18

Philology

Configuring TEX or BTEX for typesetting in
several languages

Claudio Beccari

Abstract

Based on the frequent requests for help that I have
received in the past months from users who want
to configure TEX or KTEX for typesetting in sev-
eral languages, it seems that this sort of informa-
tion is not adequately covered in the documentation
available to most do-it-yourself users. This tutorial
is intended to give basic information on this topic.
The related subject of hyphenation patterns will be
addressed in a future tutorial.

1 Introduction

IATEX users are excused for not knowing how to set
up their favorite typesetting program for different
languages; Lamport [5] doesn’t say a word on this
subject; the new edition invites the reader to consult
Goossens et al. [3] for what concerns multilanguage
typesetting, and certainly the latter contains several
hints — more than simple hints, since all of chapter 9
is dedicated to this problem.

TEX users should be more familiar with this
problem via the main reference, Knuth [4], which
covers the topic of hyphenation patterns. Appendix
H stresses that TEX hyphenation capabilities are
generated by the \pattern and the \hyphenation
commands, the former being processable only by the
initialization TEX program initex.

J. Braams prepared a complete system of style
files and macros for use with IXTEX, called babel; of-
ficially, it works only with standard document styles,
but in practice, it is also valid for other styles and
includes adequate means for setting text into type in
some twenty languages. The only part that is lack-
ing from the babel system is the set of hyphenation
patterns for each of those languages, but this was
done on purpose, I suppose, because pattern prepa-
ration, although essential for multilanguage type-
setting, has almost nothing to do with the style of
multilanguage typesetting.

This tutorial will attempt to explain to do-it-
yourself (IA)TEX users how to configure their sys-
tems in order to set text into type in different lan-
guages at the same time. It is natural that this issue
should be particularly interesting for non-English-
speaking (I#)TEX users, but I have received requests

TUGboat, Volume 16 (1995), No. 1

for help from the United States as well, so I presume
that across the ocean there are also some people who
may benefit from these simple notes.

Typesetting text in several languages implies
the following problems: (a) correct hyphenation, (b)
correct “labels” in titles and captions (“Chapter”,
“Capitolo”, “Chapitre”, etc.), (c) special language-
dependent typesetting rules (French vs. non-French
spacing, quotation marks, etc.). Therefore the points
to be covered include:

1. choosing the proper fonts and font encodings;

[\

. retrieving or creating hyphenation patterns;

3. initializing TEX or KTEX, taking into account
the program’s memory limitations;

4. retrieving or creating macros for switching lan-
guages;

5. language-dependent typesetting macros.

Here I will skip over the problem of typesetting
with alphabets different from the extended Latin
one; for Greek (modern and ancient) there is plenty
of information (TEX and METAFONT files, the lat-
ter for generating the full set of characters and lig-
atures) in the CTAN directories

/tex-archive/languages/greek/levy
/tex-archive/languages/greek/yannis

The former contains the full set of 256-glyph fonts
and TEX macros for handling them, the latter con-
tains also the 128-glyph fonts, TEX macros and hy-
phenation patterns; both contain excellent documen-
tation for using Greek fonts and for setting ancient
and modern Greek.

The platforms (or boxes, as TEXies seem to call
their computers) on which people set their texts are
of widely different types, with different operating
systems and, in particular, with different file sys-
tems. T’ll address myself mainly to the DOS type
of personal computer users, because apparently this
category counts the highest number of do-it-yourself
users; with minor modifications what I'll say is ap-
plicable also to other environments, with the cau-
tion that with VMS one must have system manager
privileges and with UNIX, superuser privileges. In
any case I assume that the do-it-yourself reader who
is going to use this information in practice is suffi-
ciently familiar with his/her computer to be able to
use the available utilities for exploring and manag-
ing the hard disk(s) and the file system, for creating
command (or batch or script) files, and so on.

As for myself, T use a VMS mainframe, a UNIX
workstation and a DOS personal computer; the lat-
ter is a 486 type and has 8 Mb of RAM, so that,
even though I don’t use Windows, with a suitable

TUGboat, Volume 16 (1995), No. 1

extended memory handler I can use a “big TEX” im-
plementation of TEX based on the compilation of a
C-source program; I recommend that any DOS user
equip him/herself with a configuration of this sort.
My ETEX is set up to deal with eight languages at
a time: US-English, Italian, French, Spanish, Por-
tuguese, Catalan, Romanian, and Latin (modern
spelling). Except for US-English, I prepared all the
hyphenation patterns for the remaining seven lan-
guages myself.

2 Fonts

Except for English (both US and UK), which does
not use diacritics (actually it does when assimilated
foreign words are used), and textual Latin (i.e. ex-
cluding prosodic Latin), almost all the languages
that were examined by Sojka and Sevecek [6] use
diacritics. (I#)TEX has no problem in setting suit-
able diacritics over or under any letter, but (I4)TEX
has real problems in hyphenating words that contain
the control symbols or control words that are used
for setting such diacritics. In fact, TEX “words” are
not the same as the words of a language. Loosely
speaking, for TEX a “word” is a sequence of charac-
ters of category code 11 (letter) or 12 (other), with
a non-zero \lccode, set in the same font, that is
preceded by a punctuation mark (parenthesis, quo-
tation marks, etc.) or by space or glue, and ends
with anything different from the above-mentioned
characters. Any command that interrupts this se-
quence interrupts the word, unless it expands to one
or more characters with the proper characteristics.
For a precise definition of what TEX thinks a word
is, see Appendix H of The TEXbook.

As examples, the French word \’ecole = école
is not a word at all for TEX because the accent com-
mand \’ expands to \accent 19, unless ... Even
the English word {\it school} = school is not a
word for TEX, because there is no space or glue be-
tween the command \it and the word ‘school’; this
is why (I#)TEX often reports overfull hboxes when
you emphasize some text.

