Dotted and Dashed Lines in METAFONT

Jeremy Gibbons

Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.

Email: jeremy@cs.auckland.ac.nz

Abstract

We show how to draw evenly dotted and dashed curved lines in METAFONT,
using recursive refinement of paths. METAPQOST provides extra primitives that
can be used for this task, but the method presented here can be used for both

METAFONT and METAPOST.

Introduction

Knuth’s METAFONT has powerful facilities for ma-
nipulating and drawing curves or ‘paths’. These
facilities are generally sufficient for METAFONT’s
primary intended purpose, namely drawing letters.
However, METAFONT is also very well suited to pro-
ducing technical diagrams; for this secondary pur-
pose, METAFONT lacks a valuable facility — that of
drawing evenly dotted and dashed curves. In this
paper we show how to remedy this shortcoming, us-
ing the facilities that METAFONT does have avail-
able.

John Hobby’s METAPOST is an adaptation of
METAFONT for producing PostScript output rather
than bitmaps. METAPOST was primarily intended
for producing technical diagrams (Don Hosek re-
ports Hobby as saying, ‘Well, you could use it for
generating characters, but I wouldn’t recommend
it’). METAPOST therefore provides an ingenious
scheme for drawing dotted and dashed lines: an ar-
bitrary picture can be used to generate a dash pat-
tern for drawing paths. This scheme is not very gen-
eral — there are reasonable dashed-line-like applica-
tions for which it does not work—but METAPOST
also provides lower-level primitives arclength and
arctime that are quite general. These primitives
make the approach presented in this paper largely
redundant for METAPOST, but it remains necessary
for the ‘core METAFONT’ language.

Throughout this paper, we use the term ‘META-
FONT’ to refer to both Knuth’s METAFONT and
Hobby’s METAPOST; we use the term ‘METAPQOST’
to refer just to Hobby’s METAPOST.

Cubic Bézier curves

METAFONT represents curved lines by piecewise cu-
bic Bézier curves, which it calls ‘paths’. These are
discussed in Chapter 3 of the METAFONTbook; we
summarize here all that is needed for the purposes

of this paper. For most of this paper, we consider
only non-cyclic paths; we discuss cyclic paths briefly
at the end of the paper.

A path is specified by a sequence of knots and
control points. The path runs from the first knot
to the last knot, passing through each knot in turn.
Between each pair of consecutive knots, there are
two control points; the path leaves one knot in the
direction of the next control point, and enters the
next knot in the direction of the previous control
point. A path with n+ 1 knots is said to have length
n, and can be considered as a function from ‘time’
(i-e., the real numbers) between 0 and n inclusive to
points in the plane; times that are natural numbers
correspond to the knots, with time 0 the start of the
path and time n the end. (Throughout this paper,
we use the term ‘length’ as a measure of the number
of knots in a path; it is always a natural number. In
contrast, we use the term ‘arc length’ for the spatial
distance covered in travelling along the path.)

For example, here is a spiral path of length 4,
and the knots (dots) and control points (crosses)
used to generate it.

This path was drawn by the METAFONT code

p := (90,0) . controls (90,20) and (70,50)
(50,60) .. controls (30,70) and (7,61)
(0,40) . controls (-5,25) and (5,10)
(20,10) .. controls (32,10) and (40,18)
(40,30);

draw p

METAFONT actually has sophisticated algorithms
for choosing ‘nice’ control points given just the knots
and possibly some other information, but that does

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 259



Jeremy Gibbons

not concern us here; whichever way the path is spec-
ified, METAFONT represents it internally as knots
and control points.

An important property of piecewise cubic Bézier
curves is that each segment of a path (i.e., a part be-
tween two consecutive knots) lies entirely within the
‘convex hull’ of —that is, the smallest convex poly-
gon surrounding —the knots at either end and the
control points in between. For example, here is the
same spiral, with the convex hull surrounding each
path segment shown shaded grey.

There are two general forms for a segment of
a path: either the control points between the two
knots are both on the same side of the ‘chord’ be-
tween the knots, or they are on different sides. These
two cases are illustrated below.

/A

Notice that, in either case, the arc length of the
chord between the knots is no greater than that of
the path, and the arc length of the ‘control polygon’
(consisting of three straight lines, from the first knot
to the second via the control points) is no less than
that of the path; this fact is important in what fol-
lows. Clearly, this property holds of paths as well as
path segments. Also, the degenerate case in which
both control points are on the same line as the knots
yields a path that also lies entirely on that line; the
arc lengths of the chord and control polygons again
form lower and upper bounds on the arc length of
the path.

