
KH Computational Physics- 2015 Basic Numerical Algorithms

Ordinary differential equations

The set of ordinary differential equations (ODE) can always be reduced to a set of coupled

first order differential equations.

For example, Newton’s law is usually written by a second order differential equation

m~̈r = F [~r, ~̇r, t]. In Hamiltonian dynamics, the same problem leads to the set of first order

equations ~̇p = −∂H
∂q and ~̇q = ∂H

∂p .

We will therefore concentrate on the system of equations

dyi
dx

= fi(x, y0, y1, · · · , yN−1) (1)

To solve the problem, the boundary conditions need to be specified. They can be arbitrary

complicated - for example a set of nonlinear equations relating values yi(xl) and there

derivatives ẏi(xl) at certain points xl.

Kristjan Haule, 2015 –1–

KH Computational Physics- 2015 Basic Numerical Algorithms

Boundary conditions can be divided into categories

• Initial value problems (all necessary conditions specified at starting point)

• Two point boundary problems (part of the conditions specified at one point x0 and the

rest at x1).

• More complicated problems

In this chapter, we will concentrate on the Initial value problems and we will show in the

Density functional theory chapter how to solve The two points boundary problem - by so

called shooting method.

We will implement these methods

• Runge-Kutta method : general purpose routine

• Numerov’s algorithm: ÿ = f(t)y(t) (for Schroedinger equation)

• Verlet algorithm: ÿ = F [y(t), t] (for molecular dynamics because it is more stable

and preserves total energy)

In this chapter, we will concentrate on ”most often” general purpose routine. In subsequent

chapers we will implement the two other methods.

Kristjan Haule, 2015 –2–

KH Computational Physics- 2015 Basic Numerical Algorithms

The simplest method for solving differential equations is Euler’s method

yi+1 = yi + hf(xi, yi) +O(h2) (2)

xi+1 = xi + h (3)

but it is not advisable to use it in practice.

When solving differential equation, we usually look for a very smooth function y(x) and in order that the step size can be finite

and precision loss is not very dramatic, it is recommended to use higher order routine. In addition, Euler’s routine is very unstable

because it is not ”symmetric”.

The derivative f(xi, yi) is taken at the beginning of the interval [xi, xi + h]. The stability

and precision would increase if one could estimate derivative in the middle of the interval,

i.e., f(xi + h/2, y(xi + h/2)).

The second order Runge-Kutta method implements the above idea

k1 = hf(xi, yi) (4)

yi+1 = yi + hf(xi +
1

2
h, yi +

1

2
k1) +O(h3) (5)

It is called second order, because error is of the order of h3. In general, the error of the

n-th order routine is O(hn+1).
Kristjan Haule, 2015 –3–

KH Computational Physics- 2015 Basic Numerical Algorithms

Figure 1: top letf: Euler’s algorithm, top right: Midpoint or Second order Runge-Kutta method

bottom: Forth order Runge-Kutta

Kristjan Haule, 2015 –4–

KH Computational Physics- 2015 Basic Numerical Algorithms

Most popular is the forth-order Runge Kutta (RK4) method:

k1 = hf(xi, yi) (6)

k2 = hf(xi +
1

2
h, yi +

1

2
k1) (7)

k3 = hf(xi +
1

2
h, yi +

1

2
k2) (8)

k4 = hf(xi + h, yi + k3) (9)

yi+1 = yi +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5) (10)

How to understand the method? Looking at the above figure, we see:

• k1 is the slope at the beginning of the interval;

• k2 is the slope at the midpoint of the interval, using slope k1 to determine the value of

y at the point xi + h/2 using Euler’s method;

• k3 is again the slope at the midpoint, but now using the slope k2 to determine the

y-value;

• k4 is the slope at the end of the interval, with its y-value determined using k3;

Kristjan Haule, 2015 –5–

KH Computational Physics- 2015 Basic Numerical Algorithms

• in averaging the four slopes, greater weight is given to the slopes at the midpoint.

