
Teaching CS/1 Courses in a Literate Manner

Bart Childs
Department of Computer Science
Texas A&M University
College Station, TX
USA
Email: bart@cs.tamu.edu

Deborah Dunn
Department of Computer Science
Texas A&M University
College Station, TX
USA
Email: debbie@cs.tamu.edu

William Lively
Department of Computer Science
Texas A&M University
College Station, TX
USA
Email: lively@cs.tamu.edu

Abstract

The first course in Computer Science is often called ‘CS/1’ based upon the desig-
nation in curriculum recommendations. The content of CS/1 courses often shows
that it should include a significant amount of documentation, problem solving,
problem formulation, . . . Experience has shown that instructors often slide into
almost total emphasis on language syntax. Ask the student who has taken such
a class as to its content and the answer usually comes back like “It was a C (or
Pascal or . . . ) course.”

We will report on an experiment of teaching the honors section of our first
course at Texas A&M University using Knuth’s WEB. The primary advantage we
saw in the use of the system is that the WEB system would enable the progression
through the problem solving methodology by editing and extending the same
document.

Our analysis of data obtained by tracking the students in later semesters
shows significant benefit from the use of literate programming. We found little
or no problem using emacs, TEX, WEB, and requiring documentation after the
initial scares in the course. We will describe how we taught the course, present
performance statistics, and outline our recommendations for pursuit of similar
goals. Finally, we will outline our longer range goals with the use of similar
systems.

Introduction

We embarked on a project to teach the first com-
puter science course (CS/1) (Denning, Comer, Gries,
Mulder, Tucker, Turner, and Young, 1989; Tucker,
1990) using literate programming (Knuth, 1984) and
still covering all the topics covered in the usual sec-

tions (Dunn, 1995). The parallel sections used Turbo
Pascal and its supporting environment.

CPSC 110 is entitled “Programming I”. The
catalog description does not specify the languages
to be used, but we normally use English and Pas-
cal. A few years ago we tried C instead of Pascal

300 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Teaching CS/1 Courses in a Literate Manner

but have never tried any substitutes for English ex-
cept TEXian (although some students may argue the
point). The reasons that the C experiment were a
failure will not be addressed in this paper.

An inherent part of these CS/1 courses is to
develop the student’s skills in problem solving. In-
deed, in many course outlines, that is part of the
title and the main emphasis in the description of
the course contents. A problem solving methodol-
ogy is often stated in CS/1 courses which generally
has steps like:

1. State the problem completely!

2. Develop all necessary assumptions.

3. Develop an algorithm and test data set(s).

4. Code the problem.

5. Analyze the results (and iterate?).

Literate programming is a style in which the
design of the code reflects that the human reader
is as important as the machine reader. The human
reader is often associated with the expensive process
of maintenance and the machine reader is the com-
piler/interpreter. Literate programming is a pro-
cess which should lead to more carefully constructed
programs with better, relevant ‘systems’ documen-
tation. We think that the first sentence in this para-
graph should be particularly relevant to students be-
cause the human reader (the one who assigns grades)
is obviously the most important reader.

The features of literate programming that gave
us the confidence to expect positive results are:

1. top-down and bottom-up programming since it
is a structured pseudo-code,

2. programming in small sections where most sec-
tions of code and documentation (section in this
use is similar to a paragraph in prose) are ap-
proximately a screen or less of source,

3. typeset documentation (after all, Knuth was
rewriting TEX),

4. pretty-printed code where the keywords are in
bold, user supplied names in italics, . . . , and

5. extensive reading aids are automatically gener-
ated including a table of contents and index.

We offer these comments about the above list
We repeat the item numbers for clarity:

1. these topics are usual in CS/1 books but they
generally lack the integration to make them re-
ally effective for the student,

2. divide and conquer is also espoused but the
larger examples that are furnished in many
books forsake the principle,

3. it may be argued that this is ‘feeding pearls to
the swine’ but we like the cognitive emphasis
that comes from logical substitution of words
for key-words . . . ,

4. the fact that weave breaks lines based on its
parsing is another cognitive reinforcement,

5. encouraging/requiring students to review their
programs as documents makes them think
about readability.

Problems with ‘Problem Solving’

Researchers have found that many of the difficulties
experienced by novice programmers are not a result
of misunderstanding the language constructs, but a
result of problems with “putting the pieces together”
(Spohrer and Soloway, 1986). Thus, the process by
which programs (and documentation) are developed
should be examined.

