
NTS: The Future of TEX?

Philip Taylor
The Computer Centre, Royal Holloway and Bedford New College,

University of London, Egham W, Egham, Surrey, United Kingdom.

Internet: P.Taylor@Vax.Rhbnc.Ac.Uk

Abstract

Opinions on "the future of T@" cover the entire spectrum, ranging from the

defmtive statement by Knuth- "My work on developing TEX . . . has come to

an end" - to proposals that TEX be completely re-written. In this paper, an

intermediate position is taken, based on the fundamental premise that any

successor to TEX must be 100% backward-compatible, both in terms of its

behaviour when presented with a non-extended TEX document, and in terms of its

implementation through the medmm of WEB. A mechanism is proposed whereby

extensions to TEX may be selectively enabled, and a further mechanism proposed

whch would enable conforming documents to determine whch extensions, if any,

are supported by a particular implementation. Finally, a proposal is made for an

initial extension to TEX whch would have implementation-specific dependencies,

and mechanisms are discussed whereby access to such extensions could take

place in a controlled manner through the use of implementation-independent

and implementation-specific components of a macro library.

Introduction

Discussions on "The Future of TEX", both published

and via the medium of e-mail/news-basedlists, shew

an enormous dwersity of opinion: some would ar-

gue that Knuth's defmtive statement that (para-

phrased) "TEX is complete" leaves n o t h g further

to be said, whlst others have advocated that TEX

be entirely re-written, either as a procedural lan-

guage or in a list-based language; in an earlier paper,

I have myself suggested that one possible future de-

rivative of TEX might be entirely window-based, al-

lowing both input and output in textual and graph-

ical formats. But events have occurred within the

last eighteen months whch have considerably mflu-

enced my point of view, and in t h s paper I present

a far more modest proposal: that an extended TEX-

based system (hereinafter referred to as extended-

T@, or e-Tgfor short) be developed in a strictly con-

trolled way, retaining not only the present look-and-

feel of TEX but guaranteeing 100% backward com-

patibility with whatever truncation of the decimal

expansion of -rr represents the most recent canon-

ical version of TEX.

The reason for this change of heart dates from

the 1992 AGM of DANTE (the German-spealung TEX

Users' Group), to whch I had the honour to be

invited. There, Joachm Larnrnarsch, President of

DANTE, announced the formation of a worhng group

to investigate future developments based on TEX:

the group was to be called the NTS group (for 'New

Typesetting System'), to avoid any suggestion that

it was TEX itself whose future was being considered,

such activity being the sole remit of TEXS author and

creator, Professor Donald E. Knuth. The group was

to be chaired by Dr Rainer Schopf, and included rep-

resentatives of both DANTE and UK-TUG; Joachm em-

phasised that the group, although created under the

zgis of DANTE, was to be a truly international body.

An electronic mailing list, NTS-L, was announced,

and participation was invited from any- and every-

one throughout the world who wished to contribute

to the discussion.

NTS-L proved a mixed success: it certainly at-

tracted considerable interest, and in the early days

discussion was almost nonstop; but it proved ex-

traordinarily difficult to focus the dwussion, and

(like so many e-mail lists) the discussions frequently

went off at a tangent.. . But then, after the initial

burst of enthusiasm, bscussions started to tail off;

and as the time of the 1993 DANTE AGM came near,

the only questions being asked on the list were "Is

NTS dead?".

At about the same time, I was approached by

Rainer, acting on behalf of Joachun who was indw

posed, to ask if I would be interested in chairing

the NTS group; Rainer felt (quite reasonably) that he

had more than enough on his plate with his central

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Philip Taylor

involvement in the I4T~x-3 project (not to mention

h s real, paid, work!), and that he simply hadn't the

time available to make NTS the success which it de-

served to be. Needless to say, I viewed t h s offer

with w e d feelings: it was a very great honour to

be asked to chair such a group, but at the same time

the group had already been in existence for nearly

a year, and had apparently acheved nothing (in fact,

it had never even met); would I be able not only to

breath life back into the by now moribund project,

but also go further and actually oversee the produc-

tion of a realisation of NTS?