Evenly-spaced points on a path

The essential problem when it comes to drawing dot-
ted or dashed lines is that points evenly separated
in time along a path are not necessarily evenly sepa-
rated in space. For example, here is the same spiral
path as above, with 21 dots spaced evenly in time —
that is, placed every 1/5*" of a time unit. Notice how
the dots get closer as the curve gets tighter; a point
moves at different ‘speeds’ in space as it progresses
along the path evenly in time.

Producing evenly-spaced dots basically involves
finding the arc length of a cubic Bézier curve. This
is a difficult mathematical problem; it involves inte-
grating the square root of a degree-four polynomial,
which in turn can only be done analytically using ‘el-
liptic integrals’—not one of the primitives provided
by METAFONT.

Fortunately, there is a simple approximation
method for finding the arc length; this method is
the subject of this paper. The basis of the method
is recursive refinement of the path, picking more
and more knots on the path and hence using control
points that are closer to the curve. For example, if
we pick an extra knot half way (in time) between
each pair of consecutive knots on the above spiral
path, we get the following picture:

This spiral path is generated by the METAFONT
code

path q;
q := subpath (0,0.5) of p
for i := 1 step .5 until length p:
& subpath(i-0.5,i) of p
endfor;

The path itself has not changed (although it is now
travelling at half of its original speed), but the chord
and control polygons are much closer approxima-
tions to the curve. How good are these approxima-
tions? Gravesen (1993) shows that, under repeated
recursive refinements, the average of the arc lengths
of the chord and control polygons converges very
quickly to the arc length of the path!. We use re-
cursive refinement to get a sufficiently-close polygo-
nal approximation to a path, and then divide that
polygonal approximation up evenly in space. This
yields (for example) the result below.

1 In fact, the average of the arc lengths of the chord and
control polygons under k recursive refinements converges to
the arc length of the path as 16—F; that is, the error decreases
by a factor of 16 on every iteration. Gravesen also gives a
general result for degree-n Bézier curves.

260 TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting



vardef chordpoly expr p =
save i; numeric ij;
point O of p
for i := 1 upto length p:
-- point i of p
endfor
enddef;

vardef controlpoly expr p =
save i; numeric i;
point 0 of p
for i := 1 upto length p:
-- postcontrol (i-1) of p
-- precontrol i of p
-— point i of p
endfor
enddef;

vardef chordlen expr p =
save i; numeric i;
0
for i := 1 upto length p:
+ abs(point i of p - point (i-1) of p)
endfor
enddef;

vardef controllen expr p =
chordlen (controlpoly p)
enddef;

Figure 1: The functions chordlen and
controllen

Notice now that the dots are evenly spaced, even as
the curve gets tighter.

Recursive refinement

In order to refine a path, we need first to be able
compute lower and upper bounds to its arc length.
The functions chordlen and controllen, which re-
turn the arc lengths of the chord and control poly-
gous, are defined in Figure 1. (The METAFONT ex-
pression point i of p returns the position of the
path at time ¢; for natural 7, postcontrol i of p
returns the first control point after knot ¢, and sim-
ilarly, precontrol i of p returns the last control
point before knot 4.)

Given the lower bound chordlen p and upper
bound controllen p to the arc length of a path
p, recursive refinement is straightforward. If the

Dotted and Dashed Lines in METAFONT

bounds are sufficiently close, we return just p; oth-
erwise we split p into two halves (time-wise), inde-
pendently refine the two halves, and join the results
back together. We use a multiplicative rather than
additive test for ‘sufficiently close’, so that if a num-
ber of subpaths are independently ‘sufficiently re-
fined’ then their concatenation will also be. Note
that splitting the path in two doesn’t double the
length, as we did in our earlier spiral example; it only
adds zero or one more knot (depending on whether
or not length p is even). However, it does give the
advantage of adaptive refinement —nearly straight
parts of the path are not refined as much as very
wiggly parts.

numeric tol; tol := eps;
vardef refine expr p =
if (controllen p)<=(1+tol)*(chordlen p):

P
else:

(refine (subpath(0, length p/2) of p)) &
(refine (subpath(length p/2,length p) of p))
fi
enddef;

Marking a path evenly

Having refined the path p, we still need to divide it
into equal-sized chunks; that is, we need to find a
sequence of times tg, ..., %, such that the arc length
between points t; and t;;1 of p for each i is some
fixed given distance d. However, we now have a
polygonal path chordpoly(refine p) which very
closely approximates p. It is straightforward (if a
little messy) to find the times that divide this poly-
gonal approximation into chunks of arc length d; we
simply use those same times for the curved path p.