Linn and Clancy (1992) state that a good pro-
grammer needs both a knowledge of the program-
ming language and good problem solving skills. In-
troductory courses tend to emphasize programming;
that is, the product of good design and develop-
ment. Although this is obviously an important as-
pect of programming, the real problems exist in
the design of problem solutions (Linn, Sloane, and
Clancy, 1987). Few textbooks used in the introduc-
tory courses actually emphasize teaching the stu-
dent how to develop good design solutions (Linn and
Clancy, 1992), regardless of the university catalog
description.

Linn, Sloane, and Clancy (1987) found, in teach-
ing program design, that teachers who discuss how
they solve problems, including their interpretation
of the problem statement, are more effective than
those who present just the subject matter. Studies
have shown that explicit teaching of problem solv-
ing strategies greatly influences learning (Linn and
Dalbey, 1985; Linn, Sloane, and Clancy, 1987).

Soloway (1986) states that goals and plans are
the two key components in the task of representing
problems and solutions to a problem. Problem solv-
ing, and hence learning to program, requires that
students learn to construct mechanisms and expla-
nations for those mechanisms. Students are led to
believe that programs are the output from the pro-
gramming process. Rather, they must be made to
understand that programming is a design discipline.
Instead of the programming process being viewed as
a program, it should be viewed as “an artifact that
performs some desired function” (Soloway, 1986).

Soloway and colleagues (Soloway, Ehrlich,
Bonar, and Greenspan, 1982; Spohrer and Soloway,

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 301



Bart Childs, Deborah Dunn and William Lively

1986) have studied bugs – errors in programs– and
misconceptions –misunderstanding in the minds of
novice programmers– in an attempt to identify the
needs of novice programmers by understanding the
kinds of mistakes they are likely to make. Be-
cause there are many ways to solve a given prob-
lem, bugs are identified using a goal/plan analysis.
Goals are what is to be accomplished and plans are
those stereotypical sections of code that are used
to achieve the goal. Thus, bugs are the differences
between the correct plans and the incorrect imple-
mentations used by novices (Spohrer and Soloway,
1986).

Soloway believes a program has two audiences
(Soloway, 1986), as shown in Figure 1. Soloway uses
this to conclude: “learning to program amounts to
learning how to construct mechanisms and how to
construct explanations” (Soloway, 1986).

The Audiences for a Program
♦The computer, which, based on instructions

is a mechanism for how a problem is solved.
♦The human reader, who needs an expla-

nation for why the program solves the
problem.

Figure 1: Program Audience

“Are You Crazy!?”

The title of this section was frequently shouted at
us because, everybody in the world knows:

• emacs is impossible to learn and use,

• TEX is impossible to learn,

• WEB’s steps make it too many steps to learn, and

• there is a reason for all those Aggie jokes.

and therefore our project was doomed!
Well, we are Aggies and we decided to try teach-

ing CS/1 using all those horrible things. We exer-
cised a little judgement and did it on the smallest
sections of the course, namely the honors sections.

The next four subsections are the things that we
did that are different from our usual CS/1 course.
They are presented in the order that the students
saw them.

Testing The first meeting of the laboratory in-
cluded some quizzes that did not affect the grade but
were done to determine the students’ backgrounds.

During the semester there were some different
questions on tests that addressed problem solving
more than usual.

Introductory computer science students have
difficulty viewing programming as a means by which

we solve problems. Computer science instruction,
at the introductory level, tends to emphasize pro-
gramming, which is the product of problem solution
design (Linn and Clancy, 1992). Most textbooks
give examples of programs, rather than demonstrate
the method by which the given solution was derived
(Linn and Clancy, 1992).

It has been said the use of literate program-
ming allows us to associate a given design step with
its consequences, that is, the resulting code (van
Ammers, 1993). Students should be taught that
problem solution design leads directly to the result,
which is the program. The use of literate program-
ming encourages the inclusion of the design step in
the source of the resulting program.

The results of the research were used to deter-
mine whether improvements in problem solving and
programming skills can be attributed to the use of
literate programming. An evaluation of the teaching
methodology was made based on several factors:

1. Completion of a pre-test which was developed
to indicate the students’ problem solving ability
and computing background as they entered the
course.

2. Periodic tests which were designed to indicate
the change in problem solving ability and pro-
gramming skills.

3. An evaluation of the programs and documen-
tation produced and the consistency between
code and its corresponding documentation.