The RK4 method is a fourth-order method, meaning that the error per step is on the order

of h5, while the total accumulated error has order h4. With only four function evaluations,

for fourth order accuracy is extremely good.

The code for RK4 is given below:

Kristjan Haule, 2015 –6–

KH Computational Physics- 2015 Basic Numerical Algorithms

def RK4(x, y, dh, derivs):

"""

///////////////// METHOD OF RUNKGE-KUTTA 4-th ORDER ///////////////////////

"""

k1 = dh * derivs(y, x) # First step : evaluating k1

k2 = dh * derivs(y + 0.5*k1, x+0.5*dh) # Second step : evaluating k2

k3 = dh * derivs(y + 0.5*k2, x+0.5*dh) # Third step : evaluating k3

k4 = dh * derivs(y + k3, x+dh) # Final step : evaluating k4

return y + (k1+2.0*(k2+k3)+k4)/6.

def d_simple_pendulum(y, x):

""" use time units omega*t->t

dˆ2 u/dtˆ2 = - omegaˆ2 u is written as

y = [u(t), du/dt]

d y/dt = [du/dt, dˆ2u/dt = -u]

Exact solution is y[0,1] = [xmax*sin(t), xmax*cos(t)]

"""

return array([y[1],-y[0]])

t_start=0 # first time

t_stop=200 # elapsed time in dimensionless units

dh=0.1 # time step

ts = linspace(t_start,t_stop, (t_stop-t_start)/dh+1)

dh = ts[1]-ts[0]

y = array([0, 1.]) # Pendulum is initially at zero but has maximum momentum

for i,t in enumerate(ts):

y = RK4(t, y, dh, d_simple_pendulum)

Kristjan Haule, 2015 –7–

KH Computational Physics- 2015 Basic Numerical Algorithms

-2

-1

0

1

2
y(

t)
,d

y/
dt

forth order Runge-Kutta dh=0.1

-0.0002

-0.0001

0

1e-04

0.0002

y(
t)

-y
ex

ac
t(t

)

0 50 100 150 200

-2e-05

-1e-05

0

E
-E

ex
ac

t

Figure 2: Fixed step Runge Kutta for simple pendulum. The error is increasing linearly with

time and energy is being lost linearly with time.
Kristjan Haule, 2015 –8–

KH Computational Physics- 2015 Basic Numerical Algorithms

In practice, it is usually better to use adaptive step. In this case, one needs some way of

estimating error of each step and decrease the step size if necessary. Two types of

algorithms are very popular

• Step doubling

• Embedded methods

Step doubling builds on the fact that when performing half of the step, the error is smaller

and by comparing the error of full step and half step, we have good estimation of the error:

y(t+ 2h) = y1 + (2h)5 C one big 2h step (11)

y(t+ 2h) = y2 + 2h5 C two small h steps (12)

The difference of the two solutions is 0 = y2 − y1 − 30h5C , which can serve as an error

estimate ∆

∆ ≡ y2 − y1 (13)

We hence have an estimate for the error ∆, and because we know that it is proportional to

h5, we can estimate how much the step should be reduced/increased to reach desired

accuracy.
Kristjan Haule, 2015 –9–

KH Computational Physics- 2015 Basic Numerical Algorithms

If we make a step h1 and get an error ∆1, we can estimate the stepsize which will give the

error of the order of ∆0 is

h0 = h1

∣∣∣∣
∆0

∆1

∣∣∣∣
1/5

(14)

The solution at current step can even be ”improved” to fifth order by evaluating

y(x+ 2h) = y2 +
∆

15
+O(h6). (15)

Kristjan Haule, 2015 –10–

KH Computational Physics- 2015 Basic Numerical Algorithms

Embedded Runge-Kutta methods

For 4-th order RK method one needs 4 function evaluations, for higher order accuracy (of

order M) one typically needs more function evaluations, namely, M+2.

