
R. M. Damerell
Royal Holloway & Bedford College

This article describes a proposal to improve the

diagnostics of TANGLE by making it detect certain

types of errors. Yo corresponding change is proposed

for WEAVE. on the theory that users are unlikely to

want to weave a program until the worst of the bugs

have been fixed. I would be much obliged if members

of the community could say whether these

changes are desirable. If the response is favourable,

then I propose to make copies of the modified TANGLE

freely available. The changes described in this article

apply to version 2.5 of TANGLE, as supplied by

Stanford.

Change 1: Missing Start of Module
By far the most frequent and troublesome error

that I make when writing WEB programs is that of

omitting the string au that should separate two

successive modules. This error usually damages the

PASCAL output. Consider the following fragment,

copied from TANGLE:

@<Globals i n t h e o u t e r block@>=

@!hi s to ry : spo t l e s s . . f a t a l_message ;

@ @<Set i n i t i a l values@>=

h i s t o r y : = s p o t l e s s ;

Now suppose the user omits the @, between these

modules. Then the whole replacement text of the
second module will be inserted into the first. If this

error is not detected, then probably the user will try

t o compile the damaged output. The likeliest result

is that the compiler will become confused and print

lots of error reports that bear no clear relation to the

cause of the trouble. There seems to be no obvious

way to detect this type of error every time, but the

changes here proposed will detect it with a fairly

high probability.

@<Globals i n t h e ou te r block@>=

t r y - l o c : i n t e g e r ;

@ @<Was an I @ @ ' missed here?@>=

t r y - l o c : = l o c ;

while (b u f f e r [t ry - loc] = " ")

and (t r y - l o c < l i m i t) do i n c r (t r y - l o c) ;

i f (buf fe r [t ry - loc] = "+'I)

and (t r y - l o c < l i m i t) t h e n i n c r (t r y - l o c) ;

while (b u f f e r [t ry - loc] = " ")

and (t r y - l o c < l i m i t) do i n c r (t r y - l o c) ;

i f (buf fe r [t ry - loc] = "=") t h e n

begin e r r - p r i n t

(' ! Nested named modules. Missing Q?');

@.Nested named modules0>

@<Show l i s t checkpoint@>;

end

Figure 1. Code to Detect Missing Qu. The
procedure scan-rep1 is changed to
execute this code when it has just
read a module n a m e and l o c i s
pointing to the character that folloms
the @> at the end of the n,ame.

First, I have changed TANGLE so that it enforces

an extra rule of syntax: if the replacement text of

one module includes a call of another module, then

that call may not be immediately followed (on the

same line) by = or +=. This rule is not really ralid

for WEB programs: somebody might want to say:

i f @<some expression@> = 0 then . . .

but this construction does seem unlikely in PASCAL.
Also the test can be bypassed by putting the . = 0'

onto the next line.

Figure 1 shows the code that performs the test.

TANGLE has just read a module name, say NNN, within

the replacement text on another module, say MMM.

Then l o c should be pointing to the next character
after the @> that ends the module name NNN. TANGLE

TUGBOAT

Error Detecting Changes to TANGLE

must then examine the next few characters in the file

without losing its position.

That module must be called by inserting

@<Was an 'Q@' missed here?@>;

immediately before the call of app-rep1 which

follows the label module-name in procedure

scan-repl.

Change 2: Showing a checkpoint
The next change is suggested by the fact that several

errors, which are currently detected by TANGLE,

nearly always occur as symptoms of a missing Q,. A

typical example is "Identifier conflict." Here is how

this happens. Suppose the programmer omits an @,

between two modules. Then TANGLE will read the

part of the next module as if it were PASCAL.

When it reads a sentence like "If this fails, then . . . ,"
the "If" conflicts with PASCAL'S i f . The obvious

change here is to alter the error message to warn the

user of this possibility. Also, I have inserted a call of

@<Show last checkpoint@>;

immediately after the code that generates the

message. The messages "@d/@f /@p ignored in

PASCAL text" also seem to occur frequently as

symptoms of a missing Q,, and I have treated them

in the same way.