4. Completion of a post-test which indicates the
students’ ability to solve problems and write
programs at the end of the test period.

5. An evaluation of the students’ performance in
the subsequent Programming II course.

6. An evaluation of the students’ performance in
the subsequent Data Structures course.

The results were expected to indicate an
increase in problem solving ability over time.
Programmers who use the literate programming
paradigm were expected to be more problem-
oriented rather than program-oriented.

Emacs and web-mode We decided to use Mark
Motl’s web-mode environment (Cameron and Rosen-
blatt, 1991; Motl, 1990). This keeps the neophyte
(and expert) user from making a number of sim-
ple mistakes that are easily committed. It relieves
the user of knowing how and where to insert that
necessary TEX mumbo-jumbo that WEBs start with;
it ensures matched @< and @> pairs (complete with
the “=” when needed); and allows selection of ex-
isting section names (rather than having to type it
identically).

302 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Teaching CS/1 Courses in a Literate Manner

At a later time, it will help them in other ways
by allowing navigation in terms of WEB terminology.

Emacs was introduced with a one page hand-
out and a modified version of the ‘Emacs Reference
Card’. The reference card is printed on 8.5′′ × 11′′

paper, two sided, with three panels on each side.
The modifications were to remove some of the more
advanced features of Emacs and replace them with
web-mode features. Emacs was covered in one hour
of laboratory time with some questions and answers
at the start of subsequent periods.

Knuth’s WEB The subsequent courses in our cur-
riculum are based upon having some use of the Pas-
cal language in CS/1. Thus, we selected a cur-
rent implementation of Knuth’s original WEB (Knuth,
1983), which is Pascal based.

The current implementation means that we did
not convert the output of tangle to all upper case,
shorten variable names, nor remove underscores.
The resulting output of tangle is still relatively “un-
fit for human consumption”.

The rules of WEB were covered by the use of a
five page “memo” from the WEB distribution, Knuth’s
“WEB User’s Manual”.

How The Course Was Taught The focus of the
semester was on problem solving. The students were
taught Pascal syntax, but the emphasis was on prob-
lem solving using the WEB style of programming. A
portion of the class was spent on learning (and eval-
uating) problem solving skills for the design and
development of programs. One method by which
problem solving was taught was by example. The
students were given several examples of how to de-
sign solutions to a problem. This technique of prob-
lem solving with examples was used throughout the
semester as the difficulty of the problems increased.

An important part of learning problem solving
was to practice iteration in the design of a solution.
An iteration of the students’ problem solution was
evaluated by the teaching assistant. The students
received feedback regarding their iterative process,
such as whether they were approaching the details
of the problem at an acceptable level and whether
they were considering all aspects of the problem.

The final measurement in the design and devel-
opment phase was made upon completion of the pro-
gram assignment. Each program was examined and
an evaluation made as to the correctness of the so-
lution, the consistency of documentation and code,
and the quality of the documentation. The intent
was to determine if the documentation portion of a
section was, in fact, an explanation of the code.

Do All Labs Twice We were particularly fortu-
nate that when the curriculum was revised and a
formal laboratory was added, the professor in charge
decided that the laboratory meeting would not be
one extended period, but two one hour periods with
a day in between.

We used this to great advantage to require that
each lab to be turned in for grading twice:

• Do the first three parts of the problem solving
procedure outlined above without any code!
We wanted the student to document that the
problem was understood! WEB can be consid-
ered to be a structured system of pseudo-code
and is therefore ideal for this purpose.

• The 47 hour lapse between laboratory meet-
ings enabled the grading of those important first
steps of problem solving to assist the student in
understanding what is to be converted to code.

Initial Reactions and Thoughts

Students in first year courses are often rather intim-
idated but generally ready for any challenges that
might arise. Of course we have that same experi-
ence. It is interesting to note those that were not
‘the usual’.

CS/1 courses will often have a number of stu-
dents who have had one to five years of computer
experience, much of it unstructured. We certainly
had our share.

There were a number of students who had at
least one year of the use of Turbo Pascal in sec-
ondary school and who had obviously used it signif-
icantly outside that educational environment. Test-
ing showed these students to have two general char-
acteristics:

• a lack of understanding of how to state a prob-
lem;

• a great desire to do nothing other than use
Turbo Pascal.

It was also common for these students to react in
rather vigorous ways. We think that it is a charac-
teristic of those in the programming professions to
resist change unless it is change that they tried to
start.

