TUGboat, Volume 16 (1995), No. 1

Software & Tools

Making MakeTeXPK safer for UNIX
installations

Michal Jaegermann

Abstract

Leaving directories open for anybody in the world to
write to, in order to ensure that MakeTeXPK will work,
is often a security concern. This note describes how to
avoid that on UNIX systems without losing functionality.

— — % — —

If you run TEX on UNIX, or any other UNIX-
like system, and you are using a very convenient and
popular setup with automatic bitmap generation,
then you’ll undoubtedly notice that this requires di-
rectories with ‘write’ permissions to everybody. In
theory, this is not much different than having your
/tmp directory open that way. In practice, though,
especially when your programs are compiled with
the kpathsea library and you have multiple unpro-
tected font directories, this may cause substantial
security and administrative headaches. An option
to create automatically all bitmaps in one directory
used only for that purpose, and to move them later
by hand after careful examination to final locations,
is not very practical if you serve multiple printers
with different characteristics and is always unattrac-
tive to busy system administrators.

A first, but rather feeble line of defense, if your
variant of UNIX supports it, is to set the ‘sticky’
bit on the directories in question like this: chmod at
pk+. That way files can be removed or overwritten
only by their owner(s). Unfortunately this does not
prevent a “denial of service” attack. For example,
a perpetrator may fill up directories with garbage
such as empty files with expected names thus pre-
venting later generation of required bitmaps. The
above is just a prank, without lasting long-term con-
sequences, but repeated often enough it may turn
into a major nuisance. There are other, more in-
sidious possible threats, which do occur in practice,
especially when an attacker comes over a network
using compromised legitimate accounts.

If you ever even thought of running MakeTeXPK
“suid” (that means, in a mode which gives a pro-
gram all privileges of its owner) you should drop the
idea immediately, especially if MakeTeXPK is owned
by root. MakeTeXPK is a shell script and for many
reasons running shell scripts in “suid” mode is one of

the biggest security holes you can think of. Modern
UNIX kernels usually simply disable “suid” scripts,
but even if they are permitted on your system, avoid
using them. Problems with “world writable” direc-
tories pale in comparison.

Fortunately, there are safer approaches. Aslong
as you have a compiler and an editor, MakeTeXPK
and relatives (MakeTeXTFM, MakeTEXMF, ...) may be
executed indirectly by a small compiled “wrapper”
program and this latter program can be safely made
“suid”.

The notes below describe the steps leading to
such a modification. Due to assorted variations in
TEX distributions and installations it is highly un-
likely that they will work for you literally as given —
unless you happen to run a very similar system. To
make details easier to follow they will be shown for
one particular distribution (teTeX, version 0.2, for
Linux). This is only an example but it should give
an idea how to proceed in other cases. Modifica-
tions should be rather straightforward. There are
also possible variations in UNIX behaviour. See, for
example, the Solaris note below.

It goes without saying that you need root ac-
cess for all (okay, most) of these steps.

e Create new user account, say tex, on your sys-
tem and include it in some innocuous group,
e.g., tex.

The only purpose of this “user” will be to own com-
mon TEX files. You may already have some suitable
group, such as nogroup or nobody, so instead you
may include your new user there.

e Give the tex account /bin/false for a login
shell and disable password by putting * in the
corresponding field. Home directory is not ter-
ribly important. Nobody will ever be logging
into this account.

The completed entry in the password file will look
something like this:

tex:*:117:65535:0wner of TeX files:

/usr/local/tex:/bin/false

e Do touch /usr/spool/mail/tex to create an
empty file. This action closes a loophole in some
mail delivery programs. You may find the file
already in place, made by some system admin-
istration utility. Change owner and group of
this file to those of root (chown root:root /
usr/spool/mail/tex) and also remove all read
and write permissions on it (chmod 000 /usr/
spool/mail/tex).

e Make sure that MakeTeXPK, and similar scripts
you want to execute the same way, are not in

10

your $PATH, or at least not earlier than the in-
tended location of your “wrapper” program(s).
Original scripts will not be called directly, how-
ever, the “wrapper” program will “inherit” their
names thus presenting the same interface to
users and other programs.

