and honesty, clients check
Mirrors: When a client gets an entry which has a higher se-
rial number or a higher timestamp than stated in the TFM,
it knows that the Mirror is misbehaving. When such a dis-
honest Mirror is found, the evidence of their misbehaviour
will be reported and in the end those Mirrors will be flagged
as bad and not used anymore.

Connection to a secured server: When a client connects
to a SSL/TLS secured service it will query a Mirror for the
Sovereign Key for that domain and service. The Mirror will
answer with a timestamp-sorted list of entries for that spe-
cific domain. As the next step the client goes through the
timestamp sorted list of entries it received from the Mirror.
The first Bind entry is trusted, from there on every addi-
tional entry to the timeline must be signed with the bound
Sovereign Key, unless a signed Unbind entry exists. If there
is an Unbind entry, the chronological next valid Rebind entry
will be trusted next (see section 3.4 for details). All correctly
signed entries will be processed in this way and ultimately
the client knows which Sovereign Key should be trusted for
the connection to a specific service on a specific domain.
This Sovereign Key is then used to validate the domain’s cer-
tificate by checking if it has been signed with the Sovereign

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

56



Key. In order to offer more privacy and to be more robust
against Mirror outages, clients can cache Sovereign Keys.

Caching: As Sovereign Keys are supposed to be valid for
long periods of time, clients cache the keys locally. However,
revocation checks will be done occasionally. Caching will
also lead to a very small amount of data which needs to
be transferred when the Timeline for a certain domain has
already been cached as there are not be many updates to be
expected.

3.3 Other features
SK offers some additional features. The domain owner may
declare for each domain which services should use the SK
system or if every (secured) service should use SK. By using
this feature, a server is able to secure some services with SK
but keep on using the standard X.509 system for some other
services.
There is also a feature which allows domain owners to state
an alternative route to a domain’s service in case the normal
route is blocked or unavailable. Such an alternative route
would be tried when the normal route is not available or
seems to be under attack. Some proposed alternative route
modes are the use of proxies, VPNs or, especially promoted
by the authors of SK, the anonymization service Tor. This
allows an automated fallback, which may be useful e.g. in
restrictive countries where the government tries to block ac-
cess to certain domains.

3.4 Key management
The SK design already includes several solutions for key
management use cases:

Revocation: Unlike Certificate Transparency, SK already
has a concept to revoke compromised keys. In order to be
able to rebind a previously unbound Sovereign Key, a do-
main owner may state the domain names of so called Re-
binders. First, a compromised Sovereign Key needs to be
unbound. This is done using an Unbind message, which
needs to be signed with the Sovereign Key. An attacker
which compromised a Sovereign Key could do that as well,
but because of the Rebinder concept the attacker is not able
to rebind a new Sovereign Key to it.
When one wants to bind a new Sovereign Key to the domain,
this may just be done with a Rebind message, which needs
to be signed with the Sovereign Key of one of the domain
names previously stated as a Rebinder.

Change of domain owner: When a domain is transferred
to another owner, the same mechanism as with revocation is
used. First the current owner unbinds the current Sovereign
Key and then the new owner will be able to rebind the new
Sovereign Key through one of the Rebinders.

Expiry: To not block a domain by binding a Sovereign Key
with a domain forever (see next item), Sovereign Keys expire
and need to be renewed just like certificates in the X.509
system. One can never bind a Sovereign Key for longer
than one holds ownership of the domain. This property is
checked when binding a domain name to a Sovereign Key.
However, it is possible to get domains for a hundred years,
and thus it is possible to bind a Sovereign Key to a domain
for that period of time.

Losing a Sovereign Key: One problem with the Sovereign
Key concept is that if a domain owner loses the Sovereign
Key, no changes to the entries are possible anymore. This
may even lead to losing control over the domain until the
Sovereign Key expires. The domain owner is not able to add
any entries for the domain in the SK system anymore, as all
entries must be signed with the now lost SK.
A Sovereign Key may be compared to physical property in
this case: Once it is lost, it cannot be regenerated. Revo-
cation of a lost key is impossible as the system requires an
Unbind message for a revocation, which needs to be signed
with the Sovereign Key. Thus Revocation is really just use-
ful in the case of a compromised key.

