A PostScript Font Installation Package Written in TgX

Alan Jeffrey

School of Cognitive and Computing Sciences
University of Sussex

Falmer

Brighton

BN1 9QH

UK

Internet: alanje@cogs.susx.ac.uk

Abstract

This paper describes a font installation package written entirely in TgX. It can
parse Adobe Font Metric and Font Encoding files, and convert them into Prop-
erty List and Virtual Property List files, for processing with pTtotf and vptovf.
Since it is written in TgX, it is very customizable, and can deal with arbitrary font

encodings, as well as mathematics fonts.

Introduction

This paper describes fontinst version 0.19, a pro-
totype font installation package for PostScript fonts
(or any other fonts with font metrics given in Adobe
Font Metric format). This package:

o Is written in TgX, for maximum portability (at
the cost of speed).

e Supports as much of the Cork encoding as
possible.

o Allows fonts to be generated in an arbitrary
encoding, with arbitrary ‘fake’ characters,
for example, the ‘ij’ character can be faked if
necessary by putting an ‘i’ next to a j'.

o Allows caps and small caps fonts with letter
spacing and kerning.

o Allows kerning to be shared between
characters, for example, ‘ij’ can be kerned
on the left as if it were an ‘I’ and on the
right as if it were a ‘j’. This is useful,
since many PostScript fonts only include
kerning information for characters without
diacriticals.

o Allows the generation of math fonts with
nextlarger, varchar, and arbitrary font
dimensions.

' Allows more than one PostScript font to
contribute to a TgX font, for example, the ff’
ligatures for a font can be taken from the
Expert encoding, if you have it.

e Automatically generates an fd file for use with
version 2 of the New Font Selection Scheme.

e Can be customized by the user to deal with
arbitrary font encodings.

The most important difference between this package
and other PostScript font installation packages (such
as Rokicki’s (1993) afm2tfm, used in Rahtz’s (1993)
psnfss) is that it is written in TgX rather than C,
and so can be more easily customized by the user to
deal with non-standard encodings and mathematical
fonts. At the moment, only the T1 (Cork) encoding
is supported, but mathematical fonts will be added
once an 8-bit font standard can be agreed upon.

Usage

There are four ways to generate fonts using the
fontinst package:

¢ The simplest method to install the ‘vanilla’
fonts (Times, Courier and Helvetica) with
the T1 (Cork) encoding is to run TgX on
fontvani.tex.

¢ If you want to install other T1 fonts, you can
edit fontvani.tex to create a TgX file which
installs your fonts.

» Alternatively, you can run TgX on the file
fontinst.tex and get an interactive prompt,
which asks you for details on the fonts you
want to install.

o If you want to install some fonts in a
non-Cork encoding, you can create new
encoding files. These consist of: a macros file,
a PostScript encoding vector, and a ‘fudge’ file
containing all the information that TgX needs
that isn’t contained in the afm file.

In each case, the fontinst package creates a num-
ber of files:

e filename.p1 contains the Property List of each
PostScript font. You should convert it to a TgX

TUGboat, Volume 14 (1993), No. 3 —Proceedings of the 1993 Annual Meeting 285

Alan Jeffrey

font metric with p1totf, and then delete the
p1 file.

e filename.vpl contains the Virtual Property
List of each TEX font. You should convert it
to a TgX font metric and a Virtual Font with
vptovf, and then delete the vp1 file.

o filename. fd contains the IXIEX Font
Definitions for each family. If you are using
version 2 of the New Font Selection Scheme,
you can use these to access the font family by
saying \fontfamily{family name}.

e filename.atx is a temporary file containing
a translation of an afm file into a syntax that
can be read by TgX, and can be deleted.

o filename.etx is a temporary file containing
a translation of a PostScript encoding vector
into a syntax that can be read by TgX, and can
be deleted.

Vanilla Fonts

To install the vanilla fonts, you just copy the follow-
ing afm files into a directory read by TgX, and run TEX
on fontvani.tex.