The more I thought about the problems, the

more I became convinced that the key to success

lay through simplicity: if NTS was ever to be more

than a pipe-dream, a wish-fulfillment fantasy for

frustrated TEXxies, then it had to be achevable with

finite resources and in finite time; and if the res-

ults were to be acceptable to the vast number of

TEX users throughout the world (a number which

has been estimated to be at least 100000), then

it had to be completely backwards-compatible with

TEX. Once I was convinced that I knew what had

to be acbeved, I also began to believe that it might

be possible to accomplish it. And so, with some

trepidation, I indicated to Joachun and Rainer that

I would be honoured to accept their trust and con-

fidence; I would agree to take over the NTS pro-

ject.

But the road to damnation is paved with good

intentions; and no sooner had I returned from the

1993 DANTE AGM, having once again had the hon-

our to be invited to participate, than the spectre

of TUG'93 began to loom large on the horizon;

and the more work I put into its organisation, the

more work it seemed to take. I was not alone-

I Mrlllingly acknowledge the incredible amount of

hard work put in by the entire TUG'93 commit-

tee, and i n particular by Sebastian Rahtz -but the

organisation of a multi-national conference, sched-

uled to take place at a University some 130 miles

from one's own, is a mammoth undertakmg, and

one that leaves little time for anythng, apart from

one's normal, regular, duties. And, in particular,

it left almost no time for the NTS project, to my

considerable mortification and regret. But, by the

time t h s paper appears in print, TUG'93 will be

a reality, and, I hope, life will have sufficiently re-

turned to normal that I will be able to devote the

amount of time to NTS that the project so richly de-

serves.

But enough of the background: what matters

today, and to t h s conference, is not how I as an

inhvidual partition my time; but rather what spe-

cific proposals I have for "The Future of TEY. I pro-

pose to discuss these under three main headings:

compatibility, extensions, and specifics; under com-

patibility will be &scussed compatibility both at the

source (WEB) level and at the user (TEX) level; un-

der extensions will be discussed a possible mechan-

ism whereby extensions can be selectively enabled

under user control, and a mechanism whereby an

e-Tg conformant program can interrogate its envir-

onment in order to determine which extensions, if

any, have been enabled; and under specifics will be

discussed one possible extension to TEX whch has

been widely dwussed and whch will, in my opin-

ion, provide the key to many other apparent exten-

sions whilst in practice requiring only the minimum

of additional e-Tgprimitives. I must emphasise at

t b s point that what follows are purely personal sug-

gestions: they do not purport to reflect NTS policy

or phdosophy, and must be subjected to the same

rigorous evaluation as any other formal proposal(s)

for the NTS project.

Compatibility

What is compatibility? Ask a TEX user, and he or

she will reply somethng like "unvarying behaviour:

given a TEX document whch I wrote in 1986, a com-

patible system will be one that continues to process

that document, without change, and to produce res-

ults identical to those which I got in 1986". Ask

a TEX implementor, on the other hand, and he or she

will reply "transparency at the WEAVE and TANGLE

levels; if e -Tg is truly compatible with TEX, then

I should be able to use exactly the same changefde as

I use with canonical TEX, and get a worhng, reliable,

e -Tg as a result". Two overlapping sets of people;

two totally different answers. And yet, if e-T# is

to be generally acceptable, and even more import-

ant, generally accepted, we have to satisfy both sets:

the users, because without them the project Mrlll be

still-born, and the implementors, because without

them, parturition won't even occur! How, then, can

we satisfy both sets? The answer, I believe, lies in

the question itself: e-Tgmust be TEX; it must use,

as its primary source, the latest version of TEX. WEB,

and it must make changes to TEX.WEB in a strictly

controlled way, through the standard medmm of

a changefile; that is, e-Tgmust be representable as

a series of finite changes to standard TEX. WEB.

But if e -Tg is to be a changefde, how is the

implementor to apply h s or her own changefile

as well? Fortunately there are several ways of ac-

complishng t h s : the KNIT system, developed by

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

NTS: The Future of TEX?

Wolfgang Appelt and Karin Horn; the TIE system,

developed by Dr Klaus Guntermann and Wolfgang

Riilling; and the PATCH-WEB system, developed by

Peter Breitenlohner. Each of these will, in varying

ways, allow two or more change files to be applied to

a single WEB source; thus the (system independent)

changes whch convert TeX . Web into e-TeX . Web

can be implemented in one changefile, and the (sys-

tem dependent) changes whch implement e-Tpfor

a particular combination of hardware and operating

system can be kept quite separate.

