
Omega — why Bother with Unicode?

Robin Fairbairns
University of Cambridge Computer Laboratory
Pembroke Street
Cambridge CB2 3QG

UK
Email: rf@cl.cam.ac.uk

Abstract

Yannis Haralambous’ and John Plaice’s Omega system employs Unicode as its
coding system. This short note (which previously appeared in the UKTUG mag-
azine Baskerville volume 5, number 3) considers the rationale behind Unicode
itself and behind its adoption for Omega.

Introduction

As almost all TEX users who ‘listen to the networks’
at all will know, the Francophone TEX users’ group,
GUTenberg, arranged a meeting in March at CERN
(Geneva) to ‘launch’ Ω. The UKTUG responded to
GUTenberg’s plea for support to enable TEX users
from impoverished countries to attend, by making
the first disbursement from the UKTUG’s newly-
established Cathy Booth fund. The meeting was
well attended, with representatives from both East-
ern and Western Europe (including me; I also at-
tended with UKTUG money), and one representa-
tive from Australia (though he is presently resident
in Europe, too).

The speakers at the meeting were Michel Gooss-
ens (the president of GUTenberg1), as host for GUT-
enberg and as an expert on background to, and the
use of Unicode), and Yannis Haralambous and John
Plaice, Ω’s two developers.

The meeting can be accounted a success; all
that attended enjoyed themselves, and also learnt a
lot.

This paper is a minor revision of an article I
wrote for the UKTUG magazine Baskerville, vol-
ume 5, number 3, and outlines some of my views of
(and support for) the choices that Haralambous and
Plaice have made. I will consider the arguments for
using Unicode as a foundation for future text pro-
cessing, in particular (of course) TEX-related pro-
cessing.

What is Ω?

Ω (Haralambous and Plaice, 1994) is an extension
of TEX and related programs that has been designed

1 And now (at the time of writing) president-elect of TUG
itself.

and written by Yannis Haralambous (Lille) and John
Plaice (Université Laval, Montréal). It follows on
quite naturally from Yannis’ work on exotic lan-
guages (see, among many examples, Haralambous,
1990; 1991; 1993; 1994), which have always seemed
to me to be bedevilled by problems of text encoding.

Simply, Ω (the program) is able to read scripts
that are encoded in Unicode (or in some other code
that is readily transformable to Unicode), and then
to process them in the same way that TEX does.
Parallel work has defined formats for fonts and other
necessary files to deal with the demands arising from
Unicode input, and upgraded versions of METAFONT,
the virtual font utilities, and so on, have been writ-
ten. Ω itself is based on the normal Web2C distribu-
tion that is at the base of most modern Unix imple-
mentations, and of at least one of the PC versions
that is freely available.

Why Unicode?

There are something between 3000 and 6000 lan-
guages in use in the world, for which a writing sys-
tem exists. (The set of languages is shrinking all the
time as the deadening effect of cultural intrusion,
primarily through the electronic media, overwhelms
the desire to support existing cultures to the extent
of teaching their language to the young.) The distri-
bution of languages is by no means even throughout
the globe (Michel showed us a map), and there are
many that have not been and will presumably now
never be formally recorded.

When we come to writing systems, we find al-
most every variation imaginable in use somewhere
in the world. The Latin-like system (written left
to right with modest numbers of diacritics simply
arranged) has very wide penetration, not least be-
cause so many languages were first written down by

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 325

Robin Fairbairns

Western European missionaries or other explorers.
Languages such as Vietnamese are classified as ‘com-
plex Latin-like’, with ≥ 2 diacritics per character; an
artificial example of the same effect is IPA (the In-
ternational Phonetic Alphabet) which has sub- and
super-scripts and joining marks. Languages such as
Hebrew and Arabic are written right to left, and con-
stitute another class. Then there are the multiple-
ligature writing systems typified by the Indic lan-
guages such as Devanagari (of which we had a fasci-
nating exposition at the 1993 UKTUG Easter meet-
ing on ‘non-American’ languages, from Dominik Wu-
jastyk), and finally the syllabic scripts (such as Ko-
rean Hangul and Japanese Hiragana and Katakana),
and the ideographic scripts (Chinese and Japanese
Kanji).

Encodings are needed for computer operations
on language of any sort. There are differences be-
tween the coded representation and the written (or
printed) representation. Everyone who’s read about
TEX at all will know about ligatures (the CM fonts,
and most PostScript fonts, implement ligatures so
that, for example, ‘fl’ typed appears as ‘fl’ printed).
More significantly, almost all adults in Western cul-
tures write ‘joined-up’, which is in itself application
of a form of ligature. All these ligatures are for pre-
sentation, not for information, and so it is unrea-
sonable for them to be represented in a character
set. Other ligatures, however, form real characters
in some languages (examples are æ in Danish and
Norwegian, and œ in French).