Times-Roman Times-Italic

Times-Bold Times-BoldItalic
Courier Courier-0blique
Courier-Bold Courier-BoldOblique
Helvetica Helvetica-0Oblique

Helvetica-Bold Helvetica-BoldOblique

This installs the Times, Courier and Helvetica famil-
ies, in bold and normal weights, with roman, italic,
and small caps variants. If you would like to install
other PostScript fonts, the simplest thing to do is
edit fontvani.tex. For example, to generate the
Palatino fonts, you can say:

\makevanilla{ppt}
{Palatino}{Palatino-Italic}
{Palatino-0Oblique}{Palatino-Bold}
{Palatino-BoldItalic}
{Patatino-BoldOblique}

Prompts

When you run TgX on fontinst.tex, you will be
prompted for information about the fonts you are
going to install. For each font family, you can specify
a number of TgX fonts, which can in turn be built
from a number of PostScript fonts. For example, the
Times Roman (ptm) font family consists of the fonts:

e ptmrq roman, medium weight.
e ptmriq italic, medium weight.
e ptmrcq caps and small caps, medium weight.

e ptmbqg roman, bold weight.
e ptmbiq italic, bold weight.
« ptmbcq caps and small caps, bold weight.

Each of these fonts may be built from more than
one PostScript font, for example, ptmrg might use
Times-Roman for most characters, and the Expert
set for the ffi and ffl ligatures.

When you run TgX on fontinst.tex you are
prompted for information on the font family you
would like to install. For each family, you are promp-
ted for:

« \FamilyName, for example, Adobe Times
Roman is ptm.

e \FamilyEncoding, for example, T1.

Each family can include a number of fonts, and
you will be prompted for information about each
of them:

» \FontName, for example, Adobe Times Roman
is ptmrg.

« \FontEncoding, for example, Tlulc (for T1
upper and lower case) or Tlcsc (for T1 caps
and small caps).

«» \FontWeight, for example, m (medium) or b
(bold).

« \FontShape, for example, n (normal), s1
(oblique), it (italic) or sc (caps and small
caps).

Each TgX font can be built from a number of Post-
Script fonts. For each PostScript font you will be
asked for:

«» \AFMName, for example, Adobe Times is
Times-Roman.

w \AFMShortName, for example, Adobe Times
Roman is ptmroO.

«» \AFMEncoding, for example, adobe (for Adobe
Standard Encoding) or expert (for Adobe
Expert Encoding).

Using fontinst in Other Macro Packages

If you run TgX on fontinst. tex, you will be promp-
ted interactively about the fonts you want to in-
stall. Sometimes this is not what you want, for ex-
ample, fontvani.tex uses the macros defined in
fontinst.tex without running the prompt. This is
achieved by having fontinst.tex check to see if a
macro \noprompt is defined. So if you want to use
fontinst.tex yourself, you should say:
\def\noprompt{!}

\input fontinst

The most useful commands given by fontinst. tex
are:

286 TUGboat, Volume 14 (1993), No. 3 — Proceedings of the 1993 Annual Meeting

o \makefamily{commands} This generates
-a font family named \Fami1yName with
encoding \FamilyEncoding using the
\maketexfont commands.

» \maketexfont{commands} This generates
a TgX font named \FontName with encoding
\FontEncoding, weight \FontWeight and
shape \FontShape using the \makerawfont
commands.

o \makerawfont This generates a PostScript
font named \AFMName with short name
\AFMShortName and encoding \AFMEncod1ing.

For example, to generate a family consisting of just
Adobe Times Roman you could say:

\def\FamilyName{ptm}
\def\FamilyEncoding{T1}
\makefamily{
\def\FontName{ptmr}
\def\FontEncoding{T1lulc}
\def\FontWeight{m}
\def\FontShape{n}
\maketexfont{
\def\AFMName{Times-Roman}
\def\AFMShortName{rptmr}
\def\AFMEncoding{adobe}

}
Installing a New Encoding

The main advantage of using a font installation pack-
age written in TgX is that it is very customizable. To
install a font in a new encoding, you just have to
generate a new enc file, a new mac file and a new
fud file. The enc file is just a PostScript encoding
vector, as described in the PostScript Language Ref-
erence Manual. The mac file just defines any macros
you may wish to use in the fud file. The most im-
portant file is the fud file, that contains all the font
information for a TgX font that is not present in the
afm file. This includes:

e The coding scheme name.

e The boundary character.

¢ The font dimensions.

e The ligatures.

e The varchar and nextlarger entries.