The method due to Fehldberg needs 6 function evaluations for 5-th order accuracy. In

addition, one can use the same 6 function values to get 4-th order accuracy. The difference

can therefore be used as an error estimate.

The embedded fifth-order RK formulas are

k0 = hf(xi, yi) (16)

k1 = hf(xi + a1h, yi + b10k0) (17)

· · · (18)

k5 = hf(xi + a5h, yi + b50k0 + · · ·+ b54k4) (19)

yi+1 = yi + c0k0 + c1k1 + · · ·+ c5k5 +O(h6) (20)

y′i+1 = yi + c′0k0 + c′1k1 + · · ·+ c′5k5 +O(h5) (21)

∆ = yi+1 − y′i+1 =

5∑

i=0

(ci − c′i)ki (22)

Kristjan Haule, 2015 –11–

KH Computational Physics- 2015 Basic Numerical Algorithms

where coefficients are

i ai ci c′i bi0 bi1 bi2 bi3 bi4 bi5

0 37
378

2825
27648

1 1
5 0 0 1

5

2 3
10

250
621

18575
48384

3
40

9
40

3 3
5

125
594

13525
55296

3
10 − 9

10
6
5

4 1 0 277
14336 − 11

54
5
2 − 70

27
35
27

5 7
8

512
1771

1
4

1631
55296

175
512

575
13824

44275
110592

253
4096

(23)

The error estimate we have is for the forth-order value y′i+1 and is proportional to h5 or

∆ = Ch5. If we made a step h1 and got the error ∆1, we can figure out what the step

needs to be, to get the error of the order of ∆0

h0 = h1

∣∣∣∣
∆0

∆1

∣∣∣∣
1/5

(24)

Although the error estimate is for the forth-order value, we obviously accept fifth order

estimate yi+1.
Kristjan Haule, 2015 –12–

KH Computational Physics- 2015 Basic Numerical Algorithms

The above formula can be used in two ways

• If obtained error ∆1 (by taking step h1) is smaller than desired accuracy ∆0, we can

increase step to h0 = h1

∣∣∣∆0

∆1

∣∣∣
1/5

when taking the next step.

• If the obtained error is to big, we have to backtrack and take the same step again by

choosing smaller step h0 = h1

∣∣∣∆0

∆1

∣∣∣
1/5

.

Backtracking is ”expensive” bacuse we throw away 5-6 function evaluation! To play it save,

we rather increases the step a little less that we should and decrease slightly more than we

could

h0 =





Sh1

∣∣∣∆0

∆1

∣∣∣
0.2

∆0 > ∆1

Sh1

∣∣∣∆0

∆1

∣∣∣
0.25

∆0 < ∆1

(25)

where S ≈ 0.9 is safety factor.

We need routine to solve a system of coupled equations and therefore yi is a vector of

values, however, we treated ∆ as a number. In the code, we take a number ∆ to be the

largest component of vector ∆m since error of all components needs to be kept below

desired accuracy.
Kristjan Haule, 2015 –13–

KH Computational Physics- 2015 Basic Numerical Algorithms

Many times, the components (corresponding to different equations) differ dramatically in

value. In many cases, we want to multiply different components with different factors when

evaluating error

∆ = max(∆m/yscalm) (26)

A good choice for scaling factors is

yscalm = |ym|+ |fmh|+ 10−3
(27)

where ym is m-th component of the vector at each step i and fm is the derivative at the

same step. This ensures that the relative error is bounded rather than absolute.

Below is the Python implementation for the RK5 algorithm. Note that if speed is desired, the

code should be rewritten in C++ or fortran. (See source code directory for C++

implementation).