Unless ... yes, there is a way around this: ex-
tended fonts and a simple little macro, \hz, for in-
serting glue where there should be no extra space:

\def\hz{\nobreak\hskipOpt \relax}

In fact, \hz inserts an unbreakable glob of glue of
zero width, stretch and shrink, but nevertheless it is
glue, so that after this glob a real TEX word may be-
gin, a word that TEX can hyphenate properly. Use
this little macro and you’ll get rid of many hyphen-
ation problems. For example, if you type

\emph{\hz electricity}

19

you get electricity properly hyphenated even though
it is emphasized. If you want to typeset some French
words within an English text, and you only have the
standard cm fonts, besides inserting a lot of discre-
tionary breaks \- at every syllable (if you don’t have
the French hyphenation patterns), you have the pos-
sibility of inserting \hz in order to convince TEX to
deal with word fragments; for example, you can type

\’e\hz lectricit\’e

and TEX will try to hyphenate the fragment ‘lec-
tricit’, probably finding some correct hyphen points
even by using English patterns.

But the real solution lies in using the extended
fonts. There are two flavors: the real dc fonts and
the virtual em fonts. The former are complete sets
of 256 glyphs that conform to the “double Cork”
encoding, while the latter are virtual fonts that are
made up with pieces taken from real 128-glyph cm
fonts. Although em fonts lack some glyphs, com-
pared with real dc fonts, they sometimes are more
flexible than dc fonts since by editing the virtual
property list file it is possible to modify them very
easily. Moreover the .pk files for the dc fonts in the
customary 300, 329, ..., 746 dots-per-inch sizes oc-
cupy approximately 7 Mb of disk space, which might
not be available on the smaller platforms or which
might be used in a different way.

If you already have the dc .tfm and pixel files
on your computer disk, or if you are willing to copy
them from a CTAN archive, skip the next section;
otherwise, you might find it interesting to create the
full set of em fonts yourself, as explained below.

2.1 Creating standard virtual em fonts

Examine your file system and find out if you already
have .tfm files whose names start with em and if you
have files with the same name but extension .vf; if
you do, skip to the next section.

If you don’t, you might be in trouble, but before
giving up examine your file system and find out if
you have executable files (extension .exe) with the
following names: tftovp, vitovp, vptovf, pltotf,
tftopl. If you do, they probably came with your
screen and/or printer driver, unless you are the type
of hacker who copies everything in the hope that it
might become useful at some future date.

This point is crucial; in fact, if you got these
files with your drivers, you can be almost certain
that your drivers handle virtual fonts. Check the
driver documentation; if your drivers actually han-
dle virtual fonts, keep reading this section; other-
wise, go to the next subsection. There is no sense

20

2021223245 6|7
20| A|A|C|C|D|E|E|G
21 | L || L |N|N O R "®
2| R S| S|S|T|T|U]|U '
23| Y | Z Z Z | 1J| 1 d | §
24 & | a | ¢ ¢ | d | é e g
o5 | T ||t | ala s 1|
26 | Fl S| s | s ||t | 4] "
27|y | 2 Z z | ij i i
30| A|A|A|A|A|A|E|C »
31| E | E | E | E I I I I
)32 N|O|O|O|O|O|@® "D
33| W | U U|U|U|Y SS
34| a | 4| a| a|a|ale|cg Vg
’35 | e é é é i i 1 1
36 n o) o} o) 0 0 e |
37 g || G| a4 |d| ¥ F

"g | "9 | "A|"B|"C|"D|"E|"F

Table 1: Font layout for em fonts with character
codes above 127. The empty positions should
contain the lower- and uppercase versions of ‘eth’
and ‘thorn’, the ‘nj’ ligature, and a non-slanting
version of the pound sterling sign; the dc fonts
have these positions filled up.

in creating virtual fonts if your drivers can’t handle
them.

If you check in The TEXbook, Appendix F, you
may realize that the roman, italic and typewriter
fonts have different layouts; therefore, when you
create virtual fonts you must give your programs
this kind of information. Just to give an example
let’s create the virtual font emr10 starting from the
standard real font cmr10:

1. Run tftovp by issuing the following command
tftovp -rm cmrl0.tfm emr10.vpl

after having set things up so that the necessary
.tfm files are in the default directory; the best
thing to do is to issue the command in the di-
rectory where you have all the .tfm files.

This action creates a virtual property list file,
with extension .vpl, that contains all the in-
formation on the size of every character, the
ligatures, the glyphs that are made by super-
position of glyphs taken from several other real

TUGboat, Volume 16 (1995), No. 1

fonts. Of course, for other cases you might be
obliged to use the command tftovp in its full
glory with all the other options fully spelled out,
but this simple example is sufficient for giving
the idea of the whole procedure.!

2. Now run vptotf in this way
vptotf emri10

obtaining the .tfm file (IA)TEX needs for its
font selection and the virtual font file (exten-
sion .vf) that the driver needs for using the
virtual font; move this latter file into the direc-
tory where the driver(s) expect to find virtual
files.

3. The .vpl file is no longer needed, so it can be
deleted.

Of course you might automate this simple procedure
by writing a command (or script) file that performs
all these operations with a minimum of human in-
tervention.

If you have .afm files for PostScript fonts, you
can do similar operations in order to use such outline
fonts, but maybe leave that for when you have more
experience.

2.2 Getting along with ordinary cm fonts

If you do not have the programs mentioned in the
previous subsection and/or your drivers do not han-
dle virtual fonts or do not handle fonts with more
than 128 characters, or if you have decided that you
do not want to use virtual fonts (for example for
portability reasons), do not give up! It is still possi-
ble to redefine the accent macros so as to make them
a little smarter, i.e. so that they introduce automati-
cally an \hz command before and/or after the letter
they operate upon, depending on the nature of the
following character.
You should be able to perform an anonymous

ftp to my site:

ftp ftp.polito.it

Username: anonymous

Password: your e-mail address

cd /pub/tex/polito/hyphens
where you can fetch the three files polyglot.tex,
polyglot.sty and polyglot.doc. You can use the

1 Apparently nobody noticed or took care that none of
the options available for the tftovp command handles the
caps-and-small-caps fonts; for such fonts, some editing of the
ASCII virtual property list file is necessary before going to
the next step, but you’ll produce virtual caps-and-small-caps
fonts when you have gained a little experience with virtual
fonts. It’s a good idea to use your editor to explore the prop-
erty list files: you get to understand a lot of things about TEX
that are not written in any book, or are presented in such a
way that the reader can’t really understand them.