¢ How to kern glyphs such as ‘ffi’ which aren’t
given kerning information in the afm file.

e How to fake glyphs such as ‘ffi’ which aren’t
defined in the PostScript font.

When an afm file is read, the following parameters
are set:

TUGboat, Volume 14 (1993), No. 3 — Proceedings of the 1993 Annual Meeting

A PostScript Font Installation Package Written in TgX

e \afmunits is the length of one afm unit.
There are usually 1000 afm units to the
em-quad.

e \itslant is the italic slant, measured in
points. This is normally assigned to font
dimension 1.

o \xheight is the x-height of the font,
measured in afm units. This is usually
assigned to font dimension 5.

e \capheight is the capital height of the font,
measured in afm units.

e \ascender is the ascender height of the font,
measured in afm units.

o \underlinethickness is the rule width of
the font, measured in afm units.

e \iffixedpitch is true if the font is
monoweight.

e \getchar{glyph} globally sets the following
parameters:

- \chardp, \charht, \charic and
\charwd are the dimensions of the
character and its italic correction. These
are given in points.

- \map is a token list consisting of the MAP
instructions used to generate the glyph.
For example, to set character 123 from
font 0, followed by character 45 from
font 2, \map would be set to:

(SETCHAR D 123)
(SELECTFONT D 2)
(SETCHAR D 45)

- \startfont is the font number the
character expects to start in, and
\stopfont is the font number the
character expects to stop in. For
example, in the above case, \startfont
would be 0 and \stopfont would be 2.

The commands that can be used to change the TgX
font generated by fontinst.tex are:

e \codingscheme{scheme name} sets the
coding scheme of the font, for example:
\codingscheme{EXTENDED TEX FONT

ENCODING - LATIN}

e \boundarychar{glyph} sets the boundary
character of the font, for example:

\boundarychar{percent}

o \fontdimens{font dimension commands}
sets the font dimensions of the font. Within
the font dimension commands, you can say
\parameter{number}{dimen} to set each
parameter. For example:

287

Alan Jeffrey

288

\fontdimens{
\getchar{space}
\parameter{l}{\itslant}
\parameter{2}{\charwd}
\parameter{3}{.5\charwd}
\parameter{4}{.33333\charwd}
\parameter{5}{\xheight\afmunits}
\parameter{6}{1000\afmunits}
\parameter{7}{.33333\charwd}

}

\Tigature{glyph}{lig commands}
sets the ligatures for a glyph. Within
the lig commands, you can say
\Tig{glyph}{glyph}{type}. The ligature
type is given in p1 syntax, that is one of:
LIG /LIG /LIG> LIG/
LIG/> /LIG/ /LIG/> /LIG/>>

For example, the ligatures for ‘f" could be
given:

\ligature{f}{
\iffixedpitch\else
\1ig{i}{fi}{LIC}
\Tig{fH{ffI{LIC}
\Tig{1}{f1}{LIC}
\fi
}

\Tkern{glyph}{lkern commands} sets

how characters should kern on the left.
Within the lkern commands, you can use
\scale{number}{commands} to set the
scale, and \do{glyph} to set a kern. For
example, to say that ‘I’ and ‘ij’ should kern on
the left like i’ you can say:

\Tkern{i}{
\scale{1}{\do{i}\do{ij}}
1

The \scale command is provided for fonts
such as caps and small caps, where you may
wish to scale the kerning of a character. For
example, to say that ‘T’ should kern 85% as
much as ‘T’ you could say:

\lkern{T}{
\scale{1}{\do{T}}
\scale{0.85}{\do{Tsmall}}

}

This command is useful for glyphs like ‘A’,
which most PostScript fonts do not include
kerning information for.