Each encoding represents a ‘character set’ that
is to be used by the computer; the history of how
these character sets have developed is long and sorry
indeed. In the ‘dark ages’ (in fact, as recently as the
early 1960s, when I started computing), every make
of computer system had its own character code, many
of them based on the 5-bit teleprinter codes used in
telex printers. Eventually, the rather more sophisti-
cated teletypes appeared, which used seven bits of
an eight-bit code; this 7-bit codification was stan-
dardised as ASCII (the American Standard Code for
Information Interchange), which was (in the area of
application it was designed for) an excellent code. It
had all the properties needed for many of the signif-
icant development of computers in the 1960s, but it
had one serious flaw: it was not able to encode dia-
critics, which are used in almost every language (but
which your all-American information interchanger
would seldom have a need for).

To regularise the resulting mess, ISO adopted
the ASCII standard as the basis for an international
7-bit character set, ISO 646. ISO 646 is identical to
ASCII in the code points that it specifies; however,

some of the characters that ASCII does specify are
left “for national variation” in ISO 646; ASCII itself
then became the USA national variation of ISO 646.
An example of national variation is defined for the
UK, which specifies that the code point that holds
‘#’ in ASCII should hold a pounds sign ($). There
are versions for various Nordic languages that in-
clude characters such as æ or å in place of braces, a
version for French with acute, grave and circumflex-
accented letters, one for German that offers letters
with umlauts and ‘sharp s’ (ß).

There were various attempts at mechanisms to
assign different character sets for use by those who
need to use characters from several different sets (for
example, someone writing a Swedish-English Dictio-
nary); an example is ISO 2022, which defines escape
sequences for such switches. These efforts proved
impractical (at least they seemed so to me), and 8-
bit developments of ISO 646 arose, with the ability
(comfortably) to express more than one language.

Thus were born the ISO 8859 character sets.
The commonest of these (at least in the ken of most
English speakers) is ISO Latin-1 (ISO 8859-1, that
is, part one of the multi-part standard), which was
designed for use by Western Europeans. As well
as the ‘basic ASCII set’ in the first 128 characters,
it has diphthongs and vowels appropriate to most
Western European languages. Oddly, it omits the
œ dipthong that French uses, and (perhaps less sur-
prisingly2) it omits some of the accent forms used by
Welsh. ISO 8859 didn’t stop with part 1, though;
there are variants that accommodate Cyrillic (for
Russian, Serbian, and several other languages of the
old Soviet Union), Arabic, Hebrew, and so on.

This is all well and good, but it doesn’t an-
swer the needs of a writer preparing multilingual
documents, except in the case that the multiple lan-
guages are accommodated in the same part of ISO

8859: it will happen some of the time, but most ‘in-
teresting’ combinations will require switches of char-
acter set whenever the language changes.

So ISO (by this time, jointly with IEC) started
development of an all-encompassing character set, to
be numbered ISO/IEC 10646 (the difference of 10 000
is no accident). ISO/IEC 10646 was to accommodate
every possible language in the world by the simple
expedient of allowing 32-bit characters. Of course,
no-one can comprehend a 32-bit character set, and
so the set was to be structured, as a hypercube of
different repertoires; the (0, 0, 0, ∗) repertoire would

2 Given that Wales would have been represented by the
BSI in the standardisation process.

326 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Omega—why Bother with Unicode?

be the same ISO-Latin 1, but all the other sets could
be accomodated, too.

Independently, Apple and Microsoft got together
to found the Unicode consortium, whose aim was
to define 16-bit characters that would cover all the
economically important world. This criterion of eco-
nomic importance could easily have brought down
the whole edifice: the (increasingly important) lan-
guages of the Far East are at best syllabic (e.g., Ko-
rean; Korea claims 11 000 of the code points in Uni-
code), or even one character per word (e.g., Chinese;
a full classical Chinese repertoire would require well
in excess of 65 536 characters, thus sinking a 16-bit
code single-handedly).

Unicode’s sponsors therefore enforced a process
called ‘Han unification’, which aims to put the ‘same’
character in any of Chinese, Japanese and Korean
in the same slot in the table. This unification is
a distinctly dubious exercise: the same character
may have different significance in the different lan-
guages, but they are all represented by the same
code point. Contrariwise, the Latin ‘H’, the Russian
‘H’ (which sounds as Latin ‘N’) and the Greek ‘H’
(capital ‘η’) all get different code points despite hav-
ing the same paper representation. For this reason
(among others), there remain doubts as to whether
the Japanese, in important particular, will adopt
Unicode as a long-term replacement for their own
national standards.

In the shorter term, however, there remained
the possibility that there would be two conflicting
standards for the future of character codes – a de
facto one (Unicode) and ISO/IEC 10646. The ISO/

IEC standard reached its (nominal) final ballot with-
out addressing the relation to Unicode . . . but (for-
tunately) it failed at that hurdle, and for that rea-
son. Standards people are notorious for ignoring
the real world3, but this time, they conceded de-
feat. ISO/IEC 10646 was edited to have the whole
of Unicode as its (0, 0, ∗, ∗) plane, and it has thus
passed into the canon of published standards.

So we may now discuss Unicode without run-
ning out against the ISO/IEC standard: a splendid
example of the behaviour known as “common sense
prevailing”.

