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Embedded Systems 
Programming

“‘Unsafe’ means ‘Somebody may die.’”

—Safety offi cer

We present a view of embedded systems programming; 

that is, we discuss topics primarily related to writing pro-

grams for “gadgets” that do not look like conventional computers 

with screens and keyboards. We focus on the principles, pro-

gramming techniques, language facilities, and coding standards 

needed to work “close to the hardware.” The main language is-

sues addressed are resource management, memory management, 

pointer and array use, and bit manipulation. The emphasis is on 

safe use and on alternatives to the use of the lowest-level features. 

We do not attempt to present specialized machine architectures 

or direct access to hardware devices; that is what specialized lit-

erature and manuals are for. As an example, we present the im-

plementation of an encryption/decryption algorithm.
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CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING926

25.1 Embedded systems
Most computers in the world are not immediately recognizable as computers. 
They are simply a part of a larger system or “gadget.” For example:

• Cars: A modern car may have many dozens of computers, controlling 
the fuel injection, monitoring engine performance, adjusting the radio, 
controlling the brakes, watching for underinfl ated tires, controlling the 
windshield wipers, etc.

• Telephones: A mobile telephone contains at least two computers; often one 
of those is specialized for signal processing.

• Airplanes: A modern airplane contains computers for everything from run-
ning the passenger entertainment system to wiggling the wing tips for 
optimal fl ight properties.

• Cameras: There are cameras with fi ve processors and for which each lens 
even has its own separate processor.

• Credit cards (of the “smart card” variety)
• Medical equipment monitors and controllers (e.g., CAT scanners)
• Elevators (lifts)
• PDAs (Personal Digital Assistants)
• Printer controllers

• Sound systems

• MP3 players
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25.1  EMBEDDED SYSTEMS 927

• Kitchen appliances (such as rice cookers and bread machines)
• Telephone switches (typically consisting of thousands of specialized computers)
• Pump controllers (for water pumps and oil pumps, etc.)
• Welding robots: some for use in tight or dangerous places where a human 

welder cannot go
• Wind turbines: some capable of generating megawatts of power and 200m 

(650ft) tall
• Sea-wall gate controllers

• Assembly-line quality monitors

• Bar code readers

• Car assembly robots

• Centrifuge controllers (as used in many medical analysis processes)
• Disk-drive controllers

These computers are parts of larger systems. Such “large systems” usually don’t 
look like computers and we don’t usually think of them as computers. When 
we see a car coming down the street, we don’t say, “Look, there’s a distributed 
computer system!” Well, the car is also a distributed computer system, but its op-
eration is so integrated with the mechanical, electronic, and electrical parts that we 
can’t really consider the computers in isolation. The constraints on their compu-
tations (in time and space) and the very definition of program correctness cannot 
be separated from the larger system. Often, an embedded computer controls a 
physical device, and the correct behavior of the computer is defined as the correct 
operation of the physical device. Consider a large marine diesel engine:

Stroustrup_book.indb   927Stroustrup_book.indb   927 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING928

Note the engineer at the head of cylinder number 5. This is a big engine, the 
kind of engine that powers the largest ships. If an engine like this fails, you’ll read 
about it on the front page of your morning newspaper. On this engine, a cylinder 
control system, consisting of three computers, sits on each cylinder head. Each 
cylinder control system is connected to the engine control system (another three 
computers) through two independent networks. The engine control system is 
then connected to the control room where the engineers can communicate with 
it through a specialized GUI system. The complete system can also be remotely 
monitored via radio (through satellites) from a shipping-line control center. For 
more examples, see Chapter 1.

So, from a programmer’s point of view, what’s special about the programs 
running in the computers that are parts of that engine? More generally, what are 
examples of concerns that become prominent for various kinds of embedded 
systems that we don’t typically have to worry too much about for “ordinary 
programs”?

• Often, reliability is critical: Failure can be spectacular, expensive (as in “bil-
lions of dollars”), and potentially lethal (for the people on board a wreck 
or the animals in its environment).

• Often, resources (memory, processor cycles, power) are limited: That’s not likely to 
be a problem on the engine computer, but think of smartphones, sensors, 
computers on board space probes, etc. In a world where dual-processor 
2GHz laptops with 8GB of memory are common, a critical computer in 
an airplane or a space probe may have just 60MHz and 256KB, and a 
small gadget just sub-1MHz and a few hundred words of RAM. Comput-
ers made resilient to environmental hazards (vibration, bumps, unstable 
electricity supplies, heat, cold, humidity, workers stepping on them, etc.) 
are typically far slower than what powers a student’s laptop.

• Often, real-time response is essential: If the fuel injector misses an injec-
tion cycle, bad things can happen to a very complex system generating 
100,000Hp; miss a few cycles — that is, fail to function correctly for a 
second or so — and strange things can start happening to propellers that 
can be up to 33ft (10m) in diameter and weigh up to 130 tons. You really 
don’t want that to happen.

• Often, a system must function uninterrupted for years: Maybe the system is run-
ning in a communications satellite orbiting the earth, or maybe the system 
is just so cheap and exists in so many copies that any signifi cant repair 
rate would ruin its maker (think of MP3 players, credit cards with embed-
ded chips, and automobile fuel injectors). In the United States, the man-
dated reliability criterion for backbone telephone switches is 20 minutes 
of downtime in 20 years (don’t even think of taking such a switch down 
each time you want to change its program).
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• Often, hands-on maintenance is infeasible or very rare: You can take a large ship 
into a harbor to service the computers every second year or so when 
other parts of the ship require service and the necessary computer spe-
cialists are available in the right place at the right time. Unscheduled, 
hands-on maintenance is infeasible (no bugs are allowed while the ship 
is in a major storm in the middle of the Pacifi c). You simply can’t send 
someone to repair a space probe in orbit around Mars.

Few systems suffer all of these constraints, and any system that suffers even one is 
the domain of experts. Our aim is not to make you an “instant expert”; attempt-
ing to do that would be quite silly and very irresponsible. Our aim is to acquaint 
you with the basic problems and the basic concepts involved in their solution so 
that you can appreciate some of the skills needed to build such systems. Maybe 
you could become interested in acquiring such valuable skills. People who design 
and implement embedded systems are critical to many aspects of our technologi-
cal civilization. This is an area where a professional can do a lot of good.

Is this relevant to novices? To C++ programmers? Yes and yes. There are 
many more embedded systems processors than there are conventional PCs. A 
huge fraction of programming jobs relate to embedded systems programming, so 
your first real job may involve embedded systems programming. Furthermore, 
the list of examples of embedded systems that started this section is drawn from 
what I have personally seen done using C++.

25.2 Basic concepts
Much programming of computers that are part of an embedded system can be 
just like other programming, so most of the ideas presented in this book apply. 
However, the emphasis is often different: we must adjust our use of programming 
language facilities to the constraints of the task, and often we must manipulate our 
hardware at the lowest level:

• Correctness: This is even more important than usual. “Correctness” is not 
just an abstract concept. In the context of an embedded system, what it 
means for a program to be correct becomes not just a question of produc-
ing the correct results, but also producing them at the right time, in the 
right order, and using only an acceptable set of resources. Ideally, the de-
tails of what constitutes correctness are carefully specifi ed, but often such 
a specifi cation can be completed only after some experimentation. Often, 
critical experiments can be performed only after the complete system (of 
which the computer running the program is a part) has been built. Com-
pletely specifying correctness for an embedded system can at the same 
time be extremely diffi cult and extremely important. Here, “extremely 
diffi cult” can mean “impossible given the time and resources available”; 
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we must try our best using all available tools and techniques. Fortunately, 
the range of specifi cation, simulation, testing, and other techniques in 
a given area can be quite impressive. Here, “extremely important” can 
mean “failure leads to injury or ruin.”

• Fault tolerance: We must be careful to specify the set of conditions that a 
program is supposed to handle. For example, for an ordinary student 
program, you might fi nd it unfair if we kicked the cord out of the power 
supply during a demonstration. Losing power is not among the condi-
tions an ordinary PC application is supposed to deal with. However, 
losing power is not uncommon for embedded systems, and some are 
expected to deal with that. For example, a critical part of a system may 
have dual power sources, backup batteries, etc. Worse, “But I assumed 
that the hardware worked correctly” is no excuse for some applications. 
Over a long time and over a large range of conditions, hardware simply 
doesn’t work correctly. For example, some telephone switches and some 
aerospace applications are written based on the assumption that sooner 
or later some bit in the computer’s memory will just “decide” to change 
its value (e.g., from 0 to 1). Alternatively, it may “decide” that it likes 
the value 1 and ignore attempts to change that 1 to a 0. Such erroneous 
behavior happens eventually if you have enough memory and use it 
for a long enough time. It happens sooner if you expose the memory to 
hard radiation, such as you fi nd beyond the earth’s atmosphere. When 
we work on a system (embedded or not), we have to decide what kind 
of tolerance to hardware failure we must provide. The usual default is to 
assume that hardware works as specifi ed. As we deal with more critical 
systems, that assumption must be modifi ed. 

• No downtime: Embedded systems typically have to run for a long time 
without changes to the software or intervention by a skilled operator with 
knowledge of the implementation. “A long time” can be days, months, 
years, or the lifetime of the hardware. This is not unique for embedded 
systems, but it is a difference from the vast majority of “ordinary appli-
cations” and from all examples and exercises in this book (so far). This 
“must run forever” requirement implies an emphasis on error handling 
and resource management. What is a “resource”? A resource is some-
thing of which a machine has only a limited supply; from a program you 
acquire a resource through some explicit action (“acquire the resource,” 
“allocate”) and return it (“release,” “free,” “deallocate”) to the system 
explicitly or implicitly. Examples of resources are memory, fi le handles, 
network connections (sockets), and locks. A program that is part of a 
long-running system must release every resource it requires except a few 
that it permanently owns. For example, a program that forgets to close a 
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fi le every day will on most operating systems not survive for more than 
about a month. A program that fails to deallocate 100 bytes every day 
will waste more than 32K a year — that’s enough to crash a small gadget 
after a few months. The nasty thing about such resource “leaks” is that 
the program will work perfectly for months before it suddenly ceases to 
function. If a program will crash, we prefer it to crash as soon as possible 
so that we can remedy the problem. In particular, we prefer it to crash 
long before it is given to users.

• Real-time constraints: We can classify an embedded system as hard real time if 
a certain response must occur before a deadline. If a response must occur 
before a deadline most of the time, but we can afford an occasional time 
overrun, we classify the system as soft real time. Examples of soft real time 
are a controller for a car window and a stereo amplifi er. A human will 
not notice a fraction of a second’s delay in the movement of the window, 
and only a trained listener would be able to hear a millisecond’s delay in 
a change of pitch. An example of hard real time is a fuel injector that has 
to “squirt” at exactly the right time relative to the movement of the piston. 
If the timing is off by even a fraction of a millisecond, performance suffers 
and the engine starts to deteriorate; a major timing problem could com-
pletely stop the engine, possibly leading to accident or disaster.

• Predictability: This is a key notion in embedded systems code. Obviously, 
the term has many intuitive meanings, but here — in the context of 
programming embedded systems — we will use a specialized technical 
meaning: an operation is predictable if it takes the same amount of time 
to execute every time it is executed on a given computer, and if all such 
operations take the same amount of time to execute. For example, when 
x and y are integers, x+y takes the same amount of time to execute every 
time and xx+yy takes the same amount of time when xx and yy are two 
other integers. Usually, we can ignore minor variations in execution speed 
related to machine architecture (e.g., differences caused by caching and 
pipelining) and simply rely on there being a fi xed, constant upper limit 
on the time needed. Operations that are not predictable (in this sense of 
the word) can’t be used in hard real-time systems and must be used with 
great care in all real-time systems. A classic example of an unpredictable 
operation is a linear search of a list (e.g., fi nd()) where the number of 
elements is unknown and not easily bounded. Only if we can reliably 
predict the number of elements or at least the maximum number of ele-
ments does such a search become acceptable in a hard real-time system; 
that is, to guarantee a response within a given fi xed time we must be able 
to — possibly aided by code analysis tools — calculate the time needed for 
every possible code sequence leading up to the deadline. 
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• Concurrency: An embedded system typically has to respond to events from 
the external world. This leads to programs where many things happen 
“at once” because they correspond to real events that really happen at 
once. A program that simultaneously deals with several actions is called 
concurrent or parallel. Unfortunately the fascinating, diffi cult, and important 
issue of concurrency is beyond the scope of this book.

25.2.1 Predictability
From the point of view of predictability, C++ is pretty good, but it isn’t perfect. 
All facilities in the C++ language (including virtual function calls) are predict-
able, except

• Free-store allocation using new and delete (see §25.3)
• Exceptions (§19.5)
• dynamic_cast (§A.5.7)

These facilities must be avoided for hard real-time applications. The problems 
with new and delete are described in detail in §25.3; those are fundamental. Note 
that the standard library string and the standard containers (vector, map, etc.) 
indirectly use the free store, so they are not predictable either. The problem with 
dynamic_cast is a problem with current implementations but is not fundamental.

The problem with exceptions is that when looking at a particular throw, the 
programmer cannot — without looking at large sections of code — know how 
long it will take to find a matching catch or even if there is such a catch. In an 
embedded systems program, there had better be a catch because we can’t rely on 
a C++ programmer sitting ready to use the debugger. The problems with excep-
tions can in principle be dealt with by a tool that for each throw tells you exactly 
which catch will be invoked and how long it will take the throw to get there, but 
currently, that’s a research problem, so if you need predictability, you’ll have to 
make do with error handling based on return codes and other old-fashioned and 
tedious, but predictable, techniques.