TUGboat, Volume 16 (1995), No. 1

second one as a IXTEX option, so that you can pro-
cess the third one as a IMTEX document and get
all the information about the use and/or initializa-
tion of your (IA)TEX programs with the polyglot
macros.

In the same directory you will find the “poor
man” hyphenation patterns for several languages;
these are labeled “poor man” because they do not
consider accented letters and leave the task of hy-
phenating to the “intelligent” accent macros. Such
macros do their best, but of course they cannot
perform as well as a (I#)TEX system correctly set
up with dc or em fonts for handling multiple lan-
guages. Nevertheless, I did use such a “poor man”
implementation for a while, and I have typeset sev-
eral documents in different languages with almost
no human intervention while getting error-free jus-
tified text with hyphenated words, in particular in
French and in Catalan.?

3 Using em or dc fonts
3.1 Extended fonts and TEX

If you use TEX, and you want to use em or dc fonts,
you should do the following:

1. copy the file plain.tex to another file, and call
it emplain.tex;

2. edit emplain.tex so that it also preloads the
roman, italic, etc., em or dc fonts corresponding
to the roman, italic, etc., fonts already loaded;
for example, add the lines:

\font\etenrm = dcri0
\font\etensl = dcsli10
or

\font\etenrm = emr10
\font\etensl = emsl10

3. modify the definitions for \rm, \s1, \it

\def\rm{\fam\z@\etenrm}
\def\sl{\fam\slfam\etensl}
\def\it{\fam\itfam\etenit}

3.2 Extended fonts and BPTEX 2¢

IMTEX 2¢ is already pre-set for use with dc fonts, al-
though the default encoding scheme is the “old” 128-
glyph one. Therefore, before setting any text with

2 I mention these two languages (of the eight that my box
can handle) because they were used to typeset formal and
official documents undersigned by the Rectors/Directors of
the Polytechnics with which we made agreements.

21

dc fonts it is necessary to declare the extended T1
encoding by means of the declaration

\renewcommand{\encodingdefault}{T1}

in the preamble of your document.

But the above operation is suitable only when
you run IATEX 2¢ as a regular program that has al-
ready been initialized. Its ability to handle hyphen-
ation patterns in one or more languages derives from
its initialization which must be executed according
to the procedure described for your particular im-
plementation of TEX; in the following sections, an
example is given, but your particular implementa-
tion might require some variations.

Regardless of the implementation, though, you
need to set up or modify a file named hyphen.cfg
which is intended for loading several hyphenation
pattern files for the corresponding languages. As
far as my experience is concerned, the I TEX 2¢ base
package obtainable from CTAN states that this task
is reserved for TEXperts and a special documenta-
tion file is offered to such experts for the task. Un-
fortunately this file does not say much and several
actions must be invented by the user. Two points
are to be followed with special care:

1. The command \newlanguage is defined to be
an \outer one so that it cannot be used within
the main argument of the command

\InputIfFileExists{<A>}{}{<C>}

where <A> is the file name containing the pat-
terns for a particular language, the actions
to be taken before inputting the pattern file,
and <C> the actions to be taken if the pattern
file does not exist or can’t be found along the
default or the specified paths. Therefore, in or-
der to load French patterns, for example, it is
necessary to spell out the loading commands:

\newlanguage\l@french
\InputIfFileExists{frhyph}{%
\language\l@french
\lccode‘\’=°\’

% etcetera

H%

\errhelp{The configuration for
hyphenation is incorrectly
installed.”~"J%

If you don’t understand
this error message you need
to seek”"Jexpert advice.})

\errmessage{00PS! I can’t find
any hyphenation patterns for
French.""J \space Think of
getting some, or the latex2e

22

setup will never succeed.}),
\@@end
}

(The actions to be taken for a nonexistent or
unreachable French pattern file are copied [and
slightly edited] from the sample hyphen. cfg file
that is included in the base package.)

Before inputting any pattern file that contains
special characters, it is necessary to map the
accent macros and their arguments to the char-
codes of the corresponding special characters
and to define their lowercase codes.

In fact, the ability of ITEX 2¢ to deal with
extended codes through sophisticated accent
macros is applicable only during regular type-
setting runs, not during the manipulation and
digestion of hyphenation patterns. For the lat-
ter, simple and direct macros must be designed
such as the following;:

(a) For the special characters for which stan-
dard commands are available, such as \o
for g and \ss for f, it is sufficient to pre-
pare declarations of the following form:
\def\ss{""ff}\lccode"FF="FF
\def\SS{"~df}\lccode"DF="FF
\def\ae{"~e6}\1lccode"E6="E6
\def\AE{""c6}\1lccode"C6="E6
\def\oe{""£7}\1lccode"F7="F7
\def\OE{""d7}\1lccode"D7="F7
\def\o{""f8} \lccode"F8="F8
\def\0{""d8} \lccode"D8="F8
\def\i{""19} \lccode"19="19
\def\j{""1a} \lccode"1A="1A
\def\aa{""e5}\1lccode"E5="E5
\def\AA{""c5}\1lccode"C5="E5
\def\1{""aa} \lccode"AA="AA
\def\L{""8a} \lccode"8A="AA

(b) For the other characters— those that carry
a diacritical mark — it is better to resort to
intermediate macros, some of which map
the accent macro and character to a sin-
gle control word, and some for defining the
meaning of such control words. The whole
trick is accomplished as follows: first you
define the control word mappings

\def\’#1{\csname @ac@#1\endcsname}
\def\ ‘#1{\csname Q@gr@#1\endcsname}

and so on, with the prefixes that are listed
in Table 2 for the other diacritical marks.
Then, for each of the approximately one
hundred diacriticized characters, you must
set up declarations such as these:

TUGboat, Volume 16 (1995), No. 1

\catcode‘\""a0=11 %, letter \u{a}
\lccode"A0="A0 % lc code
\def\@u@a{~"a0} ¥ ctrl word

%

\catcode‘\""80=11 %, letter \u{A}
\lccode"80="A0 % lc code \u{al}
\def\Que@A{~"80} % ctrl word

%

and so on for the remaining special char-
acters whose codes can be deduced from
Table 1.