Nearly half the class indicated no programming
background from their secondary training. (They
may have had word processing, spread sheets, and
computer math; but they indicated no program-
ming. Further, they were frequently not CS majors.)

Thirty-eight students enrolled in the honors
class during the Fall 1993 semester. The adminis-
tration of a pre-test provided information regarding

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 303



Bart Childs, Deborah Dunn and William Lively

the general background and experience of the partic-
ipants. The purpose of the pre-test was to establish
that these were, in fact, novice programmers. The
results of the problem solving portion of the test
provided a basis for measuring the initial problem
solving skills of the participants.

The students entered the course with a vari-
ety of backgrounds in computer science. Only one
student had never taken a computer science course
and one student had taken only a computer liter-
acy/computer history course. Few of the students
had any background in computer science at the col-
lege level. Table 1 is a summary of the college level
experience of the participants.

Table 1: Unusual or Exceptional Computer
Experience of Subjects

Count Exceptional Experience
1 C course at a Junior College
4 University level Fortran course

The majority of the students had some type of
computer science class in high school. Table 2 is a
summary of the high school experience of the par-
ticipants. Although there were thirty-eight students
enrolled in the class, many of the students had ex-
perience in more than one of the areas listed.

Table 2: High School Computer Experience of
Subjects

Count Computer Experience
8 Microcomputer applications,

typically including DOS, WordPerfect,
Lotus 1-2-3, and/or dBase

8 Computer Math, which may or may not
include some experience in
BASIC and/or Pascal

12 BASIC course
21 One or more semesters of Pascal

Despite the appearance of having a significant
background in computers, these students must still
be considered novice programmers. Although a sig-
nificant number had some background in Pascal pro-
gramming, fifteen felt they could program without
the use of a reference manual. Even so, their knowl-
edge of advanced Pascal constructs cannot be con-
sidered to be comprehensive. None of the students
had experience as a professional programmer.

One student had limited experience with the
emacs editor. The remaining thirty-seven had no

experience with emacs. None of the students had
heard of WEB programming; therefore, none of the
test study participants had previous experience with
literate programming.

The pre-test included a question designed to
provide some measurement of the students’ initial
problem solving ability. The students were asked
to state the steps necessary to solve a given prob-
lem. They were instructed to give detailed answers
in complete English sentences and paragraphs. The
problem was stated as follows:

You are the manager of Aggie Lawn Service.
Alvin is your new employee. You must explain to
Alvin the process of calculating an estimate for a
potential customer. (Of course, in the future this
may use a hand-held computer.) The quote will
include a cost statement and estimated time to
complete the job.

This estimate is based upon the area of the lawn
and a standard (confidential) charge per square
foot. Grass can be cut at the rate of 2 square feet
per second. You may assume that a rectangular
house is situated in a rectangular yard. Give the
details of the process and itemize all assumptions
you have made.

It is difficult to measure a person’s problem
solving ability. For example, if it is easily seen that
the problem is a basic input-process-output prob-
lem, then each subject should receive points if the
necessary inputs and the required outputs were de-
scribed. In terms of the processing, many students
felt it was sufficient to merely give the formula for
the area of a rectangle. They then subtracted the
area of the house from the area of the lawn (some-
times shown, again, as a formula).

In general, most of the students were able to
give an answer which solved the problem. However,
several exceptions were noted as follows:

• some participants simply gave the necessary for-
mula(s), omitting any description of the inputs
and/or outputs;

• some participants failed to describe their solu-
tion using complete English sentences and para-
graphs;

• some participants described the necessary in-
puts and the required processing, but failed to
produce a result; and

• some participants made and described addi-
tional assumptions or expressed a need for ad-
ditional information regarding items such as
driveways, sidewalks, trees, flower beds, etc.

304 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Teaching CS/1 Courses in a Literate Manner

The students’ solutions were scored based on
their ability to solve the problem. Table 3 is a sum-
mary of the minimal set of problem solving issues
that should have been addressed or noted, with their
associated point value.

Table 3: Problem Solving Issues

Points Problem Solving Issue
2 Obtain dimensions of yard
2 Obtain dimensions of house
2 Calculate area for house and yard
2 Calculate area for lawn to be cut
3 Calculate total cost to cut the lawn
3 Calculate the time for completion
2 Convert the time to minutes or hours
2 Produce the final cost for cutting lawn
2 Produce the time for completion

A final score of twenty indicates that the stu-
dent adequately described the required inputs, cal-
culations, and necessary outputs. A student lost
points for omitting information or not describing the
process in sentence form. A student could earn ex-
tra points by addressing issues that were not explic-
itly mentioned, but might be a factor in solving the
problem.

