
7&X in Practice: Comments on a

4-Volume, 1400-page Series on l$jX

Stephan v. Bechtolsheim
Computer Science Department, Purdue University, Computer Science Building, West Lafayette, IN 47907
Integrated Computer Software, Inc., 2119 Old Oak Drive, West Lafayette, IN 47906
(317) 463 0162, (317) 494 7802. Internet: svbQcs.purdue.edu

Abstract

This article discusses a four volume, 1400 page series, about

m. It discusses two aspects: first of all I will discuss how
processing a document of this size was organized. Second I will
discuss extensions to rn which I consider desirable.

A Short Introduction

In a previous draft of this article I had written
about a page and a half about what pain it is to
be an author, in particular the author of something
as long hat and elaborate as the books under
discussion; I still do not know whether there will be
any real rewards since the fees paid to authors are
mediocre, at best. But on the other hand: I could
have quit at any time, and I decided stubbornly not
to do that.

Yes, it was a frustrating activity, but now it's
already the past!

Processing 1400 Pages of

Source Code

How did I manage a 1400 page 7&X document?
There are a number of additional programs that I
used, which are described below.

The Computing Environment. Let me describe
my environment briefly: I use a SUN 3/50 with an
extra 4MB of memory (that's 8MB alltogether) and
a 327MB local disk. This machine is hooked up to
the department's ethernet. 3150s are not terribly
fast machines so the real processing takes place on
a departmental Sequent. The source code is copied
to the Sequent using the r d i s t program (remote
distribution) so that only those files which changed
are copied.

I use the GNU Emacs editor, as far as I am
concerned, the best editor around. I have written
a small rn mode for this editor which makes the
editor much easier to use with a m document. I
cannot repeat frequently enough how important a
good editor is: you spend most of the time editing
your text, and therefore the best editor is just good
enough. See Bechtolsheim 119881 for details.

Some Statistics. Let me give some statistics about
this series of books. The source code of this series
is about 70000 lines of code, which occupies
about 2.2 MB of storage. All dvi files together are
about 3MB long. The size of the directory in which
the processing of the book takes place, is about
16 NIB, around 20 MB if all Postscript files (I have
a Postscript printer attached to my workstation)
are also stored. The series is subdivided into
57 different files of source code files which I call
part source files, some of which are of auxiliary
nature, but most of them are one chapter of a
volume of this series. The part source files also
include parts belonging to a fifth volume that is
not published, but contains information such as any
matters pertaining to the publisher or shell scripts
which I used for a variety of functions. There are
228 macro source files which are published with this
series.

For the following please note that all volumes
together are regarded as one unit. and they are
processed as such. Therefore, cross-references across
volumes are not really any different from cross-
references within the same volume.

The Input Language, the Preprocessor Used.
The input language is of course largely W, but
I made some extensions. These are not extensions
to r n , but codes interpreted by a preprocessor,
pretex, which I now discuss briefly. The tasks of
the preprocessor are as follows:

1. Allow for the direct inclusion of macro source
code. Originally, without the preprocessor, my
set up was as follows: I would store the source
code of a macro which I describe in the series,
with comments, in an external file. I then used
\Listverb to read in such an external file to
generate a verbatim listing of it. In case I

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 409

Stephan v. Bechtolsheim

wanted to use this macro source file I would
use \input to read in the macro source file.
I ended up with tons of macro source files,
as you can imagine. Note that the previously
given figure of 228 macro source files does not
even include the source files of all examples!
The correct figure is close to 500 files.
This was the main reason for the design of this
preprocessor, which allows me to do two things
with lines in the part source file:
(a) Include macro source code files directly.

The preprocessor writes this macro source
code to external files and includes its ver-
batim listing in the output file generated
by the preprocessor (this output file will
later be processed by m) .

(b) The preprocessor allows me to switch back
and forth between writing a macro source
file (and including its verbatim listing in
the main output file) and writing com-
ments, which appear as ordinary output in
the book, but do not appear at all in the
macro source file.

2. Maintain the makefile. I made extensive use
of the UNIX utility make to process my book.
The main idea behind using make is, of course,
to let a program (rather than an unreliable
human being) figure out which parts of the
series need to be reprocessed after a change,
and which do not.
Administering that part is quite difficult, which
was another reason for writing the preprocessor.

3. Administer overlays. As you will see later, I
used an overlay dvi file processor (or DFP for
short). Again, certain functions are controlled
by input to the preprocessor.

4. Administer the inclusion of log files. There
are a great many log files included with the
documentation. The generation of these log
files is controlled by information written to the
makefile generated by the preprocessor.
There is actually another program used in

building makefiles, but this is beyond the scope
of this article. For pretex and the utility just
mentioned see Bechtolsheim [1990b] for details.

Note also that before w is actually executed
to process a part, some other T)-$ executions may
take place, for instance, to produce log files included
in parts of the series, or to generate dvi files of
figures overlaid in this series.

Running T'X. Running m is the easiest part
in this context. I always process only one part at a
time, and if you read T&$ in Practice (in particular

volume 111) then you will find that the set-up is
quite similar to that of IPW: one part of the series
is processed at one time. Also, during this step, an
index file is written out for each part.

Because I process only one part at a time, at the
end of every processing step (tex main, assuming
the main source file is called main.tex), I would
rename main. dvi and main. log appropriately as,
say, i n t r o . dvi and i n t r o . log.

After m. After has executed, the dvi
processor which I mentioned previously (see Bech-
tolsheim [1990c]), is executed twice.

The main purpose of the first execution is to
extract positional information for marginal notes. I
generate marginal notes using the DFP because this
allows me to separate the marginal note generation
completely from the generation of the text itself. I
use marginal notes for the following purposes:

1. Communication with the editor (I am, of
course, talking about the "person" editor rather
than the "program" editor). If I have a ques-
tion, I simply put this question into the margin.