Virtual Metafont and Fonts to
Support Unicode

It is known that TEX is a general-purpose program-
ming language. In ‘plain’ text, we would type "hello
world". For TEX output we would type ‘‘hello

3 The author has spent an unconscionably long period of
his life on these things, and is therefore in a position to know.

world’’, which would be transparently converted
to “hello world”. Thus, the two grave accents and
the two single quotes constitute ‘programming’. In
the last analysis, you can “do everything with TEX”.

When English is typeset, the convention is that
the space, after the full stop is the end of a sentence,
is expanded; TEX makes provision for this to happen
by way of the \sfcode mechanism. When French
is typeset, the convention is that the space is not
expanded; the \sfcode mechanism can provide this
style of typesetting, as well (cf. the \frenchspacing
macro of plain TEX).

Other features of French typesetting are more
difficult to provide in TEX. For example, an excla-
mation mark is separated from the sentence: “en
français !”; to program this, the exclamation mark
needs to become an ‘active character’, which is al-
ways a tricky thing to do.

Setting the French quotation marks (known as
guillemets) becomes even more tricky; the guillemets
look like little << and >>, and the natural way to pro-
gram them is by using repeated < or > characters;
Bernard Gaulle’s french.sty does this (also setting
a space between the text quoted and the guillemets),
but it’s becoming more and more complicated; even
more so when we consider the French rules for quotes
within quotes.

More problems arise when we consider the ques-
tion of diacritics. English rather infrequently has
diacritics, so it’s not surprising that TEX’s method
of dealing with them isn’t perfect. To typeset an ac-
cented character, e.g. ä, one must type \"a; which is
typeset as two little boxes stacked on top of one an-
other, rather like

..
a . This does work, but these com-

posite glyphs no longer qualify (to TEX) as some-
thing that it’s willing to hyphenate –TEX only hy-
phenates ‘words’ made up of sequences of letters.
A language such as German, with hyphenation sup-
pressed for many words, is hardly a language at all.
These observations are what led to the definition
of the Cork font encoding, in which a goodly pro-
portion of Western European letters with diacritics
appear as single characters; if they are thus repre-
sented, words containing them may be hyphenated.

With the Cork encoding, which is in effect an
output encoding, we encounter a further problem re-
lating to the nature of communication. The problem
arises from the nature of character sets; while there
are many well-established character sets, there are
seriously different camps into which they fall. For
example, the character ‘Þ’ (Thorn), appears in Mi-
crosoft Windows’ character set but not in the Mac-
intosh set, while ‘Ω’ appears in the Macintosh set
but not in the Windows set; both of these sets are

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 327

Robin Fairbairns

based on ASCII. To solve this problem, of encoding
everything that appears in any character set, there
has to be a super-encoding. This can be either a
multi-character representation, as in the www en-
coding, html (for example the encoding would for é
would be é), or a super-character set, as in
Unicode.

In the present arrangement of typesetting tech-
nology, we have the situation where non-English users
sit at a computer, and express their own language
via a local layer in ASCII or a derivative of it – i.e.,
we have a picture like this:

local
layer

ASCII

- typography

In this arrangement, the human interface allows the
use of local characters, and the display will show
what’s typed. The typography does the display job
again (possibly differently); however, communica-
tion of the text to be typeset is difficult, because
of the local nature of the interface.

The information to be transmitted needs to be
encoded. There is no limit to the number of lo-
cal encodings that may exist; equally, there is no
constraint on the representations used by the typo-
graphic system. However, to facilitate the transmis-
sion of information, a common schema of its repre-
sentation in the coded date must exist.

local
layer

ASCII

- information - typography

� - use for
communication

The ultimate mechanism for ensuring that such
a schema exists is to require that everything be trans-
mitted in a common encoding scheme; Ω employs
ISO/IEC 10646/Unicode for this. Input text is trans-
formed into Ω’s internal ‘information’ by an Omega
Translation Process (OTP); OTPs may also be used
to transform the information during its processing
withing Ω, and an OTP is also used to derive the
coding of the font, to be used for typesetting, from
the Unicode-encoded information within Ω:

Input
encoding

- information
(Unicode)

- typography

� �6
OTP OTP

OTP

Conceptually, at least, this is exactly what one
wants. In practice, the usefulness of Ω remains to
be seen; the implementors are promising a version
(‘soon’) that progresses from the status of pre-test.
I, for one, am eagerly awaiting its appearance.

References

Y. Haralambous. “Arabic, Persian and Ottoman
TEX for Mac and PC”. TUGboat 11(4), 520–
524, 1990.

Y. Haralambous. “TEX and those other languages”.
TUGboat 12(34), 539–548, 1991.

Y. Haralambous. “The Khmer script tamed by the
Lion (of TEX)”. TUGboat 14(3), 260–270, 1993.

Y. Haralambous. “An Indic TEX preprocessor—
Sinhalese TEX”. TUGboat 15(3), 301–301, 1994.

Y. Haralambous and Plaice, John. “First appli-
cations of Ω: Adobe Poetica, Arabic, Greek,
Khmer”. TUGboat 15(3), 344–352, 1994.

328 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