But t h s does not quite accomplish our ori-

ginal aim: to allow the implementor to use ex-

actly the same change file for e-T@ as for TEX;

in order to accomplish this, the changes effected

by e-TeX.ch must be orthogonal to (i.e., inde-

pendent of) the changes effected by <imp1 ernent-

at ion>.ch; without a knowledge of the exact

changes effected by each implementor's version

of <i mpl ementati on>. ch, such orthogonality can-

not be guaranteed. None the less, provided that

the changes effected by e-TeX.ch affect only the

system-independent parts of TeX.Web, such ortho-
gonality is probable, if not guaranteed; unfortu-

nately, as we shall see, some proposals for e-T@are

guaranteed to conflict with t h s requirement.

So much for compatibility as far as implement-

ors are concerned: what about compatibility from

the point of view of the user? Here, at least, we are

on safer ground: the users' requirements for com-

patibility are (let us remind ourselves) "unvarying

behaviour: given a TEX document whch was writ-

ten in (say) 1986, a compatible system will be one

that continues to process that document, without

change, and to produce results identical to those

whch were acheved in (say) 1986". Thus (and here

I intentionally stress an entire sentence) the default

behaviour of e-T@ must be identical to that of T@,

given a T@-compatible document to process. What

does this imply, for e-T@ I suggest two thmgs:

Every primitive defined by T S shall have exactly

the same syntax and semantics in e-T@, and

There shall be no new primitives (because ex-

isting TEX programs may depend on \ i f x \foo

\undefined yielding - t rue- for all currently

undefined TEX primitives).

(gurus will appreciate that t h s is a considerable

simplification of the truth, but I hope they will

allow me t h s in the interests of clarity; clearly

other constraints must obtain as well, for example

identical semantics for category codes, and no ad-

ditions/deletions to the list of context-dependent

keywords).

Extensions

But given t h s as a definition of e-Tp, have we not

backed ourselves into a black hole, from which

there is no escape? How, if there are no new prim-

itives, and all existing primitives are to retain their

identical syntax/semantics, are we to access any

of the e-T@-specific extensions? I propose that we

implement one, and only one, change between the
behaviour of TEX and the behaviour of e-T@ if, on

the command-line which invokes e-TeX, two consec-

utive ampersands occur, then the string following the

second ampersand shall be interpreted as an exten-

sion (file) specification, in a manner directly analog-

ous to TEX'S treatment of a single ampersand at such

a point, which is defined to introduce a format (file)

specification. Thus there is one infinitesimally small

hfference between the behaviour of e -Tg and TEX:

if TEX were to be invoked as "TeX &&foo myfi 1 e", it

would attempt to load a format called &foo; e-Tg, on

the other hand, would attempt to load an extensions-

file called foo-I suggest that the chances of t h s

causing a genuine conflict are vanishngly small.

OK, so we have a possible way out of the black

hole: we have a means of specifying an extenslons-

file, but what should go therein, and with what

semantics? T h s is, I suggest, a valid area for fur-

ther research, but I would propose the following as

a possible starting point:

if &&<anythi ng> appears on the command line,

then e-T@shall enable one additional primitive,

\enable;

extensions-file shall commence with a record of

the form \enable (opti ons-1 i st};

options-list shall consist of a series of (?comma-

delimited?) primitives and brace-delimited

token-lists;

if a given primitive occurs in the options-list to

\enable, and if a meaning to that primitive is

given by (or modified by) e-Tg, then henceforth

that primitive shall have its e-T@-defined mean-

ing; (and if no such meaning exists, a non-fatal

error shall occur);

if a given token-list occurs in the options-list to

\enable, and if that token-list has an intrinsic

meaning to e-T@, then the effect of that mean-

ing shall be carried out; (by whch we allow

modifications to the semantics of e-Tgwithout

requiring the creation of new, or the modifica-

tion of existing, primitives; thus (re-consi der

pa r t i a1 paragraphs}, for example, might

change e-T#s behaviour at top-of-page w.r.t.

the partial paragraph whch remains after

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Philip Taylor

page-brealung; no new primitive is involved,

nor are the semantics of any existing primit-

ive changed). If the token-list has no intrinsic

meaning to e-Tg, a non-fatal error shall occur.