Kristjan Haule, 2015 –14–

KH Computational Physics- 2015 Basic Numerical Algorithms

def RK5_Try(x, y, dydx, dh, derivs):

"""

///////// METHOD OF RUNGE-KUTTA 5-th ORDER, ADAPTIVE STEP /////////////

Given values for variables y[...] and their derivatives dydx[...] known at x, use

the fifth-order Cash-Karp Runge-Kutta method to advance the solution over an interval dh

and return the incremented variables as yout[..]. Also return an estimate of the local

truncation error in yout using the embedded fourth-order method. The user supplies the routine

dydx = derivs(y,x), which returns derivatives dydx at x.

"""

a0 a1 a2 a3 a4 a5

ai = array([0, 0.2, 0.3, 0.6, 1.0, 0.875])

c0 c1 c2 c3 c4 c5

ci = array([37.0/378.0, 0.0, 250.0/621.0, 125.0/594.0, 0.0, 512.0/1771.0])

c0-d0 c1-d1 c2-d2 c3-d3 c4-d4 c5-d5

dci = array([ci[0]-2825.0/27648.0, 0.0, ci[2]-18575.0/48384.0, ci[3]-13525.0/55296.0, -277.00/14336.0, ci[5]-0.25])

bs = array([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

[0.2, 0.0, 0.0, 0.0, 0.0, 0.0],

[3.0/40.0, 9.0/40.0, 0.0, 0.0, 0.0, 0.0],

[0.3, -0.9, 1.2, 0.0, 0.0, 0.0],

[-11.0/54.0, 2.5, -70.0/27.0, 35.0/27.0, 0.0, 0.0],

[1631.0/55296.0, 175.0/512.0, 575.0/13824.0, 44275.0/110592.0, 253.0/4096.0, 0.0]])

k0 = dh*dydx # first step

k1 = dh*derivs(y + bs[1,0]*k0, x + ai[1]*dh) # Second step.

k2 = dh*derivs(y + bs[2,0]*k0+bs[2,1]*k1, x + ai[2]*dh) # Third step.

k3 = dh*derivs(y + bs[3,0]*k0+bs[3,1]*k1+bs[3,2]*k2, x + ai[3]*dh) # Fourth step.

k4 = dh*derivs(y + bs[4,0]*k0+bs[4,1]*k1+bs[4,2]*k2+bs[4,3]*k3, x + ai[4]*dh) # Fifth step.

k5 = dh*derivs(y + bs[5,0]*k0+bs[5,1]*k1+bs[5,2]*k2+bs[5,3]*k3+bs[5,4]*k4, x + ai[5]*dh) # Sixth step.

Accumulate increments with proper weights.

yout = y + ci[0]*k0+ci[2]*k2+ci[3]*k3+ci[5]*k5

Estimate error as difference between fourth and fifth order methods.

yerr = dci[0]*k0+dci[2]*k2+dci[3]*k3+dci[4]*k4+dci[5]*k5

return (yout, yerr)

Kristjan Haule, 2015 –15–

KH Computational Physics- 2015 Basic Numerical Algorithms

def RK5_Step(x, y, dhtry, derivs, accuracy):

""" Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy and adjust stepsize.

Input is

x -- independent variable

y[...], dydx[...] -- the dependent variable vector and its derivative at the starting value of the independent

dhtry -- the stepsize to be attempted

derivs -- the user-supplied routine that computes the right-hand side derivatives.

Output:

x_new, y_new

dh_next -- the estimated next stepsize

"""

dydx = derivs(y, x) # Calculates derivatives for the new step

good way of determining desired accuracy

yscal = abs(y[:]) + abs(dydx[:]*dhtry) + 1e-3

dh = dhtry # Set stepsize to the initial trial value.

while True: # infinite loop

(y_new, yerr) = RK5_Try(x, y, dydx, dh, derivs) # Take a step.

errmax = max(abs(yerr/yscal))/accuracy # maximum error scaled to required tolerance

if (errmax <= 1.0): break # Step succeeded. Compute size of next step.

dh_new = 0.9*dh/errmax**0.25 # Truncation error too large, reduce stepsize.

if abs(dh_new) < 0.1*abs(dh): # if step might get too small

dh_new = 0.1*dh # take at most 10-times smaller step

dh = dh_new

if (x+dh == x): print "ERROR: stepsize underflow in RKStep"

if errmax < 2.e-4: # Step is way too small

dh_next = 5.0*dh # Increase it 5-times

else: # Step was too small, but of correct order of magnitude

dh_next = 0.9*dh/errmax**0.2 # Step is too small, increase it next time with the deltaˆ1/5. power

return (x+dh, y_new, dh_next)

Kristjan Haule, 2015 –16–

KH Computational Physics- 2015 Basic Numerical Algorithms

if __name__ == ’__main__’:

t_start=0 # first time

t_stop=200 # elapsed time in dimensionless units

dh=0.1 # initial time step

accuracy=1e-7

y = array([0, 1.0]) # Pendulum is initially at zero but has maximum momentum

tc = t_start

while (tc<=t_stop):

(tc, y, dh) = RK5_Step(tc, y, dh, d_simple_pendulum, accuracy)

Kristjan Haule, 2015 –17–

KH Computational Physics- 2015 Basic Numerical Algorithms

0 50 100 150 200
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(t
)

0 50 100 150 200
−6

−4

−2

0

2

4

6

y(
t)
−y

(t
) e

x
a
ct

1e−7

0 50 100 150 200
0
1
2
3
4
5
6
7
8
9

E
n
e
rg
y
(t
)-
E
n
e
rg
y
(0
) 1e−7

Figure 3: Variable Runge Kutta step for simple pendulum. Precision is here set to 10−8.

The error is increasing linearly, but is very small (10−6) after t=200.

Kristjan Haule, 2015 –18–

KH Computational Physics- 2015 Basic Numerical Algorithms

A somewhat more interesting example is double pendulum. It is well known that double

pendulum is chaotic for not too small energy and the Poincare plots in chaotic regime show

nice patterns.

2θ

θ1

x

y

~r1 = (l sin θ1, l cos θ1) (28)

~r2 = (l(sin θ1 + sin θ2), l(cos θ1 + cos θ2)) (29)

T =
1

2
m~̇r

2

1 +
1

2
m~̇r

2

2 (30)

V = 3mgl −m~g~r1 −m~g~r2 (31)

L =
1

2
ml2[2θ̇21 + θ̇22 + 2 cos(θ1 − θ2)θ̇1θ̇2]−mgl[3− 2 cos θ1 − cos θ2](32)

p1 =
∂L

∂θ̇1
= ml2[2θ̇1 + cos(θ1 − θ2)θ̇2] (33)

p2 =
∂L

∂θ̇2
= ml2[θ̇2 + cos(θ1 − θ2)θ̇1] (34)

Kristjan Haule, 2015 –19–

KH Computational Physics- 2015 Basic Numerical Algorithms

H =
1

2ml2
[p21 + 2p22 − 2p1p2 cos(θ1 − θ2)]

1 + sin2(θ1 − θ2)
+mgl[3− 2 cos θ1 − cos θ2](35)

(36)

θ̇1 =
∂H

∂p1
=

p1 − p2 cos(θ1 − θ2)

ml2[1 + sin2(θ1 − θ2)]
(37)

θ̇2 =
∂H

∂p2
=

2p2 − p1 cos(θ1 − θ2)

ml2[1 + sin2(θ1 − θ2)]
(38)

ṗ1 = −
∂H

∂θ1
= −2mgl sin θ1 − C1 + C2 (39)

ṗ2 = −
∂H

∂θ2
= −mgl sin θ2 + C1 − C2 (40)

C1 =
p1p2 sin(θ1 − θ2)

ml2[1 + sin2(θ1 − θ2)]
(41)

C2 =
[p21 + 2p22 − 2p1p2 cos(θ1 − θ2)] sin(2(θ1 − θ2))

2ml2[1 + sin2(θ1 − θ2)]2
(42)