25.2.2 Ideals
When writing an embedded systems program there is a danger that the quest for 
performance and reliability will lead the programmer to regress to exclusively 
using low-level language facilities. That strategy is workable for individual small 
pieces of code. However, it can easily leave the overall design a mess, make it dif-
ficult to be confident about correctness, and increase the time and money needed 
to build a system.

As ever, our ideal is to work at the highest level of abstraction that is feasi-
ble given the constraints on our problem. Don’t get reduced to writing glorified 
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assembler code! As ever, represent your ideas as directly in code as you can (given 
all constraints). As ever, try hard to write the clearest, cleanest, most maintainable 
code. Don’t optimize until you have to. Performance (in time or space) is often 
essential for an embedded system, but trying to squeeze performance out of ev-
ery little piece of code is misguided. Also, for many embedded systems the key 
is to be correct and fast enough; beyond “fast enough” the system simply idles 
until another action is needed. Trying to write every few lines of code to be as 
efficient as possible takes a lot of time, causes a lot of bugs, and often leads to 
missed opportunities for optimization as algorithms and data structures get hard 
to understand and hard to change. For example, that “low-level optimization” 
approach often leads to missed opportunities for memory optimization because 
almost similar code appears in many places and can’t be shared because of inci-
dental differences.

John Bentley — famous for his highly efficient code — offers two “laws of 
optimization”:

• First law: Don’t do it.
• Second law (for experts only): Don’t do it yet.

Before optimizing, make sure that you understand the system. Only then can 
you be confident that it is — or can become — correct and reliable. Focus on 
algorithms and data structures. Once an early version of the system runs, care-
fully measure and tune it as needed. Fortunately, pleasant surprises are not un-
common: clean code sometimes runs fast enough and doesn’t take up excessive 
memory space. Don’t count on that, though; measure. Unpleasant surprises are 
not uncommon either.

25.2.3 Living with failure
Imagine that we are to design and implement a system that may not fail. By “not 
fail” let’s say that we mean “will run without human intervention for a month.” 
What kind of failures must we protect against? We can exclude dealing with the 
sun going nova and probably also with the system being trampled by an elephant. 
However, in general we cannot know what might go wrong. For a specific system, 
we can and must make assumptions about what kinds of errors are more common 
than others. Examples:

• Power surges/failure
• Connector vibrating out of its socket
• System hit by falling debris crushing a processor
• Falling system (disk might be destroyed by impact)
• X-rays causing some memory bits to change value in ways impossible 

according to the language defi nition
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Transient errors are usually the hardest to find. A transient error is one that happens 
“sometimes” but not every time a program is run. For example, we have heard of 
a processor that misbehaved only when the temperature exceeded 130°F (54°C). 
It was never supposed to get that hot; however, it did when the system was (un-
intentionally and occasionally) covered up on the factory floor, never in the lab 
while being tested.

Errors that occur away from the lab are the hardest to fix. You will have a 
hard time imagining the design and implementation effort involved in letting the 
JPL engineers diagnose software and hardware failures on the Mars Rovers (20 
minutes away from the lab for a signal traveling at the speed of light) and update 
the software to fix a problem once understood.

Domain knowledge — that is, knowledge about a system, its environment, 
and its use — is essential for designing and implementing a system with a good 
resilience against errors. Here, we will touch only upon generalities. Note that 
every “generality” we mention here has been the subject of thousands of papers 
and decades of research and development.

• Prevent resource leaks: Don’t leak. Be specifi c about what resources your pro-
gram uses and be sure you conserve them (perfectly). Any leak will kill 
your system or subsystem eventually. The most fundamental resources 
are time and memory. Typically, a program will also use other resources, 
such as locks, communication channels, and fi les. 

• Replicate: If a system critically needs a hardware resource (e.g., a computer, 
an output device, a wheel) to function, then the designer is faced with 
a basic choice: should the system contain several copies of the critical 
resource? We can either accept failure if the hardware breaks or provide 
a spare and let the software switch to using the spare. For example, the 
fuel injector controllers for the marine diesel engine are triplicate comput-
ers connected by duplicate networks. Note that “the spare” need not be 
identical to the original (e.g., a space probe may have a primary strong 
antenna and a weaker backup). Note also that “the spare” can typically 
be used to boost performance when the system works without a problem. 

• Self-check: Know when the program (or hardware) is misbehaving. Hard-
ware components (e.g., storage devices) can be very helpful in this respect, 
monitoring themselves for errors, correcting minor errors, and reporting 
major failures. Software can check for consistency of its data structures, 
check invariants (§9.4.3), and rely on internal “sanity checks” (assertions). 
Unfortunately, self-checking can itself be unreliable, and care must be 
taken that reporting an error doesn’t itself cause an error — it is really hard 
to completely check error checking.

• Have a quick way out of misbehaving code: Make systems modular. Base error 
handling on modules: each module has a specifi c task to do. If a module 
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decides it can’t do its task, it can report that to some other module. Keep 
the error handling within a module simple (so that it is more likely to be 
correct and effi cient), and have some other module responsible for serious 
errors. A good reliable system is modular and multi-level. At each level, 
serious errors are reported to a module at the next level — in the end, 
maybe to a person. A module that has been notifi ed of a serious error 
(one that another module couldn’t handle itself) can then take appropriate 
action — maybe involving a restart of the module that detected the error 
or running with a less sophisticated (but more robust) “backup” module. 
Defi ning exactly what “a module” is for a given system is part of the over-
all system design, but you can think of it as a class, a library, a program, 
or all the programs on a computer.

• Monitor subsystems in case they can’t or don’t notice a problem themselves. 
In a multi-level system higher levels can monitor lower levels. Many sys-
tems that really aren’t allowed to fail (e.g., the marine engines or space sta-
tion controllers) have three copies of critical subsystems. This triplication 
is not done just to have two spares, but also so that disagreements about 
which subsystem is misbehaving can be settled by 2-to-1 votes. Triplica-
tion is especially useful where a multi-level organization is diffi cult (i.e., at 
the highest level of a system or subsystem that may not fail).

We can design as much as we like and be as careful with the implementation as 
we know how to, but the system will still misbehave. Before delivering a system 
to users, it must be systematically and thoroughly tested; see Chapter 26.

25.3 Memory management
The two most fundamental resources in a computer are time (to execute instruc-
tions) and space (memory to hold data and code). In C++, there are three ways 
to allocate memory to hold data (§17.4, §A.4.2):

• Static memory: allocated by the linker and persisting as long as the pro-
gram runs

• Stack (automatic) memory: allocated when we call a function and freed when 
we return from the function

• Dynamic (heap) memory: allocated by new and freed for possible reuse by 
delete

Let’s consider these from the perspective of embedded systems programming. In 
particular, we will consider memory management from the perspective of tasks 
where predictability (§25.2.1) is considered essential, such as hard real-time pro-
gramming and safety-critical programming.
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Static memory poses no special problem in embedded systems programming: 
all is taken care of before the program starts to run and long before a system is 
deployed.

Stack memory can be a problem because it is possible to use too much of it, 
but this is not hard to take care of. The designers of a system must determine that 
for no execution of the program will the stack grow over an acceptable limit. This 
usually means that the maximum nesting of function calls must be limited; that is, 
we must be able to demonstrate that a chain of calls (e.g., f1 calls f2 calls . . . calls fn) 
will never be too long. In some systems, that has caused a ban on recursive calls. 
Such a ban can be reasonable for some systems and for some recursive functions, 
but it is not fundamental. For example, I know that factorial(10) will call factorial at 
most ten times. However, an embedded systems programmer might very well pre-
fer an iterative implementation of factorial (§15.5) to avoid any doubt or accident.

Dynamic memory allocation is usually banned or severely restricted; that is, 
new is either banned or its use restricted to a startup period, and delete is banned. 
The basic reasons are

• Predictability: Free-store allocation is not predictable; that is, it is not guar-
anteed to be a constant time operation. Usually, it is not: in many imple-
mentations of new, the time needed to allocate a new object can increase 
dramatically after many objects have been allocated and deallocated.

• Fragmentation: The free store may fragment; that is, after allocating and 
deallocating objects the remaining unused memory may be “fragmented” 
into a lot of little “holes” of unused space that are useless because each 
hole is too small to hold an object of the kind used by the application. 
Thus, the size of the useful free store can be far less than the size of the 
initial free store minus the size of the allocated objects.

The next section explains how this unacceptable state of affairs can arise. The 
bottom line is that we must avoid programming techniques that use both new
and delete for hard real-time or safety-critical systems. The following sections 
explain how we can systematically avoid problems with the free store using stacks 
and pools.

25.3.1 Free-store problems
What’s the problem with new? Well, really it’s a problem with new and delete
used together. Consider the result of this sequence of allocations and deallocations:

Message* get_input(Device&);                // make a  Message on the free store

while(/* . . . */) {
          Message* p = get_input(dev); 
          // . . .

Stroustrup_book.indb   936Stroustrup_book.indb   936 5/8/15   10:31 AM5/8/15   10:31 AM
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          Node* n1 = new Node(arg1,arg2);
          // . . .
          delete p;
          Node* n2 = new Node (arg3,arg4);
          // . . .
}

Each time around the loop we create two Nodes, and in the process of doing 
so we create a Message and delete it again. Such code would not be unusual as 
part of building a data structure based on input from some “device.” Looking at 
this code, we might expect to “consume” 2*sizeof(Node) bytes of memory (plus 
free-store overhead) each time around the loop. Unfortunately, it is not guaran-
teed that the “consumption” of memory is restricted to the expected and desired 
2*sizeof(Node) bytes. In fact, it is unlikely to be the case.

Assume a simple (though not unrealistic) memory manager. Assume also that 
a Message is a bit larger than a Node. We can visualize the use of free space like 
this, using orange for the Message, green for the Nodes, and plain white for “a 
hole” (that is, “unused space”):

After creating n1 (one Message and one Node)

After deleting p (one “hole” and one Node)

After creating n2 (two Nodes and a small “hole”)

After creating n1 the 2nd time through the loop

After creating n2 the 2nd time through the loop

After creating n2 the 3rd time through the loop

So, we are leaving behind some unused space (“a hole”) on the free store each 
time we execute the loop. That may be just a few bytes, but if we can’t use those 
holes it will be as bad as a memory leak — and even a small leak will eventually 
kill a long-running program. Having the free space in our memory scattered in 
many “holes” too small for allocating new objects is called memory fragmentation. 
Basically, the free-store manager will eventually use up all “holes” that are big 
enough to hold the kind of objects that the program uses, leaving only holes 
that are too small to be useful. This is a serious problem for essentially all 
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long-running programs that use new and delete extensively; it is not uncommon 
to find unusable fragments taking up most of the memory. That usually dramati-
cally increases the time needed to execute new as it has to search through lots of 
objects and fragments for a suitably sized chunk of memory. Clearly this is not 
the kind of behavior we can accept for an embedded system. This can also be a 
serious problem in naively designed non-embedded systems.

Why can’t “the language” or “the system” deal with this? Alternatively, can’t 
we just write our program to not create such “holes”? Let’s first examine the most 
obvious solution to having all those little useless “holes” in our memory: let’s 
move the Nodes so that all the free space gets compacted into one contiguous area 
that we can use to allocate more objects.

Unfortunately, “the system” can’t do that. The reason is that C++ code refers 
directly to objects in memory. For example, the pointers n1 and n2 contain real 
memory addresses. If we moved the objects pointed to, those addresses would no 
longer point to the right objects. Assume that we (somewhere) keep pointers to 
the nodes we created. We could represent the relevant part of our data structure 
like this:

Nodes with pointers to nodes

Now we compact memory by moving an object so that all the unused memory is 
in one place:

After compacting

Unfortunately, we now have made a mess of those pointers by moving the ob-
jects they pointed to without updating the pointers. Why don’t we just update 
the pointers when we move the objects? We could write a program to do that, 
but only if we knew the details of the data structure. In general, “the system” 
(the C++ run-time support system) has no idea where the pointers are; that is, 
given an object, the question “Which pointers in the program point to this object 
right now?” has no good answer. Even if that problem could be easily solved, 
this approach (known as compacting garbage collection) is not always the right one. 
For example, to work well, it typically requires more than twice the memory that 
the program ever needs to be able to keep track of pointers and to move objects 
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around in. That extra memory may not be available on an embedded system. In 
addition, an efficient compacting garbage collector is hard to make predictable.

We could of course answer that “Where are the pointers?” question for our 
own data structures and compact those. That would work, but a simpler approach 
is to avoid fragmentation in the first place. In the example here, we could simply 
have allocated both Nodes before allocating the message:

while( . . . ) {
          Node* n1 = new Node; 
          Node* n2 = new Node;
          Message* p = get_input(dev); 
          // . . . store information in nodes . . .
          delete p;
          // . . .
}

However, rearranging code to avoid fragmentation isn’t easy in general. Doing so 
reliably is at best very difficult and often incompatible with other rules for good 
code. Consequently, we prefer to restrict the use of the free store to ways that 
don’t cause fragmentation in the first place. Often, preventing a problem is better 
than solving it.

TRY THIS

Complete the program above and print out the addresses and sizes of the 
objects created to see if and how “holes” appear on your machine. If you have 
time, you might draw memory layouts like the ones above to better visualize 
what’s going on. 

25.3.2 Alternatives to the general free store
So, we mustn’t cause fragmentation. What do we do then? The first simple obser-
vation is that new cannot by itself cause fragmentation; it needs delete to create 
the holes. So we start by banning delete. That implies that once an object is allo-
cated, it will stay part of the program forever.

In the absence of delete, is new predictable; that is, do all new operations 
take the same amount of time? Yes, in all common implementations, but it is 
not actually guaranteed by the standard. Usually, an embedded system has a 
startup sequence of code that establishes the system as “ready to run” after initial 
power-up or restart. During that period, we can allocate memory any way we like 

T
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up to an allowed maximum. We could decide to use new during startup. Alterna-
tively (or additionally) we could set aside global (static) memory for future use. 
For reasons of program structure, global data is often best avoided, but it can be 
sensible to use that language mechanism to pre-allocate memory. The exact rules 
for this should be laid down in a coding standard for a system (see §25.6).