Thus, by modifying only that area of the initial-

isation code which inspects the command line for

a format-specifier, we allow for arbitrary extensions

to the syntax and semantics of e-Tg. What we next

need is a mechanism whereby e-Tg-conformant (as

opposed to TEX-conformant) programs can determ-

ine which extensions, if any, have been enabled;

thus a document could ascertain whether it is run-

ning in a TEX environment or an e -Tg environment,

and modify its behaviour to take advantage of facil-

ities which are available in the latter but not in the

former.

In order for a program to be able to carry out

this check in a manner which will be both TEX and

e-T@ compatible, it must use TEX-compatible meth-

ods to check whether further e-Tg-compatible com-

patibility checks are supported: if we assume that

the proposals above are implemented, then there

is one reliable way of determining whether we are

running (1) under TEX, or under e-Tgwith no exten-

sions enabled, or (2) under e-Tgwith (some, as yet

undetermined) extensions enabled:

\i f x \enable \undef ined

. . . pure TeX, o r e-TeX w i t h

no extens ions

\ e l se

. . . extended e-TeX

\f i

T h s relies, as does much existing TEX code, on

\undef ined being undefined; perhaps one exten-

sion implemented by e-Tgmight be to render \un-

de f ined undefinable, just to ensure the integrity of

such checks!

Once we are sure we are running under e-Tg

with extensions enabled, we are in a position to

make further environmental enquiries; but to do so

will require an a priori knowledge of whether the

environmental enquiries extensions have been en-

abled: a chcken-and-egg situation! Thus we need to

proceed in a slightly convoluted manner, in order to

ensure that we don't trip over our own bootstraps.

Let us posit that, in order to enable environmental

enquiries, we use something like the following in our

extensions-file:

\enable { {env i ronmental -enqui r i e s } }

Then, in our e-Tg-compatible source (having en-

sured that we are running under e-T# with ex-

tensions enabled), we need to be able to write

something like:

\i fenabled { {env i ronmental -enqui r i es}}

But we can't do this without first checlung that

\i fenab l ed is defined.. . Clearly t h s is becoming

very messy (rather like one's first attempt at writ-

ing handshaking code for networking; how many

times do you have to exchange are-you-therelyes-

i'm-here; are-you-theres before it's safe to proceed

with real data?). Fortunately, in this case at least,

the algorithm converges after one further iteration:

our TEX-compatible/e-Tg-compatible/totally-safe-
environment-checking code becomes:

\i f x \enabl e \undef i ned

. . . pure TeX, o r e-TeX w i t h

no extens ions

\ e l se
\i f x \i fenab l ed \undef ined

e-TeX w i t hou t t h e b e n e f i t

o f env i ronmental enqui r i es

\ e l se

. . . e-TeX w i t h env i ronmental

enqui r y suppor t

\ f i

\f i

(A similar approach could be used if environmental

enquiries were implemented through the medium

of \enabl e {\i fenab l ed} rather than \enable

{ {env i ronmental -enqui r i e s } } ; it is a philosoph-

ical question as to which is the 'cleaner' approach).

One interesting issue, raised by the anonymous

reviewer, remains to be resolved: if an e-Tguser de-

cides to (a) enable some speclfic extension(s), whilst

leaving others disabled, and (b) to dump a format

file, what happens if that format file is loaded with

a different set of extensions enabled? I have to con-

fess that the answer to that question is unclear to

me, and that an initial investigation suggests that

extensions should only be permitted during the cre-

ation of the format file, not during its use; but that

could have implications in the \ d i sab le function-

ality elsewhere referred to, and for the moment at

least I prefer to leave this as a valid area for further

research. Perhaps the whole extension/format area

requires unification, and the enabling/disabling of

extensions should simply become a part of the r6le

of Ini-e-Tg.

