RUtgerS Computational Physics- 2021

Roundoff error

Every data in a computer is a collection of bits (zeros and ones).
byte=8 bits

KiB=KiloByte = 219 byte=1024byte
MiB=MegaByte = 220 byte ~ 1e6 bytes
GiB=GigaByte = 23° byte ~ 1e9 byte
TiB=TeraByte = 2%V byte ~ 1e12 byte
PiB=PetaByte = 2°Y byte ~ 1e15 byte
EiB=ExaByte = 20 byte ~ 1e18 byte
ZiB=ZettaByte = 279 byte ~ 1621 byte
YiB = YottaByte = 259 byte =~ 1e24 byte

Moore’s law: every 18 months doubles, in 15 years increase for 219 ~ 1e3.

Introduction

Kristjan Haule, 2021

RUtgerS Computational Physics- 2021 Introduction

Most computers are nowadays 64bit: a pointer takes 64 bit.

With 32bit system one can address 232 ~~ 49 different locations in memory, hence

~ 2 GiB RAM requires 64-bit processor+operating system.

With 64 bit system one can address 24 ~ 1e19 locations, hence several ExaBytes.

Kristjan Haule, 2021 —2—

RUtgerS Computational Physics- 2021 Introduction

There are two classes of types used by computer:
a) fixed point (integer and long)
b) floating point (float, double,complex,...)
Arithmetics with integer is exact (except when overflow occurs)

In most of computers, integers are 32bit=4byte. Since integer needs also sign (takes one
bit) integer has the range from —231 to 231 — 1.

Larger types are long’s, and long long’s. The latter are normally 64 bit, while the former are
usually 32 bit.

The example computer program shows you the limits of some of the most often used types.

int O
{
using namespace std;
cout<< << <<endl:
cout<{ {{numeric_limits<char?::digits+l << {{static_cast<int>{numeric_limits<char?::min(});
cout<< <{<static_cast<{int>{numeric_limits<char>::max())<<endl:
cout<{ {numeric_limits<int>::digits+1 K Knumeric_limits<int>::minQ) << {Cnumeric_limits<int>::max()<<endl:

cout<< <<numeric_limits<long>::digits+l << <<numeric_limits<long>::min{) << {<numeric_limits<long?::max()<<endl:
cout<< <<numeric_limits<long long>::digits+1<< <<numeric_limits<long long>::min{) <X {<numeric_limits<long long>::max()<<endl:
cout<{ {{numeric_limits<double’::min(} << {<numeric_limits<double’::max() << {<numeric_limits<double’: :epsilon();
cout<< <<numeric_limits<double>::infinity()<<" "<<numeric_limits<doubled::signaling_NaN{)<<endl:

cout<{<endl:

output is

Kristjan Haule, 2021 —-3-

RUtgerS Computational Physics- 2021

bits minimum maximum value

8 -128 127

32 -2147483648 2147483647
32 -2147483648 2147483647

long long:64 -9223372036854775808
double: 2.22567e-308 1.79769e+3068

9223372036854775807
2.22045e-16 inf nan

Introduction

Kristjan Haule, 2021

RUtgerS Computational Physics- 2021 Introduction

Arithmetics with floating point numbers is not exact causing many difficulties.

In modern computers, the floating point is presented as Sign *x Mantisa x Exponent.
The largest and the smallest floating point number depends on the type. Most often we will
use double, which needs 8bytes=64bits and can store numbers between 2.22507e-308 to
1.79769e+308. [roughly: 9-bits exponent, 54-bits mantisa, 1-bit sign]

The overflow error occurs if we want to store > 1.79769 x 103°® and underflow when
r < 2.22507 * 107398 This is usually not so crucial, although it occurs if one is not
careful (1/0!).

The roundoff error € occurs when : 1+€ == 1.

For double, which takes 8 bytes, it occurs around (only!) 10716, (Check the simple
example program!)

The roundoff error makes bad algorithms unstable

Kristjan Haule, 2021 —5—-

RUtgerS Computational Physics- 2021 Introduction

Example: Calculation of spherical Bessel function j () with upward and downward

recursion.

Spherical bessel functions are solutions of V' = 0 radial Schroedinger equation

1d* I(1+1)
- 7 ; — FElri 1
9 dr2 + 972 [T]Z(T)] [T]l(r)] (1)
and satisfy the following recursion relation
. 204+ 1 . .
Jit1(x) = Ji(z) — Ji—1(z). (2)
and initial condition:
, sin(x , sin(x cos(x
jo(z) = (@) ji(z) = (2) _ cosl@) (3)
X €T €T

A three term linear recursion relation — two solutions j; () and n;(x) are possible.

It l > x, ny(x) is larger than j; (). For large [and small x the upward recursion for
j1(x) does not work (becomes n; () after a few steps).