There are two data structures that are particularly useful for predictable mem-
ory allocation:

• Stacks: A stack is a data structure where you can allocate an arbitrary 
amount of memory (up to a given maximum size) and deallocate the last 
allocation (only); that is, a stack can grow and shrink only at the top. 
There can be no fragmentation, because there can be no “hole” between 
two allocations.

• Pools: A pool is a collection of objects of the same size. We can allocate 
and deallocate objects as long as we don’t allocate more objects than the 
pool can hold. There can be no fragmentation because all objects are of 
the same size.

For both stacks and pools, both allocation and deallocation are predictable 
and fast.

So, for a hard real-time or critical system we can define stacks and pools as 
needed. Better yet, we ought to be able to use stacks and pools as specified, imple-
mented, and tested by someone else (as long as the specification meets our needs).

Note that the C++ standard containers (vector, map, etc.) and the standard 
string are not to be used because they indirectly use new. You can build (buy or 
borrow) “standard-like” containers to be predictable, but the default ones that 
come with your implementation are not constrained for embedded systems use.

Note that embedded systems typically have very stringent reliability require-
ments, so whatever solution we choose, we must make sure not to compromise 
our programming style by regressing into using lots of low-level facilities directly. 
Code that is full of pointers, explicit conversions, etc. is unreasonably hard to 
guarantee as correct.

25.3.3 Pool example
A pool is a data structure from which we can allocate objects of a given type and 
later deallocate (free) such objects. A pool contains a maximum number of ob-
jects; that number is specified when the pool is created. Using green for “allocated 
object” and blue for “space ready for allocation as an object,” we can visualize a 
pool like this:

Pool:
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A Pool can be defined like this:

template<typename T, int N>
class Pool {                 // Pool of N objects of type T
public:
          Pool();                           // make pool of N Ts
          T* get();                       // get a T from the pool; return 0 if no free Ts
          void free(T*);               // return a T given out by get() to the pool
          int available() const;   // number of free Ts
private:
          // space for T[N] and data to keep track of which Ts are allocated
          // and which are not (e.g., a list of free objects)
};

Each Pool object has a type of elements and a maximum number of objects. We 
can use a Pool like this:

Pool<Small_buffer,10> sb_pool;
Pool<Status_indicator,200> indicator_pool;

Small_buffer* p = sb_pool.get();
// . . .
sb_pool.free(p);

It is the job of the programmer to make sure that a pool is never exhausted. The 
exact meaning of “make sure” depends on the application. For some systems, the 
programmer must write the code such that get() is never called unless there is 
an object to allocate. On other systems, a programmer can test the result of get() 
and take some remedial action if that result is 0. A characteristic example of the 
latter is a telephone system engineered to handle at most 100,000 calls at a time. 
For each call, some resource, such as a dial buffer, is allocated. If the system runs 
out of dial buffers (e.g., dial_buffer_pool.get() returns 0), the system refuses to set 
up new connections (and may “kill” a few existing calls to create capacity). The 
would-be caller can try again later.

Naturally, our Pool template is only one variation of the general idea of a 
pool. For example, where the restraints on memory allocation are less Draconian, 
we can define pools where the number of elements is specified in the constructor 
or even pools where the number of elements can be changed later if we need more 
objects than initially specified.
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25.3.4 Stack example
A stack is a data structure from which we can allocate chunks of memory and 
deallocate the last allocated chunk. Using green for “allocated memory” and blue 
for “space ready for allocation,” we can visualize a stack like this:

Stack:

Top of stack

As indicated, this stack “grows” toward the right.
We could define a stack of objects, just as we defined a pool of objects:

template<typename T, int N>
class Stack {                 // stack of N objects of type T
          // . . .
}; 

However, most systems have a need for allocation of objects of varying sizes. A 
stack can do that whereas a pool cannot, so we’ll show how to define a stack from 
which we allocate “raw” memory of varying sizes rather than fixed-size objects:

template<int N>
class Stack {               // stack of N bytes
public:
          Stack();                  // make an N-byte stack
          void* get(int n);     // allocate n bytes from the stack; 
                                            // return 0 if no free space
          void free();                // return the last value returned by get() to the stack
          int available() const;   // number of available bytes
private:
          // space for char[N] and data to keep track of what is allocated
          // and what is not (e.g., a top-of-stack pointer)
};

Since get() returns a void* pointing to the required number of bytes, it is our job 
to convert that memory to the kinds of objects we want. We can use such a stack 
like this:

Stack<50*1024> my_free_store;      // 50K worth of storage to be used as a stack

void* pv1 = my_free_store.get(1024);
int* buffer = static_cast<int*>(pv1); 
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void* pv2 = my_free_store.get(sizeof(Connection));
Connection* pconn = new(pv2) Connection(incoming,outgoing,buffer);

The use of static_cast is described in §17.8. The new(pv2) construct is a “place-
ment new.” It means “Construct an object in the space pointed to by pv2.” It 
doesn’t allocate anything. The assumption here is that the type Connection has a 
constructor that will accept the argument list (incoming,outgoing,buffer). If that’s 
not the case, the program won’t compile.

Naturally, our Stack template is only one variation of the general idea of a 
stack. For example, where the restraints on memory allocation are less Draconian, 
we can define stacks where the number of bytes available for allocation is specified 
in the constructor.

25.4 Addresses, pointers, and arrays
Predictability is a need of some embedded systems; reliability is a concern of all. 
This leads to attempts to avoid language features and programming techniques 
that have proved error-prone (in the context of embedded systems programming, 
if not necessarily everywhere). Careless use of pointers is the main suspect here. 
Two problem areas stand out:

• Explicit (unchecked and unsafe) conversions
• Passing pointers to array elements

The former problem can typically be handled simply by severely restricting the 
use of explicit type conversions (casts). The pointer/array problems are more sub-
tle, require understanding, and are best dealt with using (simple) classes or library 
facilities (such as array, §20.9). Consequently, this section focuses on how to ad-
dress the latter problems.

25.4.1 Unchecked conversions
Physical resources (e.g., control registers for external devices) and their most 
basic software controls typically exist at specific addresses in a low-level system. 
We have to enter such addresses into our programs and give a type to such data. 
For example:

Device_driver* p = reinterpret_cast<Device_driver*>(0xffb8);

See also §17.8. This is the kind of programming you do with a manual or online 
documentation open. The correspondence between a hardware resource — the 
address of the resource’s register(s) (expressed as an integer, often a hexadecimal 
integer) — and pointers to the software that manipulates the hardware resource 
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is brittle. You have to get it right without much help from the compiler (because 
it is not a programming language issue). Usually, a simple (nasty, completely 
unchecked) reinterpret_cast from an int to a pointer type is the essential link in 
the chain of connections from an application to its nontrivial hardware resources.

Where explicit conversions (reinterpret_cast, static_cast, etc.; see §A.5.7) 
are not essential, avoid them. Such conversions (casts) are necessary far less fre-
quently than is typically assumed by programmers whose primary experience is 
with C and C-style C++.

25.4.2 A problem: dysfunctional interfaces
As mentioned (§18.6.1), an array is often passed to a function as a pointer to an 
element (often, a pointer to the first element). Thereby, they “lose” their size, so 
that the receiving function cannot directly tell how many elements are pointed to, 
if any. This is a cause of many subtle and hard-to-fix bugs. Here, we examine ex-
amples of those array/pointer problems and present an alternative. We start with 
an example of a very poor (but unfortunately not rare) interface and proceed to 
improve it. Consider:

void poor(Shape* p, int sz)        // poor interface design
{
          for (int i = 0; i<sz; ++i) p[i].draw();
}

void f(Shape* q, vector<Circle>& s0)   // very bad code
{
          Polygon s1[10];
          Shape s2[10];
          // initialize
          Shape* p1 = new Rectangle{Point{0,0},Point{10,20}}; 
          poor(&s0[0],s0.size());          // #1 (pass the array from the vector)
          poor(s1,10);                            // #2
          poor(s2,20);                             // #3
          poor(p1,1);                              // #4
          delete p1;
          p1 = 0;
          poor(p1,1);                              // #5
          poor(q,max);                           // #6
}

The function poor() is an example of poor interface design: it provides an inter-
face that provides the caller ample opportunity for mistakes but offers the imple-
menter essentially no opportunity to defend against such mistakes.
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TRY THIS

Before reading further, try to see how many errors you can find in f(). Specifi-
cally, which of the calls of poor() could cause the program to crash?

At first glance, the calls look fine, but this is the kind of code that costs a program-
mer long nights of debugging and gives a quality engineer nightmares.

 1. Passing the wrong element type, e.g., poor(&s0[0],s0.size()). Also, s0 
might be empty, in which case &s0[0] is wrong.

 2. Use of a “magic constant” (here, correct): poor(s1,10). Also, wrong ele-
ment type.

 3. Use of a “magic constant” (here, incorrect): poor(s2,20).

 4. Correct (easily verified): first call poor(p1,1).

 5. Passing a null pointer: second call poor(p1,1).

 6. May be correct: poor(q,max). We can’t be sure from looking at this code 
fragment. To see if q points to an array with at least max elements, we 
have to find the definitions of q and max and determine their values at 
our point of use. 

In each case, the errors are simple. We are not dealing with some subtle algorith-
mic or data structure problem. The problem is that poor()’s interface, involving 
an array passed as a pointer, opens the possibility of a collection of problems. 
You may appreciate how the problems were obscured by our use of “technical” 
unhelpful names, such as p1 and s0. However, mnemonic, but misleading, names 
can make such problems even harder to spot.

In theory, a compiler could catch a few of these errors (such as the second 
call of poor(p1,1) where p1==0), but realistically we are saved from disaster for 
this particular example only because the compiler catches the attempt to define 
objects of the abstract class Shape. However, that is unrelated to poor()’s interface 
problems, so we should not take too much comfort from that. In the following, 
we use a variant of Shape that is not abstract so as not to get distracted from the 
interface problems.

How come the poor(&s0[0],s0.size()) call is an error? The &s0[0] refers to the 
first element of an array of Circles; it is a Circle*. We expect a Shape* and we pass 
a pointer to an object of a class derived from Shape (here, a Circle*). That’s obvi-
ously acceptable: we need that conversion so that we can do object-oriented pro-
gramming, accessing objects of a variety of types through their common interface 

T
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(here, Shape) (§14.2). However, poor() doesn’t just use that Shape* as a pointer; 
it uses it as an array, subscripting its way through that array:

for (int i = 0; i<sz; ++i) p[i].draw();

That is, it looks at the objects starting at memory locations &p[0], &p[1], &p[2], etc.:

&p[0] &p[1] &p[2]

In terms of memory addresses, these pointers are sizeof(Shape) apart (§17.3.1). 
Unfortunately for poor()’s caller, sizeof(Circle) is larger than sizeof(Shape), so 
that the memory layout can be visualized like this:

&p[0]

1st Circle 2nd Circle 3rd Circle

&p[1] &p[2]

That is, poor() is calling draw() with a pointer into the middle of the Circles! This 
is likely to lead to immediate disaster (crash).

The call poor(s1,10) is sneakier. It relies on a “magic constant” so it is imme-
diately suspect as a maintenance hazard, but there is a deeper problem. The only 
reason the use of an array of Polygons doesn’t immediately suffer the problem we 
saw for Circles is that a Polygon didn’t add data members to its base class Shape 
(whereas Circle did; see §13.8 and §13.12); that is, sizeof(Shape)==sizeof(Poly-
gon) and — more generally — a Polygon has the same memory layout as a Shape. 
In other words, we were “just lucky”; a slight change in the definition of Polygon
will cause a crash. So poor(s1,10) works, but it is a bug waiting to happen. This is 
emphatically not quality code.

What we see here is the implementation reason for the general language rule 
that “a D is a B” does not imply “a Container<D> is a Container<B>” (§19.3.3). 
For example:

class Circle : public Shape { /* . . . */ };

void fv(vector<Shape>&);
void f(Shape &);
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void g(vector<Circle>& vd, Circle & d)
{
          f(d);         // OK: implicit conversion from Circle to Shape
          fv(vd);    // error: no conversion from vector<Circle> to vector<Shape>
}

OK, so the use of poor() is very bad code, but can such code be considered 
embedded systems code; that is, should this kind of problem concern us in 
areas where safety or performance matters? Can we dismiss it as a hazard for 
programmers of non-critical systems and just tell them, “Don’t do that”? Well, 
many modern embedded systems rely critically on a GUI, which is almost 
always organized in the object-oriented manner of our example. Examples in-
clude the iPod user interface, the interfaces of some cell phones, and operator’s 
displays on “gadgets” up to and including airplanes. Another example is that 
controllers of similar gadgets (such as a variety of electric motors) can constitute 
a classic class hierarchy. In other words, this kind of code — and in particular, 
this kind of function declaration — is exactly the kind of code we should worry 
about. We need a safer way of passing information about collections of data 
without causing other significant problems.

So, we don’t want to pass a built-in array to a function as a pointer plus a size. 
What do we do instead? The simplest solution is to pass a reference to a container, 
such as a vector. The problems we saw for

void poor(Shape* p, int sz);

simply cannot occur for

void general(vector<Shape>&);

If you are programming where std::vector (or the equivalent) is acceptable, simply 
use vector (or the equivalent) consistently in interfaces; never pass a built-in array 
as a pointer plus a size.

If you can’t restrict yourself to vector or equivalents, you enter a territory that 
is more difficult and the solutions there involve techniques and language features 
that are not simple — even though the use of the class (Array_ref) we provide is 
straightforward.