The code for the function markedevery is given
in Figure 2. The function takes in a path p and a
distance d, and returns the sequence of times that
divide the chord polygon of p evenly into chunks of
arc length d. This function should be called only on
a path which is ‘very nearly’ polygonal — one that is
actually polygonal, or perhaps the result of refining
another path.

The program maintains variables ¢, the ‘cur-
rent time’, which increases from 0 to the length (in
time) of p and is always at an integer value (in fact,
equal to knot) at the start of the outer loop body,
and djeq.:, which is the distance from the ‘current
point’ (point ¢ of p) until the next mark. Each path
segment is considered in turn, the time counter ¢ ad-
vancing as required along it. Note that the first and
last ‘chunks’ taken from a segment may be shorter
than d.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 261



Jeremy Gibbons

secondarydef p markedevery d =

begingroup
save q; path q; q := (0,0); % for result
save dnext; numeric dnext; dnext := d;

save seglength; numeric seglength;
save knot; numeric knot;
save t; numeric t; t:=0;
save dt; numeric dt;
for knot := O upto length p - 1:
seglength := abs (point (knot+1) of p
- point knot of p);
% arc length of this segment
if seglength > O:
forever:
dt := dnext / seglength;
% time to next mark (if this segment)
exitif t+dt > knot+1;
% exit if next mark not on this seg
t := t+dt; % move forwards...
q :=q-- (£,0); % ... & put mark here
dnext := d; ’% next mark is d away
endfor
% now t <= knot+l < t+dt
dnext := dnext - (knot+1-t)*seglength;
% put leftover towards next mark
t := knot+1;
else: 7 empty seg (coincident knots)

t 1= t+1;
fi
endfor;
q % return time sequence we’ve built up
endgroup

enddef;

Figure 2: The function markedevery

def drawdotted (expr p, d) =
save refined, marks, i;
path refined, marks; numeric ij;
refined := refine p;

marks := refined markedevery d;
for i := O upto length marks:
drawdot

point (xpart(point i of marks))
of refined;
endfor
enddef;

Figure 3: The procedure drawdotted

METAFONT has no ‘list’ type that can be used
to return the sequence of times tg,...,t,, so we re-
turn the path (¢,0) —— --- —— (¢,,0) instead; this
path is built up in the variable q.

Dotted and dashed lines

The function markedevery does the work of marking
a path evenly in space; as described above, to draw
a dotted path we first refine it, and mark the re-
fined polygonal approximation evenly instead. The
procedure drawdotted is defined in Figure 3.

For example, we can place dots every eight units
in space on our spiral path as follows:
pickup pencircle scaled 0.5;
draw p;
pickup pencircle scaled 2;
drawdotted (p, 8);

This yields the picture

Notice that there is no guarantee that the last dot
will be at the end of the path. To ensure that this is
the case, we must choose the dot spacing to divide
evenly into the arc length of the path. Fortunately,
the average of the arc lengths of the chord and con-
trol polygons makes a very good estimate of the arc
length, as discussed above. The evenly-dotted spiral
on page 261 with the 21st dot exactly at the end of
the path was drawn with the commands
pickup pencircle scaled 0.5;
draw p;
pickup pencircle scaled 2;
path q; q := refine p;
drawdotted (p,

.5[chordlen q,controllen q]/(20%(1+eps)));

(Notice that we have to scale down the ‘ideal’ dot
spacing by a factor of 1+eps, to ensure that the last
dot is just on rather than just off the end of the path
in case of rounding errors.)

Dashed lines can be drawn using pretty much
the same approach. Here is a simple-minded macro
to do it.
def drawdashed (expr p, d) =

save refined, marks, i;
path refined, marks; numeric ij;

refined := refine p;
marks := refined markedevery d;
if (length marks) mod 2 = 0:
marks := marks -- (length refined,0);
fi

262 TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting



vardef refine expr p =
if (controllength p)<=(1+tol)*(chordlength p):
p
else:
(refine (subpath(0, length p/2) of p)) &
(refine (subpath(length p/2,length p) of p))
if cycle p: & cycle fi

fi
enddef;
Figure 4: refine for cyclic paths
for i := 0 step 2 until length marks - 1:

draw subpath(xzpart (point i of marks),
xpart (point (i+1) of marks)) of refined;
endfor
enddef;

For example, with the same spiral path and d = 8
we get

VRN
/ \
\ v N
~_/ \

Notice that we add an extra mark at the end of the
path (yielding a partial final dash) if the number of
marks is odd.