(c) Most important, steps 1 and 2 must be
confined within a group together with the
pattern file input command, so as to keep
such declarations local to the sole group
where patterns are being manipulated and
digested.

3. After closing the group mentioned in the above

item, it is wise to declare the default language,
the default encoding (so that you do not need
to declare it in every preamble of every docu-
ment), and the relevant parameters for the left-
most and rightmost word fragments:
\language=0

\lefhyphenmin=2

\righthyphenmin=3
\def\encodingdefault{T1}

This done, you are ready to run the initializer.

3.3 Extended fonts and BTEX2.09

If you are still using IATEX2.09 or you want to have
a ITEX2.09-compatible version, do the following;:

1. copy the file 1plain.tex to a new file, say,

emlplain.tex;

. edit emlplain.tex by replacing the line \input

1lfonts with \input emlfonts

. copy lfonts.tex into emlfonts.tex;
. edit emlfonts.tex by adding a line that loads

a dc or an em font for every text font already
loaded; as shown here (original lines are marked
with <--):

\font\fivrm =cmr5 Y roman <-—-
\font\efivrm=dcr5 % ex. roman

\font\elvrm =cmr10\@halfmag % roman <--
\font\eelvrm=dcr10\Ghalfmag % ex. roman

\font\frtnrm =cmr10\@magscale2 % rom <--
\font\efrtnrm=dcriO\@magscale2 7, ex. rom

TUGboat, Volume 16 (1995), No. 1

5. modify the definitions of the font changing com-
mands for all point sizes; e.g. for the ten-point
size, search for the definition \def\xpt and
change:

\def\prm{\fam\z@\tenrm}y,

to

\def\prm{\fam\z@\etenrm}/,

doing the same for all the other font selections.

When you edit emlfonts.tex, near the end of the
file, you should comment out the definition of \$,
because with dc or em fonts the dollar sign always
has the correct shape.

The procedure seems very complicated but re-
ally it amounts to just some time spent in careful
repetitive editing: duplicating lines, replacing cm
with dc and adding an e in the proper places.

Another point must be kept in mind: the pro-
gram tex has a finite memory for holding font in-
formation. If you have made all the modifications
explained above, you end up with a BTEX format
where 106 fonts have been preloaded. This might
be too much for your “small TEX”, but presents no
problems to the “big TEX” implementations.

You also need to edit your newly created files
emplain.tex and/or emlplain.tex and replace

\input hyphen

with

\input lhyphen

unless your lplain.tex file is dated 31 March 1992

or later, in which case it may already have been
done.

4 Hyphenation patterns

The best way to have the proper hyphenation pat-
terns for the languages one chooses to use is to re-
trieve them from the CTAN archives. If you have
access to the Internet, just £tp to the nearest CTAN
archive and explore the directory /tex-archive/
languages. Select the directory corresponding to
the chosen language, and hopefully the proper set
of hyphenation patterns is already there.

If you do not have access to the Internet, you
probably know somebody who does. If you don’t,
ask the TUG office for a diskette containing what
you can’t otherwise obtain, and pay what the TUG
office will charge you. If the whole procedure seems
too complicated, just consult the advertising pages
of any issue of TUGboat and choose the vendor who
can provide you with what you desire; the vendor
prices are higher but generally you get a full set of
diskettes with an install program that saves you
all the burden of retrieving, initializing, etc.

23

But what happens if you decide to use a lan-
guage for which no hyphenation patterns have been
prepared? This is most unlikely. If you read the
paper by Sojka and Sevecek [6], you will find a ta-
ble where 38 hyphenation pattern files are exam-
ined; they deal with 32 different languages that in-
clude both flavors of English (US and UK), modern
and classical Latin and Greek, Esperanto, and most
modern European and North and South American
languages. Besides Greek, patterns exist also for
languages that do not use the Latin alphabet (with
or without diacritics), such as Russian, and possibly
for less known regional languages.

But what if you are unlucky — the patterns you
are looking for do not exist, or they exist but are
unreachable, or they are too large for the capabilities
of your tex program ... In this case you yourself
must create a file containing your patterns; you must
carefully read Appendix H of The TEXbook and, of
course, you must know the “strange” language you
want to use, or at least have a perfect knowledge
of its grammar and hyphenation rules. It’s not too
difficult, with or without the use of the program
patgen, but this topic is sort of self-contained, so I
leave it for another tutorial [1].

So, from now on, we assume that you have all
the pattern files you need. You should at this point
edit (or create) the file 1hyphen.tex to read:

% File lhyphen.tex created on ...
% by ...

% It loads the hyphenation patterns
% for the following languages:

% 0) US english

% 1) italian

% 2) french

% 3)

/)

\input chardefs

)

\language=0 \chardef\l@english O
\input hyphen

/)

\newlanguage\l@italian
\language\l@italian

\input ithyph

/)

\newlanguage\l@french
\language\l@french

\input frhyph

)

% and so on

/)

% Default values
\language\l@english

24

\lccode‘’= 0
\lefthyphenmin=2
\righthyphenmin=3
%
\endinput
If you are following the “poor man” procedure,

the chardefs.tex file to be input might read simply
like this:

\lccode‘’=*’
\catcode’33=11 %\oe
\lccode’33=33 %\oe
\let\oe=""1b

and similar definitions and code assignments for all
the other special ligatures or diacriticized characters
present in the cm fonts that are necessary in the
languages you are going to use.