Any convenient location will do for scripts, but if
your system conforms to the TEX Directory Struc-
ture, then a subdirectory of $TEXMFROOT will be a
logical place. For the particular teTeX distribution,
version 0.2, it is enough to delete links in a di-
rectory /usr/local/bin. Real scripts MakeTeXPX,
MakeTeXMF, and MakeTeXTFM reside in /usr/local/
tex/scripts-0.2/bin/ and may be left there.

e Edit all scripts in question to supply absolute
paths to all executables. Don’t forget to per-
form this task in other scripts which may be
called by our MakeTEX. .. script (append_db in
the teTeX distribution). Change the mode used
when creating new files to 444 and to 755 for
directories.

A proper way to do this is to start a script with a
series of shell variable definitions similar to
MF="/usr/local/bin/mf"

and replace all later occurrences of mf in the script
by $MF. That way, if you later move your METAFONT
executables to some other place, script editing will
be limited to one place; similarly for other programs.
Absolute locations are required since, for security
reasons, we will limit $PATH only to "/bin:/usr/
bin". This means that in theory you may leave
things like test, echo or rm alone. In the latter
case, for “dangerous” commands like rm -f, it is
still a good idea to replace them with definitions
similar to RM="/bin/rm -f" to get better control of
what you are really executing.

As a side effect this keeps user-aliased or re-
designed versions of these commands from putting
out unexpected and unwanted text or hanging be-
cause of a need for tty input as in the case of the
common and usually desirable alias of rm to rm -i.
The unplanned appearance of extraneous text on
stdout is one of the most common reasons for the
MakeTeXPK to fail on its first pass.

Depending on your level of mistrust, you may
use a similar approach to echo and test as well, but
in the sample files, I have chosen to be more relaxed.
Moreover, they may be “built-ins” in your shell.

e Edit sample source given in the appendix to
adjust it to your system and compile.

e Install results of the compilation somewhere in
your $PATH. The directory /usr/local/bin
is usually a good place. Go there and name

TUGboat, Volume 16 (1995), No. 1

your program MakeTeXPK. Change its ownership
and group to that of user tex by typing chmod
tex:tex MakeTeXPK. (Depending on your vari-
ant of UNIX you may have to use a dot in-
stead of a colon to separate the user and the
group name, or you may have to do that in two
steps, using also another command, chgrp, to
accomplish the above. Use the group to which
you assigned your tex user. This is only an
example). The program needs “execute” and
“set uid” privileges (chmod 4755 MakeTeXPK).
Also for your other MakeTeX. . . scripts, provide
corresponding “call points” with their names
via file links (1n MakeTeXPK MakeTeXTFM; ln
MakeTeXPK MakeTeXMF).

Solaris note: Passing ownership privileges to a
subprocess, as illustrated above, works for Linux and
other assorted UNIX systems. Still, I am informed
by Ulrik Vieth (vieth@thphy.uni-duesseldorf
.de), that on Solaris systems this happens only when
the wrapper is “suid” and owned by root. There-
fore a

setuid(geteuid());

line from a sample source will not work as intended
(either the call will fail or the subprocess will not be
owned by the tex account). One should instead set
explicitly TEXGROUP and TEXUSER of a type uid_t
and include a replacement code like this

setgid (TEXGROUP) ;
setuid (TEXUSER) ;

in the given order — to achieve the same effect. This
may apply as well to other UNIX variants. Caveat
emptor!

e Change ownership of all your font files to tex.
Actually you may make tex an owner of whole
directory trees in TEX system files. Assuming
that all you want to assign that way is in a
tree rooted in texmf, you may accomplish that
by doing chown -R tex:tex texmf. If your
chown does not understand the -R (recursive)
flag, then something similar to the following
should do:

find texmf -print | xargs -nl chown tex:tex

See also chown remarks in the previous item.

e Remove “write” permissions for anybody but
owner on all directories in question. A com-
mand like the following one should accomplish
that task (be careful, you do not want to change
non-directories):

find texmf -type d -print | xargs -nl chmod 755

TUGboat, Volume 16 (1995), No. 1

You are done. Now, whenever MakeTeXPK is called
directly from a command line or by some other pro-
gram like dvips, your “wrapper” program will be
executed instead. It will call, in turn, a “real” script
but one already with the id of the owner of your font
directories.