Table 4: Initial Problem Solving Ability

Percent of
Students Problem Solving Ability

31.6 Excellent (18+ points)
15.8 Above average (16-17 points)
21.1 Average (14-15 points)
13.2 Below average (12-13 points)
18.4 Poor (below 12 points)

Table 4 is a summary of the results of measuring
the students’ initial problem solving ability. There
are 47.4% above and only 31.6% below average. The
grade of “C” is described as average, yet it is rare
that a class will have as many D’s and F’s as A’s
and B’s. The distribution of the data in Table 4
is consistent with grade distributions for the CS/1
course over the last few years.

Results

We feel the background of the students is not atyp-
ical of many CS/1 type courses. The majority of
the class are majoring in computer science, but a
significant number are using the course as a minor

elective, a basis for deciding if they want CS as a
major, or other reasons.

Some results will be presented with this diver-
sity as an identifying factor. Results will also reflect
the tracking of the students in subsequent courses
and differences between other semesters of the same
course.

Performance during the semester The actual
scores received by the test group on the problem
solving portion of each test are included in Ap-
pendix D. The mean of the scores for the problem
solving portion of each test are shown in Table 5.

Table 5: Mean Problem Solving Scores – Tests
(Percent)

Test Overall Majors Non-Majors
Pre-Test 72.6 74.0 68.3
Test 1 78.8 79.7 76.1
Test 2 66.6 65.7 71.6
Test 3 80.9 80.3 82.7
Post-Test 76.6 76.2 77.8

It is difficult to determine whether or not the
problem solving skills for the test group increased
over the course of the semester. The class, as a
whole, experienced a decrease in scores on the sec-
ond test, although there was a greater decrease for
computer science majors. This decrease in scores
for the second test may be attributed to the fact
that the problem for that test was significantly dif-
ferent and more difficult than any of the problems
encountered previously during the lab or on a test.
The scores also decreased on the post-test, or final
exam, as compared to the third test; however, they
still improved as compared to the scores on the pre-
test.

The problem solving scores, as a whole, were
higher on the labs than they were for the exams.
This was to be expected since the problem solving
portion of the lab was not developed under stressful
situations, as in the test-taking scenario. Another
reason for having higher scores in the lab is that
measuring problem solving skills is not something
we are used to doing on a test. It is much easier to
evaluate someone’s problem solving skills developed
through iteration during lab than it is to evaluate
one-time problem solving skills on a test.

Table 6 is a summary of the overall grade dis-
tribution for students completing the CS/1 course
for the subject and comparison classes (in percent
form).

The percentage of students that passed the
CS/1 course was similar for each of the classes. A

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 305



Bart Childs, Deborah Dunn and William Lively

Table 6: Overall Grade Distribution (Percent)

Semester A B C D F
Fall 90-H 20.6 50.0 14.7 5.9 8.8
Fall 92-H 51.3 20.5 20.5 2.6 5.1
Fall 93-H 24.3 40.5 21.6 5.4 8.1

grade of “A”, “B”, or “C” is considered passing.
The Fall 1990 and the Fall 1992 comparison groups
had 85.3% and 92.3% of the students, respectively,
pass the course. The test group had 86.4% of the
students pass the course.

Performance in CS/2 Approximately 65-70% of
the honors CS/1 students enrolled in the CS/2 course
(73.5% of the Fall 1990 class, 66.7% of the Fall 1992
class, and 67.6% of the Fall 1993 class).

Table 7 is a summary of the overall grade dis-
tribution for the subsequent CS/2 course for those
students in the subject and comparison classes in
percent form.

Table 7: Overall CS/2 Grade Distribution
(Percent)

Semester A B C D F
Fall 90-H 68.0 28.0 4.0 0.0 0.0
Fall 92-H 73.1 19.2 7.7 0.0 0.0
Fall 93-H 52.0 40.0 4.0 0.0 4.0

At first glance it appears that the students in
the Fall 1990 honors and the Fall 1992 comparison
classes performed much better than the students in
the test study group in the CS/2 class. Both of
the comparison groups had a higher percentage of
students make “A”s in the subsequent course. How-
ever, all of the classes had over 90% of the students
make an “A” or a “B” in the course.