2. Addition of change bars. I found change bars
an extremely useful feature. In case of a
change to an already edited chapter, I could
mark those changed areas easily so that my
editor could have yet another look at it.

3. Print index terms in the margin. To develop
an index is considerably simplified, if the index
information is written into the margins of the
document. This way when the index is being
developed it is immediately visible which index
terms refer to a specific page.
The second execution of the DFP does the

following:
1. Puts the date, time, version number, and file

name on every page.
2. Extracts information about which fonts were

used in each part and store this information.
This allows the generation of a table listing all
the fonts used.

3. Overlays other dvi files. There are a number
of instances where output generated by sepa-
rate lQJ runs must be glued into the main
document. This function is performed at this
point.

Extensions of

In the remainder of this article I discuss possible
extensions of m. Theoretically, 7IE.X can be
made to do anything, but this is not really true in

410 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Tk.X in Practice: Comments on a 4-Volume, 1400-page Series on rn

practice. Therefore, let me discuss what I would
like to see added to m.
Operating system and interface related ex-

tensions. I would like to see a more flexible in-
terface with the operating systems on which m
runs. I am thinking of features such as opening and
closing dvi files, asking whether or not certain t f m

files are accessible, writing all characters to external
files (including characters such as tabs and returns,
I am thinking of a \writechar primitive analogous
to \char). In 3.0 the current line number is
accessible, which is something I would have listed
here if that were not the case. I would also like to be
able to invoke other other programs, and I realize
that m source code using this feature would be
restricted in their portability.

Graphics extensions. I have n o desire for any
graphics extensions. The inclusion of Postscript
generated figures works just fine.

Insertions and output routines. Because of the
size of U r n ' s output routine and the fact that
insertions are n o t used for figures and tables (only
for footnotes), I would like to see an extension to
m ' s insertion mechanism. It should be made
more powerful to allow one to specify, for instance,
the number of insertions that can be permitted on
one page: both a maximum and a threshold vertical
length which, if exceeded by insertion material, will
prevent other material from being printed on that

page. This is a very short description of what I
have in mind; IPm has a whole set of style-file
related parameters, which really should be built-in
parameters of the insertion mechanism of m.

What I envision is a set-up in which the
insertion queues are accessible to the user, so that
the user can write TfjX code which inquires about
the number of elements in an insertion queue, the
length of individual insertion elements, and so forth.

Also, when r n ' s page-breaking algorithm
completes a page and puts it in box register 255, the
glue and penalty information around that break-
point is essentially lost (with the exception of the
setting of \outputpenalty). It is thus impossible,
from within the output routine, to restore an old
page in its entirety.

Paragraph computations of m. Typesetting
specifications by publishers may prohibit a page
break just following a heading or in the fol-
lowing two or three lines of text. Therefore
an \af terclubpenalty should be introduced, and
maybe one should generalize this penalty business
even further.

The \everypar register is evaluated after the
\parskip glue has been sent to the vertical list
with the current page or vbox. This makes it
difficult to use \everypar. Therefore, I would like
to have a built-in token register \everyvpar which
is evaluated as soon as Tk.X decides it is time to
begin a paragraph but before m gets around to
doing anything about it.

There should be a \parskippenalty as well
as a \baselineskippenalty and a \ l ineskip-
penalty.

Expansion, grouping. I would like to have access
to the current level of grouping in the form of a
read-only counter register. This would allow me
to determine at the time a heading is encountered
whether all preceding groups have been terminated
(that is, I would like to be able to set up QX
in such a way that groups cannot extend beyond
certain subdivisions of a document).

A boolean data type and boolean operations
(\not, \and, \or, and so forth) should be added. It
should be possible to write "real conditionals".

Doing any type of arithmetic in is a bit
of a pain, so I would like to see something which
would allow me to write, for instance:

Relational operators #, 2 , 5 should be made avail-
able for register arithmetic.

Box computations. It should be possible to access
the badness of a box stored in a box register.
Furthermore, it should be possible t o access and
manipulate each element of the horizontal or vertical
list of a box on an individual basis. In other words,
I would like to see a generalization of primitives
like \ l a s t s k i p and \ lastpenalty. For instance, if
\ l as tpenal ty is zero, then this means either that
the last item was a penalty of zero, or was not a
penalty. I would like to see, therefore, a reliable
way to learn what each item is, not just the last
one.

In particular, I would add primitives which
allow access to the dimensions of the lists and l i t
elements of boxes. One reason the insertion of
change bars with a dvi file processor is so easy (see
Bechtolsheim [1990c]), but so difficult in m, is
that there is no way to access this information.

I personally would remove the restriction which
permits \vcenter to be used in math mode only.

Math mode. Believe it or not: I found someone
who wanted more than three different fonts per font
family in math mode. I am not sure I concur with
this.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 411

Stephan v. Bechtolsheim

Concluding remark

is a great product. It is so wonderful, powerful,
and flexible, it's worth all the effort required to
learn it.

Bibliography

Bechtolsheim, Stephan v. "Using the Emacs Editor
to Safely Edit l'@ Sources", w n i q u e s 7, pages
195 - 202, 1988.

Bechtolsheim, Stephan v. T&$ in Practice. New
York: Springer, 1990a

Bechtolsheim, Stephan v. A T&X Preprocessor and
a make related Utility. West Lafayette: Integrated
Computer Software, Inc., Report 90-1, 1990b

Bechtolsheim, Stephan v. A dvi File Processor.
West Lafayette: Integrated Computer Software,
Inc., Report 90-2, 1990c

Knuth, Donald E. The W b o o k . Reading, Mass.:
Addison-Wesley, 1984.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