@p procedure scan-module;
label continue, done, exit;

var p: name-pointer;
{module name for the current module)
begin incr (module-count) ;

@<Scan the \(definition part...@>;
last-line := line; - znsert
was-changing := changing; -insert
@<Scan the \PASCAL\ part...@>;
exit :
last-line := 0; - insert

end ;

@<Globals in the outer block@>=
last-line: integer;
was-changing: boolean;

@ @<Show last checkpoint@>=
if last-line = 0 then
print-ln(' (not in PASCAL) ')

else
begin
print-nl('PASCAL part of module',

) began at line ' , last-line);
if was-changing. then

end

When TANGLE thinks it has found a missing Qu,
@<Set initial values@>=

we would like to tell the user where it ought to have
last-line := o; {where PASCAL started)

been. The best I can do is to indicate a range of line was-changing : = false;
numbers. The actual error is that two consecutive

modules, say MMM and NNN, have been run together;

the formal error is an illegal construction within the Figure 2. Code to Shoul Checkpoznt. The

PASCAL code of module MMM. So TANGLE will say lznes added to the scan-module

where it thinks the PASCAL code of that module
procedure track the startzng lzne of
the latest pzece of PASCAL code.

started. Notzce the checkaoznt zs reset at

Change 3: Semicolon-Else
Another frequent error is that of' writing a program

containing the sequence ' ; else ', which PASCAL

does not allow. This is easy to do, as the semicolon

and the else often come from different modules.

Although there is absolutely no reason why you

cannot say ' ; else ' in WEB programs, it still seems
desirable that TANGLE should detect this, as (on our

machine, at any rate) TANGLE runs between 5 and

10 times as fast as the PASCAL compiler. The test

applied here is very crude; it will not recognise ELSE

or Else or the output from ' el@& se '.
The module to detect the change, listed in

Figure 3. gets called by inserting

the beginning of the program and
after the end of the PASCAL part
of each module. The module @<Show
last checkpoint@> displays the
saved checkpoint; references to thzs
module are added following the error
reportzng code for errors that are
often caused by a missing start of
module.

immediately after the label reswitch in procedure

send-the-output.

@<Semi else test@>;

Volume 7, Number 1

Articles

Change 4: Error reports to a file
Another change that I have found very useful is to

make TANGLE write its error reports onto a file as well

as the terminal. With a split screen editor, one can

work through the error and source files in parallel.

This is much easier than writing the errors on paper

as they appear. Essentially, you say:

@d print (#) == begin write (term-out , #) ;

write(errorfile,#); end

but several refinements are needed to prevent routine

messages from getting into the error file. There

seems to be no point in giving details here as they

are long and messy and system dependent.

Conclusion
In designing these changes, I have tried to ensure

that the new version of TANGLE will be compatible

with the old. So when TANGLE thinks it has found

an error, it merely prints an error report without

making any attempt to correct the supposed error.

The missing Ou test is fairly effective: there are only

about 10 places in WEAVE. WEB where you can omit an

@, without it being detected. The semicolon-else test

is also effective, provided that the user always writes

else in lower case. The modified TANGLE seems to

run about 2% slower than the old version; but users

will save more machine time by not trying to compile

bad PASCAL programs. I believe that these changes

will significantly reduce the time that programmers

have to spend in removing trivial errors from WEB

programs.

WGlobals in the outer block@>=

point-else: name-pointer;

semi-last: boolean; {output was semicolon)

0 The first step is to put an ' 1 elsel' into the hash

table,

to be used in later comparisons.

@<Initialize the input system@>=
buffer[O] := "e". , buffer [I] : = "1";

buffer[2] := "s". , buffer [3] : = "e";

id-first := 0;

id-loc :=4;
point-else : = id-lookup (normal) ;

buffer[OI := " ";

semi-last := false;

Then Isend-the-output1 must test

for ' ; else ' , ignoring intervening
comments or white space.

@<Semi else test@>=

if (cur-char = begin-comment)

or (cur-char = join)

or (cur-char = module-number)

or (cur-char = 0)

or (cur-char = force-line)

or (brace-level > 0)

then do-nothing

else if cur-char = " ; " then

semi-last := true

else if semi-last

and (cur-char = identifier)

and (cur-val = point-else)

then

begin err-print

(' ! semicolon-ELSE found');

@.semicolon-ELSE foundQ>

semi-last := false;

end

else semi-last := false;

Figure 3. Code to check for semicolon - else
combination. A reference to the
module @<Semi else test@>
is added to the m a i n loop of
send-the-output, following the
reswitch label, t o check the program
as i t is expanded and output.

TUGBOAT