The apostrophe should receive an \1lccode dif-
ferent from 0 because it should not interrupt TEX
words of the type quest’anello, I’approbation, s’orga-
nitzen in languages such as Italian, French, or Cata-
lan (where vocalic elision is marked with an apos-
trophe) —remember the definition of a TEX word:
“... characters..., with a non-zero \lccode,...”.
This is one of the most frequent requests for help
I receive from Italian users, who forget to \lccode
the apostrophe and complain about (I#)TEX not hy-
phenating after such a sign.

If you are going to use extended fonts (dc or
em) you need a chardefs.tex file that defines a set
of macros for changing such sequences as \u{a} (&)
into the numerical code of the diacriticized letter (in
this case ?240 or "A0 or 160), while assigning a non-
zero \1lccode to the character in question. Such a
file, in other words, should contain things similar to
those that have been described for BKTEX 2¢.

Such macros are simple but numerous when you
want to have a complete map to all 102 diacriticized
letters of the Cork encoding and to the 13 special
characters 8, ce, e, ¢, 4, L, 1, and j, with their upper-
case possible counterparts (plus the apostrophe):

% Save current @ catcode and ...
\chardef\atcatcode=\the\catcode‘\@

% ... make it a letter.

\catcode‘\@=11
\def\ss{""ff}\lccode"FF="FF\uccode"FF="DF
\def\SS{~"df}\1lccode"DF="FF\uccode"DF="DF
\def\ae{"~"e6}\1lccode"E6="E6\uccode"E6="C6
\def\AE{""c6}\1lccode"C6="E6\uccode"C6="C6
\def\oe{""f7}\lccode"F7="F7\uccode"F7="D7
\def\0E{""d7}\lccode"D7="F7\uccode"D7="D7
\def\o{""f8} \lccode"F8="F8\uccode"F8="D8
\def\0{"~d8} \lccode"D8="F8\uccode"D8="D8

TUGboat, Volume 16 (1995), No. 1

\def\i{""19} \lccode"19="19\uccode"19="49
\def\j{~"1a} \lccode"1A="1A\uccode"1A="4A
\def\aa{""e5}\lccode"E5="E6\uccode"E5="C5
\def\AA{""c5}\1lccode"C5="EE\uccode"C5="C5
\def\1{"~aa} \lccode"AA="AA\uccode"AA="8A
\def\L{""8a} \lccode"8A="AA\uccode"8A="8A
\lccode‘’=*’

The hexadecimal codes appearing in the above def-
initions can be found in Table 1, where the octal
and hexadecimal codes for all the other diacriticized
characters can also be found. The uppercase codes
are specified so that the case of such special letters
can be properly changed.?

Besides the above macros chardefs.tex must
also contain the character mappings necessary for
the cases when accent macros are used; in the CTAN
archives you can find a file, compatible.tex, that
contains intermediate macros for these mappings.

They look like this:

\def\’#1{{\expandafter
\ifx\csname @ac@#1\endcsname\relax
{\accent19 #1}J,
\else
\csname Qac@#1\endcsname
\fil}}
\def\ ‘#1{{\expandafter
\ifx\csname @gr@#1\endcsname\relax
{\accent18 #1}V,
\else
\csname Q@gr@#1\endcsname

\fi}}

\def\"#1{{\expandafter
\ifx\csname @til@#1\endcsname\relax
{\accent’176 #11}Y%
\else
\csname @til@#1\endcsname
\fil}}
\def\"#1{{\expandafter
\ifx\csname @um@#1\endcsname\relax
{\accent’177 #1}Y
\else
\csname @um@#1\endcsname

\fi}}

The trick is this: any accent macro (for exam-
ple, the one for the acute accent), operating, say,

3 This is not necessary with IATEX 2¢ because definitions
are local to the section where patterns are handled. On the
other hand, remember to avoid groups while specifying these
codes with IATEX2.09, otherwise you lose the possibility of
treating words with special characters in the proper way.

TUGboat, Volume 16 (1995), No. 1

on the letter ‘a’, maps to the protected? internal
control word \@ac@a, if this word is defined; other-
wise, it operates as a regular accent macro with cm
fonts. If you are using the extended fonts and the
set-up I am describing, you might as well simplify
such macros to:

\def\’#1{\csname @ac@#1\endcsname}
\def\ ‘#1{\csname @gr@#1\endcsname}

\def\~"#1{\csname @til@#1\endcsname}
\def\"#1{\csname Qum@#1\endcsname}

The whole set of prefixes of such control words is
summarized in Table 2. Actually, there are no BTEX
macros for the ring accent and the ogonek diacritical
mark:® if you need to use them, you can define \r
and \g to map to the proper control words by means
of the prefixes shown in Table 2.

Next you must assign every such control word
to an extended character and then assign that char-
acter the proper \1lccode and \uccode, an operation
that is lengthy because of the number of characters,
but at least is repetitive; all such assignments are of
this type:

\catcode‘\""a0=11 % letter \u{a}
\lccode"A0="A0 % lc code
\uccode"A0="80 % uc code \u{A}
\def\@u@a{~"a0}

%

\catcode‘\""80=11 % letter \u{A}
\lccode"80="A0 % lc code \u{a}
\uccode"80="80 % uc code
\def\@ue@A{~"80}

%

The CTAN archives contain a file called extdef . tex
that has definitions similar to the ones above, but
resorts to two macros:
\csubinverse and \charsubdef

that map em/dc-font extended characters to corre-
sponding cm-font accent macros + characters, and
vice versa. These macros should not be necessary if
you consistently use only extended fonts.