\rkern is just like \Tkern but for kerns on
the right. For example, to say that ‘ij’ kerns on
the right like ‘j’ you can say:

\rkern{j}{
\scale{1}{\do{j}\do{ij}}
}

\Trkern combines an \Tkern and a \rkern.
For example, to say that ‘%’ should kern like a
word boundary, you can say:

\1rkern{space}{
\scale{1}{\do{percent}}
}

\nextlarger{glyph}{glyph} specifies the
next element in a NEXTLARGER list. For
example, to say that 3 is followed by Z you
can say:

\nextlarger{textsum}{displaysum}

\varchar{main}{top}{mid}{rep} {bot} gives
a VARCHAR entry for a glyph. If an entry is
empty, it is omitted. For example, to say how
large left brackets are built, you can say:

\varchar{lbracktop}{ibracktop}
{1brackmid}{}{Tbrackbot}

\defchar{glyph}{commands} gives the
default definition of a glyph. If the glyph is
not defined in the PostScript font, then this
definition is used instead. The commands
should define the parameters given above for
\getchar. For example, the ‘compound word
mark’ character is defined:

\defchar{compwordmark}{
\global\charht=0pt
\global\charwd=0pt
\global\chardp=0pt
\global\charic=0pt
\global\map{}

}

In giving the default character definitions,

it is useful to define macros in the mac file.
For example, T1.mac defines a command
\doublechar which joins characters together.
For example, T1lulc. fud contains:

\defchar{fi}{\doublechar{f}{i}{0}}
\defchar{ffi}{\doublechar{f}{fi}{0}}

This says that ‘fi’ can be faked by putting an
‘f’ next to an ‘i, and that an ‘ffi’ can be faked
by putting an ‘f’ next to an ‘fi". Since fakes
can be nested, this means that some fonts will
generate ‘ffi’ out of an ‘f’, an ‘f’ and an ‘.
\missingchar is the character used if there

is no sensible fake, for example, for ‘). The
default is a half-em black box ‘w’.

TUGboat, Volume 14 (1993), No. 3 —Proceedings of the 1993 Annual Meeting

An Overview of fontinst.tex

The most important file in the fontinst package is
fontinst. tex, which provides TgX macros for pars-
ing afm and enc files, for faking characters, and for
writing p1 and vp1 files. The most important com-
mands are:

e \makeatx{filename} reads filename.afm and
writes the same information to filename. atx,
in a form which can be parsed more easily by
TgX. For example, a file which begins:

StartFontMetrics 2.0
FontName Times-Roman
TtalicAngle 0.0
IsFixedPitch false

will be converted to a file which begins:

\fontname{Times-Roman}
\itslant=0pt
\fixedpitchfalse

This macro is an interesting example of
writing a parser in TgX, and contains a lot
of hacking with \catcodes. One annoying
feature is that afm files give italic angles in
degrees, where p1 files use gradients. To
convert from one to the other, we use Phil
Taylor’s (1989) excellent trigonometry macros
o \makeetx{filename} reads filename.enc and
writes the same information to filename.etx,
in a form which can be parsed more easily
by TgX. For example, an encoding file which
begins:
/TlEncoding [/grave /acute ...
will be converted to a file which begins:

\characternumber{grave}{0}
\characternumber{acute}{1}
This is quite a simple parser.

e \readafm{afm}{enc}{pl} reads afm.atx
and enc. etx (making them if necessary), and
stores the results in macros, which are used
by \makepl and \makevpT.

o \makep1{encoding}{commands} reads in the
afm files given by the commands and writes a
p1 file. For example, the ‘raw’ Times-Roman
font can be generated with:

\makep1{adobe}{
\readafm{Times-Roman}{adobe}{ptmr0}
}

e \makevpT{encoding}{commands} reads
in the afm files given by the commands
and writes a vp]1 file. It also reads the file
encoding . fud to find the font fudges. For

A PostScript Font Installation Package Written in TgX

example, the Times-Roman font can be
generated with:

\makep1{T1lulc}{
\readafm{Times-Roman}{adobe}{ptmr0}
\readafm{Times-Expert}{expert}{ptmrx}

}

The code for these macros is fairly gory, especially
the parsers, since TgX was never really intended for
these tasks!

Examples

Table 1 shows the Times Roman font in T1 encoding,
as produced by the fontinst package. Note that
there are a number of missing characters:
0J0dgDPPo)D
Four of these characters (P, P, 9 and b) are available
in the Times font, but are not in the default Adobe
encoding. These characters can be used if you have
a dvi to PostScript converter such as dvips which
can re-encode fonts. Unfortunately, re-encoding the
font to use the ISO Latin-1 encoding results in the
loss of the characters:

fifl<>“” LIE®-—

This means that any encoding which we re-encode
the raw PostScript fonts with is going to have to be
non-standard. Sigh...