25.4.3 A solution: an interface class
Unfortunately, we cannot use std::vector in many embedded systems because 
it relies on the free store. We can solve that problem either by having a special 
implementation of vector or (more easily) by using a container that behaves like 
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a vector but doesn’t do memory management. Before outlining such an interface 
class, let’s consider what we want from it: 

• It is a reference to objects in memory (it does not own objects, allocate 
objects, delete objects, etc.).

• It “knows” its size (so that it is potentially range checked).
• It “knows” the exact type of its elements (so that it cannot be the source 

of type errors).
• It is as cheap to pass (copy) as a (pointer,count) pair.
• It does not implicitly convert to a pointer.
• It is easy to express a subrange of the range of elements described by an 

interface object.
• It is as easy to use as built-in arrays.

We will only be able to approximate “as easy to use as built-in arrays.” We don’t 
want it to be so easy to use that errors start to become likely.

Here is one such class:

template<typename T>
class Array_ref {
public:
          Array_ref(T* pp, int s) :p{pp}, sz{s} { }

          T& operator[ ](int n) { return p[n]; }
          const T& operator[ ](int n) const { return p[n]; }

          bool assign(Array_ref a)
          {
                    if (a.sz!=sz) return false;
                    for (int i=0; i<sz; ++i) { p[i]=a.p[i]; }
                    return true;
          }

          void reset(Array_ref a) { reset(a.p,a.sz); }
          void reset(T* pp, int s) { p=pp; sz=s; }

          int size() const { return sz; }

          // default copy operations:
          // Array_ref doesn’t own any resources
          // Array_ref has reference semantics
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private:
          T* p;
          int sz;
}; 

Array_ref is close to minimal:

• No push_back() (that would require the free store) and no at() (that would 
require exceptions). 

• Array_ref is a form of reference, so copying simply copies (p,sz).
• By initializing with different arrays, we can have Array_refs that are of the 

same type but have different sizes.
• By updating (p,size) using reset(), we can change the size of an existing 

Array_ref (many algorithms require specifi cation of subranges).
• No iterator interface (but that could be easily added if we needed it). In 

fact, an Array_ref is in concept very close to a range described by two 
iterators.

An Array_ref does not own its elements; it does no memory management; it is 
simply a mechanism for accessing and passing a sequence of elements. In that, it 
differs from the standard library array (§20.9).

To ease the creation of Array_refs, we supply a few useful helper functions:

template<typename T> Array_ref<T> make_ref(T* pp, int s)
{
          return (pp) ? Array_ref<T>{pp,s} : Array_ref<T>{nullptr,0};
}

If we initialize an Array_ref with a pointer, we have to explicitly supply a size. 
That’s an obvious weakness because it provides us with an opportunity to give 
the wrong size. It also gives us an opportunity to use a pointer that is a result of 
an implicit conversion of an array of a derived class to a pointer to a base class, 
such as Polygon[10] to Shape* (the original horrible problem from §25.4.2), but 
sometimes we simply have to trust the programmer. 

We decided to be careful about null pointers (because they are a common 
source of problems), and we took a similar precaution for empty vectors:

template<typename T> Array_ref<T> make_ref(vector<T>& v)
{
          return (v.size()) ? Array_ref<T>{&v[0],v.size()} : Array_ref<T>{nullptr,0};
}
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The idea is to pass the vector’s array of elements. We concern ourselves with vec-
tor here even though it is often not suitable in the kind of system where Array_ref 
can be useful. The reason is that it shares key properties with containers that can 
be used there (e.g., pool-based containers; see §25.3.3).

Finally, we deal with built-in arrays where the compiler knows the size:

template <typename T, int s> Array_ref<T> make_ref(T (&pp)[s])
{
          return Array_ref<T>{pp,s};
}

The curious T(&pp)[s] notation declares the argument pp to be a reference to an 
array of s elements of type T. That allows us to initialize an Array_ref with an 
array, remembering its size. We can’t declare an empty array, so we don’t have to 
test for zero elements:

Polygon ar[0];            // error: no elements

Given Array_ref, we can try to rewrite our example:

void better(Array_ref<Shape> a)
{
          for (int i = 0; i<a.size(); ++i) a[i].draw();
}

void f(Shape* q, vector<Circle>& s0)
{
          Polygon s1[10];
          Shape s2[20];
          // initialize
          Shape* p1 = new Rectangle{Point{0,0},Point{10,20}};
          better(make_ref(s0));         // error: Array_ref<Shape> required
          better(make_ref(s1));        // error: Array_ref<Shape> required
          better(make_ref(s2));        // OK (no conversion required)
          better(make_ref(p1,1));    // OK: one element
          delete p1;
          p1 = 0;
          better(make_ref(p1,1));       // OK: no elements
          better(make_ref(q,max));    // OK (if max is OK)
}
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We see improvements:

• The code is simpler. The programmer rarely has to think about sizes, but 
when necessary they are in a specifi c place (the creation of an Array_ref), 
rather than scattered throughout the code.

• The type problem with the Circle[] -to-Shape[]  and Polygon[] -to-Shape[]
conversions is caught.

• The problems with the wrong number of elements for s1 and s2 are im-
plicitly dealt with.

• The potential problem with max (and other element counts for pointers) 
becomes more visible — it’s the only place we have to be explicit about size.

• We deal implicitly and systematically with null pointers and empty vectors.

25.4.4 Inheritance and containers
But what if we wanted to treat a collection of Circles as a collection of Shapes, that 
is, if we really wanted better() (which is a variant of our old friend draw_all(); see 
§19.3.2, §22.1.3) to handle polymorphism? Well, basically, we can’t. In §19.3.3 
and §25.4.2, we saw that the type system has very good reasons for refusing to 
accept a vector<Circle> as a vector<Shape>. For the same reason, it refuses to 
accept an Array_ref<Circle> as an Array_ref<Shape>. If you have a problem re-
membering why, it might be a good idea to reread §19.3.3, because the point is 
pretty fundamental even though it can be inconvenient.

Furthermore, to preserve run-time polymorphic behavior, we have to ma-
nipulate our polymorphic objects through pointers (or references): the dot in 
a[i].draw() in better() was a giveaway. We should have expected problems with 
polymorphism the second we saw that dot rather than an arrow (–>).

So what can we do? First we must use pointers (or references) rather than 
objects directly, so we’ll try to use Array_ref<Circle*>, Array_ref<Shape*>, etc. 
rather than Array_ref<Circle>, Array_ref<Shape>, etc.

However, we still cannot convert an Array_ref<Circle*> to an Array_
ref<Shape*> because we might then proceed to put elements into the Array_
ref<Shape*> that are not Circle*s. But there is a loophole:

• Here, we don’t want to modify our Array_ref<Shape*>; we just want to 
draw the Shapes! This is an interesting and useful special case: our ar-
gument against the Array_ref<Circle*>-to-Array_ref<Shape*> conversion 
doesn’t apply to a case where we don’t modify the Array_ref<Shape*>. 

• All arrays of pointers have the same layout (independently of what kinds of 
objects they point to), so we don’t get into the layout problem from §25.4.2.
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That is, there would be nothing wrong with treating an Array_ref<Circle*> as 
an immutable Array_ref<Shape*>. So, we “just” have to find a way to treat an Ar-
ray_ref<Circle*> as an immutable Array_ref<Shape*>. Consider:

vector<Circle*>

Circle

Smiley_face
(derived from
Circle)

Silly_face
(derived from
Smiley_face)

array of Circle*

There is no logical problem treating that array of Circle* as an immutable array 
of Shape* (from an Array_ref).

We seem to have strayed into expert territory. In fact, this problem is genu-
inely tricky and is unsolvable with the tools supplied so far. However, let’s see 
what it takes to produce a close-to-perfect alternative to our dysfunctional — but 
all too popular — interface style (pointer plus element count; see §25.4.2). Please 
remember: Don’t go into “expert territory” just to prove how clever you are. Most 
often, it is a better strategy to find a library where some experts have done the 
design, implementation, and testing for you.

First, we rework better() to something that uses pointers and guarantees that 
we don’t “mess with” the argument container:

void better2(const Array_ref<Shape*const> a)
{
          for (int i = 0; i<a.size(); ++i) 
                    if (a[i])
                              a[i]–>draw();
}

We are now dealing with pointers, so we should check for null pointers. To make 
sure that better2() doesn’t modify our arrays and vectors in unsafe ways through 
Array_ref, we added a couple of consts. The first const ensures that we do not 
apply modifying (mutating) operations, such as assign() and reset(), on our 
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 Array_ref. The second const is placed after the * to indicate that we want a con-
stant pointer (rather than a pointer to constants); that is, we don’t want to modify 
the element pointers even if we have operations available for that.

Next, we have to solve the central problem: how do we express the idea that 
Array_ref<Circle*> can be converted

• To something like Array_ref<Shape*> (that we can use in better2())
• But only to an immutable version of Array_ref<Shape*>

We can do that by adding a conversion operator to Array_ref:

template<typename T>
class Array_ref {
public:
          // as before 

          template<typename Q>
          operator const Array_ref<const Q>()
          {
                    // check implicit conversion of elements:
                    static_cast<Q>(*static_cast<T*>(nullptr));  // check element 
                    // conversion
                    return Array_ref<const Q>{reinterpret_cast<Q*>(p),sz}; // convert 
                        // Array_ref
          }

          // as before
};

This is headache-inducing, but basically:

• The operator casts to Array_ref<const Q> for every type Q provided 
we can cast an element of Array_ref<T> to an element of Array_ref<Q> 
(we don’t use the result of that cast; we just check that we can cast the 
element types).

• We construct a new Array_ref<const Q> by using brute force (reinter-
pret_cast) to get a pointer to the desired element type. Brute-force solu-
tions often come at a cost; in this case, never use an Array_ref conversion 
from a class using multiple inheritance (§A.12.4).

• Note that const in Array_ref<const Q>: that’s what ensures that we can-
not copy an Array_ref<const Q> into a plain old mutable Array_ref<Q>.
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We did warn you that this was “expert territory” and “headache-inducing.” How-
ever, this version of Array_ref is easy to use (it’s only the definition/implementa-
tion that is tricky):

void f(Shape* q, vector<Circle*>& s0)
{
          Polygon* s1[10]; 
          Shape* s2[20];
          // initialize
          Shape* p1 = new Rectangle{Point{0,0},10};
          better2(make_ref(s0));         // OK: converts to Array_ref<Shape*const>
          better2(make_ref(s1));          // OK: converts to Array_ref<Shape*const>
          better2(make_ref(s2));         // OK (no conversion needed)
          better2(make_ref(p1,1));    // error
          better2(make_ref(q,max));   // error
}

The attempts to use pointers result in errors because they are Shape*s whereas 
better2() expects an Array_ref<Shape*>; that is, better2() expects something that 
holds pointers rather than a pointer. If we want to pass pointers to better2(), we 
have to put them into a container (e.g., a built-in array or a vector) and pass that. 
For an individual pointer, we could use the awkward make_ref(&p1,1). However, 
there is no solution for arrays (with more than one element) that doesn’t involve 
creating a container of pointers to objects.

In conclusion, we can create simple, safe, easy-to-use, and efficient interfaces 
to compensate for the weaknesses of arrays. That was the major aim of this sec-
tion. “Every problem is solved by another indirection” (quote by David Wheeler) 
has been proposed as “the first law of computer science.” That was the way we 
solved this interface problem.

25.5 Bits, bytes, and words
We have talked about hardware memory concepts, such as bits, bytes, and words, 
before, but in general programming those are not the ones we think much about. 
Instead we think in terms of objects of specific types, such as double, string, Ma-
trix, and Simple_window. Here, we will look at a level of programming where we 
have to be more aware of the realities of the underlying memory. 

If you are uncertain about your knowledge of binary and hexadecimal repre-
sentations of integers, this may be a good time to review §A.2.1.1.
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25.5.1 Bits and bit operations
Think of a byte as a sequence of 8 bits:

1

7:
1

2:
1

1:
1

0:
1

5:
0

6:
0

4:
0

3:

Note the convention of numbering bits in a byte from the right (the least signifi-
cant bit) to the left (the most significant bit). Now think of a word as a sequence 
of 4 bytes:

0xff
3:

0x10
2:

0xde
1:

0xad
0:

Again, we number right to left, that is, least significant byte to most significant 
byte. These pictures oversimplify what is found in the real world: there have been 
computers where a byte was 9 bits (but we haven’t seen one for a decade), and 
machines where a word is 2 bytes are not rare. However, as long as you remember 
to check your system’s manual before taking advantage of “8 bits” and “4 bytes,” 
you should be fine.

In code meant to be portable, use <limits> (§24.2.1) to make sure your as-
sumptions about sizes are correct. It is possible to place assertions in the code for 
the compiler to check:

static_assert(4<=sizeof(int),"ints are too small");
static_assert(!numeric_limits<char>::is_signed,"char is signed");

The first argument of a static_assert is a constant expression assumed to be true. 
If it is not true, that is, the assertion failed, the compiler writes the second argu-
ment, a string, as part of an error message.