Specifics

So far, I have concentrated on a generic ap-

proach to the question of e-Tg, and quite intention-

ally proposed only an absolute minimum of &ffer-

ences between TEX and e-T& but once the frame-

work is in place, we are in a position to consider

what features are genuinely laclung in TEX. This is

180 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

NTS: The Future of TEX?

a very contentious area, and one in whch it neces-

sary to tread warily, very contentious area, and one

in whch it is necessary to tread warily, particularly

in view of Professor Knuth's willingness to regard

TEX as complete: after all, if the creator and author

of TEX sees no need for further enhancements, who

are we, as mere users, to question h s decision? For-

tunately there is both precedent and guidelines; at

the end of TeX. Bug, one finds the following text:

"My last will and testament for TEX is that no fur-

ther changes be made under any circumstances.

Improved systems should not be called simply

'TEX'; that name, unqualified, should refer only

to the program for which I have taken personal

responsibility. -Don Knuth

Possibly nice ideas that will not be implemen-

ted.

classes of marks analogous to classes of

insertions;

\showcontext to show the current loca-

tion without stopping for error;

\show commands to be less like errors;

\everyeof to insert tokens before an \ i n -

p u t file ends (strange example: \everyeof

(\noexpand] will allow things like \xdef

\ a { \ i n p u t f oo l !)

generalize \l e f t s k i p and \ r i g h t s k i p to

token lists (problems with displayed math

then);

generalize \wi dowl i ne and \ c l ub l i ne to

go further into a paragraph;

\l astbox to remove and box a charnode if

one is there;

\ pos t t o l e rance for t h rd pass of line

breaking.

ideas that will not be implemented.

several people want to be able to remove

arbitrary elements of lists, but that must

never be done because some of those ele-

ments (e g , kerns for accents) depend on

floating point arithmetic;

if anybody wants letter spacing desperately

they should put it in their own private ver-

sion (e.g., generalize the hpack routine) and

NOT call it TEX."

Thus we have clear evidence that there are some pos-

sible extensions to TEX which Professor Knuth does

not completely deprecate; he may not wish them to

be incorporated in TEX, but I think we may safely

assume that he would have no violent objection to

their being considered for e-T@.

But there is another source of mformation, too,

in which he makes it plain that there is an area of

TEX in whch an extension would be deemed legitim-

ate, and here (very surprisingly, in my opinion), he

has suggested that the semantics of an existing TEX

primitive could legitimately be modfied as part of

the system-dependent changes to T# itself, without

violating his rules for the (non-)modification of TEX.

T h s arose during discussions between hmself and

others includng (I believe) Karl Berry and Frank Mit-

telbach concerning the implementation of an inter-

face to the operating system; Don suggested that

it would be legitimate to extend the semantics of

\ w r i t e such that if the stream number were out of

range (perhaps a specific instance of 'out-of-range',

for safety, e.g., \ w r i t e 18 { . . . I) , then the para-

meter to that \ w r i t e could be passed to the operat-

ing system for interpretation, and the results made

available to TEX in a manner still to be defined.

When I first learned of this, I was horrified (and

I still am.. .); not only is this a proposal to abuse

\ w r i t e for a purpose for which it was never inten-

ded (and in a manner which could wreak havoc on

any program extant which uses \ w r i t e 18 { . . . }
to send a message to the console, whch it is per-

fectly entitled to do (cf. The T f l o o k , pp. 226 &

280)), it is a proposal to extend \ w r i t e in a system-

dependent manner. I found (and find) it hard to

believe that Don could have acceded to these sug-

gestions.

But these proposals received a wide airing, and

were met by quite a degree of enthusiasm; not be-

cause people wanted to abuse \w r i t e , but because

they were desperate for an interface to the oper-

ating system. Such an interface grants TEX incred-

ible flexibility: one can sort indices, check for t f m

files, in fact do anything of whch the host oper-

ating system is capable, all from within TEX, and

in such a way that the results of the operation be-

come available to TEX, either for further calculation

or for typesetting. Of course, there were also (very

sound) arguments against: "what if the program per-

, /no log /nocon- forms a $ d e l e t e [?:. . . I * . * ' *
f i rm?" was asked over and over again. (The com-

mand deletes all files to which the user has delete ac-

cess, regardless of directory or owner, and recurses

over the whole file system under VAX/VMS; there

are equally powerful and unpleasant commands for

most other operating systems.) What indeed? But

if this feature were implemented through the abuse

of \w r i te , there would not necessarily be any provi-

sion for disabling it; and users would become legit-

imately paranoid, scanning each and every imported

TEX document for the slightest trace of a system call,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 181

PMip Taylor

in the fear that computer viruses had migrated into

their (previously safe) world of TEX.