Concluding remarks

The presented solution is not entirely without prob-
lems. Due to “out of sync” ownership and permis-
sions, kpathsea library functions may fail, depend-
ing on the exact moment this happened, when trying
to write the missfont.log file in cases when font-
making was not successful. This can likely be hard
to resolve without modifying the library itself. If you
do encounter this problem then a simple workaround
would be to create an empty missfont.log, owned
by you, and to give it write permissions for every-
body (touch missfont.log; chmod a+w missfont
.log). When you are done simply change permis-
sions back to the original state.

Another possible trouble spot will occur when
you have “private” fonts because you are conduct-
ing some font-making experiments, for example, and
you would like to have bitmaps created in places
owned by you and not by tex (otherwise you will
not be able to remove the results of failed tests). In
this case make yourself a private, executable copy of
the MakeTeXPK script, edit it accordingly and make
sure that it can be found earlier in your $PATH than
the system program with the same name. You will
not able to deposit anything in system directories,
but this is most likely what you want anyway. Your
script does not have to run “suid”, so repeating all
of the above is not necessary.

Last but not least, there is another possible
approach to the whole problem. There are only a
few commands (mv, mkdir, chmod) which have to
modify TEX “system” directories. Instead of run-
ning the whole MakeTeX in “suid” mode you may
write special versions (texmv, texmkdir, texchmod)
of these, which would operate “suid” tex, and use
them as replacements in the MakeTeXPK script when-
ever needed. Whether this is a better idea depends
entirely on your situation and security requirements.

¢ Michal Jaegermann
10923 36 Avenue
Edmonton, Alberta,
Canada T6J 0B7
Email: michal@ellpspace.math.
ualberta.ca,\\ michal@
gortel.phys.ualberta.ca

11

Appendix — Sample wrapper program code

Sample C code for a wrapper program for teTeX,
version 0.2, Linux distribution. Adapt with cau-
tion!

[/ FFA A A AR KA KA KA KA AR KA KKK A KKK K [
/* */
/* Executable wrapper for MakeTeX... */
/* programs. Calls its namesake from */

/* TOOLS directory. Provide links with */
/* different names to make it multipurpose */
/* */
/* Michal Jaegermann, Feb 11 1995 */
/* */

/***/

#include <unistd.h>
#include <string.h>
#include <stdlib.h>

#define VERSION_S "0.2"
/*
* If you do not have an ANSI compiler you may
* use an "explicit" single string in TOOLS
* define; this is just a way to make future
* modifications easier.
*/
#define TOOLS "/usr/local/tex/scripts-" \
VERSION_S "/bin/"
#define ASIZE 120

/%
* This is a list of names under which we are
* willing to execute. It must be NULL
* terminated.
*/
const char *accepted[] = {
"MakeTeXPK",
"MakeTeXTFM",
"MakeTeXMF",
NULL
};

int
main(int argc, char *xargv)
{
char doer[ASIZE] = TOOLS;
int idx = 0;
/*
* If your compiler is broken and the
* construction below does not work then
* "tail = strchr(doer, ’\0’);", or
* equivalent, will serve as well.
*/
char *tail = doer + (sizeof(TOOLS) - 1);
char *start;

/* find our base name */

start = (start = strrchr(argv([0], ’/’)) 7
(start + 1) : argv[0];
/* check if we are on the list */

while (1) {
if (NULL == accepted[idx])
exit(1); /* not on the list */

if (0 == strcmp(accepted[idx], start))
break; /* this is ours */
idx += 1;
}
/*
* Set pretty bland, but hopefuly secure
* environment; we intend to run this
* program ’suid’.

*/

setenv("PATH", "/bin:/usr/bin", 1);
setenv("IFS", " ", 1);

/*

* You may want/need some other calls to

*x setenv(). For example, if your system
* has an environment variable pointing to
* shared libraries it should be set here.

*/
/*

Attach our name at the end of a
directory string. This assumes that
real scripts in TOOLS directory will
be called by their own names (but
indirectly)

* X ¥ X X

*/
strcpy(tail, start);

/*
* Get the privileges of the owner of this
* program, then execute the script and
* return its results
*/
setuid(geteuid());
return execv(doer, argv);

TUGboat, Volume 16 (1995), No. 1