On the other hand, if you have a keyboard with
national characters (and you pay some attention by
editing your files before you send them to colleagues
who might not have the same keyboard) you could
reduce your keying if you map the input codes di-

4 ‘Protected’ in the sense that it contains the character
@, which is not a letter during normal (I#)TEX operation, so
that it is impossible to inadvertently redefine it.

5 Actually the ring accent is used only on the letters ‘a’
and ‘u’, so that the standard I#TEX macros \aa and \AA are
sufficient for the former, but you still need something for using
the latter.

25
grave @gra@ caron evae
acute @ac@ breve Que
circumflex Ghat@ macron Qeq@
tilde etile dotaccent @dot®
dieresis Quma@ cedilla Qc0
hungarumlaut @H® ogonek Qog@
ring ere

Table 2: Control-word prefixes for accent-macro
mapping

rectly to the corresponding extended TEX codes; for
this you might add to your chardefs.tex file some
definitions of the form:

\catcode‘\a=13 \def a{\@groa}
\catcode‘\a=13 \def 4{\@ac@a}

\catcode‘\fi=13 \def fi{\@til@n}

Remember to end the file by restoring the right @
catcode:

\catcode‘\@=\atcatcode

If you spend the time necessary to create this
chardefs. tex file from scratch, to explore the CTAN
archives, and to put together the various parts, you
understand why vendors charge you a reasonable
price for selling TEXware that everybody could oth-
erwise get at no cost!

5 Initialization

Now you have all the necessary pieces of informa-
tion to create the formats latex.fmt with IATEX 2¢,
emplain.fmt with extended font plain TEX, and
emlplain.fmt for extended font IXTEX2.09.

It’s time to run initex, the TEX initialization
program, the only one that can chew and digest the
hyphenation patterns and store them into memory
in a special way so that during a regular TEX run
the hyphenation process proceeds efficiently.

Depending on your software implementation,
this initialization program may be a different .exe
(i.e. there are both tex.exe and initex.exe), or
the initialization may be an option to the regular
procedure, or the executable module may behave
differently depending on the name used to invoke
it. Again, depending on the operating system, you
might also include the arguments to the command
within double quotes. So this simple initialization
task may prove to be more difficult than it should.

On my DOS personal computer, with the var-
ious implementations I have used, I had to follow
three different approaches; however, command files
come in handy for doing the whole job without both-
ering too much about the details. You have to:

26

1. set up the environment variables according to
the documentation for your particular imple-
mentation of TEX;

2. set up the search paths, if necessary;

3. invoke the initialization program with the prop-
er syntax and with the proper arguments;

4. \Qump the format;

5. move the format to the directory where TEX
expects to find format files;

6. possibly preload the format so as to create a
specific executable program.

Steps 1 and 2 are very much system- and software-
dependent, so please check your documentation very
carefully. Below I show how I would do the job
for IMTEX2.09, by means of a C-source derived tex
program named ctex when it operates as a regular
tex program, and cinitex when it operates as an
initializer program.®
1. Iset up the following environment variables (but
remember that the names of my directories do
not necessarily match yours):

SET TEXFORMATS=C:\TEX\ctexfmts
SET TEXPOOL=C:\TEX\ctexfmts
SET TEXFONTS=C:\TEX\fonts

SET TEXINPUTS=.;C:\TEX\inputs

With other implementations it might be possi-
ble to set environment variables that control the
amount of memory that the program assigns to
the various operating parts.

2. I decide if the executable cinitex.exe is al-
ready in the proper directory; if not, I rename
the executable ctex.exe to that name

if exist C:\TEX\cinitex.exe goto runinitex
rename C:\TEX\ctex.exe cinitex.exe
3. Then I produce the format and \dump it in one

step:
:runinitex
C:\TEX\cinitex %1 \dump
In the above command %1 is the name of the
format I want to produce; in our examples it
might be emplain or emlplain.

4. Next I move the format file to the proper direc-
tory

6 Other implementations may have initex as the initial-
izer, virtex as a “virgin” version of TEX (that is, a pro-
gram without any format preloaded), tex as a version with
plain.fmt preloaded, and latex as a version with 1plain.fmt
preloaded. In other systems, particularly UNIX, all these
names are aliases that call the same executable which be-
haves differently according to the name by which it has been
called.

TUGboat, Volume 16 (1995), No. 1

move %1.fmt C:\TEX\ctexfmts
5. Finally I reset the program name to ctex.exe
rename C:\TEX\cinitex.exe ctex.exe

6. At this point, with some implementations of
tex, it might be possible to run a preloading
facility that creates an executable image of the
program with the format preloaded; it speeds
up the preliminary operations of a regular TEX
run a little, but it is not a real necessity; many
implementations do not have this facility.

That’s all. For running (I4)TEX, another com-
mand file sets up the same environment variables
(in case they were not set or had been reset), and
invokes the executable with:”

ctex &emlplain %1

where, as usual, %1 is replaced by the .tex file name
you want to process.

During initialization you might experience a
number of error messages; try to understand which
is the cause and exit the initializer with x at the
program prompt. Some possible causes include:

1. initex did not find some .tex file(s): check
that all the necessary files are on a TEX search
path conforming to the TEXINPUTS environment
variable.

2. initex did not find some font files: check for
spelling errors in the parts you have edited;
check that all .tfm files are in the directory(ies)
identified by the TEXFONTS environment vari-
able.

3. initex complains about the tex.pool file:® the
file is missing or the file in the directory pointed
at by TEXPOOL does not belong to the particular
TEX implementation you are using; retrieve the
correct tex.pool file and be sure to put it in
the correct directory.

4. initex complains about some undefined con-
trol sequence: check the name of the control
sequence and correct your spelling in the files
you have edited.

5. initex complains about duplicate patterns:
press <Enter> and keep going, but if the prob-
lem shows up again, you’d better get out with
x. In any case, check your hyphenation files
and your lhyphen.tex file; you may have for-
gotten to issue the command \newlanguage or
most probably you made a spelling mistake. If
you made your own patterns the possibility of

7 Change emlplain to emplain if you want to use plain

TEX instead of IATEX.