How do we represent a set of bits in C++? The answer depends on how 
many bits we need and what kinds of operations we want to be convenient and 
efficient. We can use the integer types as sets of bits:

• bool — 1 bit, but takes up a whole byte of space
• char — 8 bits
• short — 16 bits
• int — typically 32 bits, but many embedded systems have 16-bit ints
• long int — 32 bits or 64 bits (but at least as many bits as int)
• long long int — 32 bits or 64 bits (but at least as many bits as long)
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The sizes quoted are typical, but different implementations may have different 
sizes, so if you need to know, test. In addition, the standard library provides ways 
of dealing with bits:

• std::vector<bool> — when we need more than 8*sizeof(long) bits
• std::bitset — when we need more than 8*sizeof(long) bits
• std::set — an unordered collection of named bits (see §21.6.5)
• A fi le: lots of bits (see §25.5.6)

Furthermore, we can use two language features to represent bits:

• Enumerations (enums); see §9.5
• Bitfi elds; see §25.5.5

This variety of ways to represent “bits” reflects the fact that ultimately everything 
in computer memory is a set of bits, so people have felt the urge to provide a va-
riety of ways of looking at bits, naming bits, and doing operations on bits. Note 
that the built-in facilities deal with a set of a fixed number of bits (e.g., 8, 16, 32, 
and 64) so that the computer can do logical operations on them at optimal speed 
using operations provided directly by hardware. In contrast, the standard library 
facilities provide an arbitrary number of bits. This may limit performance, but
don’t prejudge efficiency issues: the library facilities can be — and often are — op-
timized to run well if you pick a number of bits that maps well to the underlying 
hardware.

Let’s first look at the integers. For these, C++ basically provides the bitwise 
logical operations that the hardware directly implements. These operations apply 
to each bit of their operands:

Bitwise operations

| or Bit n of x|y is 1 if bit n of x or bit n of y is 1.

& and Bit n of x&y is 1 if bit n of x and bit n of y is 1.

^ exclusive or Bit n of x^y is 1 if bit n of x or bit n of y is 1 but not if both are 1.

<< left shift Bit n of x<<s is bit n+s of x.

>> right shift Bit n of x>>s is bit n–s of x.

~ complement Bit n of ~x is the opposite of bit n of x.

You might find the inclusion of “exclusive or” (^, sometimes called “xor”) as 
a fundamental operation odd. However, that’s the essential operation in much 
graphics and encryption code.
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The compiler won’t confuse a bitwise logical << for an output operator, 
but you might. To avoid confusion, remember that an output operator takes an 
 ostream as its left-hand operand, whereas a bitwise logical operator takes an inte-
ger as its left-hand operand.

Note that & differs from && and | differs from || by operating individually 
on every bit of its operands (§A.5.5), producing a result with as many bits as its 
operands. In contrast, && and || just return true or false.

Let’s try a couple of examples. We usually express bit patterns using hexadec-
imal notation. For a half byte (4 bits) we have

Hex Bits Hex Bits 

0x0 0000 0x8 1000 

0x1 0001 0x9 1001 

0x2 0010 0xa 1010 

0x3 0011 0xb 1011 

0x4 0100 0xc 1100 

0x5 0101 0xd 1101 

0x6 0110 0xe 1110 

0x7 0111 0xf 1111 

For numbers up to 9 we could have used decimal, but using hexadecimal helps 
us to remember that we are thinking about bit patterns. For bytes and words, 
hexadecimal becomes really useful. The bits in a byte can be expressed as two 
hexadecimal digits. For example:

Hex byte Bits

0x00 0000 0000

0x0f 0000 1111

0xf0 1111 0000

0xff 1111 1111

0xaa 1010 1010

0x55 0101 0101
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So, using unsigned (§25.5.3) to keep things as simple as possible, we can write

unsigned char a = 0xaa;
unsigned char x0 = ~a;       // complement of a

1 0 1 0 1 0 1 0a: 0xaa

0 1 0 1 0 1 0 1~a: 0x55

unsigned char b = 0x0f;
unsigned char x1 = a&b;     // a and b

1 0 1 0 1 0 1 0a: 0xaa

0 0 0 0 1 1 1 1b: 0xf

0 0 0 0 1 0 1 0a&b: 0xa

unsigned char x2 = a^b;     // exclusive or: a xor b

1 0 1 0 1 0 1 0a: 0xaa

0 0 0 0 1 1 1 1b: 0xf

1 0 1 0 0 1 0 1a^b: 0xa5

unsigned char x3 = a<<1;   // left shift 1

1 0 1 0 1 0 1 0a: 0xaa

0 1 0 1 0 1 0 0a<<1: 0x54

Note that a 0 is “shifted in” from beyond bit 0 (the least significant bit) to fill up 
the byte. The leftmost bit (bit 7) simply disappears.

unsigned char x4 == a>>2;     // right shift 2

1 0 1 0 1 0 1 0a: 0xaa

0 0 1 0 1 0 1 0a>>2: 0x2a

Note that two 0s are “shifted in” from beyond bit 7 (the most significant bit) to fill 
up the byte. The rightmost 2 bits (bit 1 and bit 0) simply disappear.
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We can draw bit patterns like this and it is good to get a feel for bit patterns, 
but it soon becomes tedious. Here is a little program that converts integers to their 
bit representation:

int main()
{
          for (unsigned i; cin>>i; ) 
                    cout << dec << i << "=="
                              << hex << "0x" << i << "=="
                              << bitset<8*sizeof(unsigned)>{i} << '\n';
}

To print the individual bits of the integer, we use a standard library bitset:

bitset<8*sizeof(unsigned)>{i}

A bitset is a fixed number of bits. In this case, we use the number of bits in an
int — 8*sizeof(unsigned) — and initialize that bitset with our unsigned integer i.

TRY THIS

Get the bits example to work and try out a few values to develop a feel for 
binary and hexadecimal representations. If you get confused about the repre-
sentation of negative values, just try again after reading §25.5.3.

25.5.2 bitset
The standard library template class bitset from <bitset> is used to represent and 
manipulate sets of bits. Each bitset is of a fixed size, specified at construction:

bitset<4> flags;
bitset<128> dword_bits;
bitset<12345> lots;

A bitset is by default initialized to “all zeros” but is typically given an initial-
izer; bitset initializers can be unsigned integers or strings of zeros and ones. For 
example:

bitset<4> flags = 0xb;
bitset<128> dword_bits {string{"1010101010101010"}};
bitset<12345> lots;

T
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Here lots will be all zeros, and dword_bits will have 112 zeros followed by the 16 
bits we explicitly specified. If you try to initialize with a string that has characters 
different from '0' and '1', a std::invalid_argument exception is thrown:

string s;
cin>>s;
bitset<12345> my_bits{s};  // may throw std::invalid_argument 

We can use the usual bit manipulation operators for bitsets. Assume that b1, b2, 
and b3 are bitsets:

b1 = b2&b3;         // and
b1 = b2|b3;          // or
b1 = b2^b3;         // xor
b1 = ~b2;                // complement
b1 = b2<<2;         // shift left
b1 = b2>>3;         // shift right

Basically, for bit operations (bitwise logical operations), a bitset acts like an un-
signed int (§25.5.3) of an arbitrary, user-specified size. What you can do to an 
unsigned int (with the exception of arithmetic operations), you can do to a bitset. 
In particular, bitsets are useful for I/O:

cin>>b;                                  // read a bitset from input
cout<<bitset<8>{'c'};    // output the bit pattern for the character 'c'

When reading into a bitset, an input stream looks for zeros and ones. Consider:

10121

This is read as 101, leaving 21 unread in the stream.
As for a byte and a word, the bits of a bitset are numbered right to left (from 

the least significant bit toward the most significant), so that, for example, the nu-
merical value of bit 7 is 27:

1

7:
1

2:
1

1:
1

0:
1

5:
0

6:
0

4:
0

3:

For bitsets, the numbering is not just a convention because a bitset supports sub-
scripting of bits. For example:
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int main()
{
          constexpr int max = 10;
          for (bitset<max> b; cin>>b; ) {
                    cout << b << '\n';
                    for (int i =0; i<max; ++i) cout << b[i];  // reverse order
                    cout << '\n';
          }
}

If you need a more complete picture of bitsets, look them up in your online doc-
umentation, a manual, or an expert-level textbook.

25.5.3 Signed and unsigned
Like most languages, C++ supports both signed and unsigned integers. Unsigned 
integers are trivial to represent in memory: bit0 means 1, bit1 means 2, bit2 means 
4, and so on. However, signed integers pose a problem: how do we distinguish 
between positive and negative numbers? C++ gives the hardware designers some 
freedom of choice, but almost all implementations use the two’s complement rep-
resentation. The leftmost (most significant bit) is taken as the “sign bit”:

Sign bit 
8 bits == 1 byte 

16-bit (signed) int

If the sign bit is 1, the number is negative. Almost universally, the two’s comple-
ment representation is used. To save paper, we consider how we would represent 
signed numbers in a 4-bit integer:

Positive: 0 1 2 4 7
0000 0001 0010 0100 0111

Negative: 1111 1110 1101 1011 1000

–1 –2 –3 –5 –8

The bit pattern for –(x+1) can be described as the complement of the bits in x (also 
known as ~x; see §25.5.1). 
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So far, we have just used signed integers (e.g., int). A slightly better set of rules 
would be:

• Use signed integers (e.g., int) for numbers. 
• Use unsigned integers (e.g., unsigned int) for sets of bits.

That’s not a bad rule of thumb, but it’s hard to stick to because some people pre-
fer unsigned integers for some forms of arithmetic and we sometimes need to use 
their code. In particular, for historical reasons going back to the early days of C 
when ints were 16 bits and every bit mattered, v.size() for a vector is an unsigned 
integer. For example:

vector<int> v; 
// . . . 
for (int i = 0; i<v.size(); ++i) cout << v[i] << '\n';

A “helpful” compiler may warn us that we are mixing signed (i.e., i) and unsigned 
(i.e., v.size()) values. Mixing signed and unsigned variables could lead to disaster. 
For example, the loop variable i might overflow; that is, v.size() might be larger 
than the largest signed int. Then, i would reach the highest value that could 
represent a positive integer in a signed int (the number of bits in an int minus 1 
to the power of two, minus 1, e.g., 215–1). Then, the next ++ couldn’t yield the 
next-highest integer and would instead result in a negative value. The loop would 
never terminate! Each time we reached the largest integer, we would start again 
from the smallest negative int value. So for 16-bit ints that loop is a (probably very 
serious) bug if v.size() is 32*1024 or larger; for 32-bit ints the problem occurs if i
reaches 2*1024*1024*1024.

So, technically, most of the loops in this book have been sloppy and could 
have caused problems. In other words, for an embedded system, we should either 
have verified that the loop could never reach the critical point or replaced it with 
a different form of loop. To avoid this problem we can use the size_type provided 
by vector, iterators, or a range-for-statement:

for (vector<int>::size_type i = 0; i<v.size(); ++i) cout << v[i] << '\n';

for (auto p = v.begin(); p!=v.end(); ++p) cout << *p << '\n'; 

for (int x : v) cout << x << '\n';

The size_type is guaranteed to be unsigned, so the first (unsigned integer) form 
has one more bit to play with than the int version above. That can be significant, 
but it still gives only a single bit of range (doubling the number of iterations that 
can be done). The loop using iterators has no such limitation.
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TRY THIS

The following example may look innocent, but it is an infinite loop:

void infinite()
{
           unsigned char max = 160;        // very large
           for (signed char i=0; i<max; ++i) cout << int(i) << '\n';
}

Run it and explain why.

Basically, there are two reasons for using unsigned integers as integers, as opposed 
to using them simply as sets of bits (i.e., not using +, – , *, and /):

• To gain that extra bit of precision
• To express the logical property that the integer can’t be negative 

The former is what programmers get out of using an unsigned loop variable. 
The problem with using both signed and unsigned types is that in C++ (as in 

C) they convert to each other in surprising and hard-to-remember ways. Consider:

unsigned int ui = –1;

int si = ui;
int si2 = ui+2;
unsigned ui2 = ui+2;

Surprisingly, the first initialization succeeds and ui gets the value 4294967295, 
which is the unsigned 32-bit integer with the same representation (bit pattern) as 
the signed integer –1 (“all ones”). Some people consider that neat and use –1 as 
shorthand for “all ones”; others consider that a problem. The same conversion 
rule applies from unsigned to signed, so si gets the value –1. As we would expect, 
si2 becomes 1 (–1+2 == 1), and so does ui2. The result for ui2 ought to sur-
prise you for a second: why should 4294967295+2 be 1? Look at 4294967295 
as a hexadecimal number (0xffffffff) and things become clearer: 4294967295 is 
the largest unsigned 32-bit integer, so 4294967297 cannot be represented as a 
32-bit integer — unsigned or not. So we say either that 4294967295+2 overflowed 
or (more precisely) that unsigned integers support modular arithmetic; that is, 
arithmetic on 32-bit integers is modulo-32 arithmetic. 

T
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Is everything clear so far? Even if it is, we hope we have convinced you that 
playing with that extra bit of precision in an unsigned integer is playing with fire. 
It can be confusing and is therefore a potential source of errors. 

What happens if an integer overflows? Consider:

Int i = 0; 
while (++i) print(i);     // print i as an integer followed by a space

What sequence of values will be printed? Obviously, this depends on the defini-
tion of Int (no, for once, the use of the capital I isn’t a typo). For an integer type 
with a limited number of bits, we will eventually overflow. If Int is unsigned (e.g., 
unsigned char, unsigned int, or unsigned long long), the ++ is modulo arithmetic, 
so after the largest number that can be represented we get 0 (and the loop termi-
nates). If Int is a signed integer (e.g., signed char), the numbers will suddenly turn 
negative and start working their way back up to 0 (where the loop will terminate). 
For example, for a signed char, we will see 1 2 . . . 126 127 –128 –127 . . . –2 –1.

What happens if an integer overflows? The answer is that we proceed as if 
we had enough bits, but throw away whichever part of the result doesn’t fit in the 
integer into which we store our result. That strategy will lose us the leftmost (most 
significant) bits. That’s the same effect we see when we assign:

int si = 257;            // doesn’t fit into a char
char c = si;            // implicit conversion to char
unsigned char uc = si;
signed char sc = si;
print(si); print(c); print(uc); print(sc); cout << '\n';

si = 129;              // doesn’t fit into a signed char
c = si;
uc = si;
sc = si;
print(si); print(c); print(uc); print(sc);

We get

257 1 1 1
129 –127 129 –127

The explanation of this result is that 257 is two more than will fit into 8 bits (255 
is “8 ones”) and 129 is two more than can fit into 7 bits (127 is “7 ones”) so the 
sign bit gets set. Aside: This program shows that chars on our machine are signed 
(c behaves as sc and differs from uc).
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TRY THIS

Draw out the bit patterns on a piece of paper. Using paper, then figure out 
what the answer would be for si=128. Then run the program to see if your 
machine agrees. 