Of course, TEX has never been truly safe; per-

haps we are fortunate that the challenge of writing

computer viruses appears not to be of any interest

to those who are also capable of writing TEX (or per-

haps those who have the intelligence to prefer, and

to write in, TEX, have by definition the intelligence

to see that writing viruses is a &stinctly anti-social

activity, and to refrain therefrom). I will not elabor-

ate on t h s point, just in case it falls into the wrong

hands.. .
And so, I propose that one of the first exten-

sions to e-T@ which the NTS project should con-

sider is the implementation, in a clean and con-

trolled way, of a genuine \system primitive; imple-

mented through the medium of \enable, it would

be up to each individual user whether or not to al-

low of its use, sacrificing security for sophstication

or preferring power and performance over paranoia.

We might posit, too, a \ d i sab le primitive, so that

even if the system manager had installed e-Tgwith

\system enabled, an indwidual user could choose

to disable it once again (there are complications in-

volved in t h s which I do not propose further to dis-

cuss here).

And once we have a \system primitive, we can

then implement, through its mebum, a whole raft

of further extensions which have from time to time

been requested by the TEX community (the follow-

ing are taken almost verbatim from a submission by
Mike Piff):

Delete a file;

Rename a file;

Copy a file;

Create a directory;

Remove a directory;

Change directory;

Spawn a sub-process.

But these tasks are, by their very nature, incredbly

operating-system specific; whilst I might type $ de-

1 e t e f o o . bar ; , another might write %rm foo. bar

(I hope I have the latter syntax correct. . .); and surely

one of the most important reasons for the use of

TEX is its machine-independence: documents behave

identically when typeset on my IBM PS/2 and on the

College's VAX/VMS 6430. But if e-T@users were to

start hard-coding \system ($ d e l e t e foo . ba r ; }

into their e-T@ files, machne-independence would

fly out of the window; and e-T# would have sown

the seeds of its own destruction.. .
And so, I propose that for each e-T@ imple-

mentation, there shall exist a macro library whch

wdl be composed of two parts: a generic compon-

ent, created by the NTS team, whch implements in

a system-independent manner each interaction with

the operating system whch is deemed 'appropriate'

(whatever that means) for use by e-T& and a specific

component, created by each implementor of e-T@,

whch maps the generic command to the system-

specific syntax and semantics of the \system primit-

ive. The macro library is by defmtion easily extens-

ible: if the e-T@ community decides that it needs

a \sysAdel e t e - f i 1 e macro, and no such macro ex-

ists, it will be very straight-forward to implement:

no re-compilation of e-Tawdl be required.

Clearly there is an enormous amount of further

work to be done: how, for example, is the \sys-

tem primitive to return its status and results? What

is to happen if \system spawns one or more asyn-

chronous activities? Which of Don's "Possibly nice

ideas" should be integrated into e-T@ at an early

stage? How about the 'Skyline' question, or \ r e -

cons i derparagraphs? Should e-T# be based, ab

initio, on TeX--XeT? How are the NTS team to liaise

with the TWG-MLC group, and with other interested

parties? How are we to ensure that practising ty-

pographers, designers, and compositors are able to

contribute their invaluable ideas and skills to the

development of e-TW Some of these questions will,

I hope, be debated openly and fully on NTS-L; others

must be answered by the NTS team themselves (and

here I have to confess that because of the pressures

of t h s conference, the membershp of that team is

still in a state of flux). What matters most, at least

to me, is that the phdosophy and parahgms whch

characterise TEX are perpetuated and preserved for

future generations: we have, in TEX, somethng very

precious - the creation of a single person, Professor

Knuth, whch has had a profound effect on the pro-

fessional lives of thousands, if not tens of thou-

sands, of people; if we are to seek to extend that

creation, then we must do so in a way whch is en-

tirely faithful to the ideals and intentions of its cre-

ator. I truly hope that we are up to that task.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