A more elaborate approach would allow differ-
ing dash and gap sizes, and displacing the dashes.
This could be done by using the greatest common
divisor of the various distances to mark the path,
or perhaps by altering the markedevery function to
take several distances as arguments.

Cyclic paths

The same recursive refinement technique works just
as well for cyclic paths; in fact, the only change that
is needed is to the function refine. When we split a
path into two halves, we need to remember whether
the path is cyclic, recombining the halves as a cycle
if so. The code for this version of refine is given in
Figure 4.

Iterative non-adaptive refinement

The recursive refinement technique described here
is quite elegant, but it can cause METAFONT to run
out of stack space on very wiggly paths. An iterative
approach can avoid this, at the cost of not easily
providing adaptive refinement; we simply repeatedly
double the length until the lower and upper bounds
on the arc length are sufficiently close. The code is
given in Figure 5.

Dotted and Dashed Lines in METAFONT

vardef refine expr p =
save q; path q; q := p;
forever:
exitif (controllen q)<=(1+tol)*(chordlen q);
q := subpath (0,0.5) of q
for i := 1 step .5 until length q:
& subpath(i-0.5,i) of gq
endfor
if cycle q: & cycle fi;
endfor;

q
enddef;

Figure 5: An interative version of refine

An unusual application

As we mentioned in the introduction, Hobby’s META-
POST does provide primitives for drawing dotted
and dashed lines. You can do some surprising things
with dashes; for example, you can draw crosses along
a path by drawing the path twice, once with long
thin dashes and once with short fat dashes.
interim linecap:=butt;
draw p dashed dashpattern(on 6 off 6)
withpen pencircle scaled 2;
draw p dashed dashpattern(off 2 on 2 off 8)
withpen pencircle scaled 6;

(The assignment to 1inecap produces square, rather
than rounded, ends to lines.) Unfortunately, al-
though METAPOST generates good PostScript from
such constructions, bugs in many PostScript inter-
preters make them come out wrong. For example,
the following picture should consist of crosses, but
on some PostScript interpreters some of the crosses
turn out mushroom-shaped.

»
&“ ".
b ™
* *
» »
L - -
» » »
* * -
g »
-

Still, there are some things that cannot be done
with METAPOST’s dash primitives, but can be done
with the techniques described here. We conclude
this paper with one such application. (In fact, this
application was the original motivation for the au-
thor’s interest in the topic.) Note that this problem
can also be solved using METAPOST’s arclength
and arctime primitives, but then the solution is not
portable to ‘core METAFONT’.

Several years ago, while a PhD student, the au-
thor used to play in a jazz band called the Missis-
sippi Muskrats, and he endeavoured to produce a

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 263



Jeremy Gibbons

logo for posters for the band. This logo included a
picture of a muskrat, for which a ‘furry’ effect was
obtained by drawing diagonal lines across a path.
The first attempt at drawing a furry muskrat used
the same time interval for every path, and yielded a
bushy throat and a threadbare back:

N
NV

- \

PEES\TR g <o

) N
/ N 4

s

(The author makes no claims for the artistic merit
of these drawings.)

The second attempt used different time inter-
vals for different paths, and was much better; still
however, the muskrat’s back suddenly gets hairier
about halfway from the tail to the neck, and of
course there’s the hassle of choosing all those dif-
ferent numbers.

S

Ty

:\\\\\\\\\\\\\\\\\\\\

SN, S
¥

Sy

IS

N

N
s

N

NN
25
N o

The third attempt used the method described in this
paper, and gave a much healthier-looking muskrat:

\\\\\\\\\\\\\\\\\\\\\

W

Iy

2/5 =Ny 0K
//// Z/ /ZSS\(‘
Acknowledgements

The author would like to thank Jens Gravesen for
his very elegant paper (Gravesen, 1993), and Alan
Hoenig, Geoffrey Tobin and several other people
who have put up with discussions of this topic elec-
tronically and in person over the last few years.

References

J. Gravesen. “Adaptive Subdivision and the Length
of Bézier Curves”. Technical Report 472, The
Danish Center for Applied Mathematics and Me-
chanics, Technical University of Denmark, 1993.

264 TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting



