
Virtual Fonts in a Production Environment

Michael Doob
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2

Canada
Internet: mi chael-doob@umani toba. ca

Craig Platt
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2

Canada
Internet: c-pl atteumani toba. ca

Abstract

The virtual font facility allows new fonts to be created from existing ones.
It is possible to change the properties of a particular character, to rearrange
characters within a font, to combine characters from several different fonts, and,
perhaps most importantly, to execute sequences of instructions when printing a
single character.

This paper will give several applications of virtual fonts that have made the
printing of the journals of the Canadian Mathematical Society more efficient and
more attractive. Most of these applications arise from the necessity of using a
given set of Postscript fonts. There will be some discussion of the reasons why
the use of virtual fonts became the best alternative.

There is no assumption of prior knowledge concerning virtual fonts. All
necessary concepts will be explained as they arise.

Introduction

Virtual fonts were introduced by Knuth (1990,
page 13) as a mechanism for malung seamless
applications of TEX to different types of printing
hardware. There have been several applications of
this mechanism since then, e.g., Hosek (19911, but
the widespread use anticipated in the original article
has not as yet taken place. T h s is unfortunate since
virtual fonts very much enhance the flexibility with
which TEX may be applied.

There are several purposes of t h s paper. We
want to examine some problems that arose when
using TEX to produce several journals for the Cana-
dian Mathematical Society, and to show why virtual
fonts turned out to be the best mechanism for their
solution. We also want to gather material about
the construction of virtual fonts that heretofore has
been scattered in different publications. It is hoped
that this wdl make it easier for others to use virtual
fonts, and that the original enthusiasm of Knuth
will be justified.

Using virtual fonts: the alphabet soup. Let's think
for a moment about what happens when we use
{\it A} within a TEX file. In the d v i file there is a
command to change font and then a byte containing
the ASCII code for the letter "A", i.e., the number
65. The software used for printing or previewing
d v i files is generically called a device driver; when
the device driver comes to t h s part of the d v i file,
it will look up the appropriate (normally a pk) file,
and use the data there to construct the image of
the original letter. When a virtual font is used,
the number 65 refers to a set of instructions. It

may be simply to print the letter "A" as before,
but it may also allow letter substitutions from the
same font or from different fonts, or allow for a
combination of different letters. In other words,
several different physical fonts can be combined
into one virtual font. Even more, the rules can add
lines and move character positions, and can send
\speci a1 commands to the printing device. And

so to use thls virtual font mechanism we need two

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michael Doob and Craig Platt

things: (1) a device driver that understands how

to use virtual fonts, and (2) a method for creating

these fonts.
The program dvips understands virtual fonts

and is what is used in the (Postscript) environment

at the Canadian Mathematical Society. So does

the current version of xdvi, whch can be used for

previewing output on the screen of an X-terminal. In
addition, dv idw in the emT@ package and Textures

(version 1.6) are able to interpret virtual fonts

properly.

There is an alphabet soup of file names that

are used with TEX (see Schrod (1993) for a complete
list). Some of these are used in connection with

virtual fonts. The ordinary use of TEX involves a

t e x file which contains the source code, the d v i file
that receives the output of TEX, and another file (in

our case a ps one) that may be produced in order to

view or print the output. These files are in the left
column of Figure 1. As TEX runs, it reads the t f m

files to get information about, among other thmgs,
the bounding box (but not the actual shape) and

the side bearings of the individual letters, and the
kerning and ligature data. The device driver uses

the d v i file for positioning characters on the page,

and (usually) the pk files to get the shapes of these
characters. To use the virtual font mechanism,
it is necessary to have v f files; these contain the

information to be decoded by the device driver,
which can then produce the output in the usual

manner. The v f file, like the t f m and pk file, is

machne (and not human) readable.

I -- I a;: 1 t f g z l I ;; I - pltotf

I -- 1 ;; 1 vpg:f 1 -gl 1
vftovp

dvips

Figure 1: Some alphabet soup

It's possible to adjust the parameters in a t f m

file via two auxilliary programs. The program

tftopI takes a t f m file as input and produces a p l

file as output. This is an ASCII file containing a

description of the original t f m file; the parameters

may be changed using a simple editor. Similarly the
program pltotf will take the p l file as input and give

the corresponding t f m file as output.

There is an extension of t h s idea to handle v f

files. The program vftovp takes a v f and a t f m

file as input and produces a human readable v p l

(virtual properties list) file. This file may be edited.
Conversely, vptovf takes the v p l file and produces

the t f m and v f files. And so, as far as virtual

fonts are concerned, the name of the game is to edit

and adjust the v p l file until the desired result is
achieved.

Working Examples

An all caps font. We use 12pt roman all caps for

titles. At first blush, this should be trivial. After all,

\uppercase{the qu ick brown f o x jumps

over t h e lazy dogs}

will give

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS.

But consider the following example:

The $ 1A1 $ norm o f $ \ x i $ i s

$ \sum-{ i= l }A\ in f ty \ x i - i $1

The use of \uppercase changes the text from

The 1' norm of 5 is 5,
to

THE L1 NORM OF 5 IS XI"==, 51.

This gives us a syntactically correct sentence that

will cause great pain to functional analysts. Ob-
viously we don't want to change the case of the

mathematical symbols. The solution that then

comes to mind is to use \ifmmode to check if the

text is in math mode. So, for example, we might use
something like the following:

\def\ucw#l { \def\next{ \ucwl%

\i f x * # I \de f \nex t { \ re lax }

\e l se \ifmmode # 1

\ e l se \uppercase{#l}

\f i

\fi
\next

1
We have (rather arbitrarily) set up * as a terminator;

we grab a word at a time and check for math mode

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

(the astute observer may have already noted how

the space between words is replaced). If we use this

with our last example we get THE 1' NORM OF 5
IS If"', 51 This has fixed the problem, at least as
far as the mathematics is concerned. But note that
the subscript of the original 5, is still being changed

to upper case. A moment's thought will reveal
the problem. If the entire mathematical expression

%. . . 16 is grabbed at once, the test for math mode

will come too late.

So it would seem that we need to grab a

character (token) at a time. We could do this with
something like the following:

\def\ucc#l{\def\next{\ucc}%

\i f x W 1 \de f \nex t { \ re l ax}

\ e l se \ifmmode # I { }

\ e l se \uppercase{#l}%

\ f i
\f i

\nex t

1
T h s macro w~ll give us

THE1 1 NORMOFE IS2 i = 1 oo Ei

All the mathematics is lower case now, but we have
obviously caused problems in the way the line is

parsed. It seems that our approach is not getting us
too far.

So let's rethink the problem. The root cause
is the fact that the mechanism for case conver-
sion is the TEX primitive \uccode, and t h s is not

defined on a font by font basis (in fact it works

even in mathematical text: if you look at the

TEX output from \l owercase{${\cal B } IA \p r i me

M{\cal C3$} , you'll say "I'm floored!").

It is possible to assign new values to \uccode,

so we could toggle the values when shifting in and

out of math mode with a construction similar to

\everymath. But the problem at hand is really a font

level one; it cries out for a font level solution. One
solution would be to use METAFONT and design

an all caps font from scratch. This is an arduous
job. In contrast, the solution using virtual fonts is

almost trivial.

Let's see how to construct an all caps virtual
font. According to Figure 1, we need a v p l file to
edit; where does it come from? We can start with the

t f m file and use tftopl to create a p l file. Since the

virtual font description is a superset of the t f m font

description, we can use this file as a starting point.

So we can use the command t f t o p l cmr l2 . t f m

cmrl2ac. v p l to get started on a 12 point cmr all
caps font.

The new file can be edited; the structure
is strictly defined and not too hard to follow.

The first few lines will contain some preliminary

information about the font. This is followed by
a short list starting with (FONTDIMEN (these are

the same dimensions described in The THbook by

Knuth (1990, page 433)). Then there is a long
list under (L IGTABLE and finally a list of the 128

different character entries, each of which starts with

(CHARACTER.

Within each list several types of objects are

described: (LABEL, (L IG , and (KRN, for example,
start the description of a label, a ligature, and a
kern. Similarly (CHARACTER, (CHARWID, (CHARHT,

(CHARDP, and (CHARIC start the description of a
character, and its width, height, depth and italic

correction. The object is usually followed by a
parameter: 0 40 is the octal number 40, D 32 is

the decimal number 32, C a is the (ASCII code of
the) character "a", and R. 9791565 is a real number

as a multiple of the design size (which is after
(DESIGNSIZE as one of the first entries of the v p l

file). In our case the design size is 12 points, so the

real number has the value of 11.75 points. Finally,
there will be matchmg)s to finish the description.

So now we can interpret the text of the v p l file:

(LABEL C f)

(L I C C i 0 14)

(L I C C f 0 13)

(L I C C 1 0 1 5)

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

(STOP)

means that the we are describing the character "f",

that there is a ligature with the character "in and the

pair is replaced by the character with ACSII code octal

14; there are two more similar ligatures; next we see
that when "f" is followed by the character whose

ASCII code is octal 47 (the " ' " character), there is a

kern of .069734 design units (a positive kern means

that the letters are actually being spread apart), etc.

Similarly,

(CHARACTER C f

(CHARWD R 0.299187)

(CHARHT R 0.694444)

(CHARIC R 0.069734)

(COMMENT

(L I G C i 0 14)

(L I C C f 0 13)

(L I C C 1 0 15)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michael Doob and Craig Platt

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

1
1

means that the character "f" has width, height, and
italic correction as given. Since (CHARDP doesn't
appear, its value will be zero. Notice that it is
also possible to have comments. In t h s case, the
ligature and kerning information is repeated as a
convenience.

Now let's add some new instructions to the v p l

file to make our all caps font. First we add

(MAPFONT D 0

(FONTNAME cmrl2)

(FONTCHECKSUM 0 13052650413)

(FONTAT R 1.0)

(FONTDSIZE R 12.0)

1
before the (LIGTABLE. We are defining a font that
can be used later: it means that font 0 refers to
the font cmrl2 whch has the given checksum (note
that this value is part of the output from tftopl; we
need only copy it into place). The design size of the
font is 12 points with a scaling factor of 1.

To replace the "f" entry by the "F" entry we
replace the description of the character given above
with

(CHARACTER C f
(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
1

and that's it. Of course since we have no given
values for CHARWID, CHARHT, CHARDP, and CHARIC,

they all have the default value of 0. Unless we want
all the characters to print one atop the other, this is
undesirable. The correct values for "Fnare given in
the (CHARACTER C F listings, so we can just copy
them into place. Now we have

(CHARACTER C f
(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
(CHARWD R 0.638999)

(CHARHT R 0.683 3 3 3)

1

If we do this for the other letters, we have then
made the desired replacements. T h s takes only a
few minutes with a smart editor.

There are a few other thngs to do: the ligature
and kerning information still corresponds to the
original font. In our case there are only three
ligatures that need to be deleted: ff, fi, and fl. So we
take those lines out of the (LIGTABLE listing. We
also have the kerning for the old letters; we replace
it with the corresponding upper case entries; as it
happens, there are no kerns for "F", so all of the
lines of the original entry

(LABEL C f)

(LIG C i 0 14)

(LIG C f 0 13)

(LIG C 1 0 1 5)

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

(STOP)

are deleted. Sometimes large all caps are typeset
without kerning (yuk!). If desired t h s could be
part of the virtual font parameters. Track kerning
(the addition of a small uniform amount of space
between letters) could also be done by changing
CHARWD appropriately. Now we're done with the
editing of the v p l file.

We now run
vptovf cmrl2ac.vpl cmrl2ac.vf cmrl2ac.tfm

and the v f and t f m files are ready to go (of course
these files must be in directories where TEX and the
device drivers will look for them).

The TEX fragment

\ font\ac=cmrl2ac

\ac
The $ 1A1 $ norm o f $ \ x i $ i s

$\sum-{i=l)A\i n f t y \ x i - i $.
will now work properly.

The construction of the font is really quite easy
once the proper pieces are assembled. There is a
bonus for our production work. We must process
files from authors that are in plain TEX, LATEX, and
AM-TEX, among other variants. The virtual font
gives a single solution that works with all macro
packages. This is an important benefit.

A small caps font. The problem with designing
a small caps font within TEX has been addressed
by Hendrickson (1990). Of course if you have
cmcscl0. m f you can generate a Computer Modern
small caps font using METAFONT. But for other

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

sizes or families the virtual font mechanism is again
almost trivial. To construct, for example, a small
caps font using the Postscript Times-Roman family,
the procedure is hardly different from the first
example. Suppose that rp tmr. t f m is used by TEX
to typeset Times-Roman, and the small caps should
be 25% smaller than the upper case caps. It is only
necessary to define two fonts in the v p l file:

(MAPFONT D 0

(FONTNAME rptmr)

(FONTCHECKSUM 0 24360352060)

(FONTAT R 1.0)

(FONTDSIZE R 10.0)

1
(MAPFONT D 1

(FONTNAME rptmr)

(FONTCHECKSUM 0 24360352060)

(FONTAT R 0.75)

(FONTDSIZE R 10.0)

1
The editing of the v p l file proceeds almost

exactly as before starting with

\(CHARACTER C F

(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
1

and

\(CHARACTER C f
(MAP

(SELECTFONT D 1)

(SETCHAR C F)

1
1

There is a question as to which size accents to
use: they can come from the larger or smaller font.
You have to pick one (we use the smaller size).

One font, two uses. When our journals are ready to
print, we send a Postscript file to The University of
Toronto Press for h g h resolution printing, binding
and mailing. Since this is over 1500 lulometres from
our office, some care must be used to make sure
that all the files are correct. Rerunning pages on a
high resolution printer is expensive. In addition, we
cannot reload fonts to replace ones that are resident
on the printer in Toronto.

A consequence of t h s arrangement is that
we must use Times-Italic for both italic text and
mathematical symbols. T h s creates a number of
problems with intersymbol spacing. For example,
the letter "f" as text would normally extend out

of its t f m bounding box both on the left and on
the right. Normally the lower left tail will hang
under the preceding letter. Similarly, the "J" and "p"

also have tads that hang out of the bounding box.
As a consequence, in expressions llke fAp and
$\bi g l (f $ the symbols will almost bump into each
other. The situation can be greatly improved by
adjusting both the position w i t h and the width of
the bounding box. We have already seen that we can
use CHARWD to change the width of the bounding box.
Similarly there are commands MOVEUP, MOVEDOWN,

MOVERIGHT and MOVELEFT to adjust the position
withn the bounding box. Using our example from
cmrl2 (with a design size of 12 points), we could
move the letter "f" 1.2 points to the right using

(CHARACTER C f

(CHARWD R 0.299187)

(CHARHT R 0.694444)

(CHARIC R 0.069734)

(MAP

(SELECTFONT D 0)

(MOVERIGHT R 0.1)

(SETCHAR C f)

1
1

In effect, the virtual font allows us to make
microadjustments to the fonts in the printer in
Toronto. In practice t h s has been extremely useful.

Character rearrangement. Several special alpha-
bets are common in mathematical expressions. It
is normal to use some type of script or calligraphic
font, something like Fraktur or BlackLetter, and
"blackboard bold" characters. Coding is simplified
if, like the \ ca l control word in plain TEX, control
words \Bbd or \Frak can be defined to use letters
that appear in their natural ASCII position.

In our case we are given these special characters
as part of a special (proprietary) symbol font from
the University of Toronto Press. There are upper
case "blackboard bold" letters and both upper and
lower case Fraktur characters. These letters are
scattered around and do not appear in their natural
order, much less in their ASCII position.

It's easy to see how to solve t h s problem. Just
define two new virtual fonts, one for each typeface.
The construction is essentially the same as for the
all caps font.

There is an extra advantage to t h s approach
The "blackboard bold" characters are usually only
defined for uppercase letters; sometimes the letter
"k" and the number "1" are also included. Fraktur
is only used for upper and lower case letters. If one

tries to use an undefined character, say {\Bbd 21,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 2 79

Michael Doob and Craig Platt

there will be no tfm entry, but TEX wdl process the

file anyway. No character will appear in the text. On

the other hand, an entry in the vpl file like

(CHARACTER C 2

(CHARWD R 0.7)

(CHARHT R 0.8)

(MAP

(SETRULE R 0 . 8 R 0.7)

1
1

will cause a big slug to be printed; it will be evident

that somethmg is wrong.

It's possible to remap a Postscript font so that
it will match each character in the cmr family. T h s

separates TEX problems from external font problems

and can simplify some macro implementations.

Lines above, through and below. TEX provides two

ways of putting lines over characters. The \bar
control word will put a line of a particular size over

a character, while the \over1 i ne control word will

put a (generally longer) line as big as the bounding
box. Now it happens that in the PostScript Times-
Italic font there is an accent that can be used with

the \bar command. Unfortunately it is very narrow

and while it is acceptable for use over the dotless

i \imath, it looks terrible over, say, the letter "M".
Also, \over l i ne is too big because of the large

bounding box for upper case Times-Italic letters.

The solution is simple: just replace the given bar
by a bigger one! This is a special case of adding
horizontal and vertical rules to a character.

Let's go back to our example from the cmrl2

font. Suppose we want to put a line above the letter
"1" in our all caps font. We only need adjust the vpl
file:

(CHARACTER C 1

(MAP

(SELECTFONT D 0)

(PUSH)

(SETCHAR C L)

(POP)
(MOVEUP R 0.683333)

(MOVEUP R 0.1)

(SETRULE R 0.03 R 0.6118)

1
(CHARWD R 0.6118)

(CHARHT R 0.683333)

1
One might visualize this as a pen moving to different

positions. Several steps have been followed: the

character "L" was set as before, the position was

popped back to original starting point, the position

was moved up the height of the letter and then

moved up a little more, and finally a rule was
set with height R 0.03 (0.36 points) and width R

0.6118 (the width of the letter). h7ith appropriate
adjustments to the dimensions, all of the letters

which look badly with \over1 i ne and \bar can be

replaced by a better loolung substitute. It's even
possible to have a font in which every italic letter
has its own overline form.

It is also trivial to make a "strike through" font
where each letter has a horizontal line through it.

These are sometimes used in contract revisions to

indicate deleted material. A little care with positive

kerns will be needed if the strikethrough lines are
to meet for consecutive letters.

The same principle allows the construction of

an underlined font; it's even easy to include a gap

for the descenders.

Some special characters. The PostScript Times-

Italic font has a dotless i but no dotless j. Even
this problem is easy to solve using a virtual font.

Using the cmrl2 example once more, consider the
following addition to the vpl file:

(CHARACTER C j

(MAP

(SELECTFONT D 0)

(PUSH)

(SETCHAR C j)

(POP)
(SPECIAL " 1 setgray

1 . 5 7.5 1 . 5 0 360 a rc f i l l)

1
(CHARWD R 0.503005)

(CHARHT R 0.683333)

1

The (SPECIAL command works exactly like \spe-
ci a1 in the TEX file. Whatever follows is passed on

to the device driver for processing. In this case (for

dvips) it is a PostScript command that paints a little

filled white circle right over the dot of the letter.

There is, however, a problem with this method.
If an accent is put over the dotless j (and why
else would the dotless j be used?), the accent is

printed first and the letter next; if the accent is

unfortunate enough to hit the dot over the j, then

it will be erased along with the dot. One solution

is to print the dotless j first using an \ r lap , and
then essentially print the accent over a phantom

of the same character. A better solution has been

provided by Sebastian Rahtz (who also discovered

the original problem). It uses PostScript to clip the j
at the height of a dotless i:

2 80 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

(CHARACTER 0 32 (comment do t l e s s j) Bibliography
(CHARWD R 278.00)

(CHARHT R 4 58.00)

(CHARDP R 217.00)

(CHARIC R 0.00)

(MAP (SELECTFONT D 0)
(SPECIAL ps: gsave newpath 0 0

moveto (\31) t r u e charpath

f l a t tenpath pathbbox

/IHeight exch def pop pop pop

g re s to re gsave

newpath 0 0 moveto (\ 152)

t r u e charpath f l a t t enpa th

pathbbox pop exch /]Depth
exch def

/]Right exch def /]Left exch def

g re s to re gsave newpath)

(PUSH)

(MOVEDOWN R 217.00)
(SPECIAL ps:]Left]Depth rmoveto

ILef t neg]Right add 0 r l i n e t o

0]Depth neg IHeight add r l i n e t o

ILe f t neg]Right add neg 0

r l i net0
0]Depth neg IHeight add neg

r l i net0 cl osepath c l i p)

(POP)
(SPECIAL ps: (\152) show

gres tore)

1
1

Hendrickson, Amy. "Getting T~xnical: Insights into
TEX macro writing techniques." TUGboat, 1 l(3),

pages 359-370, 1990.

Hosek, Don. "Siamese TEX: Joining dvi Files at the

Hip and Other Novel Applications of VF files."

TUGboat, 12(4), pages 549-553, 1991.
Knuth, Donald E. The Tgbook (nineteenth printing).

Reading, Mass.: Addison-Wesley, 1990.

Knuth , Donald. "Virtual fonts: More Fun for Grand

Wizards." TUGboat, 11(1), pages 13-23, 1991.

Schrod, Joachim. "The Components of TEX."
available via anonymous f t p on the CTAN servers

in the documentation directory.

Walsh, Norm. "The VFtoVP Processor." (output of

WEAVE applied to VFtpVP. web)
/pub/norrn/docs/web/vftovp.tex on the server

i b i s . cs . umass. edu, 1993.

Conclusions

A number of applications of virtual fonts have been

presented. The complete list of commands that

may be used in a vpl file is contained in the WEAVE

output of VPtoVF.web. A copy of this output is

available on the internet from Walsh (1993). In fact,
almost every facility was used here; they turned out

to be just what was needed in an actual production

environment. No doubt this reflects positively on

the choice of tools by Donald Knuth and David
Fuchs.

Perhaps the most important benefit has been a
single solution that works over all macro packages.

Virtual fonts have proven themselves valuable; with

wider awareness of their uses, more applications

will undoubtedly become available.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