3.5 Discussion
SK fixes some issues which are prevalent in other concepts
or systems. The system is not affected by state-driven at-
tacks on the DNS system, like DNS-based approaches are.
When a government abuses its control over the DNS sys-
tem and changes entries in there, the rightful domain own-
ers are still in power over their Sovereign Key and the gov-
ernment would not be able to forge connections to the se-
cured services running on that domain. In contrast to nor-
mal Pinning-based approaches, even the first connection of
a client to a service running SK is secured. Also, SK is
generally compatible with every X.509 PKI based protocol.
In comparison to Notary-based systems, SK, just like every
other Transparency-based system, does not just rely on what
other hosts see on a network. Clients are able to check if the
certificate they see is really signed by the rightful domain
owner, which in the end is the only party able to decide
if a certificate is the right one or not. Unlike Certificate
Transparency, the SK project already has a concept for a
revocation system.
However, there are some issues, which will take some effort
to be fixed. Problems with captive portals should not be a
problem for SK in general. But as SK needs a side-channel
to check if a domain name is secured with a Sovereign Key,
this will need a workaround: The authors propose to collect
a list of known captive portal domains and then whitelist
them [1]. This collection is proposed to be done with the
help of a common web browser or a plugin for one. As the
domains of the captive portals do not use SK, this does not
affect the security. When a captive portal provider decides
to incorporate SK, the captive portal will be removed from
the whitelist.
Another issue are Denial-of-Service attacks on the Timelines
data structure by writing a big amount of entries to it. This
is proposed to be fixed with special rules for TLDs, which
need to be paid for and rate-limiting for all domain spaces,
which may be registered for free.
It will also be needed to take precautions that it is not pos-
sible to register a Sovereign Key for a domain not owned by
the registering party. This may even render domains useless
(see section 3.4). The authors propose to have a multi-staged
process, which includes some explicit changes to the services
run on the domain over a longer period of time [1].
However one issue is immanent to the SK system: a Sovereign
Key may be seen as physical property. When it is lost it can-
not be recovered nor revoked. This may even lead to loss of
the domain until the Sovereign Key expires.

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

57



4. CONCLUSION
The 2011 attacks on CAs alerted the Internet community
that the current X.509 PKI is in a fragile state. There are
many different approaches to fix the current system. As each
system has its weaknesses, it may take the combination of
some of those approaches to build a system which is able to
fix all problems while still being deployable.
SK in its current proposed form is quite comprehensive and
may as well be combined with DNS-based approaches. As
there is no working prototype yet, it has to be seen if the
concept will hold up to its promises or if some unforeseen
technical problems get in the way.
Some of the outlined security concepts require quite big
changes to be made to clients, servers, or even to the op-
erational practices of CAs. Those changes will take quite
some time and e.g. the EFF thinks that it will take a couple
of years to build up the Sovereign Key system [5]. Some of
the systems could be faster deployed, such as Pinning-based
approaches, which are already used by Google for its own
domains within the Chrome browser. Notary-based systems
are also already available for end users. Even if some of the
concepts will not establish themselves, they might be used in
the period before a more comprehensive system is deployed.
There are also other applications for some of the concepts:
e.g. Notary-based systems can already be used to identify
and track down the source of MitM attacks [15].
Time will tell which concepts will be widely accepted and if
they hold up to their security promises.

5. REFERENCES
[1] P. Eckersley. 28C3: Sovereign Keys - A proposal for

fixing attacks on CAs and DNSSEC.
https://www.youtube.com/watch?v=18pFTo3zVxk,
Dec. 2011. [last retrieved in September 2012].

[2] P. Eckersley. How secure is HTTPS today? How often
is it attacked? https://www.eff.org/deeplinks/

2011/10/how-secure-https-today, 2011. [last
retrieved in September 2012].