8 On DOS platforms the name is tex.poo.

TUGboat, Volume 16 (1995), No. 1

having inadvertently duplicated some patterns
is normal, but must be corrected.

6. initex complains about memory limitations:
if you are using a “big TEX” implementation
based on a C-source, this should not happen.
If it does, either you want to go into the Guin-
ness book of records for the largest number of
languages treated at the same time, or you have
bad patterns, or your C-source program did not
work properly. If your program comes from a
Pascal source and you have the source code, af-
ter having properly checked that you are not
going into the Guinness book, and that your
patterns are OK, you could carefully modify the
memory declarations in the source code and re-
compile and link the program. I hope you know
what you are doing. If you do not have the
source code, but you have an implementation
(like sb39tex) that allows you to exercise some
control over the memory usage, check the doc-
umentation and proceed accordingly.

With respect to memory limitations, specifi-
cally hyphenation memory limitation, TEX has two
memory areas, the trie and the ops ones, the former
being dedicated to holding the patterns (all the pat-
terns of all the languages that have been loaded) and
the latter to holding the “branch” information of the
pattern structured lists. The greater the number of
patterns, the greater the trie memory occupied; the
more complex the pattern structure, the greater the
ops memory occupied.

When you run initex, the .log (or .1lis) file
documents all the relevant information about the
run; in particular, towards the end you will find a
listing that looks like this:

14 hyphenation exceptions
Hyphenation trie of length 8172
has 407 ops out of 750

23 for language 6

15 for language 5

15 for language 4

25 for language 3

110 for language 2

38 for language 1

181 for language O

from which you can obtain important information
about the memory occupation dedicated to multi-
language issues:

1. the 14 hyphenation exceptions are those that
come with the US-English hyphen. tex file, orig-
inated by Liang and Knuth and described in
The TgXbook, Appendix H. The other lan-
guages I loaded do not have hyphenation excep-

27

tions because this is my policy when I prepare
my patterns.

There is nothing wrong with hyphenation ex-
ceptions; simply they are better suited for a
non-flexive or moderately flexive language, such
as English, than for flexive languages such as all
the Romance ones. In English, for a noun you
have two forms, for an adjective one form, for a
verb four or five forms. In Italian nouns require
two forms, adjectives up to four, verbs approxi-
mately 60 and this does not include all the pos-
sible agglutinations of enclitic pronouns. For
French, Spanish, Portuguese, Catalan, Roma-
nian, and Latin the situation is similar, so that
if a hyphenation exception involves the stem of
a verb, you may have to input some 60 entries
(at least) in the \hyphenation argument!

2. US-English hyphenation patterns occupy 6075
trie memory words and 181 ops; the standard
size of the trie memory (in a regular-sized TEX
implementation) is 8000 words; French comes
second in complexity, requiring from 1122 to
1433 trie memory words® and 110 ops; the other
Romance languages require on the average 600
trie memory words and 25 ops. The ops num-
bers are simply additive while the trie mem-
ory words are not, because the cited numbers
include some undocumented overhead, so that
the final trie memory occupied is smaller than
the sum of the single language trie memory oc-
cupied. But during the initex run you need
the availability of at least the sum of the single
language occupations, so that the program can
massage the patterns and compress them in the
proper way.

When you have to control the memory occu-
pation, you must keep these numbers in mind
in order to understand possible complaints by
initex.

3. The ops numbers give you a fairly good idea of
the complexity of the hyphenation rules for a
given language as they are translated into TEX
code. In my experience, German patterns ap-
pear to be the most complicated, requiring 9980
trie memory words and 281 ops; this is the set
of patterns indicated as DE5x in Sojka and
Sevecek [6],'° and if you have to use German

9 Depending on the presence of extended characters; the
numbers refer to my poor-man or extended-character pat-
terns, respectively.

10 However, they report 255 ops while my cinitex exe-
cuted 281; perhaps the files we examined are not exactly the
same.

28

you’d better have a “big TEX” implementation
with a large trie memory size.

6 Language-dependent macros

The best thing to do is to retrieve the babel package;
this is the finest set of multilanguage macros I know
of and I recommend it to everybody. My polyglot
macros are also an acceptable “poor man” alterna-
tive for those who have stuck to cm fonts and relied
on intelligent accent macros. The macros should be
divided into three categories:

1. language selection;
2. label selection;
3. style selection.

If you want to make your own macros, because you
are going to use your multilanguage implementation
in a restricted or in a special way, you can do the
following.

6.1 Language selection

In the 1hyphen.tex file all languages were identified
by a literal name mapped to an internal number
of the form \1@language; this allows you to set up
simple macros such as these:!!

\def\Lang#1{\expandafter

\language\csname 10#1\endcsname

\csname #lsettings\endcsname}
A
\def\englishsetting{\lccode‘’=0
\righthyphenmin=3}
%
\def\italiansettings{\lccode‘’=‘"
\righthyphenmin=2}
A
\def\frenchsettings{\lccode‘’=*"’
\righthyphenmin=3}
%
% and so on
%

You change hyphenation rules simply by issuing
commands of the type
{\Lang{french} ... % french text
} % end french
without forgetting the group braces so that the ac-
tion is confined to the enclosed group alone.

In IXTEX you can use the above definitions also
as environments:

\begin{Lang}{french}

Il \lefthyphenmin is supposed to maintain the default
value of 2; of course some settings might change this value,
but if you choose to do so, you should insert an appropriate
setting for every language.

TUGboat, Volume 16 (1995), No. 1

e % french text
\end{Lang}
or you might prefer to define a new environment:
\newenvironment{French}{\Lang{french}}{}
so that you can type:

\begin{French}

e % french text
\end{French}
and thereby following standard IATEX markup style.