An aside: Why did we introduce that print() function? We could try

cout << i << ' ';

However, if i was a char, we would then output it as a character rather than an 
integer value. So, to treat all integer types uniformly, we defined

template<typename T> void print(T i) { cout << i << '\t'; }

void print(char i) { cout << int(i) << '\t'; }

void print(signed char i) { cout << int(i) << '\t'; }

void print(unsigned char i) { cout << int(i) << '\t'; }

To conclude: You can use unsigned integers exactly as signed integers (includ-
ing ordinary arithmetic), but avoid that when you can because it is tricky and 
error-prone.

• Try never to use unsigned just to get another bit of precision.
• If you need one extra bit, you’ll soon need another.

Unfortunately, you can’t completely avoid unsigned arithmetic:

• Subscripting for standard library containers uses unsigned.
• Some people like unsigned arithmetic.

25.5.4 Bit manipulation
Why do we actually manipulate bits? Well, most of us prefer not to. “Bit fid-
dling” is low-level and error-prone, so when we have alternatives, we take them. 
However, bits are both fundamental and very useful, so many of us can’t just 
pretend they don’t exist. This may sound a bit negative and discouraging, but 
that’s deliberate. Some people really love to play with bits and bytes, so it is worth 
remembering that bit fiddling is something you do when you must (quite possibly 
having some fun in the process), but bits shouldn’t be everywhere in your code. 

T
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To quote John Bentley: “People who play with bits will be bitten” and “People 
who play with bytes will be bytten.”

So, when do we manipulate bits? Sometimes the natural objects of our appli-
cation simply are bits, so that some of the natural operations in our application 
domain are bit operations. Examples of such domains are hardware indicators 
(“flags”), low-level communications (where we have to extract values of various 
types out of byte streams), graphics (where we have to compose pictures out of 
several levels of images), and encryption (see the next section).

For example, consider how to extract (low-level) information from an integer 
(maybe because we wanted to transmit it as bytes, the way binary I/O does):

void f(short val)                 // assume 16-bit, 2-byte short integer
{
          unsigned char right = val&0xff;    // rightmost (least significant) byte
          unsigned char left = val>>8;       // leftmost (most significant) byte
          // . . .
          bool negative = val&0x8000;       // sign bit
          // . . .
}

Such operations are common. They are known as “shift and mask.” We “shift” 
(using << or >>) to place the bits we want to consider to the rightmost (least sig-
nificant) part of the word where they are easy to manipulate. We “mask” using 
and (&) together with a bit pattern (here 0xff) to eliminate (set to zero) the bits we 
do not want in the result. 

When we want to name bits, we often use enumerations. For example:

enum Printer_flags {
          acknowledge=1,
          paper_empty=1<<1,
          busy=1<<2,
          out_of_black=1<<3,
          out_of_color=1<<4, 
          // . . .
};

This defines each enumerator to have exactly the value that its name indicates:

out_of_color   16   0x10   0001 0000

out_of_black    8     0x8   0000 1000

busy                     4     0x4   0000 0100

paper_empty    2      0x2      0000 0010

acknowledge    1        0x1      0000 0001
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Such values are useful because they can be combined independently:

unsigned char x = out_of_color | out_of_black;   // x becomes 24 (16+8)
x |= paper_empty;                                                        // x becomes 26 (24+2)

Note how |= can be read as “set a bit” (or as “set some bits”). Similarly, & can be 
read as “Is a bit set?” For example:

if (x& out_of_color) {          // is out_of_color set? (yes, it is)
// . . . 
}

We can still use & to mask:

unsigned char y = x &(out_of_color | out_of_black);   // y becomes 24

Now y has a copy of the bits from x’s positions 4 and 3 (out_of_color and 
out_of_black).

It is very common to use an enum as a set of bits. When doing that, we need 
a conversion to get the result of a bitwise logical operation “back into” the enum. 
For example:

Flags z = Printer_flags(out_of_color | out_of_black);  // the cast is necessary 

The reason that the cast is needed is that the compiler cannot know that the result 
of out_of_color | out_of_black is a valid value for a Flags variable. The compiler’s 
skepticism is warranted: after all, no enumerator has a value 24 (out_of_color | 
out_of_black), but in this case, we know the assignment to be reasonable (but the 
compiler does not).

25.5.5 Bitfi elds
As mentioned, the hardware interface is one area where bits occur frequently. 
Typically, an interface is defined as a mixture of bits and numbers of various sizes. 
These “bits and numbers” are typically named and occur in specific positions of a 
word, often called a device register. C++ has a specific language facility to deal with 
such fixed layouts: bitfields. Consider a page number as used in the page manager 
deep in an operating system. Here is a diagram from an operating system manual:

1
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1

2:
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6:
3 
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22 

31: position: 

CCA unusedPFN name: 

PPN: 
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1

nonreachable
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The 32-bit word is used as two numeric fields (one of 22 bits and one of 3 bits) 
and four flags (1 bit each). The sizes and positions of these pieces of data are fixed. 
There is even an unused (and unnamed) “field” in the middle. We can express 
this as a struct:

struct PPN {           // R6000 Physical Page Number
          unsigned int PFN : 22 ;     // Page Frame Number
          int : 3 ;                                     // unused
          unsigned int CCA : 3 ;        // Cache Coherency Algorithm
          bool nonreachable : 1 ;
          bool dirty : 1 ;
          bool valid : 1 ;
          bool global : 1 ;
};

We had to read the manual to see that PFN and CCA should be interpreted as 
unsigned integers, but otherwise we could write out that struct directly from the 
diagram. Bitfields fill a word left to right. You give the number of bits as an integer 
value after a colon. You can’t specify an absolute position (e.g., bit 8). If you “con-
sume” more bits with bitfields than a word can hold, the fields that don’t fit are 
put into the next word. Hopefully, that’s what you want. Once defined, a bitfield 
is used exactly like other variables:

void part_of_VM_system(PPN * p )
{
          // . . .
          if (p–>dirty) { // contents changed
                    // copy to disk
                    p–>dirty = 0 ;
         }
         // . . .
}

Bitfields primarily save you the bother of shifting and masking to get to informa-
tion placed in the middle of a word. For example, given a PPN called pn we could 
extract CCA like this:

unsigned int x = pn.CCA;        // extract CCA

Had we used an int called pni to represent the same bits, we could instead have 
written

unsigned int y = (pni>>4)&0x7;   // extract CCA
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That is, shift pn right so that CCA is the leftmost bit, then mask all other bits off 
with 0x7 (i.e., last three bits set). If you look at the machine code, you’ll most likely 
find that the generated code is identical for those two lines.

The “acronym soup” (CCA, PPN, PFN) is typical of code at this level and 
makes little sense out of context.

25.5.6 An example: simple encryption
As an example of manipulation of data at the level of the data’s representation as 
bits and bytes, let us consider a simple encryption algorithm: the Tiny Encryp-
tion Algorithm (TEA). It was originally written by David Wheeler of Cambridge 
University (§22.2.1). It is small but the protection against undesired decryption 
is excellent. 

Don’t look too hard at the code (unless you really want to and are willing 
to risk a headache). We present the code simply to give you the flavor of some 
real-world and useful bit manipulation code. If you want to make a study of en-
cryption, you need a separate textbook for that. For more information and variants 
of the algorithm in other languages, see http://en.wikipedia.org/wiki/Tiny_Encryp-
tion_Algorithm and the TEA website of Professor Simon Shepherd, Bradford Uni-
versity, England. The code is not meant to be self-explanatory (no comments!).

The basic idea of enciphering/deciphering (also known as encryption/decryp-
tion) is simple. I want to send you some text, but I don’t want others to read it. 
Therefore, I transform the text in a way that renders it unreadable to people who 
don’t know exactly how I modified it — but in such a way that you can reverse my 
transformation and read the text. That’s called enciphering. To encipher I use an 
algorithm (which we must assume an uninvited listener knows) and a string called 
the “key.” Both you and I have the key (and we hope that the uninvited listener 
does not). When you get the enciphered text, you decipher it using the “key”; that 
is, you reconstitute the “clear text” that I sent.

TEA takes as argument an array of two unsigned longs (v[0],v[1]) represent-
ing eight characters to be enciphered, an array of two unsigned longs (w[0],w[1]) 
into which the enciphered output is written, and an array of four unsigned longs 
(k[0]..k[3]), which is the key:

void encipher(
          const unsigned long *const v,
          unsigned long *const w,
          const unsigned long * const k)
{
          static_assert(sizeof(long)==4,"size of long wrong for TEA");

          unsigned long y = v[0];
          unsigned long z = v[1];
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          unsigned long sum = 0;
          const unsigned long delta = 0x9E3779B9;

          for (unsigned long n = 32; n––>0; ) {
                    y += (z<<4 ^ z>>5) + z^sum + k[sum&3];
                    sum += delta;
                    z += (y<<4 ^ y>>5) + y^sum + k[sum>>11 & 3];
          }
          w[0]=y;
          w[1]=z;
}

Note how all data is unsigned so that we can perform bitwise operations on it 
without fear of surprises caused by special treatment related to negative num-
bers. Shifts (<< and >>), exclusive or (^), and bitwise and (&) do the essential 
work with an ordinary (unsigned) addition thrown in for good measure. This 
code is specifically written for a machine where there are 4 bytes in a long. The 
code is littered with “magic” constants (e.g., it assumes that sizeof(long) is 4). 
That’s generally not a good idea, but this particular piece of software fits on a sin-
gle sheet of paper. As a mathematical formula, it fits on the back of an envelope 
or — as originally intended — in the head of a programmer with a good memory. 
David Wheeler wanted to be able to encipher things while he was traveling with-
out bringing notes, a laptop, etc. In addition to being small, this code is also fast. 
The variable n determines the number of iterations: the higher the number of 
iterations, the stronger the encryption. To the best of our knowledge, for n==32 
TEA has never been broken.

Here is the corresponding deciphering function:

void decipher(
          const unsigned long *const v,
          unsigned long *const w,
          const unsigned long * const k)
{ 
          static_assert(sizeof(long)==4,"size of long wrong for TEA");

          unsigned long y = v[0];
          unsigned long z = v[1];
          unsigned long sum = 0xC6EF3720;
          const unsigned long delta = 0x9E3779B9;
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          // sum = delta<<5, in general sum = delta * n
          for (unsigned long n = 32; n–– > 0; ) {
                    z –= (y << 4 ^ y >> 5) + y ^ sum + k[sum>>11 & 3];
                    sum –= delta;
                    y –= (z << 4 ^ z >> 5) + z ^ sum + k[sum&3];
          }
          w[0]=y;
          w[1]=z;
} 

We can use TEA like this to produce a file to be sent over an unsafe connection:

int main()           // sender
{
          const int nchar = 2*sizeof(long);      // 64 bits
          const int kchar = 2*nchar;                   // 128 bits

          string op;
          string key;
          string infile;
          string outfile;
          cout << "please enter input file name, output file name, and key:\n";
          cin >> infile >> outfile >> key;
          while (key.size()<kchar) key += '0';    // pad key
          ifstream inf(infile);
          ofstream outf(outfile);
          if (!inf || !outf) error("bad file name");

          const unsigned long* k =
                    reinterpret_cast<const unsigned long*>(key.data());

          unsigned long outptr[2];
          char inbuf[nchar];
          unsigned long* inptr = reinterpret_cast<unsigned long*>(inbuf); 
          int count = 0;

          while (inf.get(inbuf[count])) {
                    outf << hex;                   // use hexadecimal output
                    if (++count == nchar) {
                              encipher(inptr,outptr,k);
                              // pad with leading zeros:
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                              outf << setw(8) << setfill('0') << outptr[0] << ' '
                                        << setw(8) << setfill('0') << outptr[1] << ' ';
                              count = 0;
                    }
          }

          if (count) {  // pad
                    while(count != nchar) inbuf[count++] = '0'; 
                    encipher(inptr,outptr,k);
                    outf << outptr[0] << ' ' << outptr[1] << ' ';
          }
}

The essential piece of code is the while-loop; the rest is just support. The 
while-loop reads characters into the input buffer, inbuf, and every time it has 
eight characters as needed by TEA it passes them to encipher(). TEA doesn’t care 
about characters; in fact, it has no idea what it is enciphering. For example, you 
could encipher a photo or a phone conversation. All TEA cares about is that it is 
given 64 bits (two unsigned longs) so that it can produce a corresponding 64 bits. 
So, we take a pointer to the inbuf and cast it to an unsigned long* and pass that to 
TEA. We do the same for the key; TEA will use the first 128 bits (four unsigned 
longs) of the key, so we “pad” the user’s input to be sure that there are 128 bits. 
The last statement pads the text with zeros to make up the multiple of 64 bits (8 
bytes) required by TEA.