[3] P. Eckersley. Iranian hackers obtain fraudulent
HTTPS certificates: How close to a Web security
meltdown did we get?
https://www.eff.org/deeplinks/2011/03/

iranian-hackers-obtain-fraudulent-https/, 2011.
[last retrieved in September 2012].

[4] P. Eckersley. Sovereign Key Cryptography for Internet
Domains.
https://git.eff.org/?p=sovereign-keys.git;a=

blob;f=sovereign-key-design.txt;hb=master, June
2012. [last retrieved in September 2012].

[5] Electronic Frontier Foundation. Sovereign Keys: A
Proposal to Make HTTPS and Email More Secure.
https://www.eff.org/deeplinks/2011/11/

sovereign-keys-proposal-make-https-and-email-m

ore-secure, Nov. 2011. [last retrieved in September
2012].

[6] Electronic Frontier Foundation. The Sovereign Keys
project. https://www.eff.org/sovereign-keys,
2011. [last retrieved in September 2012].

[7] P. Hoffman and J. Schlyter. The DNS-Based
Authentication of Named Entities (DANE) Transport
Layer Security (TLS) Protocol: TLSA. RFC 6698,
IETF, August 2012.

[8] A. Langley. Certificate Transparency.
http://www.imperialviolet.org/2011/11/29/

certtransparency.html, Nov. 2011. [last retrieved in
September 2012].

[9] A. Langley. Revocation doesn’t work. http://www.
imperialviolet.org/2011/03/18/revocation.html,
2011. [last retrieved in September 2012].

[10] B. Laurie and E. Kasper. Certificate Transparency
v2.1a. http://www.links.org/files/
CertificateTransparencyVersion2.1a.pdf, Sept.
2012. [last retrieved in September 2012].

[11] B. Laurie and A. Langley. Certificate Transparency.
http://www.certificate-transparency.org/, 2012.
[last retrieved in September 2012].

[12] M. Marlinspike. Defeating OCSP With The Character
’3’. http://www.thoughtcrime.org/papers/ocsp-att
ack.pdf, 2009. [last retrieved in September 2012].

[13] M. Marlinspike. SSL And The Future Of Authenticity.
https://www.youtube.com/watch?v=Z7Wl2FW2TcA,
Aug. 2011. [last retrieved in September 2012].

[14] Mozilla Security Blog. DigiNotar removal follow up.
https://blog.mozilla.com/security/2011/09/02/

diginotar-removal-follow-up/, 2011. [last retrieved
in September 2012].

[15] R. Holz, T. Riedmaier, N. Kammenhuber, and G.
Carle. X.509 Forensics: Detecting and Localising the
SSL/TLS Men-in-the-middle. In Proc. 17th European
Symposium on Research in Computer Security
(ESORICS 2012), volume 7459/2012 of LNCS, pages
217–234, Pisa, Italy, Sept. 2012. Springer Verlag.

[16] T. Ritter. New Standards for browser-based trust -
The recent acceleration of improvements.
http://ritter.vg/p/2012-TLS-Survey.pdf, March
2012. [last retrieved in September 2012].

[17] C. Soghoian and S. Stamm. Certified lies: Detecting
and defeating government interception attacks against
SSL. In Proc. 15th. Int. Conf. Financial Cryptography
and Data Security (FC’11), Mar. 2011.

[18] A. Steingruebl. Perspectives on ”perspectives”.
http://www.thesecuritypractice.com/the_

security_practice/2010/04/

perspectives-on-perspectives.html, April 2010.
[last retrieved in September 2012].

[19] D. Wendlandt, D. Andersen, and A. Perrig.
Perspectives: Improving SSH-style host authentication
with multi-path probing. In Proc. USENIX Annual
Technical Conference, Boston, MA, June 2008.

[20] J. Wierzbicki. Sovereign Key Draft Specification.
https://git.eff.org/?p=sovereign-keys.git;a=

blob_plain;f=spec.txt;hb=master, July 2012. [last
retrieved in September 2012].

doi: 10.2312/NET-2013-02-1_07Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

58