Figure 1 shows what can be achieved with TgX
and PostScript.

Bugs

The fontinst package is currently available for -
testing, and has a number of ‘features’ which should
be dealt with at some point...

e The documentation is very scrappy, and the
code is badly commented.

o It takes seven minutes to generate a font on a
Macintosh Classic.

e The interactive prompt is very unfriendly.

e The error handling is non-existent (and some
of the errors are rather odd, for example, a
missing enc file will result in the complaint
‘File blah.afm not found.’

e The accent positioning in italic fonts is pretty
poor.

¢ Some characters, such as ‘Lcaron’ (L)) are
pretty poor in monoweight fonts.

e Producing oblique fonts by optical effects is
not supported. (But I'm not sure this isn’t a
good thing!)

e Composite character instructions in the afm
file are ignored.

TUGboat, Volume 14 (1993), No. 3 — Proceedings of the 1993 Annual Meeting 289

Alan Jeffrey

¢ The support for math and Expert fonts is
untested, and is awaiting an agreement on
suitable encodings for 8-bit math and Expert
fonts.

e I've made some assumptions about the format
of afm files, for example, that italic angles lie
between 0 and 90°.

o The vp1 files generated can have arbitrarily
long lines in them, caused by long \map
instructions. This may cause a problem on
some systems.

This software is available by anonymous ftp from
ftp.cogs.susx.ac.uk in pub/tex/fontinst. All
comments are welcome!

Afterword

After presenting this paper at the Aston meeting, I
had a number of requests from potential users of
the fontinst package. The ability to produce ar-
bitrary encodings, and to tweak the resulting virtual
font seemed quite popular! However, there were a
number of reservations:

e The version of the fontinst package described
here is very user-unfriendly, and is more suit-
able for TgX hackers than end-users.

e There is no distinction between the font-
installers interface and the internal details of
fontinst, which makes upward compatibility
with future releases difficult.

o Tweaking the virtual fonts is more difficult than
it should be, and involves developing a com-
plete new fud file for that font.

These points will be addressed by fontinst version
1.x, which will include:

e A more user-friendly interface for non-hackers.
e A fully-defined font-installer's user interface.

e A simple way of over-riding the default virtual
fonts.

Version 1.x will not be upwardly compatible with ver-
sion 0.19. However, future releases will be upwardly
compatible with version 1.x. When version 1.x has
been fully tested, the font-installer’s interface will
be submitted to TUGboat.

The fontinst package described here is cur-
rently available for use by experienced TgX hackers.
Version 1.x will soon be available for use by the rest
of the TgX world.

Bibliography

Adobe Systems. PostScript Language Reference
Manual, 2nd edition. Addison-Wesley, 1990.

Rahtz, Sebastian. Notes on setup of the New Font
Selection Scheme 2 to use PostScript fonts, dis-
tributed with the nfss2 package, 1993.

Rokicki, Tomas. Dvips: A TgX Driver, distributed with
dvips, 1993. Available for anonymous ftp from
ftp.tex.ac.uk.

Taylor, Phil. “Trigonometry. TgX” in TgXhax, Septem-
ber 1989. Included in the fontinst package.

290 TUGboat, Volume 14 (1993), No. 3 —Proceedings of the 1993 Annual Meeting

"0x
"1x
"2x
"3x
"4x
"Bx
"8x
“Tx

"8x

"9x

" Ax

an

"Cx

“Dx

"Ex

"Fx

ffi

o

SS

tfi

)

0O

(Y=

Cpnt | 2

%

Ny

| f

»

1J

=

ij

o

<«©

A PostScript Font Installation Package Written in TgX

«

ff

HON R

=

o

e

<3

O

N |

>N

«

4

@

=

N

17

(N0 Y

hst

gl

g2

P K

A

]

‘00z
‘01z
‘02z
‘03z
‘04z
‘05z
‘06z
07
‘10z
‘11z
‘12z
13z
‘14z
‘15z
‘16z
‘17z
20z
21z
22z
23z
251
26z
27z
‘30z
81z

Test of ptmrg at 10pt on June 10, 1993 at 1533

‘92z
‘33z
34z
‘85z
‘36z
‘37z

291

Table 1: The Times Roman font generated by fontinst.