Table 8 is a comparison of the average grades
in the CS/1 class and the subsequent CS/2 class
for those students in the subject and comparison
classes. The grade point shown is out of a total
possible grade of 4.0. The Mann-Whitney U-test
was used to conclude that there is not a significant
difference in average grade point ratio for any of the
groups.

This may still not be a good representation of
how the students in the subject and comparison
classes performed in the subsequent course. These
grades can be evaluated in terms of the particular
section and semester the class was taken and the
instructor that taught the class.

Table 9 is a summary of the average difference
in grades between the subject class, the comparison

Table 8: Average Grade for CS/1 and CS/2
Courses

Semester CS/1 CS/2
Fall 90-H 2.676 3.640
Fall 92-H 3.103 3.654
Fall 93-H 2.676 3.360

classes, and the other CS/2 classes. This summary
is itemized by section, instructor, and semester.

Table 9: Average Difference in Grade for CS/2
Classes

Semester Difference Difference Difference
Semester in Section in Instr. in Semester
Fall 90-H +0.02 +0.01 +0.01
Fall 92-H +0.03 +0.01 +0.01
Fall 93-H +0.06 +0.05 +0.09

With these figures, it is shown that the stu-
dents in the CS/1 comparison classes scored some-
what higher than their peers in the same section of
the CS/2 course. However, those students in the
CS/1 test group scored even higher than their peers
in the same sections of the CS/2 course. This data
was also analyzed including the CS/2 instructors
and semester. The same results held.

When the performance of the students in the
test study group was compared with the performance
of their peers, it was determined that the students in
the test study group actually scored higher than the
students in the comparison groups (and the other
students) in the CS/2 course.

Performance in Data Structures Approxi-
mately 45-55% of the honors CS/1 students enrolled
in the Data Structures course (55.9% of the Fall 1990
class, 56.4% of the Fall 1992 class, and 45.9% of the
Fall 1993 class).

Table 10 is a summary of the overall grade dis-
tribution for the Data Structures course for those
students in the subject and comparison classes in
percent form.

Table 10: Overall Data Structures Grade
Distribution (Percent)

Semester A B C D F
Fall 90-H 21.1 63.2 15.8 0.0 0.0
Fall 92-H 50.0 13.6 22.7 9.1 4.5
Fall 93-H 52.9 35.3 11.8 0.0 0.0

306 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Teaching CS/1 Courses in a Literate Manner

Not only did the test study group have a larger
percentage of students make an “A” in the course,
but a larger percentage of students made an “A” or
a “B” in the course.

Table 11 is a comparison of the average grades
in the CS/1 class, the CS/2 class, and the Data
Structures class for those students in the subject and
comparison classes. Again, the grade point shown
is out of a total possible grade of 4.0. Using an un-
paired t-test, with α = 0.10, it was concluded that
there is a significant difference in average grade for
the Data Structures course between the Fall 1993
test group and both the Fall 1990 and the Fall 1992
comparison groups.

Table 11: Average Grade for CS/1, CS/2, and
Data Structures Courses

Semester CS/1 CS/2 DS
Fall 90-H 2.676 3.640 3.053
Fall 92-H 3.103 3.654 2.955
Fall 93-H 2.676 3.360 3.412

A chi-square test of independence was con-
ducted to determine if the grade and CS/1 semester
variables are related (or dependent). The critical
value of X2 for α = 0.10 and degrees of freedom = 8
is 13.36. The computed value, 15.368, exceeds 13.36,
so we conclude that the two variables are dependent.
That is, the proportion of students receiving a par-
ticular grade varies depending on the semester in
which they took CS/1.

When the performance of the students in the
test study group was compared with the performance
of their peers in a course which requires extensive
problem solving skills, it was determined there is a
significant difference in the performance of the stu-
dents in the test study group compared with the per-
formance of the students in the comparison groups.

Too bad that few (if any) were still using lp.

Student Evaluation of CPSC 110 Teaching
Methodology Upon nearing completion of the
CS/1 course, the students were asked to submit a
paper reflecting their feelings and attitudes towards
the WEB programming methodology. It was stressed
that statements made would in no way affect their
grade in the course. This was to be written as a
typical one-page technical note.

Three people evaluated the reaction of the test
subjects. None of the people had prior training in
rating. A rating scale (Meister, 1985) was developed
and the reports were evaluated in order to appraise
the students’ reactions to the WEB programming pro-

cess. The scale consisted of five categories, rated 1-5
and a 0 value that was taken to mean no response.