6.2 Label selection

What has been described in the previous subsec-
tion is suitable for setting short passages of one lan-
guage within a text composed in another language;
for example, French extracts (properly hyphenated
in French) in an English-language essay (with cita-
tions in an appropriate English style).

If you want to write a whole document in an-
other language you should be able to change “Chap-
ter” into “Chapitre”, “Table” into “Tableau”, and
so on, with a single command. Fortunately, as of 31
March 1992, these words are no longer hardwired
into the IATEX styles; they are contained in control
sequences with self-explanatory names. So, together
with the language settings, you need a \setcaptions
macro of the following type:

\def\setcaptions#1{%

\csname #1lcaptions\endcsname}

b

\def\frenchcaptions{’
\def\refname{R\’ef\’erences}
\def\abstractname{R\’esum\’e}
\def\bibname{Bibliographie}
\def\chaptername{Chapitre}
\def\appendixname{Annexe}
\def\contentsname{Table des mati\‘eres}
\def\listfigurename{Liste des figures}
\def\listtablename{Liste des tableaux}
\def\indexname{Index}
\def\figurename{Figure}
\def\tablename{Tableau}
\def\partname{Partie}
\def\enclname{P."J.}
\def\ccname{Copie \‘a}
\def\headtoname{A}

\def\pagename{Page}

b

\def\today{\ifnum\day=1\relax
1\/$"{\rm er}$\else\number\day\fi
\space\ifcase\month\or

janvier\or f\’evrier\or mars\or
avril\or mailor juin\or juillet\or
ao\"ut\or septembre\or octobre\or

TUGboat, Volume 16 (1995), No. 1

novembre\or d\’ecembre\fi
\space\number\year}

}

A

% and so on for the other languages

%

With a BTEX2.09 document you can start this way:
\documentstyle{book}
\Lang{french}\setcaptions{french}
\begin{document}

\end{document}

The language selection macros and the caption def-
inition commands could also be incorporated into
hyphen.cfg for WTEX 2¢, and into lhyphen.tex for
IXTEX2.09, so that they remain available with any
document type and you need not specify a partic-
ular option or package every time you start a new
document.

6.3 Style selection

If you want your composition style to be correct, all
the way down to respecting the typographic tradi-
tions of another country, then you should rely com-
pletely on the babel macros.

The most apparent differences consist in these
points:

1. In France (and perhaps in some other countries)
French spacing is normally used; French spac-
ing leaves the same amount of white space af-
ter all punctuation marks, but leaves some thin
space before the “tall” punctuation marks such
as the colon and semicolon, the question and
exclamation marks, the parentheses,'? the quo-
tation marks; such spaces cannot split at the
end of the line. All these punctuation marks
must be made active in text mode so that they
introduce the right amount of white space, or,
conversely gobble extra white space.

2. The quotation marks are the most variable in
different countries; in the US high quotation
marks with the shape of normal or reversed
commas are used; in France and many other
countries guillemets are used; in Italy we use
both types. In some countries open quotation
marks are identical to closed quotation marks
but are lowered; in other countries they are re-
versed, that is left quotation marks are used for
closing a quotation instead of opening it. And
so it goes.

All these marks are present in the extended
fonts, although in the em fonts the guillemets

12 The thin white space goes after the open parenthesis.

29

are far from optimal; dc fonts and PostScript

fonts have perfect shapes. But in any case suit-

able macros must be set up correctly in order
to insert the proper quotation marks.

3. Ordinal numbers are another point of differ-
ence; in some countries a digit is immediately
followed by the desinence or the final letter of
the corresponding spelled-out ordinal; in other
countries this literal ending is separated by a
period; in yet other countries this ending is set
as an exponent (sometimes underlined). Flex-
ive languages may have different endings for
masculine and feminine, singular and plural.

Elsewhere, ordinals are expressed by roman
numerals; the lowercase roman letters are cus-
tomary in English, and this habit has gained
wide acceptance in many places, while good
style in many countries requires the use of up-
percase roman letters only, possibly from a small
caps font.

For these sorts of style problems, don’t do it
the do-it-yourself way; it’s too difficult (unless you
are a book connoisseur, of course). It’s better to
rely on the babel package, which, although it was
created and is maintained by one man, J. Braams,
benefits from continuing suggestions and construc-
tive criticism by all members of the TEX community,
with the result that the package is constantly being
upgraded and always becoming better.

7 Conclusion

This long tutorial on multilanguage typesetting has
tried to focus on some of the problems concerning
setting texts in different languages by means of a
single program, TEX or ITEX. Configuring the pro-
gram to handle several languages is not that diffi-
cult, but it does require patience, good knowledge
of the software, a long week-end. . . But when you’ve
set up the program the proper way, you will enjoy
it much more than before.

References

[1] Beccari C., Oprea R., Tulei E., “How to make a
foreign language pattern file: Romanian”, TUG-
boat, 16(1):31-42, March 1995.

[2] Braams J., “babel, a multilingual style-option
system for use with IYTEX standard document
styles”, TUGboat, 12(2):291-301, June 1991.
Update: TUGboat 14(1):60-62, April 1993.

[3] Goossens M., Mittelbach F., Samarin A., The
BTEX Companion, Addison-Wesley, Reading,
Mass., 1994.

[4] Knuth D.E., The TgXbook, Addison-Wesley,
Reading, Mass., 1990.

30 TUGboat, Volume 16 (1995), No. 1

[5] Lamport L., BTEX A Document Preparation
System, Addison-Wesley, Reading, Mass., 1986.
Second edition, dealing with IATEX 2¢, 1994.

[6] Sojka P., Sevecek P., “Hyphenation in TEX
— Quo Vadis?”, Proceedings of the FEighth
European TgX Conference (Sept. 26-30, 1994,
Gdansk, Poland), 59-68.

¢ Claudio Beccari
Dipartimento di Elettronica
Politecnico di Torino
Turin, Italy
Email: beccari@polito.it