How do we transmit the enciphered text? We have a free choice, but since it 
is “just bits” rather than ASCII or Unicode characters, we can’t really treat it as 
ordinary text. Binary I/O (see §11.3.2) would be an option, but here we decided 
to output the output words as hexadecimal numbers:

5b8fb57c   806fbcce   2db72335   23989d1d   991206bc   0363a308
8f8111ac   38f3f2f3   9110a4bb   c5e1389f   64d7efe8   ba133559
4cc00fa0   6f77e537   bde7925f   f87045f0   472bad6e   dd228bc3
a5686903   51cc9a61   fc19144e   d3bcde62   4fdb7dc8   43d565e5
f1d3f026   b2887412   97580690   d2ea4f8b   2d8fb3b7   936cfa6d
6a13ef90   fd036721   b80035e1   7467d8d8   d32bb67e   29923fde
197d4cd6   76874951   418e8a43   e9644c2a   eb10e848   ba67dcd8
7115211f   dbe32069   e4e92f87   8bf3e33e   b18f942c   c965b87a
44489114   18d4f2bc   256da1bf   c57b1788   9113c372   12662c23
eeb63c45   82499657   a8265f44   7c866aae   7c80a631   e91475e1
5991ab8b   6aedbb73   71b642c4   8d78f68b   d602bfe4   d1eadde7
55f20835   1a6d3a4b   202c36b8   66a1e0f2   771993f3   11d1d0ab
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74a8cfd4   4ce54f5a   e5fda09d   acbdf110   259a1a19   b964a3a9
456fd8a3   1e78591b   07c8f5a2   101641ec   d0c9d7e1   60dbeb11
b9ad8e72   ad30b839   201fc553   a34a79c4   217ca84d   30f666c6
d018e61c   d1c94ea6   6ca73314   cd60def1   6e16870e   45b94dc0
d7b44fcd   96e0425a   72839f71   d5b6427c   214340f9   8745882f
0602c1a2   b437c759   ca0e3903   bd4d8460   edd0551e   31d34dd3
c3f943ed   d2cae477   4d9d0b61   f647c377   0d9d303a   ce1de974
f9449784   df460350   5d42b06c   d4dedb54   17811b5f   4f723692
14d67edb   11da5447   67bc059a   4600f047   63e439e3   2e9d15f7
4f21bbbe   3d7c5e9b   433564f5   c3ff2597   3a1ea1df   305e2713
9421d209   2b52384f   f78fbae7   d03c1f58   6832680a   207609f3
9f2c5a59   ee31f147   2ebc3651   e017d9d6   d6d60ce2   2be1f2f9
eb9de5a8   95657e30   cad37fda   7bce06f4   457daf44   eb257206
418c24a5   de687477   5c1b3155   f744fbff   26800820   92224e9d
43c03a51   d168f2d1   624c54fe   73c99473   1bce8fbb   62452495
5de382c1   1a789445   aa00178a   3e583446   dcbd64c5   ddda1e73
fa168da2   60bc109e   7102ce40   9fed3a0b   44245e5d   f612ed4c
b5c161f8   97ff2fc0   1dbf5674   45965600   b04c0afa   b537a770
9ab9bee7   1624516c   0d3e556b   6de6eda7   d159b10e   71d5c1a6
b8bb87de   316a0fc9   62c01a3d   0a24a51f   86365842   52dabf4d
372ac18b   9a5df281   35c9f8d7   07c8f9b4   36b6d9a5   a08ae934
239efba5   5fe3fa6f   659df805   faf4c378   4c2048d6   e8bf4939
31167a93   43d17818   998ba244   55dba8ee   799e07e7   43d26aef
d5682864   05e641dc   b5948ec8   03457e3f   80c934fe   cc5ad4f9
0dc16bb2   a50aa1ef   d62ef1cd   f8fbbf67   30c17f12   718f4d9a
43295fed   561de2a0

TRY THIS

The key was bs; what was the text?

Any security expert will tell you that it is a dumb idea to store clear text and 
enciphered files together and also express an opinion about padding, about us-
ing a two-letter key, etc., but this is a programming book, rather than a book on 
computer security.

We tested the programs by reading the enciphered text and getting the origi-
nal back. When writing a program, it is always nice to be able to conduct a simple 
test of correctness.

T
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Here is the central part of the deciphering program:

unsigned long inptr[2];
char outbuf[nchar+1];
outbuf[nchar]=0;   // terminator
unsigned long* outptr = reinterpret_cast<unsigned long*>(outbuf);
inf.setf(ios_base::hex ,ios_base::basefield);    // use hexadecimal input

while (inf>>inptr[0]>>inptr[1]) {
          decipher(inptr,outptr,k);
          outf<<outbuf;
}

Note the use of

inf.setf(ios_base::hex ,ios_base::basefield);

to read the hexadecimal numbers. For decryption, it’s the output buffer, outbuf, 
that we treat as bits using a cast.

Is TEA an example of embedded systems programming? Not specifically, but 
you can imagine it being used wherever privacy is needed or financial transac-
tions are conducted — that could include many “gadgets.” Anyway, TEA demon-
strates many of the characteristics of good embedded systems code: it is based 
on a well-understood (mathematical) model that makes us confident about its 
correctness, it’s small, it’s fast, and it relies directly on hardware properties. The 
interface style of encipher() and decipher() is not quite to our taste. However, 
encipher() and decipher() were designed to be C as well as C++ functions, so 
no C++ facilities that are not also supported by C could be used. In addition, the 
many “magic constants” came from direct hand translation from the math.

25.6 Coding standards
There are many sources of errors. The most serious and hardest to remedy relate 
to high-level design decisions, such as overall error-handling strategies, confor-
mance to certain standards (or lack thereof), algorithms, the representation of 
data, etc. These problems are not the ones we address here. Instead, we focus on 
errors that arise from code that is poorly written, that is, code that uses program-
ming language facilities in unnecessarily error-prone ways or expresses ideas in 
ways that obscure their meaning.

Coding standards try to address the latter kinds of problems by defining a 
“house style” that guides programmers to a subset of the C++ language that is 
deemed appropriate for a given application. For example, a coding standard for 
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an embedded system involving hard real-time constraints or for a system needing 
to run “forever” may prohibit the use of new. Typically a coding standard also 
tries to ensure that code written by two programmers is more similar than if they 
had chosen freely from all possible styles. For example, a coding standard may 
require that for-statements be used for loops (thereby banning while-statements). 
This can make code more uniform, and in large projects that can be important for 
maintenance. Please note that a coding standard is aimed at improving code for 
a specific kind of programming given a specific kind of programmer. There is no 
one coding standard suitable for all C++ applications and all C++ programmers.

So, the problems that a coding standard tries to address are problems that 
arise from the way we express our solutions rather than the problems that arise 
from inherent complexities of the problem we are trying to solve with our appli-
cation. We could say that coding standards are trying to address incidental com-
plexities rather that inherent complexities.

The major sources of such incidental complexities are

• Overly clever programmers, who use features they don’t understand or delight 
in complicated solutions

• Undereducated programmers, who don’t use the most appropriate language 
and library features

• Unnecessary variations in programming style, causing code performing similar 
tasks to look different and confuse maintainers

• Inappropriate programming language, leading to use of language features that 
are poorly adapted to a particular application area or to a particular group 
of programmers

• Insuffi cient library use, leading to lots of ad hoc manipulation of low-level 
resources

• Inappropriate coding standards, causing extra work or prohibiting the best 
solution to some classes of problems, thus becoming a source of the kind 
of problems that the standards were introduced to solve 

25.6.1 What should a coding standard be?
A good coding standard should help a programmer write good code; that is, it 
should help the programmer by giving answers to lots of little questions that each 
programmer would otherwise have to spend time deciding on a case-by-case basis. 
There is an old engineer’s proverb that says, “Form is liberating.” Ideally, a coding 
standard should be prescriptive, stating what should be done. That seems obvi-
ous, but many coding standards are simply a list of prohibitions, with no guidance 
about what to do after having obeyed a long list of don’ts. Just being told what not 
to do is rarely helpful and often annoying.

Stroustrup_book.indb   975Stroustrup_book.indb   975 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING976

The rules of a good coding standard should be verifiable, preferably by a 
program; that is, once we have written the code, we should be able to look at it 
and easily answer the question, “Have I broken any rule of my coding standard?”

A good coding standard should present a rationale for the rules. Program-
mers should not just be told, “Because that’s the way we do it!” When they are, 
they resent it. Worse, programmers invariably try to subvert parts of a coding 
standard that they see as pointless and as preventing them from doing a good job. 
Don’t expect to like everything about a coding standard. Even the best coding 
standard is a compromise, and most prohibit certain practices assumed to cause 
problems — even if they never caused you a problem. For example, inconsistent 
naming rules are a source of confusion, but different people have strong attach-
ments to some naming conventions and strong dislikes of others. For example, I 
consider the CamelCodingStyle of identifiers “pug ugly” and strongly prefer un-
derscore_style as cleaner and inherently more readable, and many people agree. 
On the other hand, many reasonable people disagree. Obviously, no naming stan-
dard can please everyone, but in this case, as in many others, a consistent style is 
definitely better than the lack of a standard.

To summarize:

• A good coding standard is designed for a specifi c application domain and 
a specifi c group of programmers.

• A good coding standard is prescriptive as well as restrictive.
• Recommending some “foundation” library facilities is often the most 

effective use of prescriptive rules.

• A coding standard is a set of rules for what code should look like,
• Typically specifying naming and indentation rules; e.g., “Use ‘Strous-

trup layout.’”
• Typically specifying a subset of a language; e.g., “Don’t use new or 

throw.”
• Typically specifying rules for commenting; e.g., “Every function must 

have a comment explaining what it does.”
• Often requiring the use of certain libraries; e.g., “Use <iostream>

rather than <stdio.h>” or “Use vector and string rather than built-in 
arrays and C-style strings.”

• Common aims of most coding standards are to improve
• Reliability
• Portability
• Maintainability
• Testability
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• Reusability
• Extensibility
• Readability

• A good coding standard is better than no standard. We wouldn’t start a 
major (multi-person, multi-year) industrial project without one.

• A poor coding standard can be worse than no standard. For example, C++ 
coding standards that restrict programming to something like the C sub-
set do harm. Unfortunately, poor coding standards are not uncommon.

• All coding standards are disliked by programmers, even the good ones. 
Most programmers want to write their code exactly the way they like it.

25.6.2 Sample rules
Here, we would like to give you a flavor of a coding standard by listing some 
rules. Naturally, we pick rules that we hope will be useful to you. However, we 
have never seen a real-world coding standard that could be described in fewer 
than 35 pages, and most are much longer. So, we don’t try to give you a com-
plete set of rules here. Furthermore, every good coding standard is designed for a 
particular application area and for a particular set of programmers. So, we don’t 
make any pretenses of universality.

The rules are numbered and contain a (brief) rationale. Many rules con-
tain examples for easier comprehension. We distinguish between recommendations, 
which a programmer may occasionally decide to ignore, and firm rules, which must 
be followed. In a real set of rules, a firm rule can usually be broken (only) with 
written permission from a supervisor. Each violation of a recommendation or a 
firm rule requires a comment in the code. Any exceptions to a rule can be listed in 
the rule. A firm rule is identified by a capital R in its number. A recommendation 
is identified by a lowercase r in its number.

The rules are classified as

• General
• Preprocessor
• Naming and layout
• Class rules
• Function and expression rules
• Hard real time
• Critical systems

The “hard real-time” and “critical systems” rules apply only to projects classified 
as such.
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Compared to a good real-world coding standard, our terminology is under-
specified (e.g., what does “critical” really mean?) and the rules overly terse. Simi-
larities between these rules and the JSF++ rules (see §25.6.3) are not accidental; 
I helped formulate the JSF++ rules. However, the code examples in this book do 
not conform to the rules below — after all, the book code is not critical embedded 
systems code.

General rules

R100: Any one function or class shall contain no more than 200 logical source 
lines of code (non-comments). 
Reason: Long functions and long classes tend to be complex and therefore 
diffi cult to comprehend and test. 

r101: Any one function or class should fi t on a screen and serve a single log-
ical purpose.
Reason: A programmer looking at only part of a function or class is more 
likely to overlook a problem. A function that tries to perform several logical 
functions is likely to be longer and more complex than one that doesn’t.

R102: All code shall conform to ISO/IEC 14882:2011(E) standard C++. 
Reason: Language extensions or variations from ISO/IEC 14882 are likely to 
be less stable, to be less well specifi ed, and to limit portability.

Preprocessor rules

R200: No macros shall be used except for source control using #ifdef and 
#ifndef.
Reason: Macros don’t obey scope and type rules. Macro use is not obvious 
when visually examining source text.

R201: #include shall be used only to include header (*.h) fi les. 
Reason: #include is used to access interface declarations — not implementation 
details.

R202: All #include directives shall precede all non-preprocessor declarations.
Reason: An #include in the middle of a fi le is more likely to be overlooked 
by a reader and to cause inconsistencies from a name resolved differently in 
different places.

R203: Header fi les (*.h) shall not contain non-const variable defi nitions or 
non-inline, non-template function defi nitions. 
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Reason: Header fi les should contain interface declarations — not implementa-
tion details. However, constants are often seen as part of the interface, some 
very simple functions need to be inline (and therefore in headers) for per-
formance, and current template implementations require complete template 
defi nitions in headers.

Naming and layout

R300: Indentations shall be used and be consistent within the same source fi le. 
Reason: Readability and style. 

R301: Each new statement starts on a new line.
Reason: Readability.
Example:

int a = 7; x = a+7; f(x,9);  // violation
int a = 7;     // OK
x = a+7;     // OK
f(x,9);        // OK

Example: 
if (p<q) cout << *p;       // violation

Example:
if (p<q)
     cout << *p;   // OK

R302: Identifi ers should be given descriptive names.
Identifi ers may contain common abbreviations and acronyms.
When used conventionally, x, y, i, j, etc. are descriptive.
Use the number_of_elements style rather than the 
numberOfElements style.
Hungarian notation shall not be used.
Type, template, and namespace names (only) start with a capital letter.
Avoid excessively long names.

Example: Device_driver and Buffer_pool.
Reason: Readability.
Note: Identifi ers starting with an underscore are reserved to the language im-
plementation by the C++ standard and thus banned.
Exception: When calling an approved library, the names from that library may 
be used.