Below is a summary of the results of the rat-
ing process. The mean of the scores (columns R-1,
. . . , R-3) for each of the three volunteers who rated
are shown in Table 12. Kendall’s coefficient of con-
cordance (Meister, 1985) was used to test agreement
between the ratings. The result was a value of 0.673,
which indicates there was a modest level of agree-
ment between the evaluations of the questionaire re-
sults.

Table 12: Evaluation of Fall 1993 CPSC 110H
Students’ Reactions

Question R-1 R-2 R-3 Overall
1 3.21 2.81 2.52 2.85
2 3.20 1.60 3.25 2.67
3 2.69 2.64 1.87 2.43
4 3.44 3.14 1.67 2.88
5 3.41 3.28 2.90 3.20
6 3.54 2.87 3.57 3.31

The questions and some comments of interpre-
tation were:

1. What was your original reaction to being told
you were going to learn something called WEB?

Although a few of the students were enthusi-
astic about the idea, many were unhappy with
the fact that they were going to be using a
different methodology. Much of the unhappi-
ness was due to the fact that many of the stu-
dents entered the course with prior expectations
about what is taught in the class.

2. What was your expectation of the course?
Most students entered the course under the

impression that CPSC 110H was a course in
Turbo Pascal, despite the course description.

3. What was your reaction to emacs?
Many of the students objected to the use

of the emacs editor. This may be due to
the fact that the user interface is not ex-
tremely user-friendly, especially to the novice
user. The students were required to use prede-
fined keystrokes, rather than pull-down menus.
(This was apparently because the question was
asked. It did not show up on the course evalu-
ation.)

4. What was your reaction to TEX?
Although a minimal amount of TEX knowl-

edge is required, the students seemed to find
the language difficult. Although several exam-
ples were provided, with a variety of TEX com-
mands, they students did not seem to adapt

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 307



Bart Childs, Deborah Dunn and William Lively

well to the use of TEX. Despite the lack of TEX
knowledge, the students seemed to adapt to the
WEB environment. (Same comment?)

5. What was your reaction to WEB programming?

The evaluators of the students’ reaction seem
to believe this response was a bit above average.
The lack of enthusiastic response may have been
due to their overall difficulty in understanding
the WEB process and concepts.

6. What was your reaction to the overall WEB pro-
cess/concepts?

Generally, the students’ understanding was
average to good. Many of the students contin-
ued to have difficulty separating the concepts
of editor, WEB files, TEX commands, etc. Some
seemed overwhelmed in the beginning with hav-
ing to learn more than just ‘a language’.

There were certainly a number of students
who can code but did not catch the ‘big pic-
ture’. Comments like “why document when you
have the code to read” were not uncommon.

For the purposes of table 12, answers to the
questions (except question 2) were ‘not discussed’;
poor; fair; average; good; and excellent, receiving
numeric values of 0, . . . , 5 respectively. The answers
to question 2 varied from ‘unknown ≡ 0’ to ‘Turbo
Pascal ≡ 3’ to ‘Problem Solving and Programming
≡ 5’.

Conclusions

We taught an honors section of a CS/1 course in a
different manner than usual, namely using literate
programming. The students used an editor, a for-
matting system, and a coding style that was new
to all. The students’ performance in subsequent
courses was not hurt and may have been helped
with the different methodology. The results of using
the program development methodology in the CS/1
course indicate that the methodology is successful in
teaching novice programmers good problem solving
skills.

These are the results of the experiment:

• The students showed an increase in their prob-
lem solving skills.

• Those students unfamiliar with the Pascal pro-
gramming language, or any other programming
language, were more successful then those fa-
miliar with Pascal at using the literate pro-
gramming paradigm to capture and document
their problem solving process.

• The students were able to learn the WEB rules,
the web-mode environment, GNU Emacs, and

TEX rules, as well as the Pascal syntax and con-
structs.

• Those students exposed to the program devel-
opment methodology utilizing the literate pro-
gramming paradigm were as successful in the
subsequent CS/2 course as those not exposed
to the methodology.

• Those students exposed to literate program-
ming were significantly more successful in the
Data Structures course than those not exposed
to the methodology.

• The subject program development methodol-
ogy may lead to an improved software devel-
opment process; however, more tests should be
conducted.

Norman Ramsey (author of Spider and
NoWEB) has recently presented a position paper at
an ICSE ’95 workshop entitled “Literate Program-
ming should be a model for Software Engineering
and Programming Languages”, dated March 1995.
While we are in agreement with the obvious philos-
ophy, we are concerned that it is too late because we
have observed first year students are already like the
professionals: “No, I do not want to learn anything
new if I already have some knowledge in the area”.
We think it should appear early in the curriculum
and repeatedly.

Recommendations and Future Use

In teaching a CS/1 course, you can do darned near
anything and succeed. You just have to keep your
eye on the goal, don’t apologize, and push! We have
known of real problems because the professor (as-
signed to the class at the last minute) often is less fa-
miliar with the specifics of ‘Turbo Pascal’ than many
of the students. The lesson from that is “give them a
new challenge”. We feel that there is a real benefit to
the use of literate programming and requiring that
students practice writing, using of pseudo-code, and
documenting their programs. It is a new challenge
to them.

The following is a list of things we wish we had
or recommend to similar projects:

1. It sure would be nice if we have some video
training on how to do some of these things, par-
ticularly simple TEX, emacs, and DOS.

2. Now that we have MetaPost and other drawing
packages, we think that more diagrams should
be included in the first lab attempts.

3. Make students write! Repeat “Make students
write!”

4. This is a natural for “cooperative learning”;
have the students do extensive peer review.

308 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Teaching CS/1 Courses in a Literate Manner

5. It would be easier if we had some tools that
would extract a component of the grade based
upon “user supplied” index entries, long vari-
able names, variable names made of words from
the dictionary, . . . Then the person should add
significant markup from reading the English.

6. Assign some labs that are extensions of previ-
ous work to let them see what maintenance is.
If you have time, let them work on programs
done with and without literate programming.
Otherwise, they will never learn! This can be
difficult in a first course, but should always be
part of later courses.

References

D. Cameron and Rosenblatt, B. Learning GNU
Emacs. O’Reilly & Associates, Inc., Sebastopol,
CA, 1991.

P. J. Denning, Comer, D. E., Gries, D., Mulder,
M. C., Tucker, A., Turner, A. J., and Young,
P. R. “Computing as a discipline”. Communica-
tions of the ACM 32(1), 9–23, 1989.

D. L. B. Dunn. Literate Programming as a Mech-
anism for Improving Problem Solving Skills.
Ph.D. thesis, Texas A&M University, College
Station, TX, 1995.

D. E. Knuth. “The WEB system of structured docu-
mentation”. Stanford Computer Science Report
CS980, Stanford University, Stanford, CA, 1983.

D. E. Knuth. “Literate programming”. Computer
Journal pages 97–111, 1984.

M. C. Linn and Clancy, M. J. “The case for case
studies of programming problems”. Communi-
cations of the ACM 35(3), 121–132, 1992.

M. C. Linn and Dalbey, J. “Cognitive consequences
of programming instruction: Instruction, access,
and ability”. Educational Psychologist 20(4),
191–206, 1985.

M. C. Linn, Sloane, K. D., and Clancy, M. J.
“Ideal and actual outcomes from precollege Pas-
cal instruction”. Journal of Research in Science
Teaching 24(5), 467–490, 1987.

D. Meister. Behavioral Analysis & Measurement
Methods. John Wiley & Sons, Inc., New York,
1985.

M. B. Motl. A Literate Programming Environment
Based on an Extensible Editor. Ph.D. thesis,
Texas A&M University, College Station, TX,
1990.

E. Soloway. “Learning to program = learning to con-
struct mechanisms and explanations”. Commu-
nications of the ACM 29(9), 850–858, 1986.

E. Soloway, Ehrlich, K., Bonar, J., and Greenspan,
J. “What do novices know about program-
ming?”. In Directions in Human-Computer
Interaction, edited by B. Shneiderman and
A. Badre, pages 27–54. Ablex Publishing Corp.,
Norwood, NJ, 1982.

J. C. Spohrer and Soloway, E. “Novice mistakes: Are
the folk wisdoms correct?”. Communications of
the ACM 29(7), 624–632, 1986.

A. B. Tucker. “Computing Curricula 1991– Re-
port of the ACM/IEE-CS Joint Curriculum Task
Force”. Technical report, Association for Com-
puting Machinery, New York, NY, 1990.

E. W. van Ammers. “Communication on July 16,
1993 at 7:05 CDT”. Literate Programming Mail-
ing List, 1993. Email: ammers@rcl.wau.nl.

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 309