TUGboat, Volume 14 (1993), No. 3 —Proceedings of the 1993 Annual Meeting

Alan Jeffrey

292

In the first broadsheet section
MacKen:

In the Guardian 2 tabloid
Burchill of

® Home Peter Imbert: the middle ® Arts De Niro talks tough

of the Sun class and dual morality the Mail o Obituary Audrey Hepburn

‘| will never Why MacGregor's rail bill ‘All | ever ® Europe Russians are losing

do anything is going to hit the buffers wanted from the battle of Staiingrad

that would ® Sport India go all-square life was e Environment The Oxleas Nine
simply raise ® Analysis Party labouring on love and fight for more than a wood

the circulation’ ® Commentary English tests money’ ® Notes & Queries, radio and TV

40p

Friday
January 22
1993

Published in London

and Manchester

1heGuardian

Businesses press for base rate cut ©

Pound plunges with fall in production

Jobless total on brink of 3m

Larry Eillott, Mark Miiner
and Patrick Wintour

HEN THE peaple? |
a prog? Why the pro-
grmm. Wha has other

people will tetl you 1o move to
owner of projects and program-
mers will be taxed onv cniety.

Used 10 do the same indepeo-
ple pay forhid programmers o
ke aliviness that moany sup-
por. But thosee if you ever the
world in gene, and nt

T have with Unix would an-
swer has companies will tax he
program which 1 am wroney. |
view this that the gNU remain
freed (0 be able to make this son
of demand 1ooks. or rejectually
ree without servicult.

Peopleind the ways that pro-
grammens | alk that peaple will
programersan mus! profibited,
though commonly they depair a
suppor cxample.

And cent for trib a computer
hun, this of moze min per spend:
money materially and spir sup-
poorly inessmenefitting mutual,
the desire that with the percent
of the work for the fixed by a
Unix percent of the with athers.

{ rule requences are delp.

Schoolse. The essential con-
lation. We hope compared with
he kind you mechanisms onto
the ne bettetly only on a whole
would be funded wih and did
not they now.

Figure 1: Sample output of a TgX document.

Major under fire
on pit closures

Keith Harper
Labour Editor

APPEN INTO. I 2 prog?
H Why the program. Who

has other peaple will tell
you 10 move to owner of projects
and programmers will be @xed
onv eniety.

Used 10 do the same indepeo-
ple pay forbid programmers to
makea liviness (hat mo any sup-
port, Bul thosee if you ever the
world in genel, and int

1 have with Unix would an-
swer has companies will tax he
program which [am wroney. |
view this thal the gNU remain
freed to be able 1o mzke this sort
of demand ooks. or rejectually
ree wilhout servicuit,

Peopie ind the ways that pro-
grammers | talk that people will
programerson must prohibited.
though commonty they depaira
Suppor example.

And cent for trib a compuler
hun, this of more min per spend
money maleriaily and spir sup-
poorly inessmenefitling mutual.
the desire thal with the percent
of the work for the fixed by a
Unix percent of the with others.

1 rule requencesare delp.

Schooise. The essential con-
iation. We hope compared with
the kind you mechanisms onto
the ne beltelly only on a whole
would be funded with and did
nol they now,

This from. 13 prog? Why the
program. Who has other people
wil tel} you to move to owner of
projects and programmers will
be laxed onv cniety.

Used 1o do the same indepeo-
ple pay forbid programmers to
make liviness thal mo any sup-
port. But thosee if you ever the
world in genet. and Int.

1 have with Unix would an-
swer has companies will tax he
program which | am wroney.
view this that the gNU remain
freed to be able 10 make this sort
of demand tooks. or rejectually
fee withoul servicult,

People ind the ways that pro-
grammers | alk that peopie wil
programerson must prohibited.
\hough commonly they depara
suppor example.

And cent for trib a computer
hun, this of more min per spend
money materially and spir sup-
poorly inessmenefiting mutual.
the desire that with the percent
of the work for the fixed by 3
Unix percent of the with others.

{rule requences are delp.

Schoalse. The essential con-
1alion, We hope compared with
the kind you mechanisms onto
the ne bettelly oniy on & whole
would be funded with and did
nol they now.

TUGboat, Volume 14 (1993), No. 3 — Proceedings of the 1993 Annual Meeting