Kristjan Haule, 2015 –20–

KH Computational Physics- 2015 Basic Numerical Algorithms

p̃ =
p

ml2ω0
(43)

t̃ = tω0 (44)

ω2
0 =

g

l
(45)

p̃ → p; t̃ → t (46)

θ̇1 =
p1 − p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
(47)

θ̇2 =
2p2 − p1 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
(48)

ṗ1 = −2 sin θ1 − C1 + C2 (49)

ṗ2 = − sin θ2 + C1 − C2 (50)

C1 =
p1p2 sin(θ1 − θ2)

1 + sin2(θ1 − θ2)
(51)

C2 =
[p21 + 2p22 − 2p1p2 cos(θ1 − θ2)] sin(2(θ1 − θ2))

2[1 + sin2(θ1 − θ2)]2
(52)

Kristjan Haule, 2015 –21–

KH Computational Physics- 2015 Basic Numerical Algorithms

The class which can be given to integration routine is

def d_DoublePendulum(y, x):

"""

theta1 -> y[0]

theta2 -> y[1]

p1 -> y[2]

p2 -> y[3]

"""

t1,t2 = y[0],y[1]

p1,p2 = y[2],y[3]

cs = cos(t1-t2)

ss = sin(t1-t2)

tt = 1./(1+ss**2)

c1 = p1*p2*ss*tt

c2 = (p1**2+2*p2**2-2*p1*p2*cs)*cs*ss*tt**2

return array([(p1-p2*cs)*tt, (2*p2-p1*cs)*tt, -2*sin(t1)-c1+c2, -sin(t2)+c1-c2])

def Energy_DoublePendulum(y):

t1,t2 = y[0],y[1]

p1,p2 = y[2],y[3]

cs = cos(t1-t2)

ss = sin(t1-t2)

tt = 1./(1+ss**2)

return 0.5*(p1**2 + 2*p2**2 - 2*p1*p2*cs)*tt + (3.-2.*cos(t1)-cos(t2))

Kristjan Haule, 2015 –22–

KH Computational Physics- 2015 Basic Numerical Algorithms

Poincare map From Wikipedia

In mathematics of dynamical systems, a Poincare map or Poincare section, named after

Henri Poincare, is the intersection of a trajectory which moves periodically (or

quasi-periodically, or chaotically), in a space of at least three dimensions, with a transversal

hypersurface of one fewer dimension. More precisely, one considers a trajectory with initial

conditions on the hyperplane and observes the point at which this trajectory returns to the

hyperplane. The Poincare section refers to the hyperplane, and the Poincare map refers to

the map of points in the hyperplane induced by the intersections.

Kristjan Haule, 2015 –23–

KH Computational Physics- 2015 Basic Numerical Algorithms

Figure 4: Poincare plots using θ1 and θ2 as variables. The point is plotted when pθ1 = 0.

Energies used to get the above plots are 5,10,15,20,25,30.

Kristjan Haule, 2015 –24–

KH Computational Physics- 2015 Basic Numerical Algorithms

Homeworks

1 Simulate the motion of Earth in the solar system as a two body problem (taking into account only the Sun and Earth). Write

the equation

m~̈r = −GmM
~r

r3

in dimensionless units or atronomical units (AU).

2 Simulate the three body problem and check how strong is the influence of Jupiter on motion of Earth.

3 Plot trajectories of Earth in case Jupiter’s mass is 1000 times bigger than its actual mass.

4 Verify the existance of Kirkwood gaps. Simulate motion of Jupiter together with asteroids close to 2/1 Kirkwood gap with the

following initial conditions

Object Radius(AU) V elocity(AU/yr)

Jupiter 5.2 2.755

Asteroid1 3.0 3.628

Asteroid2 3.276 3.471

Asteroid3 3.7 3.267

(53)

astronomical units (AU) are:

• length is meassured in units of distance between Earth and Sun ≈ 1.5 1011

• time can be meassured in years

Kristjan Haule, 2015 –25–