Stroustrup_book.indb   979Stroustrup_book.indb   979 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING980

R303: Identifi ers shall not differ only by 

• A mixture of case 
• The presence/absence of the underscore character 
• The interchange of the letter O with the number 0 or the letter D
• The interchange of the letter I with the number 1 or the letter l
• The interchange of the letter S with the number 5 
• The interchange of the letter Z with the number 2 
• The interchange of the letter n with the letter h

Example: Head and head     // violation

Reason: Readability. 

R304: No identifi er shall be in all capital letters and underscores.
Example: BLUE and BLUE_CHEESE     // violation

Reason: All capital letters are widely used for macros that may be used in #in-
clude fi les for approved libraries. 
Exception: Macro names used for #include guards.

Function and expression rules

r400: Identifi ers in an inner scope should not be identical to identifi ers in an 
outer scope.
Example:

int var = 9; { int var = 7; ++var; }  // violation: var hides var

Reason: Readability.

R401: Declarations shall be declared in the smallest possible scope.
Reason: Keeping initialization and use close minimizes chances of confusion; 
letting a variable go out of scope releases its resources.

R402: Variables shall be initialized.
Example:

int var;                            // violation: var is not initialized

Reason: Uninitialized variables are a common source of errors.
Exception: A variable that is immediately fi lled from input need not be 
initialized.
Note: Many types, such as vector and string, have a default constructor to 
guarantee initialization.
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R403: Casts shall not be used.
Reason: Casts are a common source of errors.
Exception: dynamic_cast may be used.
Exception: Named casts may be used to convert hardware addresses into point-
ers and void* received from sources external to a program (e.g., a GUI li-
brary) into pointers of a proper type.

R404: Built-in arrays shall not be used in interfaces; that is, a pointer as func-
tion argument shall be assumed to point to a single element. Use Array_ref 
to pass arrays.
Reason: An array is passed as a pointer and its number of elements is not 
carried along to the called function. Also, the combination of implicit array-to-
pointer conversion and implicit derived-to-base conversion can lead to mem-
ory corruption.

Class rules

R500: Use class for classes with no public data members. Use struct for 
classes with no private data members. Don’t use classes with both public and 
private data members.
Reason: Clarity.

r501: If a class has a destructor or a member of pointer or reference type, it 
must have a copy constructor and a copy assignment defi ned or prohibited.
Reason: A destructor usually releases a resource. The default copy semantics 
rarely does “the right thing” for pointer and reference members or for a class 
with a destructor.

R502: If a class has a virtual function it must have a virtual destructor.
Reason: A class has a virtual function so that it can be used through a base class 
interface. A function that knows an object only through that base class may 
delete it and derived classes need a chance to clean up (in their destructors).

r503: A constructor that accepts a single argument must be declared explicit.
Reason: To avoid surprising implicit conversions.

Hard real-time rules

R800: Exceptions shall not be used.
Reason: Not predictable.
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R801: new shall be used only during startup.
Reason: Not predictable.
Exception: Placement-new (with the standard meaning) may be used for mem-
ory allocated from stacks.

R802: delete shall not be used.
Reason: Not predictable; can cause fragmentation.

R803: dynamic_cast shall not be used.
Reason: Not predictable (assuming common implementation technique).

R804: The standard library containers, except std::array, shall not be used.
Reason: Not predictable (assuming common implementation technique).

Critical systems rules

R900: Increment and decrement operations shall not be used as sub-expressions.
Example:

int x = v[++i];     // violation

Example:
++i;
int x = v[i];        // OK

Reason: Such an increment might be overlooked.

R901: Code should not depend on precedence rules below the level of arith-
metic expressions.
Example:

x = a*b+c;     // OK

Example:
if ( a<b || c<=d)  // violation: parenthesize(a<b) and (c<=d)

Reason: Confusion about precedence has been repeatedly found in code writ-
ten by programmers with a weak C/C++ background.

We left gaps in the numbering so that we could add new rules without changing 
the numbering of existing ones and still have the general classification recognized 
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through the numbering. It is very common for rules to become known by their 
number, so that renumbering would be resisted by the users.

25.6.3 Real coding standards
There are lots of C++ coding standards. Most are corporate and not widely 
available. In many cases, that’s probably a good thing except possibly for the 
programmers of those corporations. Here is a list of standards that — when used 
appropriately in areas to which they apply — can do some good:

Google C++ Style Guide: http://google-styleguide.googlecode.com/svn/trunk/
cppguide.xml. A rather old-style and restrictive but evolving style guide.

Lockheed Martin Corporation. Joint Strike Fighter Air Vehicle Coding Standards for the 
System Development and Demonstration Program. Document Number 2RDU00001 
Rev C. December 2005. Colloquially known as “JSF++”; a set of rules written 
at Lockheed-Martin Aero for air vehicle (read “airplane”) software. These rules 
really were written by and for programmers who produce software upon which 
human lives depend. www.stroustrup.com/JSF-AV-rules.pdf.

Programming Research. High-integrity C++ Coding Standard Manual Version 
2.4. www.programmingresearch.com.

Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guide-
lines, and Best Practices. Addison-Wesley, 2004. ISBN 0321113586. This is more 
of a “meta coding standard”; that is, instead of specific rules it has guidance on 
which rules are good and why.

Note that there is no substitute for knowing your application area, your pro-
gramming language, and the relevant programming technique. For most applica-
tions — and certainly for most embedded systems programming — you also need 
to know your operating system and/or hardware architecture. If you need to use 
C++ for low-level coding, have a look at the ISO C++ committee’s report on 
performance (ISO/IEC TR 18015, www.stroustrup.com/performanceTR.pdf); 
by “performance” they/we primarily mean “embedded systems programming.”

Language dialects and proprietary languages abound in the embedded sys-
tems world, but whenever you can, use standardized language (such as ISO 
C++), tools, and libraries. That will minimize your learning curve and increase 
the likelihood that your work will last.
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Drill
 1. Run this:

int v = 1; for (int i = 0; i<sizeof(v)*8; ++i) { cout << v << ' '; v <<=1; }

 2. Run that again with v declared to be an unsigned int.
 3. Using hexadecimal literals, define short unsigned ints with:

 a. Every bit set
 b. The lowest (least significant bit) set
 c.  The highest (most significant bit) set
 d.  The lowest byte set
 e.  The highest byte set
 f.  Every second bit set (and the lowest bit 1)
 g.  Every second bit set (and the lowest bit 0)

 4. Print each as a decimal and as a hexidecimal.
 5. Do 3 and 4 using bit manipulation operations (|, &, <<) and (only) the 

literals 1 and 0.

Review
 1. What is an embedded system? Give ten examples, out of which at least 

three should not be among those mentioned in this chapter.
  2. What is special about embedded systems? Give five concerns that are 

common.
  3. Define predictability in the context of embedded systems.
  4. Why can it be hard to maintain and repair an embedded system?
  5. Why can it be a poor idea to optimize a system for performance?
  6. Why do we prefer higher levels of abstraction to low-level code?
  7. What are transient errors? Why do we particularly fear them?
  8. How can we design a system to survive failure?
  9. Why can’t we prevent every failure?
 10. What is domain knowledge? Give examples of application domains.
 11. Why do we need domain knowledge to program embedded systems?
 12. What is a subsystem? Give examples.
 13. From a C++ language point of view, what are the three kinds of storage?
 14. When would you like to use the free store?
 15. Why is it often infeasible to use the free store in an embedded system?
 16. When can you safely use new in an embedded system?
 17. What is the potential problem with std::vector in the context of embed-

ded systems?
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 18. What is the potential problem with exceptions in the context of embed-
ded systems?

 19. What is a recursive function call? Why do some embedded systems pro-
grammers avoid them? What do they use instead?

 20. What is memory fragmentation?
 21. What is a garbage collector (in the context of programming)?
 22. What is a memory leak? Why can it be a problem?
 23. What is a resource? Give examples.
 24. What is a resource leak and how can we systematically prevent it?
 25. Why can’t we easily move objects from one place in memory to another?
 26. What is a stack?
 27. What is a pool? 
 28. Why doesn’t the use of stacks and pools lead to memory fragmentation?
 29. Why is reinterpret_cast necessary? Why is it nasty?
 30. Why are pointers dangerous as function arguments? Give examples.
 31. What problems can arise from using pointers and arrays? Give examples.
 32. What are alternatives to using pointers (to arrays) in interfaces?
 33. What is “the first law of computer science”?
 34. What is a bit?
 35. What is a byte? 
 36. What is the usual number of bits in a byte?
 37. What operations do we have on sets of bits?
 38. What is an “exclusive or” and why is it useful?
 39. How can we represent a set (sequence, whatever) of bits?
 40. How do we conventionally number bits in a word?
 41. How do we conventionally number bytes in a word?
 42. What is a word? 
 43. What is the usual number of bits in a word?
 44. What is the decimal value of 0xf7?
 45. What sequence of bits is 0xab?
 46. What is a bitset and when would you need one?
 47. How does an unsigned int differ from a signed int?
 48. When would you prefer an unsigned int to a signed int?
 49. How would you write a loop if the number of elements to be looped over 

was very high?
 50. What is the value of an unsigned int after you assign –3 to it?
 51. Why would we want to manipulate bits and bytes (rather than higher-

level types)?
 52. What is a bitfield?
 53. For what are bitfields used?
 54. What is encryption (enciphering)? Why do we use it?
 55. Can you encrypt a photo?
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 56. What does TEA stand for?
 57. How do you write a number to output in hexadecimal notation?
 58. What is the purpose of coding standards? List reasons for having them.
 59. Why can’t we have a universal coding standard?
 60. List some properties of a good coding standard.
 61. How can a coding standard do harm?
 62. Make a list of at least ten coding rules that you like (have found useful). 

Why are they useful?
 63. Why do we avoid ALL_CAPITAL identifiers?

Terms
address
bit
bitfi eld
bitset
coding standard
embedded system

encryption 
exclusive or 
gadget
garbage collector
hard real time
leak 

pool
predictability
real time
resource
soft real time
unsigned 

Exercises
  1. If you haven’t already, do the Try this exercises in this chapter.
  2. Make a list of words that can be spelled with hexadecimal notation. Read 

0 as o, read 1 as l, read 2 as to, etc.; for example, Foo1 and Beef. Kindly 
eliminate vulgarities from the list before submitting it for grading.

  3. Initialize a 32-bit signed integer with the bit patterns and print the re-
sult: all zeros, all ones, alternating ones and zeros (starting with a left-
most one), alternating zeros and ones (starting with a leftmost zero), the 
110011001100 . . . pattern, the 001100110011 . . . pattern, the pattern of 
all-one bytes and all-zero bytes starting with an all-one byte, the pattern of 
all-one bytes and all-zero bytes starting with an all-zero byte. Repeat that 
exercise with a 32-bit unsigned integer.

  4. Add the bitwise logical operators &, |, ^, and ~ to the calculator from 
Chapter 7.

  5. Write an infinite loop. Execute it.
  6. Write an infinite loop that is hard to recognize as an infinite loop. A loop 

that isn’t really infinite because it terminates after completely consuming 
some resource is acceptable.

  7. Write out the hexadecimal values from 0 to 400; write out the hexadeci-
mal values from –200 to 200.

  8. Write out the numerical values of each character on your keyboard.
  9. Without using any standard headers (such as <limits>) or documenta-

tion, compute the number of bits in an int and determine whether char is 
signed or unsigned on your implementation.
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 10. Look at the bitfield example from §25.5.5. Write an example that initial-
izes a PPN, then reads and prints each field value, then changes each field 
value (by assigning to the field) and prints the result. Repeat this exercise, 
but store the PPN information in a 32-bit unsigned integer and use bit 
manipulation operators (§25.5.4) to access the bits in the word.

 11. Repeat the previous exercise, but keep the bits in a bitset<32>.
 12. Write out the clear text of the example from §25.5.6.
 13. Use TEA (§25.5.6) to communicate “securely” between two computers. 

Email is minimally acceptable.
 14. Implement a simple vector that can hold at most N elements allocated 

from a pool. Test it for N==1000 and integer elements.
 15. Measure the time (§26.6.1) it takes to allocate 10,000 objects of random 

sizes in the [1000:0)-byte range using new; then measure the time it takes 
to deallocate them using delete. Do this twice, once deallocating in the 
reverse order of allocation and once deallocating in random order. Then, 
do the equivalent for allocating 10,000 objects of size 500 bytes from a 
pool and freeing them. Then, do the equivalent of allocating 10,000 ob-
jects of random sizes in the [1000:0)-byte range on a stack and then free 
them (in reverse order). Compare the measurements. Do each measure-
ment at least three times to make sure the results are consistent.

 16. Formulate 20 coding style rules (don’t just copy those in §25.6). Apply 
them to a program of more than 300 lines that you recently wrote. Write 
a short (a page or two) comment on the experience of applying those 
rules. Did you find errors in the code? Did the code get clearer? Did some 
code get less clear? Now modify the set of rules based on this experience.

 17. In §25.4.3–4 we provided a class Array_ref claimed to make access to el-
ements of an array simpler and safer. In particular, we claimed to handle 
inheritance correctly. Try a variety of ways to get a Rectangle* into a 
vector<Circle*> using an Array_ref<Shape*> but no casts or other opera-
tions involving undefined behavior. This ought to be impossible.

Postscript
So, is embedded systems programming basically “bit fi ddling”? Not at all, espe-
cially if you deliberately try to minimize bit fi ddling as a potential problem with 
correctness. However, somewhere in a system bits and bytes have “to be fi ddled”; 
the question is just where and how. In most systems, the low-level code can and 
should be localized. Many of the most interesting systems we deal with are em-
bedded, and some of the most interesting and challenging programming tasks are 
in this fi eld.
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