The idea is to use Miller’s algorithm: Use recursion in the opposite direction to get j; () at
large [and small x. Here is the code for the upward recursion by jupyter notebook:

Kristjan Haule, 2021 —6—

RUtgerS Computational Physics- 2021

Upward recursion

We will evaluate bessel upward recursion using the formula

. 2t +1 . .
Jz+1(1’) = T]l —Ji—1

from scipy import *
from numpy import *

def bessel upward(l,x):
"returns array of j i from i=0 to i=1l, including 1"
res = zeros(l+1)
if abs(x)<le-30:
res[0]=1.
return res
jo = sin(x)/x

res[0]=70

if 1==0: return res
jl = jO/x - cos(x)/x
res[1l] = jl

for i in range(l,1):
j2 = (2%i+1)/x*jl - j0
res[i+1]=72
jo,3jl = ji,32

return res

from scipy import special

1=10

x=0.1

dat0 = bessel upward(l,x)

datl = special.spherical jn(range(l+l),x)

diff = dat0-datl
print(dat0)

print(datl)
print('difference=", diff)

(1)

Introduction

Kristjan Haule, 2021

RUtgerS Computational Physics- 2021

Introduction

Downward recursion starts from sufficiently higher ls;,,-+ than desired [. Good choice is

lotart = 1 + 3v/1. Starting values 7;

start

1 are not important. Good guess is

0 and 1, respectively. We always need to continue down to [= 0 and using jo(a:)

normalize the result.

Here is the code for downward recursion in Python:

2 downward recursion

Now we will use recursion:

Ji1 =2l 4+ 1) /x5 — jia

[11]: def bessel_downward(l,x):
"downward recursion"
if abs(x)<1le-20:
res = zeros(1l+1)
res[0]=1
return res
lstart = 1 + int(sqrt(10*1))

j2 = 0.
i1 = 1.
res = []

for i in range(lstart,0,-1):
jo = (2xi+1)/x * j1 - j2
if i-1<=1 : res.append(jO)
j2 = ji1
i1 = jo
res.reverse()
true_joO = sin(x)/x
res = array(res) * true_jO/res[0]
return res

Kristjan Haule, 2021

RUtgerS Computational Physics- 2021

OCo~NOUMPAWNREFROH
O ORPRRP NP OSSOSO S

upwérd

. 998334
.0333

. 000666191
.51852e-06
.05787e-07
.31094e-09
.48416e-07
. 92918e-05
. 00289362
.491896

Numerical error for z = 0.1:
exact

downward

998334
0333

9
9
0.000066191
9.51852e-06
1.05772e-07
9.
7
4
2
1

61631e-10

.39754e-12
.93189%e-14

9012e-16
52699e-18

0

998334
0333

)
0.000666191
9.51852e-06
1.05772e-07
9.
7
4
2
1

61631e-10

.39754e-12
. 93189%e-14
.9012e-16

.52699e-18

diff-up

11022e-16
38778e-16

1
1
4.28824e-15
2.14271e-13
1.
1
1
1
9
9

49947e-11

.34931e-09
.48409e-07
.92918e-05
. 00289362
.491896

Introduction

diff-dn

.11022e-16
. 93889e-18

1
6
)
1.69407e-21
2.64698e-23
2.
1
1
4
)

06795e-25

.61559e-27
.26218e-29

93038e-32

Kristjan Haule, 2021

RUtgerS Computational Physics- 2021

Introduction

Numerical error for upward recursion for various [as a function of .
upward recursion

1087 .

1077
10
10*3
10°1
10%7

10°

10'—11

U e

10 20

B 11111

Kristjan Haule, 2021

—10-

RUtger S Computational Physics- 2021 Introduction

Numerical error for downward recursion for various [as a function of
downward recursion

107° -
302 1
1073*
10737 1
B
107*2
10-9% 1
16T

Kristjan Haule, 2021 11—

RUtger S Computational Physics- 2021

10—12 -t

[opedy

10-19 -

10—18 .

10729 -

Combination of upward and downward recursion:

combination of up and down recursion

Introduction

Kristjan Haule, 2021

—{2—

1

IRutgers Computational Physics- 2021 Introduction

Second Homework

e Write a python script to compute spherical bessel functions with up and down
recursion. Plot the error of your algorithm when compared to scipy version of

Ji(z).

e Optional: Use f2py or pybind11 to speed up the algorithm.

e We want to compute the series of integrals, defined by

b e
Kn(z,a,a,b)zf dx

a

(4)

zZ + ax

whenn = 0,1,10,q4. = 10.
a and b are numbers between 0 and 1. For simplicity you can choose a = 0
and b = 1.

— Derive the recursion relation between K, 11 and K.

— Then starting from Ky you can compute all K,, up to 1,4, Using the
recursion. This works quite well for |a/z| >= 1.

Kristjan Haule, 2021 —12-1—

IRutgers Computational Physics- 2021 Introduction

— Choosing z and « so that [/ 2| < 1 (for example a/z = 10™*) verify
that upward recursion does not lead to accurate results.

— Implement downword recursion for a./z < 1/2. Make sure that you start
with very accurate value for /,, . You can derive a power expansion of
K in powers of («¢/2)¥, and evaluate as many terms as needed to

Nmax

achieve desired accuracy (for example 10712).

Kristjan Haule, 2021 —12-2—

	Second Homework

